
A Dynamic Smoothing Technique for a Class of

Nonsmooth Optimization Problems on Manifolds

Amir Beck∗ Israel Rosset †

February 16, 2023

Abstract

We consider the problem of minimizing the sum of a smooth nonconvex function

and a nonsmooth convex function over a compact embedded submanifold. We

describe an algorithm, which we refer to as “dynamic smoothing gradient descent

on manifolds” (DSGM), that is based on applying Riemmanian gradient steps on a

series of smooth approximations of the objective function that are determined by

a diminishing sequence of smoothing parameters. The DSGM algorithm is simple

and can be easily employed to a broad class of problems without any complex

adjustments. We show that all accumulation points of the sequence generated by

the method are stationary. We devise a convergence rate of O(1
k1/3

) in terms of an

optimality measure that can be easily computed. Numerical experiments illustrate

the potential of the DSGM method.

1 Introduction

This paper is concerned with minimization problems of the form

min
x∈M

{F (x) := f(x) + g(Ax)}, (1.1)

where M ⊆ Rn is a compact smooth embedded submanifold of Rn, f is a smooth function,

g is a real-valued convex nonsmooth function and A is a given matrix. We assume that

g is prox-tractable, i.e., proxµg(x) can be easily computed for any µ > 0. Problems of

this form arise often in machine learning, signal processing and scientific computing, see

for example the many examples in [10]. We also refer the reader to the numerical section

∗School of Mathematics Sciences, Tel Aviv University; email: becka@tauex.tau.ac.il. The research

of Amir Beck is partially supported by ISF grant no. 926/21.
†School of Mathematics Sciences, Tel Aviv University; email: israelrosset5@gmail.com

1

becka@tauex.tau.ac.il
israelrosset5@gmail.com

(Section 5) that considers two models: sparse principal component analysis and robust

subspace recovery.

Optimization of smooth functions over manifolds is a well studied topic. In their

book [2], Absil et al. present and analyze several first-order methods aimed at solving

optimization problems over manifolds. These methods heavily rely on the concept of

retractions on manifolds. A retraction is a smooth mapping from the tangent bundle of

the manifold to the manifold, R : TM → M, where

R(0x) = x, DRx(0x) = IdTxM

for any x ∈ M. Here 0x denotes the zero element in the tangent linear space TxM and

Rx is the retraction operator R on TxM. For a more comprehensive presentation, we

refer to [2].

Given a retraction, one can replace the linear steps in Euclidean gradient descent with

retraction-based steps over the manifold. Usually the definition of a retraction provides

a mechanism to proving convergence to a stationary point as well as establishing rates of

convergence. In order to receive better computational performances, the retraction can

be chosen more carefully, see for example the work [24] in which it is suggested to use

the Cayley transform on the Stiefel manifold to get a high performance retraction-based

method. Many other Euclidean methods were generalized and illustrated in the Riemma-

nian case. Examples are the Riemmanian trust-region method [1], Newton methods [20]

and much more, see also the comprehensive book [8].

Optimization of nonsmooth functions on manifolds attracts a growing attention in

recent years. Subgradient-based algorithms on manifolds were proposed in [7, 12, 26]

for geodesic-convex functions on Hadamard manifolds. Gradient sampling methods can

be found for example in [13, 14]. In these methods, the chosen direction at each itera-

tion is obtained as a solution of a minimization problem over the convex hull of sampled

gradients. The convergence result (without a convergence rate) is obtained under mild

assumptions; we note that each iteration comprises the evaluation of dim(M) gradients

and involves the solution of a quadratic programming problem.

Very recently, Li et al. [25] investigated the rate of convergence of the Riemmanian sub-

gradient method for weakly convex functions over the Stiefel manifold. They used the

gradient of an operator analogous to the Moreau envelope on the manifold to get a sta-

tionarity measure. They showed that their optimality measure converges to zero with a

rate of O(n−1/4) using a specific stepsize strategy. They also showed this result for two

variants of an alternating subgradient method for a sum of weakly convex functions.

Early attempts to employ proximal point methods for nonsmooth optimization over

manifolds include [6, 7, 11]. The convergence analysis assumes that the underlying mani-

fold is Hadamard and the algorithms require the solution of rather complicated optimiza-

2

tion problems at each iteration.

Recently, the authors of [10] considered a proximal gradient approach to the model

(1.1), where A is the identity matrix. Their method is an iterative method that generates

a sequence of points xk ∈ M. The update in each step is done using a direction that

solves the following minimization problem:

vk := argmin
v∈Txk

M

{
⟨∇f(xk),v⟩ +

1

2t
∥v∥2F + g(xk + v)

}
. (1.2)

In order to solve (1.2), Chen et. al. [10] assumed that M is the Stiefel manifold and used

a semi-smooth Newton method. In the scenario that (1.2) is solved exactly and M is the

Stiefel manifold, convergence is established. Huang and Wei [15] use an update direction

that is a stationary point for the following problem:

vk := argmin
v∈Txk

M

{
⟨∇f(xk),v⟩ +

1

2t
∥v∥2F + g(Rxk

(v))

}
, (1.3)

for a retraction R. The convergence of the above algorithm in a setting where the objective

function satisfies the Riemannian Kurdyka– Lojasiewicz property was shown.

The approach suggested in this paper uses a dynamic smoothing technique to overcome

the nonsmooth part g. Optimization algorithms with proven convergence guarantees that

use smoothing mechanisms for convex problems were first analyzed by Nesterov in [18] and

later on in [5]. The idea of using a dynamic smoothing technique in which the smoothing

parameter gradually decreases and tends to 0 was well studied in convex setting, see for

example the works [9, 22] for a variety of complexity results.

In this work, we suggest to employ a dynamic smoothing approach for the nonconvex

model (1.1). At iteration k we employ a Riemmanian gradient step on the problem

min
x∈M

{
f(x) +Mµk

g (Ax)
}
, (1.4)

where Mµ
g is the so-called Moreau envelope of g with a smoothing parameter µ, see more

details in Section 2.1. The sequence {µk}k≥0 is positive and diminishing towards 0. The

method, which we refer to as Dynamic Smoothing Gradient descent on Manifolds (DSGM)

is extremely simple and requires at each iteration the calculation of four components: (1)

gradient of f (2) proximal operator of g (3) orthogonal projection onto the tangent space

at the given iterate vector (4) computation of a smooth path on the manifold passing in

the direction of the given iterate vector.

In Section 3 we describe the model and the exact underlying assumptions; we also

discuss the issue of stationarity and its connection to optimality in relation to (1.1). In

Section 4 we study the convergence of the DSGM method—we show that all accumulation

points of the sequence generated by the DSGM algorithm are stationary points of (1.1) and

that a corresponding easily computed optimality measure converges in a rate of O(1
k1/3

).

3

2 Preliminaries and Notations

The underlying space in this paper is Rn, where “Rn” in this context can represent

any finite-dimensional inner product linear space with an Euclidean norm (meaning

∥x∥ =
√

⟨x,x⟩). Unless otherwise stated, the inner product and norm in Rn are the

dot product and ℓ2-norm, while matrix spaces are endowed with the dot inner product

⟨x,y⟩ = Tr(xTy) and the induced Frobenius norm. The Frobenius and spectral norms

are denoted by ∥ · ∥F and ∥ · ∥2 respectively.

2.1 Optimization

We use standard terminology from convex and nonconvex optimization. A function f :

Rn → R is called L-smooth if it is differentiable and its gradient, denoted by ∇f , is

L-Lipschitz, meaning that ∥∇f(x)−∇f(y)∥ ≤ L∥x−y∥ for any x,y ∈ Rn. For a proper

closed and convex function g : Rn → (−∞,∞], the celebrated Moreau envelope is given

by

Mµ
g (x) = min

u∈Rn

{
g(u) +

1

2µ
∥x− u∥2

}
. (2.1)

It is well known that if g is proper closed and convex, the Moreau envelope is a real

valued, convex and 1
µ
-smooth function [17].

