
A Branch and Bound Method Solving the Max–Min

Linear Discriminant Analysis Problem

Amir Beck∗ Raz Sharon †

March 19, 2023

Abstract

Fisher linear discriminant analysis (FLDA or LDA) is a well-known technique for di-

mension reduction and classification. The method was first formulated in 1936 by

Fisher in the one–dimensional setting. In this paper, we will examine the LDA prob-

lem using a different objective function. Instead of maximizing the sum of all distances

between all classes, we will define an objective function that will maximize the minimum

separation among all distances between all classes. This leads to a difficult nonconvex

optimization problem. We present a branch and bound method for the problem in the

case where the reduction is to a one–dimensional space.

1 Introduction

1.1 Fisher’s Linear Discriminant Analysis

The starting point of this paper is Fisher’s linear discriminant analysis model, which we now

recall. Assume we have a dataset in Rd which contains n samples from c classes labeled as

1, 2, . . . , c. Each sample xi ∈ Rd, i ∈ {1, . . . , n} is associated with one class. We wish to

project the dataset into a lower–dimensional space Rp, p ≤ d, where the different classes

can be easily separated in some sense. We denote by C(k) the set containing all the indices

of samples associated with class k. The number of samples in each class is nk ≡
∣∣C(k)

∣∣. We

are looking for a matrix P ∈ Rd×p such that PTP = Ip. The new representation of the data

set in Rp is yi := PTxi. We denote by µ(k) the center of each class, and by µ the center of

the entire dataset:

µ(k) :=
1

nk

∑
i∈C(k)

xi, µ :=
1

n

n∑
i=1

xi.

Similarly, the class centers and the entire sample center in the lower–dimensional space Rp

are denoted by:

µ̃(k) :=
1

nk

∑
i∈C(k)

yi = PTµ(k), µ̃ :=
1

n

n∑
i=1

yi = PTµ =
c∑

i=1

ni

n
µ̃(k).

∗School of Mathematical Sciences, Tel Aviv University, becka@tauex.tau.ac.il. The research of Amir Beck

is partially supported by ISF grant no. 926/21.
†School of Mathematical Sciences, Tel Aviv University, razsharon@mail.tau.ac.il

1

We denote two important matrices—the between scatter matrix SB, and the within–class

scatter matrix SW :

SW :=
c∑

k=1

S
(k)
W , SB :=

c∑
k=1

nkS
(k)
B ,

where

S
(k)
W :=

∑
i∈Ck

(
xi − µ(k)

) (
xi − µ(k)

)T
, S

(k)
B :=

(
µ(k) − µ

) (
µ(k) − µ

)T
.

We wish to find a transformation into a lower–dimensional space Rp which maximizes the

separation between classes. To do so, we must first formulate a measure for how good is

the separation. We use the common measure function R which is the ratio of the variance

between the classes and the variance within the classes:

R(P) =
ϕB(P)

ϕW (P)
, (1.1)

where

ϕB(P) :=
c∑

k=1

nk

n
∥µ̃(k) − µ̃∥22, ϕW (P) :=

1

n

c∑
k=1

∑
i∈C(k)

∥∥yi − µ̃(k)
∥∥2
2
.

We can rewrite ϕB(P) and ϕW (P) more explicitly as

ϕW (P) =
1

n

c∑
k=1

∑
i∈C(k)

∥∥yi − µ̃(k)
∥∥2
2
=

1

n

c∑
k=1

∑
i∈C(k)

∥∥PT
(
xi − µ(k)

)∥∥2
2

=
1

n

c∑
k=1

∑
i∈C(k)

Tr
(
PT
(
xi − µ(k)

) (
xi − µ(k)

)T
P
)

=
1

n
Tr(PTSWP),

ϕB(P) =
1

n

c∑
k=1

nk∥PTµ(k) −PTµ∥22 =
1

n
Tr

(
PT

(
c∑

k=1

nk

(
µ(k) − µ

) (
µ(k) − µ

)T)
P

)
=

1

n
Tr
(
PTSBP

)
.

The goal is to maximize the ratio of the above two expressions under an orthogonality

constraint on P. The arising problem is called the Linear Discriminant Analysis (LDA)

problem (also called Fisher’s linear discriminant FLDA) [6, 14]:

(FLDA) max
P∈Sd,p

ϕB(P)

ϕW (P)
= max

P∈Sd,p

Tr(PTSBP)

Tr(PTSWP)
, (1.2)

where Sd,p is the Stiefel manifold {P ∈ Rd×p : PTP = Ip}. The specific formulation above is

called the trace ratio problem. While in the one–dimensional case the problem formulation is

well agreed, different formulations for the multidimensional case exist in the literature [3, 5,

7], apparently, because the trace ratio problem is considered too hard to handle [14]. In this

paper we concentrate on the one-dimensional case (p = 1) in which the transformation matrix

2

becomes a vector, P = v ∈ Rd×1 which is normalized (∥v∥2 = 1). The one-dimensional LDA

problem therefore in this case reads as

max
v:∥v∥2=1

vTSBv

vTSWv
. (1.3)

1.2 Motivation

One potential weakness of the FLDA approach is caused by the fact that when maximizing

the sum of squared distances of all class centers to the mean point of all the dataset, some

important information regarding the scattering of the classes in space is lost. The system

favors solutions in which there is a large distance between classes to the overall mean, while

the distances between different classes might be arbitrarily small. For an illustration of this

flaw, see Figure 1a where we can see that in the projected subspace (black line) generated by

solving the FLDA problem. The yellow and blue class centers almost overlap, which makes

them difficult to separate, whereas their distance to the overall mean is relatively large, and

therefore the objective function does not reflect the fact that they are almost overlapping.

(a) Fisher LDA Problem (b) Max–Min LDA Problem

Figure 1: Fisher LDA and Max–Min LDA.

A two–dimensional dataset represented by small dots where each class is in a different color.

The dataset is projected onto a one–dimensional subspace represented by a black line. Trian-

gles represent mean points of each class in the original two–dimensional space, and squares

represent the projected mean points of each class. The FLDA objective function values of the

Max–Min LDA and the FLDA solutions are 8.431 and 9.56 respectively.

A simple calculation shows that we can express ϕB as the weighted sum of distances between

all pairs of the class centers:

ϕB(v) =
∑

k>i k,i∈[c]

nink

n
(vT

(
µ(i) − µ(k)

)
)2.

To ensure that any pair of classes can be easily separated, we suggest an objective function

that considers the minimum distance between all classes pairs instead of their weighted

3

squared sum:

ϕm(v) = min
k>i k,i∈[c]

{(
vT (µ(i) − µ(k))

)2}
. (1.4)

Finally, the problem that we seek to solve in this paper is the max-min LDA problem, which

consists of maximizing the ratio between the minimum squared distance between class centers

ϕm and the variance within the classes ϕw:

max
v

ϕm(v)

ϕW (v)
=

min
k>i k,i∈[c]

{
vT
(
µ(i) − µ(k)

)
)2
}

vTSWv
: ∥v∥2 = 1

 . (MMLDA)

The analysis in the paper is made under the following underlying assumption that will be

made throughout the paper:

Assumption 1. (A) SW ≻ 0

(B) µ(1),µ(2), . . . ,µ(c) are linearly independent.