The proximal mapping of a function g : Rn → (−∞,∞] is defined as follows:

proxg(x) = argmin
u∈Rn

{
g(u) +

1

2
∥u− x∥2

}
. (2.2)

For a function F : Rn → R, if the directional derivative at a point x ∈ Rn along a

direction v ∈ Rn exists, it will be denoted F ′(x;v). Another important notion is the

orthogonal projection mapping. The projection onto a given nonempty closed set

C ⊆ Rn is defined as the multi-valued mapping:

PC(x) = argmin
z∈C

∥z− x∥.

A well known result in the case that C is nonempty closed and convex, is that this mapping

is single-valued, and moreover, nonexpansive [4, Theorem 5.4], meaning that

∥PC(x) − PC(y)∥ ≤ ∥x− y∥ for any x,y ∈ Rn. (2.3)

2.2 Manifolds

The standard and most general definition of a manifold is a topological space M endowed

with a set of homeomorphisms,

ϕi : Ui → V, V ⊆ Rd, i ∈ I,

4

where I is a set of indices, Ui ⊆ M are open,
⋃

i∈I Ui = M and V ⊆ Rd is open.

These maps are called charts and d is the so-called dimension of the manifold. Each such

chart gives a local differentiable structure on M, which yields to general concepts of a

differentiable mapping on a manifold, the differential of a mapping and so on. For our

purpose, we will focus on embedded submanifolds of Rn. A manifold M is an embedded

submanifold of Rn if it is a manifold, it is a topological subspace of Rn, the inclusion

ι : M → Rn is a differentiable mapping and its differential Dι(x) is of full rank for every

x ∈ M. For a more concise introduction to the theory of manifolds, we refer the reader

to [2].

An important class of embedded submanifolds is the class of manifolds of the form

M = {x ∈ Rn | H(x) = 0},

where H : Rn → Rm is a differentiable mapping such that DH(x) is of rank m for every

x ∈ M. The dimension of M in this case is n−m.

Let M be an embedded submanifold and x ∈ M. A function γ : [0,∞) → M
satisfying that it is smooth and that γ(0) = x is called a path from x in the direction

γ′(0), where the derivative of γ, when viewed as a function to Rn is denoted γ′(t) for every

t ∈ [0,∞). We note that γ′(0) is actually the right derivative γ′+(0), but we will adopt

this slight abuse of notation throughout the paper. The tangent space of an embedded

submanifold M ⊆ Rn at x can now be defined as follows:

TxM = {γ′(0) | γ : [0,∞) → M smooth and γ(0) = x} ⊆ Rn.

This set turns up to be a linear subspace of Rn. For a differentiable function f : Rn → R,

we define the Riemmanian gradient of f on M as follows:

∀x ∈ M : ∇Mf(x) = PTxM (∇f(x)) , (2.4)

where PV is the orthogonal projection on the set V . For more general and concise defi-

nitions of the tangent space and the differential of a mapping, which do not assume that

M is an embedded submanifold, we again refer to [2].

3 The Manifold Composite Model

In this paper we study the following optimization problem.

5

Manifold Composite Model

(P) min
x∈M

{F (x) ≡ f(x) + g(Ax)}.

The following underlying assumption on the problem’s data (f, g, A,M) will be assumed

throughout the paper.

Assumption 1. • M ⊆ Rn is a compact smooth embedded submanifold.

• f : Rn → R is an Lf -smooth function (Lf > 0).

• g : Rm → R is a convex function and Lg-Lipschitz continuous (Lg > 0).

• A ∈ Rm×n.

We also define the function h(x) := g(Ax), and in this notation the objective function

is F = f +h. We will frequently use the subdifferential calculus rule ∂h(x) = AT∂g(Ax).

3.1 Stationarity

We start by defining the notion of stationarity.

Definition 3.1 (stationarity). A point x ∈ M is stationary for (P) if there exists ξ ∈
∂g(Ax) such that

∇f(x) + ATξ ⊥ TxM. (3.1)

The above condition appeared in previous works such as [25]. To justify this condition,

we prove Lemma 3.1 below stating that (3.1) is equivalent to saying that there are no

descent directions belonging to the tangent space. We note that this result, as well as

Theorem 3.1 that follows can be deduced from the work [27], which deals with more

general settings. We provide here the simple proofs of the two results in our setting for

the sake of completeness.

Lemma 3.1. A point x ∈ M is a stationary point of (P) if and only if

F ′(x;v) ≥ 0 for all v ∈ TxM. (3.2)

Proof. Let x ∈ M, and assume that (3.2) holds. Let v ∈ TxM. Then

F ′(x;v) = ⟨∇f(x),v⟩ + h′(x;v) ≥ 0.

Thus, by the convexity of h, we get

h(x + v) − h(x) ≥ h′(x;v) ≥ ⟨−∇f(x),v⟩ for any v ∈ TxM. (3.3)

6

Denote V = x + TxM. Then (3.3) translates to −∇f(x) ∈ ∂(h + δV)(x). By calculus of

subdifferentials1,

−∇f(x) ∈ ∂h(x) +NV (x) = AT∂g(Ax) + (TxM)⊥,

which is the same as condition (3.1).

In the opposite direction, assume that there exists ξ ∈ ∂h(x) such that ∇f(x)+ξ ⊥ TxM.

Let v ∈ TxM. Then since ξ ∈ ∂h(x), it follows by [19, Theorem 23.2] that h′(x;v) ≥
⟨ξ,v⟩, and hence F ′(x;v) = ⟨∇f(x),v⟩ + h′(x;v) ≥ ⟨∇f(x),v⟩ + ⟨ξ,v⟩ = 0.

The following result shows that stationarity is a necessary condition for local optimality.

Theorem 3.1. Any local minimum of problem (P) is a stationary point of (P).

Proof. Let x ∈ M be a local minimum point of (P) and let v ∈ TxM. Let γ : [0,∞) → M
be a path such that γ(0) = x, γ′(0) = v. Since x is a local minimum of (P), there exists

ε > 0 such that for every t ∈ (0, ε),

F (γ(t)) ≥ F (x).

Recalling that F = f + h, and after some rearrangement of terms, we get that the above

inequality is the same as

f(γ(t)) − f(x)

t
≥ −h(γ(t)) − h(x)

t
. (3.4)

By the definition of the derivative,

f(γ(t)) − f(x)

t

t→0+−−−→ (f ◦ γ)′(0) = ⟨∇f(γ(0)), γ′(0)⟩ = ⟨∇f(x),v⟩ = f ′(x;v). (3.5)

We wish to show that the right-hand side of (3.4) tends to −h′(x;v) as t→ 0+. Indeed,

h(γ(t)) − h(x)

t
=
h(γ(t)) − h(x + tv)

t
+
h(x + tv) − h(x)

t
. (3.6)

Since g is Lg-Lipschitz continuous, it follows that h is ∥A∥Lg-Lipschitz continuous. Thus,

|h(γ(t)) − h(x + tv)|
t

≤ ∥A∥Lg∥γ(t) − (x + tv)∥
t

≤ ∥A∥Lg

∣∣∣∣∣∣∣∣γ(t) − x

t
− v

∣∣∣∣∣∣∣∣ t→0+−−−−−→
(v=γ′(0))

0,

which combined with (3.6) and the definition of the directional derivative implies that
h(γ(t))−h(x)

t

t→0+−−−→ h′(x;v). Combining this with (3.4) and (3.5) implies that F ′(x;v) ≥ 0

for any x ∈ TxM, and by Lemma 3.1, we conclude that x is a stationary point of (P).

1Given a set C ⊆ Rn, NC(x) := {y ∈ Rn : ⟨y, z− x⟩ ≤ 0 ∀z ∈ C} is the normal cone of C at x

7

3.2 Smooth Paths Sets

We begin by defining the notion of “paths set”.

Definition 3.2 (paths set). A paths set γ on a manifold M is a set of paths on the

manifold

{γx,v : [0,∞) → M | x ∈ M,v ∈ TxM, ∥v∥ = 1}

such that for every x ∈ M and v ∈ TxM, ∥v∥ = 1 the following holds:

• γx,v(0) = x;

• γ′x,v(0) = v.

We consider only direction vectors of unit length because it suffices for the definition

of our algorithm.

One way to construct paths set is using the notion of retractions (see for example [2,

Definition 4.1.1]). Specifically, every retraction R induces a paths set via the formula

γx,v(t) = Rx(tv). Note that for R to be a retraction, one requires that the induced map

on the tangent bundle is smooth. We will be satisfied using the notion of paths sets, as

it is enough for our needs.

The analysis of our algorithm will be based on a uniform smoothness property for

paths sets that is now defined.

Definition 3.3 (smooth paths set). A paths set γ on a manifold M is (L,M)-smooth if

for every x ∈ M and v ∈ TxM such that ∥v∥ = 1, the following holds:

A. ∥γx,v(t) − γx,v(s)∥ ≤M |t− s| for all t, s ≥ 0;

B. ∥γ′x,v(t) − v∥ ≤ Lt for all t ≥ 0.

Example 3.1. Recall that the Stiefel manifold is defined as

M = {x ∈ Rd×p | xTx = Ip×p}.

Define the following paths set on M:

γx,v(t) = PM(x + tv),

where PM is the orthogonal projection operator on M. In Section 4.3 we show that {γx,v}
constitutes a (

√
p+ 1, 1)-smooth paths set.

Example 3.2. Let M = M1×· · ·×Mr be a product of r manifolds. This setting is rele-

vant in many scenarios. For example, the Oblique manifold OB(d, r) :=

r times︷ ︸︸ ︷
Sd−1 × · · · × Sd−1

8

appears in many applications, for example, in the context of optimization problems over

unimodal constraints [21, 23].

Assume we have a paths set γi on each manifold Mi. Assume that for every i = 1, ..., r

the γi paths set is (Li,Mi)-smooth. We now use those paths sets to define a paths set

γ on M. Let x = (x1, ...,xr) ∈ M be a point on M, such that xi ∈ Mi, and let

v ∈ TxM. Using the natural isomorphism between TxM and Tx1M1 × · · · × TxrMr,

denote v = (v1, ...,vr) such that vi ∈ Txi
Mi. Define γx,v as follows:

γx,v(t) = (γ1x1,v1
(t), ..., γrxr,vr

(t)).

The reader can easily verify that γ is a (
√∑

L2
i ,
√∑

M2
i)-smooth paths set.

Combining this discussion with the previous example, we can conclude that γx,v(t) =

(PSd−1(x1 + tv1), . . . ,PSd−1(xr + tvr)) is a (2
√
r,
√
r)-smooth paths set on the oblique

manifold OB(d, r).

4 Dynamic Smoothing Gradient on Manifolds

4.1 The Method

To describe our algorithm, we will use the following smoothing operation on F . For every

µ > 0 and for every x ∈ M, denote

F (µ)(x) ≡ f(x) +Mµ
g (Ax), (4.1)

where Mµ
g is the Moreau envelope given in (2.1). At iteration j of the algorithm (j =

0, 1, 2, . . .), one gradient step of Riemmanian gradient descent is taken with respect to

M
µj
g with a positive and decreasing sequence of smoothing parameters {µj}j≥0.

9

Dynamic Smoothing Gradient descent on Manifolds (DSGM) Method

Model Input: (M, f, g, A) satisfying Assumption 1.

Algorithm Input: γ – (Lγ,Mγ)-smooth paths set on M; {µj}∞j=0 – decreasing sequence

of positive smoothing parameters.

Initialization: Pick x0 ∈ M.

General step: for any j = 0, 1, 2, . . . execute the following steps:

• Set vj = −∇MF (µj)(xj)/∥∇MF (µj)(xj)∥ and γ = γxj ,vj
;

• Set xj+1 = γ
(
tj∥∇MF (µj)(xj)∥

)
for some stepsize tj > 0;

• Set Xj = xNj
where Nj ∈ argmin

k=⌊ j
2
⌋,...,j

∥∥∇MF (µk)(xk)
∥∥ .

Intermediate sequence – {xj}j≥0.

Associated smoothing parameters sequence – {µ̃j}j≥0 where µ̃j = µNj
.

Output sequence – {Xj}j≥0.

The output sequence {Xj}j≥0 is the actual output of the method. The intermediate

sequence {xj}j≥0 will be important in the convergence analysis to follow, but is not con-

sidered as the “output” of the method. The associated smoothing parameters sequence

{µ̃j}j≥0, which will be used in the convergence analysis, comprises the parameters corre-

sponding to the output sequence.

Two missing important ingredients in the above description of the method are (1) the

choice of smoothing parameters sequence {µj}j≥0 and (2) strategy for choosing the stepsize

sequence {tj}j≥0. The smoothing parameters will be determined during the convergence

analysis in Section 4.2 (specifically, Theorem 4.1). Given the choice of the smoothing

parameters, we now propose two possible stepsize strategies.

• Predefined diminishing stepsize. tj = 1
κ(µj)

, where κ : R++ → R++ is a

decreasing function.

• Backtracking stepsize. This procedure requires three parameters s > 0, α ∈
(0, 1), β ∈ (0, 1); tj is chosen as the largest element in the set {sβk}∞k=0 such that

F (µj)(xj) − F (µj)
(
γ
(
tj∥∇MF (µj)(xj)∥

))
≥ αtj∥∇MF (µj)(xj)∥2. (4.2)

Since the sequence of smoothing parameters {µj}j≥0 is decreasing, and κ is a decreasing

function, it follows that the sequence of stepsize sequence tj = 1
κ(µj)

in the first strategy

(“predefined diminishing stepsize”) is also decreasing. The function κ will be determined

in the sequel, see equation (4.4).

10

4.2 Convergence Analysis

First, we recall some properties of the Moreau envelope (see (2.1)) .

Lemma 4.1. Let g : Rm → R be an Lg-continuous convex function, z ∈ Rm and let

y = proxµg(z) for some µ > 0. Then,

(a) Mµ
g is 1

µ
-smooth;

(b) ∇Mµ
g (z) = 1

µ
(z− y) ∈ ∂g(y);

(c) ∥z− y∥ ≤ Lgµ and ∥∇Mµ
g (z)∥ ≤ Lg.

Proof. (a) Follows [4, Theorem 6.60]. (b) The formula for the gradient of the Moreau

envelope is well known, see for example [4, Theorem 6.60]; the membership in the sub-

differential set is the result [4, Theorem 6.39(ii)]. (c) Since g is Lg-Lipschitz continuous,

it follows by [4, Theorem 3.61] that ∂g(y) ⊆ B[0, Lg] for any y. Thus, since by part (b),

∇Mµ
g (z) ∈ ∂g(y), it follows ∥∇Mµ

g (z)∥ ≤ Lg and since ∇Mµ
g (z) = 1

µ
(z − y), we also

conclude that ∥z− y∥ ≤ Lgµ.

Using part (b) of Lemma 4.1, we can rephrase the descent direction that is chosen in

the DSGM algorithm at iteration j as

−∇MF (µj)(xj) = −∇Mf(xj) −
1

µj

PTxjM(ATAxj −AT proxµjg
(Axj)).

To prove the convergence of the algorithm, we quantify the smoothness of the composition

F (µ) ◦ γx,v, where γ is a given smooth paths set. The result is expressed in terms of an

upper bound on the norm of ∇f over the manifold, whose existence is warranted by the

compactness of the manifold (Assumption 1). The bound is denoted by Uf , meaning that

max
z∈M

∥∇f(z)∥ ≤ Uf . (4.3)

Lemma 4.2. Let γ be an (Lγ,Mγ)-smooth paths set on M and let κ : R++ → R++ be

given by

κ(µ) := LfM
2
γ + Lγ(∥A∥Lg + Uf) +M2

γ

∥A∥2

µ
, (4.4)

where Uf satisfies (4.3). Then for every x ∈ M and v ∈ TxM, it holds that

|(F (µ) ◦ γx,v)′(t) − (F (µ) ◦ γx,v)′(0)| ≤ κ(µ)t for all t ≥ 0.