We note that the positive semidefiniteness of SW is clear from the definition of SW. The

positive definiteness of SW is a rather common assumption in the LDA literature [10, 14].

The assumption that µ(1),µ(2), . . . ,µ(c) are linearly independent is very reasonable whenever

d > c.

1.3 Paper Layout

In this paper we present an effective branch and bound scheme to solve the new max-min

LDA problem (MMLDA) that takes advantage of the unique structure of the problem. Sec-

tion 2 introduces a reformulation of the problem as a problem consisting of minimizing a

convex quadratic function over a nonconvex polyhedral set, and then describes an additional

transformation reducing the number of variables to the number of classes c. Building on

these reformulations, Section 3 introduces a branch and bound method for finding the global

optimal solution of the problem. Finally, numerical experiments on random data sets illus-

trating the effectiveness of the proposed method in reducing the size of the enumeration trees

are described in Section 4. The preliminary experiments on random instances presented in

Section 4 are encouraging and provide a proof of concept. More elaborate tests on real-life

problems are needed to assess true potential of the method.

1.4 Notation

Vectors are denoted by boldface lowercase letters, e.g., y, and matrices by boldface uppercase

letters, e.g., B. The vectors of all zeros and ones are denoted by 0 and e respectively. The

canonical basis of Rn is denoted by e1, e2, . . . , en. We use the standard notation [n] ≡
{1, 2, . . . , n} for a positive integer n.

4

2 Problem Reformulation

2.1 The Inverse Max–Min LDA Problem

Due to the fact that the objective function in (MMLDA) is invariant to scalar multiplications,

we can neglect the norm constraint and solve the next problem:

max
0 ̸=v∈Rd

ϕm(v)

vTSWv
. (2.1)

The two problems are equivalent. Indeed, if v maximizes problem (MMLDA), it will be

a maximizer of (2.1) as well. In the other direction, if v is an optimal solution of (2.1),

then v
∥v∥2 is an optimal solution of (MMLDA). We will show that the MMLDA problem

can be equivalently reformulated as the following problem, which we refer to as the inverse

max–min LDA problem:

min
v∈Rd
{vTSWv : ϕm(v) ≥ 1}. (2.2)

Problem (2.1) is in fact a generalized fractional programming problem [16]. By using a scale

invariant property of the problem, the next simple result shows that models (2.1) and (2.2)

are equivalent, and describes the exact relations between their optimal solutions.

Lemma 2.1. Let ϕ : Rd → R be a function satisfying the following properties:

(i) for all α ∈ R and v ∈ Rd ϕ(αv) = α2ϕ(v);

(ii) there exists v̂ ∈ Rd s.t ϕ(v̂) > 0,

and let S ∈ Rd×d where S ≻ 0. Consider the following models: the “ratio model”

max
v ̸=0

ϕ(v)

vTSv
,(R)

and the “inequality model”

min
v:ϕ(v)≥1

vTSv.(I)

Then

(a) if v∗ is a maximizer of (R) with maximal value r∗, then v∗√
ϕ(v∗)

is a minimizer of (I)

with minimal value 1
r∗
;

(b) any optimal solution of (I) is an optimal solution of (R) as well.

Proof. (a) Let v∗ be an optimal solution of (R) corresponding to the maximal value r∗. Then

ϕ(v∗) > 0, [by property (ii)] (2.3)

ϕ

(
v∗√
ϕ(v∗)

)
=

ϕ(v∗)(√
ϕ(v∗)

)2 = 1. [by property (i)] (2.4)

5

Thus u∗ ≡ v∗√
ϕ(v∗)

is a feasible solution of (I). We have

r∗ =
ϕ(v∗)

v∗TSv∗ =

1
ϕ(v∗)

ϕ(v∗)
1

ϕ(v∗)
v∗TSv∗ =

1

u∗TSu∗ . (2.5)

Consequently, u∗TSu∗ = 1
r∗
. We are left with the task of showing that 1

r∗
is the minimal

value of (I). To show this, take x, a feasible solution of (I), meaning ϕ(x) ≥ 1. Then since r∗

is the optimal value of (R), it follows that r∗ ≥ ϕ(x)
xTSx

≥ 1
xTSx

, and we obtain that xTSx ≥ 1
r∗
.

(b) Let v∗ be an optimal solution of (I) with minimal value i∗. From property (i), ϕ(0) = 0

and hence v∗ ̸= 0; consequently, i∗ = (v∗)TSv∗ > 0. Denote α ≡ ϕ(v∗) and let u ≡ v∗
√
α
.

Obviously u is a feasible point of (I) with uTSu = 1
α
v∗TSv∗ = 1

α
i∗ but since i∗ is the minimal

value of (I), uTSu ≥ i∗ implying that α = ϕ(v∗) ≤ 1. On the other hand, α = ϕ(v∗) ≥ 1

by the fact that v∗ is a feasible solution of (I). Therefore, α = ϕ(v∗) = 1. Note that
ϕ(v∗)

(v∗)TSv∗ = 1
(v∗)TSv∗ = 1

i∗
. To show that v∗ is an optimal solution of (R), take any v ̸= 0.

If ϕ(v) ≤ 0, then obviously ϕ(v)
vTSv

≤ 0 ≤ 1
i∗
. If ϕ(v) > 0, define w = 1√

ϕ(v)
v. Then

ϕ(w) = 1, and thus, since i∗ is the optimal value of (I), it holds that wTSw ≥ i∗. Finally,
ϕ(v)
vTSv

= 1
wTSw

≤ 1
i∗
, and hence v∗ is an optimal solution of (R) with a corresponding optimal

value of 1
i∗
.

2

Under Assumption 1, the conditions of Lemma 2.1 are met with S = SW and ϕ = ϕm,

and the equivalence of models (2.1) and (2.2) is established.

2.2 Dimension Reduction of the Inverse Max–Min LDA Problem

We can rephrase (2.2) as a quadratic problem with nonconvex polyhedral constraints, by

using the expression of ϕm given in (1.4). The inverse max–min LDA problem can thus be

rewritten as:
min
v∈Rd

vTSWv

s.t. |vT
(
µ(i) − µ(j)

)
| ≥ 1 for all i, j ∈ [c], i > j.

(ILDA)

The following lemma describes an equivalent reformulation of problem (ILDA) by passing

to a decision variables vector α ∈ Rc constructed via the relation αi = vTµ(i), meaning that

αi is the projection of the mean vector µ(i) on the one-dimensional subspace spanned by the

vector v.

Lemma 2.2. Let α ∈ Rc be an optimal solution of the problem

min
α∈Rc

αT
(
MTS−1

WM
)−1

α

s.t. |αi − αj| ≥ 1 for all i > j, i, j ∈ [c],
(2.6)

where M is the d× c matrix whose columns are µ(1),µ(2), . . . ,µ(c). Then1

v = S−1
W M

(
MTS−1

W M
)−1

α (2.7)

is an optimal solution of (ILDA).
1Recall that by Assumption 1[B], M has full column rank.

6

Proof. Introducing the variables α = MTv, problem (ILDA) becomes

min
v∈Rd,α∈Rc

vTSWv

s.t. MTv = α,

|αi − αj| ≥ 1 for all i > j, i, j ∈ [c].