Proof. First, we upper bound the norm of the gradient of F (µ) as follows:

max
x∈M

∥∇F (µ)(x)∥ ≤ Uf + max
x∈M

∥AT∇Mµ
g (Ax)∥ ≤ Uf + ∥A∥Lg, (4.5)

11

where we used Lemma 4.1(c) in the second inequality. Since F (µ) is sum of f , which is

Lf -smooth, and x 7→ Mµ
g (Ax), which is ∥A∥2

µ
-smooth (follows from Lemma 4.1(a)), we

get that F (µ) is (Lf + ∥A∥2
µ

)-smooth. For the sake of simplicity of notation, we omit the

super/subscripts in F (µ) and γx,v and write F and γ instead. Thus, for example, in this

terminology we have shown that the F is LF -smooth with LF = Lf + ∥A∥2
µ

.

Let x ∈ M and v ∈ TxM. By property A of smooth paths sets (Definition 3.3), we

have for any t ≥ 0,

∥γ′(t)∥ = lim
δ→0

∥γ(t+ δ) − γ(t)∥
δ

≤Mγ. (4.6)

Denote ϕ = F ◦ γ. For every t ≥ 0, the following holds:

|ϕ′(t) − ϕ′(0)| = |∇F (γ(t))Tγ′(t) −∇F (x)Tv|

= |∇F (γ(t))Tγ′(t) −∇F (x)Tγ′(t) + ∇F (x)Tγ′(t) −∇F (x)Tv|

≤ |∇F (γ(t))Tγ′(t) −∇F (x)Tγ′(t)| + |∇F (x)Tγ′(t) −∇F (x)Tv|

≤ ∥∇F (γ(t)) −∇F (x)∥ · ∥γ′(t)∥ + ∥∇F (x)∥ · ∥γ′(t) − v∥

≤ LF∥γ(t) − x∥ · ∥γ′(t)∥ + ∥∇F (x)∥ · ∥γ′(t) − v∥

= LF∥γ(t) − γ(0)∥ · ∥γ′(t)∥ + ∥∇F (x)∥ · ∥γ′(t) − v∥
(4.5),(4.6)

≤
(
LFM

2
γ + (Uf + ∥A∥Lg)Lγ

)
t.

Plugging LF = Lf + ∥A∥2
µ

in the above, the result follows.

Lemma 4.4 below establishes a decrease property of two consecutive iterates xj and

xj+1 generated by the DSGM method with respect to the smoothed functions F (µj) and

F (µj+1) respectively. The result requires the following technical lemma.

Lemma 4.3. Suppose ϕ : [0,∞) → R is differentiable and satisfies that ϕ′(0) < 0 and

that for any t ≥ 0

|ϕ′(t) − ϕ′(0)| ≤ Kt

for some K > 0. Then for any t ≥ 0

ϕ(0) − ϕ(−tϕ′(0)) ≥ t

(
1 − Kt

2

)
ϕ′(0)2.

Proof. By the premise of the lemma we get that for any s ≥ 0, ϕ′(s) ≤ ϕ′(0) +Ks. Thus,

ϕ(0) − ϕ(−tϕ′(0)) = −
∫ −tϕ′(0)

0

ϕ′(s)ds ≥
∫ −tϕ′(0)

0

(−ϕ′(0) −Ks)ds = t

(
1 − Kt

2

)
ϕ′(0)2.

Lemma 4.4. Let {xj}j≥0 be the sequence generated by the DSGM method using a

decreasing sequence of smoothing parameters {µj}j≥0. Assume that the stepsizes are

12

chosen using either the predefined procedure with the function κ given in (4.4) or the

backtracking procedure with parameters s > 0, α, β ∈ (0, 1). Then for any j ≥ 0,

F (µj)(xj) − F (µj+1)(xj+1) ≥
Q

κ(µj)
∥∇MF (µj)(xj)∥2 −

L2
g

2
(µj − µj+1), (4.7)

where Q = 1
2

in the predefined stepsize setting and Q = αmin{sκ(µ0), 2(1 − α)β} when

the backtracking scheme is employed.

Proof. We first show the following:

F (µj)(xj) − F (µj)(xj+1) ≥
Q

κ(µj)
∥∇MF (µj)(xj)∥2, (4.8)

Denote γj = γxj ,vj
, where vj = −∇MF (µj)(xj)/∥∇MF (µj)(xj)∥ as defined in the DSGM

method. By Lemma 4.2, we have that the function ϕ = F (µj) ◦γj satisfies |ϕ′(t)−ϕ′(0)| ≤
κ(µj)t for any t ≥ 0. Thus, invoking Lemma 4.3 with K = κ(µj) we have for any t ≥ 0,

F (µj)(xj) − F (µj)
(
γj

(
t∥∇MF (µj)(xj)∥

))
≥ t

(
1 − κ(µj)t

2

)
∥∇MF (µj)(xj)∥2, (4.9)

where we used the following computation in the above:

ϕ′(0) = ∇F (µj)(xj)
Tγ′j(0) = −∇F (µj)(xj)

T∇MF (µj)(xj)

∥∇MF (µj)(xj)∥
= −∥∇MF (µj)(xj)∥.

Consider first the case where the stepsizes are chosen by the predefined diminishing

rule tj = 1
κ(µj)

. Substituting t = tj = 1
κ(µj)

in (4.9) and using the relation xj+1 =

γ(tj∥∇MF (µj)(xj)∥), we obtain that

F (µj)(xj) − F (µj)(xj+1) ≥
1

2κ(µj)
∥∇MF (µj)(xj)∥2,

meaning that (4.8) holds with Q = 1
2
.

Now assume that the backtracking procedure is employed. Suppose that the stepsize

at the jth iteration is tj = sβr and denote γj = γxj ,vj
. Then by the construction of the

backtracking procedure, either tj = s, or the following holds:

F (µj)(xj) − F (µj)

(
γj

(
tj
β
∥∇MF (µj)(xj)∥

))
< α

tj
β
∥∇MF (µj)(xj)∥2. (4.10)

Substituting t = tj/β in (4.9) yields

F (µj)(xj) − F (µj)

(
γj

(
tj
β
∥∇MF (µj)(xj)∥

))
≥ tj
β

(
1 − κ(µj)tj

2β

)
∥∇MF (µj)(xj)∥2.

(4.11)

Combining inequalities (4.10) and (4.11), we get that

tj ≥ min

{
s,

2(1 − α)β

κ(µj)

}
,

13

which together with (4.2) yields

F (µj)(xj) − F (µj)(xj+1) ≥ αmin

{
s,

2(1 − α)β

κ(µj)

}
∥∇MF (µj)(xj)∥2. (4.12)

Note that

αmin

{
s,

2(1 − α)β

κ(µj)

}
κ(µj)≥κ(µ0)

≥ αmin

{
s
κ(µ0)

κ(µj)
,
2(1 − α)β

κ(µj)

}
=
αmin{sκ(µ0), 2(1 − α)β}

κ(µj)
,

which together with (4.12) implies that (4.8) holds with Q = αmin{sκ(µ0), 2(1 − α)β}.

To prove (4.7), note that

F (µj)(xj)− F (µj+1)(xj+1) =
[
F (µj)(xj)− F (µj)(xj+1)

]
+
[
F (µj)(xj+1)− F (µj+1)(xj+1)

]
(4.8)

≥ Q

κ(µj)
∥∇MF (µj)(xj)∥2 + F (µj)(xj+1)− F (µj+1)(xj+1). (4.13)

Finally, by [9, p. 130], we have that for any x ∈ Rn, it holds thatM
µj
g (Ax)−Mµj+1

g (Ax) ≥
−L2

g

2
(µj − µj+1), which combined with (4.13) leads to the desired result (4.7).

Summing inequality (4.7) over j = 0, 1, . . . , N yields

N∑
j=0

Q

κ(µj)
∥∇MF (µi)(xj)∥2 ≤ F (µ0)(x0) − F (µN+1)(xN+1) +

L2
g

2
µ0. (4.14)

Using [9, p. 130], we have that for any x ∈ M and µ > 0,

F (µ)(x) ≥ F (x) −
L2
g

2
µ. (4.15)

Plugging inequality (4.15) with x = xN+1 and µ = µN+1 into (4.14) yields that

N∑
j=0

1

κ(µj)
∥∇MF (µj)(xj)∥2 ≤

1

Q

(
F (µ0)(x0) − F (xN+1) +

1

2
L2
gµN+1 +

1

2
L2
gµ0

)
µN+1≤µ0

≤ 1

Q

(
F (µ0)(x0) − F∗ + L2

gµ0

)
=: CF (4.16)

where F∗ := minx∈M F (x). We are now ready to state and prove the main convergence

theorems. Theorem 4.1 establishes a rate of convergence result for two expressions that

form an optimality measure for the problem. Theorem 4.2 shows that any accumulation

point of the sequence is a stationary point.

Theorem 4.1. Let {Xj}j≥0 be the output sequence generated by the DSGM method

with smoothing parameters µj = D
max{jv ,1} for some v ∈ (0, 1) and D > 0. Assume that

the stepsizes were chosen using either the predefined procedure with the function κ given

in (4.4) or the backtracking procedure with parameters s > 0, α, β ∈ (0, 1). Then for any

j ≥ 2 there exists yj ∈ Rm and ξj ∈ ∂g(yj) such that

14

(a) ∥PTXjM
(∇f(Xj) + ATξj)∥2 ≤ 4CF max{c1j−1, c2

D
jv−1};

(b) ∥yj −AXj∥ ≤ DLg

⌊ j
2⌋

v ,

where

c1 = LfM
2
γ + Lγ(∥A∥Lg + Uf), c2 = M2

γ∥A∥2, (4.17)

with Uf being a constant satisfying (4.3) and CF is given in (4.16). Lastly, Q = 1
2

in the

case of predefined stepsize and αmin{sκ(µ0), 2(1 − α)β} in the backtracking setting.

Proof. Let {xj}j≥0 be the intermediate sequence generated by the method and {µ̃j}j≥0

be the associated smoothing parameters sequence. We begin by noting that

CF

(4.16)

≥
j∑

i=⌊j/2⌋

1

κ(µi)
∥∇MF (µi)(xi)∥2 ≥

j

2
min

i=⌊j/2⌋,...,j

1

κ(µi)
∥∇MF (µi)(xi)∥2

≥ j

2
·

mini=⌊j/2⌋,...,j ∥∇MF (µi)(xi)∥2

maxi=⌊j/2⌋,...,j κ(µi)
≥ j

2κ(µj)
∥∇MF (µ̃j)(Xj)∥2,

where the last inequality follows from the definition of Xj and the monotonicity of the

sequence {κ(µj)}j≥0. By the expression of κ given in (4.4), it follows that κ(µj) = c1 + c2
µj

where c1 and c2 are given in (4.17). Thus, for any j ≥ 2,

∥∇MF (µ̃j)(Xj)∥2 ≤
2CF (c1 + c2

1
µj

)

j
≤ 4CF max

{
c1
j
,
c2
jµj

}
= 4CF max

{
c1j

−1,
c2
D
jv−1

}
.

(4.18)

Define yj = proxµ̃jg
(AXj) and ξj = ∇M µ̃j

g (Xj) ∈ ∂g(yj). Since F (µ) = f+Mµ
g , it follows

by the formula for the Riemmanian gradient (2.4) that

∇MF (µ̃j)(Xj) = PTXj
M
(
∇f(Xj) + ATξj

)
.

Plugging this equality into (4.18) proves part (a) of the theorem. To prove part (b), note

that by Lemma 4.1(c) and the monotonicity of µj,

∥yj −AXj∥ ≤ Lgµ̃j ≤ Lgµ⌊ j
2
⌋ =

DLg⌊
j
2

⌋v ,
establishing part (b).

Remark 4.1. Note that for the choice v = 1
3
, both expressions ∥PTXjM

(∇f(Xj)+ATξj)∥2

and ∥yj − AXj∥ are of an order of O(1
k1/3

), providing a rate of O(1
k1/3

) for the two

expressions. Note that these two expressions form together a proxy for measuring the

stationarity of the given point. Indeed, they are both nonnegative and they are equal to

zero if and only if Xj is a stationary point of the main problem, see Definition 3.1.

Theorem 4.2. Assume the settings of Theorem 4.1. Then any accumulation point of

{Xj}j≥0 is a stationary point of problem (1.1).

15

Proof. Let {xj}j≥0 be the intermediate sequence generated by the method and {µ̃j}j≥0

be the associated smoothing parameters sequence. Let X ∈ M be an accumulation point

of the sequence {Xj}j≥0. Then there exists a subsequence {Xj}j∈K converging to X. By

Theorem 4.1, we have that for any j ≥ 2 there exist yj ∈ Rm and ξj ∈ ∂g(yj) such that

∥PTXjM
(∇f(Xj) + ATξj)∥2 ≤ s(j), (4.19)

∥yj −AXj∥ ≤ DLg⌊
j
2

⌋v . (4.20)

where s : R++ → R++ is a function satisfying that s(t) → 0 as t → ∞. Since Xj
j∈K→ X,

it follows by (4.20) that yj
j∈K−→ AX. Since ξj ∈ ∂g(yj) and {yj}j∈K is a compact set

(being a convergent sequence), it follows by [4, Theorem 3.16] that {ξj}j∈K is bounded.

Let {ξj}j∈T (T ⊆ K) be a convergent subsequence of {ξj}j∈K and denote its limit by ξ.

Then taking the limit j
j∈T−→ ∞ in the relation ξj ∈ ∂g(yj), we obtain that ξ ∈ ∂g(AX).

By Lemma A.1 in appendix A, we have that

PTXj
M

(
∇f(xj) + ξj

) j∈T−→ PTXM (∇f(X) + ξ) .

The above along with (4.19) yields the relation PTXM (∇f(X) + ξ) = 0, which combined

with the fact that ξ ∈ ∂g(AX) implies that X is a stationary point (Definition 3.1).

4.3 A Projection-Based Smooth Paths Set on the Stiefel Mani-

fold

In this section we consider a projection-based paths set on the Stiefel manifold that obeys

the smoothness conditions. We prove that the paths set is indeed smooth and calculate

its smoothness constants, as given in Definition 3.3.

Consider the Stiefel manifold

M = {x ∈ Rd×p | xTx = Ip},

where d ≥ p are two fixed natural numbers. Since we deal with a matrix-space, the norm

in Rd×p is the Frobenius norm. A useful fact, proved in [2, Example 3.5.2] (and in many

other places) is the following characterization of the tangent space of the Stiefel manifold:

TxM = {v ∈ Rd×p | vTx + xTv = 0}. (4.21)

In [3, Proposition 5] it is shown that the following is a retraction on M:

Rx(v) = PM(x + v), x ∈ M,v ∈ TxM. (4.22)

Thus, we are led to consider the following paths set:

γx,v(t) = Rx(tv) = PM(x + tv), x ∈ M,v ∈ TxM, ∥v∥ = 1. (4.23)

16

The retraction (4.22) has the following useful representation (see for example [8])

Rx(v) = (x + v)(Ip + vTv)−1/2 x ∈ M,v ∈ TxM. (4.24)

It is well known that the orthogonal projection of full column rank matrices onto the

Stiefel manifold can be expressed in terms of their singular value decomposition2. The

result is stated in the next lemma.

Lemma 4.5. Let w ∈ Rd×p be a matrix of rank p. Let w = LΣRT be the singular value

decomposition of w. Then PM(w) is single-valued and equals3 LId×pR
T .

We can now prove property A of smooth paths set (Definition 3.3) for the paths set

given in (4.23).

Theorem 4.3. Let x ∈ M,v ∈ TxM such that ∥v∥F = 1. Then for any t, s ≥ 0,

∥γx,v(t) − γx,v(s)∥ ≤ |t− s|.

Proof. We use the following notation in this proof: the columns of a given matrix u ∈ Rd×p

are denoted by u(1),u(2), . . . ,u(p). Denote

H = {x ∈ Rd×p | xTx ⪯ Ip}.