(2.8)

Fixing α ∈ Rc, we can solve (2.8) w.r.t. v, which boils down to solving the problem

min
v∈Rd
{vTSWv : MTv = α},

whose optimal solution is

v = S−1
WM

(
MTS−1

WM
)−1

α.

Pluging the above expression into (2.8), the objective function can be expressed in terms of

α as follows:

vTSWv = αT
(
MTS−1

WM
)−T

MTS−T
W SWS−1

WM
(
MTS−1

WM
)−1

α = α
(
MTS−1

WM
)−1

α,

and therefore the optimization problem reduces to (2.6) and the relation (2.7) is established.

2

The above lemma shows that the d-dimensional problem (ILDA) can be reduced into the

c-dimensional problem (2.6), which will be the main problem for which we will develop a

solution technique. By denoting S =
(
MTS−1

W M
)−1

, the main problem becomes

Main Problem

(M)
min
α∈Rc

αTSα

s.t |αi − αj| ≥ 1 for all i > j, i, j ∈ [c].

3 The Branch and Bound Algorithm

In this section we will develop a branch and bound algorithm to solve our main problem (M).

Note that solving problem (M) is a difficult task due to the nonconvexity of the feasible set,

as illustrated in Figure 2. Thus, branch and bound methods with exponential complexity in

the worst case, are a viable option.

To characterize the subproblem defining each node in the branch and bound tree, we

begin with a simple observation. Suppose that we have in our disposal the information on

the order of the variables α1, α2, . . . , αc in an optimal solution. Specifically, suppose that we

know that ik is the index of the kth largest value in α for any k ∈ [c]. Then in this unrealistic

scenario we can rewrite the constraints in (M) without the absolute values as follows:

αik − αik+1
≥ 1, k ∈ [c− 1],

and problem (M) becomes a convex quadratic problem. The above discussion is relevant only

if we know the order of an optimal α, which we do not in general. We can still solve problem

7

Figure 2: Illustration of the feasible set of (M) in the case c = 3.

The set has a decompsition into 6 convex subregions. The set is unbounded, but the figure

describes its intersection with the region [−3, 3]3.

(M) by full enumeration over all possible orderings of α. This gives us c! possibilities in

general. We can avoid orderings that are in reverse order of each other, since if α∗ is an

optimal solution of (M) then so is −α∗. Therefore, full enumeration will require solving
c!
2
convex quadratic problems, implying that the number of convex problems that need to

be solved in this suggested exhaustive algorithm grows exponentially with the number of

classes.

Branch and bound (BB) is a general method for solving optimization problems by a

clever enumeration of possible solutions [11, 12, 15]. We suggest decomposing the problem

according to the order of elements of α. We build a series of subproblems, each represented

by a node, where we enforce a specific partial order on α. By partial order we refer to

the information on the identity of the indices corresponding to the largest and smallest

components in an optimal solution2. The exact definition of the subproblem is given in the

next section.

3.1 Subproblem Definition

We define the subproblem as the main problem (M) with additional partial order constraints

on α. Specifically, each subproblem (and hence node in the BB tree) is defined by two

sequences:

(a) The sequence d = (d1, d2, . . .) of indices defining the order of the largest values in α in

the sense that αdi is the ith largest element in α.

(b) The sequence a = (a1, a2, . . .) is the sequence of indices defining the order of the

smallest values in α with αai being the ith smallest value in α.

2not to be confused with the mathematical term of “partial order” used to describe a reflexive, antisym-

metric and transitive relation on the elements of a given set.

8

The numbers of elements in the sequences d and a are denoted by l(d) and l(a) respectively.

We will avoid situations where there is an overlap of indices between the sequences, which is

the same as assuming that l(d)+l(a) ≤ c. Actually, the complete order of α is already known

when l(d)+ l(a) = c−1, and our underlying assumption will thus be that l(d)+ l(a) ≤ c−1.

We denote the last element in each sequence with the subscript −1, meaning that dl(d) = d−1

and al(a) = a−1. To summarize,

[A] αdi is the ith largest element in α, for all i = 1, . . . , l(d),

[B] αai is the ith smallest element in α, for all i = 1, . . . , l(a).

We will now formulate explicitly the partial order constraints corresponding to the sequences

(d, a), meaning the constraints that mathematically express properties [A] and [B] described

above.

The first set of constraints states that αd1 , . . . , αd−1 is a decreasing sequence and that

αa1 , . . . , αa−1 is an increasing sequence. By the absolute value constraints, it follows that the

distance between any two consecutive members of the sequences is at least 1, leading to the

following set of constraints:

αdi − αdi+1
≥ 1, i = 1, . . . , l(d)− 1, (3.1)

αai+1
− αai ≥ 1, i = 1 . . . , l(a)− 1. (3.2)

The second set of constraints quantifies the relation between the elements whose order

is unknown and those whose order is known. Denote by Ud,a the set of indices of ele-

ments in α whose order is unknown, meaning that they are not contained in D ∪ A where

D = {d1, d2, . . . , d−1} and A = {a1, a2, . . . , a−1} are the sets comprising the elements in the

sequences d and a respectively. Then

Ud,a := [c] \ (D ∪ A). (3.3)

Since we assume that l(a)+ l(d) ≤ c−1, it follows that in any case Ud,a is nonempty and that

|Ud,a| = c − l(a) − l(d). The second set of constraints states that all the components in α

with an unknown order are “between” the components with the largest values αd1 , . . . , αd−1

and those with the smallest values αa1 , . . . , αa−1 , leading to the following set of constraints:

αd−1 − αu ≥ 1, u ∈ Ud,a, (3.4)

αu − αa−1 ≥ 1, u ∈ Ud,a. (3.5)

The order constraints are thus formulated by the inequalities (3.1), (3.2), (3.4), (3.5) and

we can eliminate the absolute value constraints corresponding to the elements in the se-

quences d and a. Problem (M) with these additional constraints constitutes the subproblem

corresponding to node [d, a] in the BB tree:

9

Subproblem Corresponding to Node [d, a]

(P
a
d)

min
α∈Rc

αTSα

s.t. |αi − αj| ≥ 1, i > j, i, j ∈ Ud,a,

αdi − αdi+1
≥ 1, i = 1, . . . , l(d)− 1,

αai+1
− αai ≥ 1, i = 1, . . . , l(a)− 1,

αd−1 − αu ≥ 1, u ∈ Ud,a,

αu − αa−1 ≥ 1, u ∈ Ud,a.

(3.6)

Example 3.1. Suppose that c = 8. The subproblem corresponding to the sequences d =

(5, 1) and a = (4, 7, 8) is given by (note that Ud,a = {2, 3, 6}):

(P
4,7,8
5,1)

min
α∈R8

αTSα

s.t. |αi − αj| ≥ 1, for all i > j, i, j ∈ {2, 3, 6},
α5 − α1 ≥ 1,

α7 − α4 ≥ 1, α8 − α7 ≥ 1,

α1 − α2 ≥ 1, α1 − α3 ≥ 1, α1 − α6 ≥ 1,

α2 − α8 ≥ 1, α3 − α8 ≥ 1, α6 − α8 ≥ 1.