Consider the singular value decomposition x + tv = LΣRT (L ∈ Rd×d,R ∈ Rp×p orthog-

onal and Σ ∈ Rd×p diagonal). Then,

PH(x + tv) = argmin
z∈H

∥x + tv − z∥F = L

(
argmin
w∈H

∥Σ−w∥F
)
RT . (4.25)

Note that (x + tv)T (x + tv) = xTx + t(xTv + vTx) + t2vTv = Ip + t2vTv ⪰ Ip, and

hence all the singular values of x+ tv are greater or equal to 1, meaning that the diagonal

elements of Σ are greater or equal to 1. Consider the set of d×p matrices that satisfy that

the norm of its columns are at most 1: R = {x ∈ Rd×p : ∥x(i)∥2 ≤ 1 for all i = 1, ..., p}.

Obviously, H ⊆ R. Consider the problem

min
w∈R

∥Σ−w∥2F ≡ min
w:∥w(i)∥2≤1

p∑
i=1

∥Σi,iei −w(i)∥22. (4.26)

By the separability of the above problem, the optimal w(i) is the optimal solution of

minw(i):∥w(i)∥2≤1 ∥Σi,iei − w(i)∥2, which is w(i) = ei by the fact that Σii ≥ 1. Thus, the

optimal solution of (4.26) is w = Id×p. Since Id×p ∈ H and H ⊆ R, it follows that Id×p

2The result is a slight variation of [3, Proposition 7].
3Id×p is the d× p matrix defined by (Id×p)ij = 0 if i ̸= j and 1 otherwise.

17

is an optimal solution of minw∈H ∥Σ−w∥2F . Combining this with (4.25) and Lemma 4.5,

we conclude that

PH(x + tv) = LId×pR
T = PM(x + tv).

By the non-expansiveness property of the orthogonal projection operator onto convex sets

(see (2.3)), we conclude that for any s, t ≥ 0,

∥PM(x+tv)−PM(x+sv)∥F = ∥PH(x+tv)−PH(x+sv)∥F ≤ ∥x+tv−(x+sv)∥F = |s−t|,

which is the desired result.

Property B of smooth paths set is established next.

Theorem 4.4. Let x ∈ M,v ∈ TxM such that ∥v∥F = 1. Then for any t ≥ 0,

∥γ′x,v(t) − γ′x,v(0)∥F ≤ (
√
p+ 1)t.

Proof. By (4.22),

γx,v(t) = (x + tv)(Ip + t2vTv)−1/2. (4.27)

Denote S(t) = (Ip + t2vTv)−1/2. By calculus of matrix functions we have

∥γ′x,v(t) − γ′x,v(0)∥F = ∥(x + tv)S ′(t) + vS(t) − v∥F
≤ ∥x + tv∥F · ∥S ′(t)∥2 + ∥v∥F · ∥S(t) − Ip∥2. (4.28)

Using the equality xTv + vTx = 0 we get

∥x + tv∥2F = Tr(xTx + t2vTv) = ∥x∥2F + t2∥v∥2F = p+ t2. (4.29)

Since vTv is positive semidefinite, it has a spectral decomposition of the form vTv =

PT diag(σ)P where P ∈ Rp×p is orthogonal and σ ∈ Rp
+. Since ∥v∥F = 1 we also have

that σi ≤ 1 for all i = 1, 2, . . . , p. Hence,

∥S ′(t)∥2 =

∥∥∥∥PT diag

(
−tσi

(1 + t2σi)3/2

)
P

∥∥∥∥
2

= max
i=1,...,p

∣∣∣∣ tσi
(1 + t2σi)3/2

∣∣∣∣ =
αt

(1 + αt2)3/2
(4.30)

for some α ∈ (0, 1]. Combining (4.29) and (4.30) yields

∥x + tv∥F · ∥S ′(t)∥2 =
α
√
p+ t2

(1 + αt2)3/2
t =

√
α
p+ t2

1
α

+ t2
· 1

1 + αt2
t. (4.31)

If p ≤ 1/α, then p+t2

1/α+t2
≤ 1. Otherwise, if p > 1/α, then√

α
p+ t2

1/α + t2
<

√
α

p

1/α
= α

√
p ≤ √

p, (4.32)

18

where the first inequality follows from simple rearrangement of terms. Plugging (4.32)

and the bound 1
1+αt2

≤ 1 into (4.31) yields

∥x + tv∥F · ∥S ′(t)∥2 ≤
√
pt. (4.33)

Now, the second term of (4.28) can be bounded as follows:

∥S(t)−Ip∥2 =

∥∥∥∥diag

(
1√

1 + σit2
− 1

)∥∥∥∥
2

= max
i

(
1 − 1√

1 + σit2

)
≤ 1− 1√

1 + t2
, (4.34)

where the inequality holds since σi ∈ [0, 1]. Note that

1 − 1√
1 + t2

=
(
√

1 + t2 + 1)(
√

1 + t2 − 1)√
1 + t2(1 +

√
1 + t2)

=
t2√

1 + t2 + 1 + t2
≤ t · t

1 + t+ t2
≤ t.

Plugging this into (4.34) gives

∥S(t) − Ip∥2 ≤ t. (4.35)

Plugging (4.35) and (4.33) into (4.28) gives the desired result.

We summarize Theorems 4.3 and 4.4 in the following result.

Theorem 4.5. The paths set defined in (4.23) forms a (
√
p+ 1, 1)-smooth paths set.

5 Numerical Results

5.1 SPCA

In this subsection we consider the following known formulation of the sparse principal

component analysis (SPCA) problem:

min
V∈Rd×p

{
∥X−XVVT∥2F + λ∥V∥1,1 : VTV = Ip

}
, (5.1)

where ∥ · ∥1,1 denotes the sum of the absolute values of all the entries of the input matrix

and λ > 0 is a trade-off parameter for the regularization factor. X ∈ Rn×d is a data matrix,

where n is the number of samples and d is the dimension of each sample. Problem (5.1)

fits the general model (1.1) with f(V) = ∥X −XVVT∥2F , g(V) = λ∥V∥1,1,A represents

the identity mapping and M is the Stiefel manifold. Using a simple algebraic expansion,

we get that using f(V) = −Tr(VTXTXV) will result in the same optimization problem

and thus we will use this formulation instead.

We will compare the empirical results of the DSGM method proposed in this paper

with the Riemmanian subgradient method on a set of synthesized examples of SPCA

problems. The Riemmanian subgradient method for nonconvex objective functions was

proposed and analyzed in [25]. The general update step of the method is

xk+1 = Rxk

(
−tkPTxk

(ξk)
)
,

19

where R is a retraction, tk is the stepsize on iteration k and ξk is some subgradient of

the objective function at point xk. Here, we use the same retraction for the Riemmanian

subgradient method as we use for DSGM:

Rx(ξ) = PM(x + ξ).

This is also the retraction that is used in [25]. Note that the Riemmanian subgradient

method only requires the tuning of the stepsize whereas in DSGM, one needs to tune both

the stepsize and the smoothing factors µk.

The Riemmanian subgradient method is a very natural baseline for our algorithm for

a number of reasons. First, as proved in [25], it has convergence results in very broad

settings, like those derived for DSGM. Second, both methods are very simple and easy

to implement, as well as do not require any complex adjustments when performed on a

new problem. In particular, they do not require the solution of complicated optimization

problems at each iteration.

To show that the two methods share a similar computational complexity per iteration,

we go over the computation process of a single step in each of the methods and find their

computational complexity. We consider DSGM first. Denote by xk ∈ M the kth iterate

point generated by the algorithm. To find the next iterate xk+1, DSGM performs the

following operations:

1. Calculate ∇f(xk) = −2XTXxk. The computation of the product XTX is done in a

preprocess, so we are left with a single multiplication of a d× d matrix with a d× p

matrix that amounts to O(p · d2) operations.

2. Compute the descent direction computation ξk = ∇f(xk) + 1
µk

(xk − proxµkg
(xk)). This

formula requires O(d · p) operations. Note that the proximal operator of the norm

∥ · ∥1,1 is a component-wise soft-thresholding operator (see e.g., [4, Example 6.8]).