3.2 The Branch and Bound Scheme

The branch and bound scheme generates an enumeration tree whose nodes correspond to

subproblems of the form (P
a
d) were a and d are sequences coding a given partial order as

explained in Section 3.1. The corresponding node will be denoted as [d, a]. The root node is

[∅, ∅], meaning that it corresponds to (P
∅
∅), which is exactly problem (M). At each branching

step, we split the subproblem denoted as parent–node into new child–node subproblems, each

representing a different possible partial order where we enlarge the number of elements in

the solution vector whose order is known. The subproblems (P
a
d) are still difficult nonconvex

problems, but at the core of the the branch and bound scheme we assume that there is a

process that produces two elements from these problems:

• Lower bound. Using a relaxation of (P
a
d), a lower bound on val(P

a
d) is obtained.

• Feasible solution. A feasible solution of the original problem (M) is extracted.

We will denote the transformation from the node [d, a] to the corresponding lower bound

and feasible solution by R, that is, the relation

(ℓ,α) = R([d, a])

means that ℓ is a lower bound of problem (P
a
d) obtained by a corresponding relaxation and α

is a feasible solution of (M). In this setting we will say that ℓ is the lower bound corresponding

to node [d, a] (or to subproblem (P
a
d)). The construction of R is rather intricate and will be

discussed in Sections 3.3 and 3.4.

Since the branching process comprises the enlargement of the set of indices whose order is

10

known, the feasible set of each parent–node subproblem contains the feasible set of its child–

node subproblems, and therefore, the child–node’s lower bound will be greater or equal to

the parent–node’s lower bound. In the case where the upper bound over (M) is lower than

the lower bound over a subproblem, then we can close this node and denote it as fathomed,

that is, closed for further branching. When all the nodes have been fathomed, the branch

and bound scheme stops, and an optimal solution of problem (M) is the feasible solution

corresponding to the lowest upper bound over (M).

In contrary to the common BB scheme, each branching step does not depend on the results

of the solution of the parent–node subproblem. If the number of elements in d is larger

than then number of elements in a, we add a new child-node subproblem for each possible

choice of the next element in a. In case where the number of elements in both sequences is

equal, we add a new child-node subproblem for each possible choice of the next element in

d. To ensure that the search process does not revisit permutations that have already been

considered, we require the rule that d1 < a1, meaning that the index of the largest element

in the optimal solution (d1) is smaller than the index of the smallest element (a1).

The set of open nodes, meaning nodes that were not fathomed, paired with their respective

lower bounds is denoted by P . Thus, a typical member of P has the form ([d, a], vlb) where

vlb is a lower bound on the problem (P
a
d). We choose the next node to process as the open

node with the lowest lower bound vlb among all open nodes. The scheme is described below.

11

Branch and Bound for solving (M)

Step 0: Initialization. Compute (vlb,α) = R([∅, ∅]). Set α∗ ← α and f ∗ = f(α∗). Set

P = {([∅, ∅], vlb)}.

Step 1: Choosing a node.

• If P is empty, then finish and the optimal solution is α∗.

• Choose ([d, a], vlb) ∈ P with the lowest lower bound vlb among all the nodes in P
and remove it from P . If the lower bound vlb is higher than the value of the best

solution f ∗, then finish and the optimal solution is α∗.

Step 2: Branching step.

(a) For each index u ∈ Ud,a (as defined in (3.3))

(i) Create new subproblem by enlarging a or d as follows:

If l(d) > l(a), enlarge the sequence a by adding u as the last element:

ã = (a1, a2, . . . , a−1, u), d̃ = d.

If l(d) = l(a), enlarge the sequence d, by adding u as the last element:

ã = a, d̃ = (d1, d2, . . . , d−1, d).

(ii) Compute (vlb,α) = R([d̃, ã]). If vlb < f ∗, then

∗ set P ← P ∪ {([d̃, ã], vlb)}
∗ if f(α) < f ∗, then set α∗ ← α and f ∗ ← f(α).

(b) Goto step 1.

An example of the full enumeration tree, without any fathoming of nodes, is given in

Figure 3 for the case c = 4.

Figure 3: Full enumeration tree for the case c = 4.

In the case where |Ud,a| = 1, the full order is known. Consequently, the absolute value

constraints can be removed, and the resulting subproblem (P
a
d) is the following linearly

12

constrained convex quadratic programming problem (here, instead of describing the order

by the two sequences a, d, we just assume for the sake of presentation that the sequence

(d1, d2, . . . , dc) is known):

min
α∈Rc

αTSα

s.t. αdi − αdi+1
≥ 1, for all i = 1, . . . , c− 1.

(3.7)

The implication of the above is twofold:

1. in the case |Ud,a| = 1 the operator R returns the exact optimal value and solution of

problem (P
a
d) (no need for a relaxation) and the corresponding node is fathomed.

2. In the worst case, the BB scheme is simply an enumeration of all the possible permu-

tations, see for example Figure 3.

From now on, we will assume that |Ud,a| > 1.

3.3 The Relaxation

As was explained in the previous section, the BB scheme is based on the construction of

relaxations to the subproblems (P
a
d) that are solved at each node. One very natural relax-

ation of problem (M) can be defined by removing the nonconvex absolute value constraints,

leading to a convex quadratic problem that can be solved efficiently. Unfortunately, this is

an extremely weak relaxation that empirically might lead to very large enumeration trees,

see Section 4.2.1. To generate a tighter relaxation, we first strengthen the formulation.

3.3.1 Strengthening the Formulation

The linear constraints in (P
a
d) (problem (3.6)) form an exact formulation of the partial order

constraints. We will add additional linear constraints that constitute “cuts” to subproblem

(P
a
d) in the sense that they do not change the feasible set of the subproblem, but they will

lead to a possibly tighter relaxation.

Gap constraint. If both l(d) and l(a) are nonzero, then we can add a constraint that takes

into account the gap between the l(d) largest and the l(a) smallest element of α:

αd−1 − αa−1 ≥ c− l(a)− l(d) + 1,

where in the above we used the fact the l(a) smallest element in α is the c− l(a) + 1 largest

element, and between every two consecutive elements in α, the gap is at least 1.

Unknown order constraints. The gap between αd−1 and the largest element in {αu}u∈Ud,a

is at least 1. Consequently, the gap between αd−1 and the second largest element in {αu}u∈Ud,a

is at least 2, as the distance between any two elements in {αu}u∈Ud,a
is at least 1. In general,

the gap between αd−1 and the ith largest value in {αu}u∈Ud,a
is at least i. Summing these

inequalities over all the elements in U we get∑
u∈Ud,a

(αd−1 − αu) ≥ 1 + 2 + · · ·+ |Ud,a| = γ(|Ud,a|),

13

where γ(t) = 1
2
t(t+ 1). Similarly,∑

u∈Ud,a

(αu − αa−1) ≥ γ(|Ud,a|)

Note that |Ud,a| = c− l(a)− l(d).