3. Find PTxk
M(ξk) = (Id − xkx

T
k)ξk + 1

2
xk(xT

k ξk − ξTk xk). The formula can be found in

[2, Example 3.6.2], and its calculation requires O(d · p2) operations.

4. Compute xk+1 via one retraction operation computation. Based on the presentation

in 4.24, it follows the retraction evaluation requires O(d · p2) operations for the sake

of matrix multiplications and O(p3) operations in order to build the square root and

inverse of a p× p matrix.

For RSG, all the steps are exactly the same, except for step 2, which is replaced by

a calculation of a subgradient of the ℓ1 norm, which will not change the algorithm’s

complexity. Assuming that d > p, the overall complexity of a single step for both methods

is O(d2p+ p3).

In their work, Li et al. recommend two optional choices for the stepsize ti:

20

(a) ti = αi for some α ∈ (0, 1). We refer to this method as RSG exp.

(b) ti = D√
i

for some D > 0. We refer to this method as RSG sqrt.

We compare our results to those obtained by RSG exp and RSG sqrt. We used synthetic

data that was generated in the following manner:

• Every synthesized case utilized two parameters σ2 and p where p is the amount of

principal components and σ2 is the variance of the principal components. We take

the dimension of the data to be d = 1024 in all of our experiments.

• We randomly generated a sparse matrix in the Stiefel manifold W ∈ Rd×p,WTW =

Ip×p, such that eighth of its entries are nonzero. We did it by partitioning W to

block matrices and allowing only one eighth of them to be an orthogonal matrix.

The rest of the block matrices are set to zero.

• A data point x ∈ Rd was assumed to be generated using x = Vη + ϵ, where

η ∼ N(0, σ2Ip) and ϵ ∼ N(0, Id).

We used the expectation of the matrix XTX, which we denote by R = σ2WWT + Id.

For each covariance matrix R we solved the minimization problem

min
x

{−Tr(xTRx) + ∥x∥1,1 : xTx = Ip}. (5.2)

We considered a total of 25 values for couples (p, σ2) by going over all the combinations

of p ∈ {4, 16, 24, 32, 40} and σ2 ∈ {2, 4, 8, 16, 32}. For each couple (p, σ2), we performed

the above synthesization procedure 50 times. Since all of the algorithms we use require

some parameter tuning, we ran three algorithms in three settings each (overall nine runs)

to solve (5.2) for each realization:

• DSGM algorithm with smoothing parameters 0.1
iα

were α = 1
3
, 1
2
, 2
3
. The stepsizes

where chosen using the backtracking procedure.

• RSG sqrt with stepsizes D√
i

were D = 1, 0.1, 0.01.

• RSG exp with stepsize αi where α = 0.7, 0.8, 0.9.

All the algorithms were initialized using the same random point on the Stiefel manifold.

In all runs we used a code implemented in Python (Github link appears at the end of

the paper) with the same stopping criterion - the run stopped after 2 seconds. We chose

to stop the run after 2 seconds as we saw that both algorithms reach stagnation at that

time frame. Running RSG for 2 seconds means running it for between 220 (for larger p)

to 300 (for smaller p) iterations on average. DSGM ran for around 20% less iterations

in the same time frame.

21

σ2 = 2 σ2 = 4 σ2 = 8 σ2 = 16 σ2 = 32

p = 8 68% 2% 86% 0% 0%

p = 16 68% 0% 8% 52% 58%

p = 24 96% 20% 38% 100% 88%

p = 32 94% 4% 6% 100% 100%

p = 40 84% 2% 0% 100% 100%

Table 1: SPCA: The percentage of times that DSGM found the best performing point

from all algorithms across all 50 realizations that were generated for each couple (p, σ2).

For each couple of values (p, σ2), we searched for the method (either RSG exp, RSG sqrt

or DSGM) that resulted in the point with the best objective function value, for each of

the 50 runs. RSG sqrt never found the best point. Table 1 shows the percentage of the

simulations for which DSGM (with one of the three used smoothing techniques) found

the best performing point (meaning, the point with the smallest objective function value),

over all the possible couples (p, σ2). We see that for some parameters DSGM is preferable

and for others, RSG is better.

5.1.1 Comparison with ManPG

We also compared the DSGM method to the ManPG algorithm that was recently proposed

by Chen et. al. in [10]. ManPG can also be used to solve the model (1.1). In ManPG,

the descent direction at the kth iteration is computed by the formula

vk := argmin
v∈Txk

M

{
⟨∇f(xk),v⟩ +

1

2t
∥v∥2F + g(xk + v)

}
, (5.3)

where t > 0 is a stepsize. In [10], M is assumed to be the Stiefel manifold, and show how

(5.3) can be solved using a semismooth Newton method.

Using the MATLAB code provided by the authors of [10] for the generation of problems

and for their solution using ManPG, we compare the performance of DSGM and ManPG.

To make the comparison fair, we solved each problem instance with a code implementing

DSGM that was written in MATLAB as well.

For every d ∈ {128, 256, 512, 768, 1024} and p ∈ {4, 8, 16, 32}, we randomly generated 50

realizations of the data matrix X with n = 50. For each of these realizations, we ran the

adaptive version of the method in [10] (ManPG-Ada) for solving (5.1), as recommended

in [10]. We ran DSGM with smoothing parameters 1√
i

and the stepsizes were chosen

using the backtracking procedure. Each of the methods was run for 0.5s, regardless of

the choice of the parameters. Here also we observed that this time limit is enough for the

22

d = 128 d = 256 d = 512 d = 1024

p = 4 26% 34% 32% 18%

p = 8 46% 48% 50% 50%

p = 16 46% 66% 92% 74%

p = 32 98% 98% 98% 100%

Table 2: SPCA: percentage of times that DSGM found a point that performs better than

ManPG-Ada across all 50 realizations that were generated for each couple (p, d).

algorithms to reach stagnation. The percentage of times that DSGM found the better

performing point across the realizations of each problem setting is illustrated in 2.

We see that for larger values of p, DSGM performs better than ManPG-Ada.

5.2 Robust Subspace Recovery

Robust subspace recovery (RSR) rises when one has corrupted data in a high dimen-

sional space. A review on the RSR problem is given in [16]. One of the mathematical

formulations of the problem, as described in [16] and [25] is the following:

min
x∈Rn×r

{
m∑
i=1

∥yT
i x∥2 : xTx = Ir

}
, (5.4)

where y1,y2, . . . ,ym ∈ Rn are the data points and n− r is the dimension of the subspace

one tries to recover. The span of the columns of a solution of (5.4) is an approximation

of its orthogonal complement. The objective function is convex and Lipschitz continuous

and hence (5.4) can be formulated as (1.1) where the smooth part is zero, g(x) = ∥x∥2,1
and A is the m × n matrix that has yT

i as its i-th row. The norm ∥ · ∥2,1 stands for the

sum of the ℓ2 norm of the rows of the input matrix.

Similarly to [25], we simulated data in the following manner. We set the data dimension

to be n = 100. For each simulated example, we chose randomly a subspace of dimension

n−r. We randomly generated I points from the unit sphere in the subspace and 5000−I
points from the unit sphere in Rn. We performed it for r = 5, 10, 15, 20 and for I =

250, 500, 1000, 1500 which is equivalent to 5%, 10%, 20%, 30% of inlier points. For each

simulated problem we ran the DSGM method two times with smoothing parameter µj =
0.1
jα

for α ∈ {1/2, 2/3} at iteration i. We chose only those parameters as they were the

best performing ones in SPCA, which is a similar problem. For RSG exp we chose the

stepsize to be equal to 0.1 · 0.9j in one run and 0.1 · 0.75j for another run. Here we have

not used the RSG sqrt since it was proved in [25] that problem (5.4) is sharp and thus

exponential stepsize should have exponential convergence.

23

r = 5 r = 10 r = 15 r = 20

I = 250 96% 100% 100% 100%

I = 500 92% 100% 100% 100%

I = 1000 100% 100% 98% 86%

I = 1500 68% 48% 34% 8%

Table 3: RSR: Percentage of times that the DSGM algorithm found a point with the best

objective value among all the others.