Quadratic constraint. Lastly, we add a quadratic constraint that expresses the relation

within the group Ud,a of elements of α with unknown order. We can square the constraints of

the absolute values of the main problem (M) and represent them as the following quadratic

constraints:

((ei − ej)
Tα)2 = (αi − αj)

2 ≥ 1 for all i > j, i, j ∈ Ud,a. (3.8)

Taking into consideration that the distance between each pair of coordinates is a least 1,

then we have |Ud,a| − 1 pairs of components with a distance greater than 1, |Ud,a| − 2 pairs

with distance greater than 2 and so on. We thus conclude that summing up the
(|Ud,a|

2

)
inequalities in (3.8), results in the inequality

αTEUd,a
α ≥

|Ud,a|−1∑
i=1

i · (|Ud,a| − i)2 =
|Ud,a|2

12
(|Ud,a|2 − 1),

where

EUd,a
=

∑
i>j,

i,j∈Ud,a

(ei − ej)(ei − ej)
T . (3.9)

We can finally formulate the subproblem corresponding to node [d, a] in the suggested branch

and bound algorithm. In case where |Ud,a| > 1 we get the following subproblem:

min
α∈Rc

αTSα

s.t. |αi − αj| ≥ 1, i > j, i, j ∈ Ud,a,

αdi − αdi+1
≥ 1, i = 1, . . . , l(d)− 1,

αai+1
− αai ≥ 1, i = 1, . . . , l(a)− 1,

αd−1 − αu ≥ 1, u ∈ Ud,a,

αu − αa−1 ≥ 1, u ∈ Ud,a,

αd−1 − αa−1 ≥ (c− l(a))− l(d) + 1,∑
u∈Ud,a

(αd−1 − αu) ≥ γ(|Ud,a|),∑
u∈Ud,a

(αu − αa−1) ≥ γ(|Ud,a|),
αTEUd,a

α ≥ |Ud,a|2
12

(|Ud,a|2 − 1).

(3.10)

By alternating between enlarging sequences a and d, we increase the number of linear con-

straints in each subproblem (3.10) in comparison to the option of using only one sequence.

Example 3.2. Continuing Example 3.1, the subproblem corresponding to the sequences

14

a = (4, 7, 8), d = (5, 1) is (note that that Ud,a = {2, 3, 6})

min
α∈R8

αTSα

s.t. |αi − αj| ≥ 1, ∀i > j, i, j ∈ {2, 3, 6},
α5 − α1 ≥ 1,

α7 − α4 ≥ 1, α8 − α7 ≥ 1,

α1 − α2 ≥ 1, α1 − α3 ≥ 1, α1 − α6 ≥ 1,

α2 − α8 ≥ 1, α3 − α8 ≥ 1, α6 − α8 ≥ 1

α1 − α8 ≥ 4,

3α1 − α2 − α3 − α6 ≥ 6,

α2 + α3 + α6 − 3α8 ≥ 6,

(α2 − α3)
2 + (α2 − α6)

2 + (α3 − α6)
2 ≥ 6.

3.3.2 Matrix Lifting

Problem (3.10) is inherently nonconvex, and consequently, we will solve an appropriate

relaxation. To construct the relaxation, we first remove the absolute value constraints:

min
α∈Rc

αTSα

s.t. αdi − αdi+1
≥ 1, i = 1, . . . , l(d)− 1,

αai+1
− αai ≥ 1, i = 1, . . . , l(a)− 1,

αd−1 − αu ≥ 1, u ∈ Ud,a,

αu − αa−1 ≥ 1, u ∈ Ud,a,

αd−1 − αa−1 ≥ (c− l(a))− l(d) + 1,∑
u∈Ud,a

(αd−1 − αu) ≥ γ(|Ud,a|),∑
u∈Ud,a

(αu − αa−1) ≥ γ(|Ud,a|),
αTEUd,a

α ≥ |Ud,a|2
12

(|Ud,a|2 − 1).

(3.11)

Problem (3.11) is nonconvex due to the last quadratic constraint. One possibility to generate

a convex approximation of the problem is to remove the quadratic constraint. However, we

will show in Section 4.2.1 that this suggested relaxation performs poorly. We will therefore

choose a different path and use the standard matrix lifting technique [17, 18]. We begin

by defining the new variables matrix X ∈ R(c+1)×(c+1) as X =

(
ααT α

αT 1

)
. Denote by X1

the upper left c × c-dimensional submatrix, X1 = X1:c,1:c, by x2 the c-dimensional vector

x2 = X1:c,c+1 and by x4 the scalar Xc+1,c+1. All together, we have

X =

(
X1 x2

(x2)T x4

)
.

15

Using the above relation, we conclude that an equivalent problem to (3.11) is the next

minimization problem:

min
X∈Sc+1

Tr(SX1)

s.t. x2
di
− x2

di+1
≥ 1, i = 1, . . . , l(d)− 1,

x2
ai+1
− x2

ai
≥ 1, i = 1, . . . , l(a)− 1,

x2
d−1
− x2

u ≥ 1, u ∈ Ud,a,

x2
u − x2

a−1
≥ 1, u ∈ Ud,a,

x2
d−1
− x2

a−1
≥ c− l(a)− l(d) + 1,∑

u∈Ud,a
(x2

d−1
− x2

u) ≥ γ(|Ud,a|),∑
u∈Ud,a

(x2
u − x2

a−1
) ≥ γ(|Ud,a|),

Tr(EUd,a
X1) ≥ |Ud,a|2

12
(|Ud,a|2 − 1),

x4 = 1,

X ⪰ 0,

rank(X) = 1.

(3.12)

Next we discard the nonconvex rank constraint and obtain the following semidefinite relax-

ation (SDR) of the problem:

(P
a
d
SDR)

min
X∈Sc+1

Tr(SX1)

s.t. x2
di
− x2

di+1
≥ 1, i = 1, . . . , l(d)− 1,

x2
ai+1
− x2

ai
≥ 1, i = 1, . . . , l(a)− 1,

x2
d−1
− x2

u ≥ 1, u ∈ Ud,a,

x2
u − x2

a−1
≥ 1, u ∈ Ud,a,

x2
d−1
− x2

a−1
≥ c− l(a)− l(d) + 1,∑

u∈Ud,a
(x2

d−1
− x2

u) ≥ γ(|Ud,a|),∑
u∈Ud,a

(x2
u − x2

a−1
) ≥ γ(|Ud,a|),

Tr(EUd,a
X1) ≥

|Ud,a|2

12
(|Ud,a|2 − 1),

x4 = 1,

X ⪰ 0.

The optimal value of (P
a
d
SDR) is obviously a lower bound on (P

a
d), and this will be the lower

bound that will be used during the BB scheme. In our implementation, the subproblems

were solved using an interior point method constructed similarly to the one proposed in [9]

for the max-cut problem.

Remark 3.3 (number of constraints). The complexity of the solution of each semidefinite

relaxation (P
a
d
SDR) is at least O(k3) [9], where k is the number of constraints. We could have

added to problem (3.10) a set of quadratic constraints for each pair of elements in α in

the form of (3.8). While this might lead to a tighter relaxation when constructing problem

(P
a
d
SDR), it will also result with a considerable larger problem since the number of constraints

in the suggested modified problem is O(c2) while the number of constraints in the suggested

formulation is (P
a
d
SDR) is O(c). This means that the dependence of the complexity in c in the

16

modified problem will be O(c6) instead of O(c3). This dependence of the complexity in the

number of classes lead us to ignore the suggested set of quadratic inequalities.

3.4 Constructing a Feasible Solution of (M)

The optimal value of problem (P
a
d
SDR) is a lower bound over the corresponding problem

(3.10). The second objective is to extract a feasible solution α ∈ Rc of (M) that will be

driven from an optimal solution X̃ to problem (P
a
d
SDR). The extraction process is done in

three stages, and is described below.

Extraction Process:

Input: X̃ ∈ R(c+1)×(c+1)–optimal solution of (P
a
d
SDR).

Output: α ∈ Rc–feasible solution of (M).

• Stage 1. Find a vector x ∈ Rc for which the rank–one matrix

(
x

1

)(
x

1

)T

is closest

to X̃ in the Frobenius norm, meaning that x is an optimal solution of

(RNK) min
x∈Rc+1

∥∥∥∥∥
(
x

1

)(
x

1

)T

− X̃

∥∥∥∥∥
2

F

• Stage 2. Find a vector y, which is feasible w.r.t. the original problem (M), and is

closest as possible to x:

y ∈ argmin
y∈Rc

{∥y − x∥2 : |yi − yj| ≥ 1 for all i, j ∈ [c]}.

• Stage 3. Employ the gradient projection method on problem (M) with y being

the initial point and obtain a vector α ∈ Rc.

To summarize, if we denote by Xd,a an optimal solution of (P
a
d
SDR) and by E(Xd,a) the

output of the extraction process, we have

R([d, a]) = (Tr(SXd,a), E(Xd,a)).

Note that the optimization problems that are being solved in stages 1 and 2 are nonconvex,

and despite this, we will now show that they can be solved efficiently. The third stage aims

at finding a feasible solution with a better objective function.

3.4.1 Stage 1: Best Rank-One Approximation

Let X̃ ∈ R(c+1)×(c+1) be an optimal solution of (P
a
d
SDR). It is not guaranteed that the optimal

solution is a rank–one matrix, meaning that there is no guarantee that a c-length vector x

17

exists such that X̃ =

(
x

1

)(
x

1

)T

(recall that X̃c+1,c+1 = 1). We seek to find the best rank-

one approximation of X̃ by solving problem (RNK). A natural approach is to compute a

leading eigenvector v of X̃ and define the approximate vector as the vector 1
vc+1

v1:c. However,

this scheme does not produce the global minimizer of problem (RNK), and we suggest to

find an exact solution. To do so, we first write X̃ (as before) as

X̃ =

(
X̃1 x̃2

(x̃2)T 1

)
. (3.13)

The objective function of (RNK) is∥∥∥x̃x̃T − X̃
∥∥∥2
F
= ∥X̃∥2F + ∥x̃x̃T∥2F − 2Tr(X̃x̃x̃T). (3.14)

Denote x̃ =

(
x

1

)
. By (3.13) and some simple algebra, it follows that

∥x̃x̃T∥2F = (∥x∥22 + 1)2, Tr(X̃x̃x̃T) = xT X̃1x+ 2xT x̃2 + 1.

Plugging the above into (3.14), we obtain that∥∥x̃x̃T −X∗∥∥2
F
= ∥X̃∥2F + (∥x∥22 + 1)2 − 2xT X̃1x− 4xT x̃2 − 2. (3.15)

Thus, ignoring constant terms, problem (RNK) can be rewritten as

min
x∈Rc

{
(∥x∥22 + 1)2 − 2xT X̃1x− 4xT x̃2

}
.

The above problem can be recast as the following double minimization problem (ignoring

constant terms):

min
x∈Rc,γ∈R

(γ + 1)2 − 2xT X̃1x− 4xT x̃2

s.t. ∥x∥22 = γ,
(3.16)

which is a generalized trust region subproblem (GTRS) that can be solved efficiently, see

e.g., [13]. We summarize this discussion in the following lemma.

Lemma 3.4. Suppose that (x, γ) is an optimal solution of (3.16). Then x is an optimal

solution of (RNK).

3.4.2 Stage 2: Feasible Solution Extraction

At the end of stage 1, we have at our disposal a vector x ∈ Rc which is an optimal solution of

(RNK). Unfortunately, x is not guaranteed to be in the feasible set of (M). It is thus natural

to search for a feasible solution of (M) which is closest to x. Denote by G the feasible set

of (M):

G := {x : |xi − xj| ≥ 1 for all i, j ∈ [c], i > j}. (3.17)

Thus, we seek to find a point in the orthogonal projection of x onto G:

PG(x) = argmin
y∈G

∥y − x∥22. (3.18)

18

Note that since G is not convex, the orthogonal projection PG(x) might be a set and is

not necessarily single-valued. The objective is to find a single member of the orthogonal

projection set. In principle, computing the orthogonal projection operator on nonconvex

sets is a difficult task, but in this case, by exploiting the symmetry of G, we will show how

computing an orthogonal projection can be done efficiently.

The set G is symmetric with respect to permutations. Using this symmetry, by [1,

Theorem 3.1], the following property known as the order preservation property holds: if the

vector x can be ordered via

xi1 ≥ xi2 ≥ · · · ≥ xic , (3.19)

with i1, i2, . . . , ic being a reordering of the elements in [c], then there exists y ∈ PG(x)

satisfying yi1 ≥ yi2 ≥ · · · ≥ yic .

The conclusion from the above discussion, and the specific structure of G, is that in order

to project x onto G, the following two steps should be invoked:

• Step 1: Find indices i1, i2, . . . , ic ∈ [c] that form a permutation of [c] such that (3.19)

holds.

• Step 2: Find y = PG̃(x), where

G̃ = {y ∈ Rc : yik ≥ yik+1
+ 1, k ∈ [c− 1]}.

We have thus reduced the nonconvex problem (3.18) to the convex problem of finding

the orthogonal projection onto the closed and convex set G̃. The projection onto G̃ can be

done very efficiently by further reducing the projection problem. Indeed, the problem that

we seek to solve is

min{∥y − x∥22 : yik ≥ yik+1
+ 1, k ∈ [c− 1]}.

Making the change of variables zik = yik + (k − 1), the problem is transformed into

min{∥z+ d− x∥22 : zik ≥ zik+1
, k ∈ [c− 1]},

where d = (0, 1, . . . , c − 1)T . The above problem of projecting x − d onto Ĝ = {z ∈ Rc :

zik ≥ zik+1
, k ∈ [c − 1]} is identical to the Isotonic Regression with respect to a Complete

order (IRC) problem [2, 8] (up to a permutation of the variables) and it can be solved using

the Pool Adjacent Violators (PAV) algorithm with an efficient computational complexity of

O(c) [2, 8].

3.4.3 Stage 3: Refinement via Gradient Projection

The vector y ∈ G (G being the feasible set of (M), given in (3.17)), which is a product of stage

2, induces the upper bound f(y) on the optimal value of problem (M). We can potentially

improve the upper bound by employing an optimization algorithm that is guaranteed to

produce function values that are nonincreasing. In the suggested BB method, we use the

gradient projection method in which we take a step in the direction of the gradient, and

then project it onto the feasible set:

xk+1 = PG

(
xk − 2

L
Sxk

)
, k = 0, 1, . . . (3.20)

19

The constant L is taken to be larger than the Lipschitz constant of the gradient of the

objective function, meaning L > 2λmax(S). The starting point is x0 = y and the stopping

criterion will be f(xk+1) > f(xk)−ε. The convergence of the scheme (3.20) to a critical point

of (M) was established in [4]. In our numerical results we used ε = 10−10 and maximum of

300 iterations.