For each couple of values (I, r), we simulated 50 sets of data for 50 different problems.

For each simulated problem, we checked which algorithm found the best value. Table 3

shows the percentage of the times that the best value was found by our algorithm, for

each (I, r). It can be seen that in the cases that the inlier data points are less significant,

the DSGM method outperforms RSG exp.

Our implementation of the methods and the simulations on python are available here:

https://github.com/israelross/DSGM

References

[1] P.-A Absil, Christopher Baker, and Kyle Gallivan, Trust-region methods on Rieman-

nian manifolds, Foundations of Computational Mathematics 7 (2007), 303–330.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix man-

ifolds, Princeton University Press, Princeton, NJ, 2008.

[3] P.-A. Absil and J. Malick, Projection-like retractions on matrix manifolds, SIAM J.

Optim. 22 (2012), no. 1, 135–158. MR 2902688

[4] A. Beck, First-order methods in optimization, SIAM-Society for Industrial and Ap-

plied Mathematics, Philadelphia, PA, USA, 2017.

[5] A. Beck and M. Teboulle, Smoothing and first order methods: A unified framework,

SIAM Journal on Optimization 22 (2012), no. 2, 557–580.

[6] G. Bento, J. Cruz N., and P. Oliveira, A new approach to the proximal point method:

Convergence on general Riemannian manifolds, Journal of Optimization Theory and

Applications 168 (2016), 743–755.

[7] G. Bento, O. Ferreira, and J. Melo, Iteration-complexity of gradient, subgradient and

proximal point methods on Riemannian manifolds, Journal of Optimization Theory

and Applications 173 (2017), 548–562.

24

https://github.com/israelross/DSGM

[8] N. Boumal, An introduction to optimization on smooth manifolds, 2022, Preprint.

[9] R. Boţ and C. Hendrich, A variable smoothing algorithm for solving convex optimiza-

tion problems, Top 23 (2015), 124–150.

[10] S. Chen, S. Ma, A. So, and T. Zhang, Proximal gradient method for nonsmooth

optimization over the Stiefel manifold, SIAM J. Optim. 30 (2020), 210–239.

[11] O. Ferreira and P. Oliveira, Proximal point algorithm on Riemannian manifolds,

Optimization 51 (2002), 257–270.

[12] O. P. Ferreira and P. R. Oliveira, Subgradient algorithm on Riemannian manifolds,

Journal of Optimization Theory and Applications 97 (1998), no. 1, 93–104.

[13] S. Hosseini, W. Huang, and R. Yousefpour, Line search algorithms for locally Lips-

chitz functions on Riemannian manifolds, SIAM J. Optim. 28 (2016), 596–619.

[14] S. Hosseini and A. Uschmajew, A Riemannian gradient sampling algorithm for non-

smooth optimization on manifolds, SIAM J. Optim. 27 (2016), 173–189.

[15] W. Huang and K. Wei, Riemannian proximal gradient methods, Mathematical Pro-

gramming (2021), Online First.

[16] G. Lerman and T. Maunu, An overview of robust subspace recovery, Proceedings of

the IEEE 106 (2018), no. 8, 1380–1410.

[17] J-J. Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de la Société

mathématique de France 93 (1965), 273–299.

[18] Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical Program-

ming 103 (2005), no. 1, 127–152.

[19] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton

University Press, Princeton, N.J., 1970. MR 0274683

[20] Jonathan Siegel, Accelerated optimization with orthogonality constraints, Journal of

Computational Mathematics 39 (2021), 207–226.

[21] M. Soltanalian and P. Stoica, Designing unimodular codes via quadratic optimization,

IEEE Trans. Signal Process. 62 (2014), no. 5, 1221–1234. MR 3168147

[22] Q. Tran-Dinh, Adaptive smoothing algorithms for nonsmooth composite convex min-

imization, Computational Optimization and Applications 66 (2017), no. 3, 425–451.

25

[23] I. Waldspurger, A. d’Aspremont, and S. Mallat, Phase recovery, MaxCut and complex

semidefinite programming, Math. Program. 149 (2015), no. 1-2, Ser. A, 47–81. MR

3300456

[24] Z. Wen and W. Yin, A feasible method for optimization with orthogonality constraints,

Mathematical Programming 142 (2013), no. 1, 397–434.

[25] L. Xiao, C. Shixiang, D. Zengde, Q. Qing, Z. Zhihui, and M. C. S. Anthony, Weakly

convex optimization over Stiefel manifold using Riemannian subgradient-type meth-

ods, SIAM J. Optim. 31 (2021), 1605–1634.

[26] H. Zhang and S. Sra, First-order methods for geodesically convex optimization, 29th

Annual Conference on Learning Theory, Proceedings of Machine Learning Research,

vol. 49, PMLR, 2016, pp. 1617–1638.

[27] Leihong Zhang, Wei Hong Yang, and Ruyi Song, Optimality conditions for the nonlin-

ear programming problems on riemannian manifolds, Pacific Journal of Optimization

(2013).

A A Lemma on Manifolds

Let M ⊆ Rn be an embedded submanifold of dimension d. For every point x ∈ M,

denote ϕx = PTxM. Using this notation we wish to prove the following lemma.

Lemma A.1. The correspondence ϕ : M → Rn×n that maps x ∈ M to ϕx is a continuous

mapping on M.

First we need to prove the following lemma.

Lemma A.2. Let H = {L ∈ Rn×d | rkL = d}. Define π : H → Rn×n by π(L) = PImL

where PImL is the orthogonal projection on the linear subspace ImL. Then, π is a

continuous mapping.

Proof. Let L ∈ H. We will show continuity of π in an open neighbourhood of L. Assume,

without loss of generality, that the upper d× d minor of L is invertible.

Let

U =

R =


Rd

r1

· · ·
rn−d

 ;Rd ∈ Rd×d,∀i : rTi ∈ Rd, det(Rd) ̸= 0


be an open neighbourhood of L. For every R ∈ U and for every 0 < i ≤ n − d, define

vi(R) ∈ Rn as the vector that has its d first entries equal to R−1
d ri, its i+ d entry equals

26

−1 and the rest of the entries equal to zero. Note that vi(R)TR = 0 and that the set

{vi(R)}n−d
i=1 is linearly independent for every R ∈ U .

We can now define a mapping ψ : U → Rn×n by:

ψ(R) =
(
R v1(R) · · · vn−d(R)

)
.

By the construction of vi, this map is continuous. Denote by S the diagonal matrix with

1 on the first d diagonal elements, and zero on the rest. Observing that for every R ∈ U ,

π(R) = ψ(R)Sψ(R)−1

finishes the proof of the continuity of π.

Proof of Lemma A.1. Let x0 ∈ M be some point on the manifold. Let U ⊂ Rn, V ⊂ Rd

be open subsets such that there exists a smooth one-to-one map

h : V → Rn,

where h(V) = U ∩M and such that x0 ∈ U . Moreover, assume that rk (Dh(x)) = d for

every x ∈ V . This map exists because one can compose a the inverse of a chart of M with

the inclusion map ι : M → Rn. Since the inclusion map is an immersion, this composition

is smooth and has a differential with full rank in every point. By the definition of the

tangent space, for every x ∈ V we have that Im (Dh(x)) = TxM.

Using the map

π : Rn×d → Rn×n; π(L) = PImL

and the fact that

ϕ |U∩M= π ◦Dh ◦ h−1,

we get that ϕ is continuous on a neighborhood of x0. Since this can be shown for every

point x0 ∈ M, the continuity of ϕ on M follows.

27

	Introduction
	Preliminaries and Notations
	Optimization
	Manifolds

	The Manifold Composite Model
	Stationarity
	Smooth Paths Sets

	Dynamic Smoothing Gradient on Manifolds
	The Method
	Convergence Analysis
	A Projection-Based Smooth Paths Set on the Stiefel Manifold

	Numerical Results
	SPCA
	Comparison with ManPG

	Robust Subspace Recovery

	A Lemma on Manifolds