4 Numerical Experiments

In this section we demonstrate the proposed BB scheme as described in Section 3 for solving

problem (M). We begin by comparing a full enumeration (FE) solution with the BB scheme.

Next, we empirically demonstrate how our specific construction of the subproblem leads to a

stronger relaxation than other simpler constructions. We show the effect of using the gradient

projection method (Section 3.4.3) and best rank–one approximation stage (Section 3.4.1) on

the performance of the scheme. Lastly, a comparison of CPU times of each scheme is given.

All the datasets used in this section were randomly generated, as described in Section 4.1.

4.1 Datasets Generation

Given the number of classes c, we generated a dataset and built problem (MMLDA), and

then transformed the problem into problem (M) using Lemma 2.2. We randomly generated

c classes in R100. Each class contains ni samples generated from a normal distribution with

mean vector µi and covariance matrix σ2
i I. For each class, the parameters ni,µi, σi were set

as follows:

ni – the number of samples in each class was sampled from a uniform discrete distribution

within the range [201, 500]

σi – the standard deviation of each class was sampled from a normal distribution with zero

mean and standard deviation 5.

µi – each element in the mean vector was independently sampled from the standard con-

tinuous uniform distribution on the open interval (−20, 20).

4.2 Results

As a first demonstration of the effectiveness of the BB scheme, consider the tree in Figure 4

representing the BB scheme applied on problem (M) in a ten classes case. Each node

represents a subproblem corresponding to a given information on the partial order. In this

specific case, the total number of subproblems solved is 222, whereas in a full enumeration

solution there are 1,814,400 subproblems.

20

Figure 4: BB tree for a ten classes problem in R100.

Each level (horizontal row of nodes) in Figure 4 contains all the nodes with the same number

of known partial order elements. The bold green path starts from the root node, representing

the subproblem with no assumption on a partial order, and ends in a node representing a

complete order of α corresponding to the optimal solution. Each node in the path repre-

sents a subproblem with an appropriate partial order constraints. Next to each node is the

chronical order in which the subproblems were processed.

While Figure 4 refers to a specific dataset for demonstration purposes, Figure 5 examines

the average number of subproblems solved in the BB scheme (y-axis) for a given number of

classes (x-axis) over ten randomly generated datasets. As can be clearly seen in Figure 5,

the BB scheme reduces the number of explored subproblems by several orders of magnitude.

21

4 6 8 10 12 14 16 18 20

10
0

10
5

10
10

10
15

BB

FE

Figure 5: Number of explored subproblems in the BB and FE schemes for different number

of classes.

4.2.1 Variations on the Branch and Bound Scheme

Recall that subproblem (3.6) represents an exact formulation of the partial order constraints.

However, during the relaxation process we include additional constraints–three linear con-

straints and one quadratic constraint–leading to the formulation (3.10).

Denote by BBO the BB scheme where we use only the original order constraints, meaning

that we consider the variant in which the relaxation considers the original form (3.6) without

any additional constraints.

Another variant is to consider problem (3.10) without the additional quadratic constraint:

min
α∈Rc

αTSα

s.t. |αi − αj| ≥ 1, i > j, i, j ∈ Ud,a,

αdi − αdi+1
≥ 1, i = 1, . . . , l(d)− 1,

αai+1
− αai ≥ 1, i = 1, . . . , l(a)− 1,

αd−1 − αu ≥ 1, u ∈ Ud,a,

αu − αa−1 ≥ 1, u ∈ Ud,a,

αd−1 − αa−1 ≥ (c− l(a))− l(d) + 1,∑
u∈Ud,a

(αd−1 − αu) ≥ γ(|Ud,a|),∑
u∈Ud,a

(αu − αa−1) ≥ γ(|Ud,a|).

(4.1)

Denote by BBwoQ the BB scheme where the relaxation is based on problems of the form

(4.1). The corresponding relaxations in the BBO and BBwoQ schemes are problems (3.6)

and (4.1) respectively without the absolute value constraints. Thus, each relaxation is a

convex quadratic problem and can be solved efficiently. The rest of the scheme remains

unchanged, except for stage 1 in the extraction process described in Section 3.4, which

becomes irrelevant.

We denote by BBwoGP the BB scheme without using the gradient projection method

(Section 3.4.3), that is, applying only stages 1 and 2 in the extraction process. We denote

by BBsimpleVEC the BB scheme where in stage 1 of the process of constructing a feasible

22

solution (Section 3.4) instead of using best rank–one approximation stage (Section 3.4.1)

we use a different simpler and popular heuristic approach to extract a vector from the

optimal solution matrix X̃ of (P
a
d
SDR). Let x̃ be the eigenvector corresponding to the largest

eigenvalue of X̃ and let x be the first c elements in x̃ and y be the last element. Then stage

1 returns 1
y
x.

We denote by BBwoGPsimpleVEC the BBsimpleVEC scheme without applying stage 3 -

the gradient projection method (Section 3.4.3) in the extraction process (Section 3.4).

The simulation results suggest that the BBO scheme is ineffective. Indeed, Figure 6 compares

the average number of subproblems used in the solution of the BBO scheme, averaged on ten

realizations, for each number of classes c. Clearly, the BBO scheme performs poorly—the

number of subproblems it explores is even larger than the number of subproblems explored

in the full enumeration solution. It can be also seen that BBwoQ is dominated by BB. As a

further illustration, Figure 7 shows the enumeration tree of the BBwoQ scheme applied to

the same dataset as the one leading to Figure 4. The amount of subproblems solved in the

BBwoQ scheme is more than ten times the number of subproblems solved in the BB scheme

(2343 instead of 222).

4 4.5 5 5.5 6 6.5 7 7.5 8

0

0.5

1

1.5

2

2.5
10

4

BB

BBwoQ

BBO

FE

Figure 6: Comparison of the BB, BBwoQ and BBO schemes for different number of classes

c.

In Figure 8 a comparison between the BB, BBwoQ and BBwoGP schemes is given. The

average number of subproblems used in the solution of the each scheme, averaged on ten

realizations, for each number of classes c is given (note that the y-axis is in log-scale). The

suggested BB scheme is superior to all the other approaches. We see that the difference in

the number of nodes in BBwoQ compared with BB grows drastically as c grows.

Using the BBwoGP scheme, we solved about twice the number of subproblems compared to

the BB scheme. Table 1 summarizes all the results.

In Figure 9 a comparison between the BB, BBwoGP, and BBsimpleVEC, BBwoGPsim-

pleVEC schemes is given. The average number of subproblems used in the solution of the

each scheme, averaged on ten realizations, for each number of classes c is given. When ex-

23

Figure 7: BBwoQ tree for a ten classes problem in R100.

4 6 8 10 12 14

10
2

10
4

10
6

10
8

10
10

BB

BBwoQ

BBwoGP

FE

Figure 8: Comparison of the BB, BBwoQ and BBwoGP schemes for different number of

classes c.

amining the effect of best rank–one approximation stage (Section 3.4.1) without using the

gradient projection stage, that is, comparing BBwoGP and BBwoGPsimpleVEC, we see a

minor advantage of using BBwoGP with respect to the number of subproblems solved. The

use of gradient projection masks the effect of the rank–one approximation method and the

advantage disappears.

In Figure 10 the average CPU time on ten realizations, for each number of classes c using

different schemes is given. The tests were performed on Intel(R) i7-8665U CPU @ 1.90GHz,

2112 Mhz, 4 core(s), 8 logical processor(s) machine, using MATLAB R2020a. The suggested

BB scheme is the fastest scheme. It is clear from Figure 8 and Figure 10 that the number of

nodes has strong effect on the CPU time, although we use different subproblems definition

which implies different CPU time process for each subproblem. Table 1 summarizes all the

24

4 5 6 7 8 9 10 11 12 13 14
0

200

400

600

800

1000

1200

BB

BBwoGP

BBsimpleVEC

BBwoGPsimpleVEC

Figure 9: Comparison of the BB, BBwoGP, and BBsimpleVEC, BBwoGPsimpleVEC

schemes for different number of classes c.

results.

4 5 6 7 8 9 10 11 12 13 14
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

BB

BBwoQ

BBO

BBwoGP

Figure 10: Comparison of the CPU time (log scale) in seconds of BB, BBO, BBwoQ and

BBwoGP schemes for different number of classes c.

25

c FE BB BBwoQ BBO BBwoGP

NS NS sec NS sec NS sec NS sec

3 3 6 0.049 6 0.049 7 0.049 7 0.052

4 12 11 0.083 14 0.13 23 0.19 12 0.084

5 60 17 0.137 37 0.32 103 0.71 23 0.191

6 360 26 0.233 89 0.792 583 3.112 36 0.322

7 2.52e+03 39 0.428 196 1.714 3583 16.704 54 0.531

8 2.02e+04 55 0.669 492 3.341 23002 117.88 87 1.199

9 1.81e+05 68 1.915 1196 29.136 165272 1519.896 121 3.73

10 1.81e+06 112 3.929 4081 69.407 NaN NaN 202 6.248

11 2e+07 139 3.406 10450 129.994 NaN NaN 259 6.074

12 2.4e+08 293 8.21 21318 293.604 NaN NaN 518 14.179

13 3.11e+09 405 13.003 81287 1427.336 NaN NaN 821 24.885

14 4.36e+10 489 18.033 132003 2983.059 NaN NaN 1011 31.399

15 6.54e+11 727 22.446 NaN NaN NaN NaN 1489 42.509

16 1.05e+13 1002 34.878 NaN NaN NaN NaN 1953 54.003

17 1.78e+14 1707 60.604 NaN NaN NaN NaN 3917 115.389

18 3.2e+15 3371 127.968 NaN NaN NaN NaN 6147 178.905

19 6.08e+16 3013 111.777 NaN NaN NaN NaN 6058 184.125

20 1.22e+18 5695 229.597 NaN NaN NaN NaN 11122 350.103

Table 1: For each number of classes c, the average number of subproblems (NS) and the

average number of CPU time in seconds (sec) over ten random generated datasets are given.

Configurations with more than 150,000 nodes were not solved and are marked by ’-’.

5 Conclusion

We introduced a variant of the linear discriminant analysis problem on c classes in which the

objective is to maximize the minimum distance between classes instead of maximizing the

sum of distances between classes, as is typically done. However, this model has the drawback

of being highly nonconvex and nonsmooth. We showed a reduction of the problem to a c-

dimensional problem consisting of minimizing a quadratic function over a disjoint union of

simple convex polyhedra. Each set in the union corresponds to a given order of the decision

variables.

We were able to define a branch and bound algorithm that uses subproblems that correspond

to specific partial orders on the decision variables. Using the proposed branch and bound

scheme, we observed a significant reduction in the size of the enumeration trees as well as in

computation times on randomly generated datasets. However, there are limitations to the

experiments, such as the use of randomly generated instances rather than real data. The

aim of this paper was not to demonstrate the practical superiority of the bounding scheme,

but rather to illustrate the potential strength of the bounds and to provide a potential path

towards practical efficiency.

Possible future research directions include investigation of the model where the reduced

subspace is in higher dimension, as well as models that maximize the l1–norm of the distances

26

among all pairs instead of the minimum distance.

References

[1] Amir Beck and Nadav Hallak. On the minimization over sparse symmetric sets: pro-

jections, optimality conditions, and algorithms. Mathematics of Operations Research,

41(1):196–223, 2016.

[2] Michael J Best and Nilotpal Chakravarti. Active set algorithms for isotonic regression;

a unifying framework. Mathematical Programming, 47(1):425–439, 1990.

[3] Christopher M. Bishop. Pattern recognition and machine learning. springer, 2006.

[4] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized

minimization for nonconvex and nonsmooth problems. Math. Program., 146(1-2, Ser.

A):459–494, 2014.

[5] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. John

Wiley & Sons, 2012.

[6] Ronald A. Fisher. The use of multiple measurements in taxonomic problems. Annals

of eugenics, 7(2):179–188, 1936.

[7] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier, 2013.

[8] Stephen J. Grotzinger and Christoph Witzgall. Projections onto order simplexes. Ap-

plied mathematics and Optimization, 12(1):247–270, 1984.

[9] Christoph Helmberg, Franz Rendl, Robert J Vanderbei, and Henry Wolkowicz. An

interior-point method for semidefinite programming. SIAM Journal on Optimization,

6(2):342–361, 1996.

[10] Seung-Jean Kim, Alessandro Magnani, and Stephen Boyd. Robust fisher discriminant

analysis. Advances in neural information processing systems, 18, 2005.

[11] Eugene L. Lawler and David E. Wood. Branch-and-bound methods: A survey. Opera-

tions research, 14(4):699–719, 1966.

[12] Jiri Matousek and Bernd Gärtner. Understanding and using linear programming.

Springer Science & Business Media, 2007.

[13] Jorge J. Moré. Generalizations of the trust region problem. Optimization methods and

Software, 2(3-4):189–209, 1993.

[14] Thanh T. Ngo, Mohammed Bellalij, and Yousef Saad. The trace ratio optimization

problem. SIAM review, 54(3):545–569, 2012.

[15] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algo-

rithms and complexity. Courier Corporation, 1998.

27

[16] Siegfried Schaible. Fractional programming. In Handbook of global optimization, pages

495–608. Springer, 1995.

[17] Naum Z Shor. Quadratic optimization problems. Soviet Journal of Computer and

Systems Sciences, 25:1–11, 1987.

[18] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe, editors. Handbook of

semidefinite programming, volume 27 of International Series in Operations Research

& Management Science. Kluwer Academic Publishers, Boston, MA, 2000. Theory,

algorithms, and applications.

28

	Introduction
	Fisher's Linear Discriminant Analysis
	Motivation
	Paper Layout
	Notation

	Problem Reformulation
	The Inverse Max–Min LDA Problem
	Dimension Reduction of the Inverse Max–Min LDA Problem

	The Branch and Bound Algorithm
	Subproblem Definition
	The Branch and Bound Scheme
	The Relaxation
	Strengthening the Formulation
	Matrix Lifting

	Constructing a Feasible Solution of (M)
	Stage 1: Best Rank-One Approximation
	Stage 2: Feasible Solution Extraction
	Stage 3: Refinement via Gradient Projection

	Numerical Experiments
	Datasets Generation
	Results
	Variations on the Branch and Bound Scheme

	Conclusion

