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Abstract We suggest a majorization-minimization method for solving nonconvex
minimization problems. The method is based on minimizing at each iterate a prop-
erly constructed consistent majorizer of the objective function. We describe a vari-
ety of classes of functions for which such a construction is possible. We introduce
an inexact variant of the method, in which only approximate minimization of the
consistent majorizer is performed at each iteration. Both the exact and the inex-
act algorithms are shown to be descent methods whose accumulation points have a
property which is stronger than standard stationarity. We give examples of cases in
which the exact method can be applied. Finally, we show that the inexact method
can be applied to a specific problem, called sparse source localization, by utilizing
a fast optimization method on a smooth convex dual of its subproblems.

1 Introduction

In this chapter we consider the general optimization problem

min{F(x) : x ∈ Rn} , (1)

where F : Rn→ (−∞,∞] is a proper, closed extended real-valued function satisfying
that its domain dom(F) := {x∈Rn : F(x)<∞} is a convex subset of Rn. In addition,
we assume that F is directionally differentiable, that is, for any x,y ∈ dom(F), the
directional derivative of F at x in the direction y−x,
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F ′(x;y−x) := lim
t→0+

F(x+ t(y−x))−F(x)
t

exists (finite or infinite). For the sake of simplicity of exposition, all the spaces
are Euclidean Rn spaces with the endowed dot product, but all the results hold
trivially for general Euclidean spaces. In this context, the gradient of a differen-
tiable function F : Rn → R, denoted by ∇F, is the vector of all partial derivatives

∇F(x) :=
(

∂F
∂x1

(x), . . . , ∂F
∂xn

(x)
)T

.

The optimization method that we suggest for solving (1) is based on the general
majorization-minimization (MM) scheme. At each iteration, a consistent majorizer
is computed around the current iterate, and the next iterate is an exact or an ap-
proximate minimizer of that majorizer. A consistent majorizer is an upper bound on
F that coincides with it up to first-order terms around a given point in its domain.
Consistent majorizers and methods based on the MM-scheme have been extensively
studied in the literature, see for example the book [13] as well as the review paper
[12] and references therein for a variety of constructions of consistent majorizers.

A special focus in the literature is on the case where F is given by a composition
F = ϕ ◦ f + g, where f is a mapping comprising m real-valued differentiable func-
tions with Lipschitzian gradients, ϕ is a support function of a nonnegative compact
and convex subset of Rm and g is a proper closed and convex function. An appli-
cable method for various composite models is the proximal Gauss-Newton method
(PGNM), also known as prox-linear method. Its general step is

xk+1 = argmin
y

{
g(y)+ϕ

(
f(xk)+Jf(xk)(y−xk)

)
+

1
2t
‖y−xk‖2

}
,

for some parameter t > 0, which depends on the smoothness parameters of ∇ fi and
the global Lipschitz constant of ϕ, whose finiteness is guaranteed as ϕ is a support
function of a bounded set. The matrix Jf(x) is the Jacobian of f at x. For a con-
vergence analysis of the method see for example [17]. The prox-linear method was
further investigated and extended in the more recent works [9, 10, 11, 15]. We note
that a special instance of the prox-linear method is the proximal gradient method
aimed at solving the additive model F = f + g where f is differentiable and g is
proper closed and convex; see the references [5, 6, 18] for convergence analysis as
well as extensions.

The exact version of the MM scheme that we consider can be seen as a gener-
alization of the prox-linear method to a broader class of models. Our main goal is
to establish convergence results that will hold for both the exact and inexact MM
algorithms.

The chapter is organized as follows. In Section 2 we define explicitly the concept
of a consistent majorizer of a function. We describe a variety of classes of functions
for which consistent majorizers can be constructed. In Section 3 we introduce the
concept of strongly stationary points of (1) with respect to a given consistent ma-
jorizer of F, and show that in the case of a nonconvex consistent majorizer, it might
lead to a stronger condition than the usual stationarity/“no descent directions” prop-
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erty. The potential advantage of the new optimality condition is demonstrated on an
example of minimizing a concave quadratic function over a box. In Section 4 we
describe the MM method and its inexact variant, in which only approximate min-
imizers of the consistent majorizers are computed, and analyze their convergence
properties. We also provide an implementable example demonstrating some practi-
cal advantages of the MM method over the gradient projection method. Finally, in
Section 5 we study a class of problems consisting of minimizing the composition of
a nondegenerate support function with a mapping comprising functions for which
strongly convex majorizers are constructable. For this class, the inexact MM method
is shown to be fully implementable, and its application on a specific problem which
we call the sparse source localization is provided.

Notations. Vectors are written in lower case boldface letters, matrices in upper
case boldface, scalars and sets in italic. We denote e = (1,1, . . . ,1)T ∈Rn, and for a
given vector d∈Rn the matrix diag(d) is the diagonal matrix whose ith diagonal en-
try is di for i = 1, . . . ,n. For two symmetric matrices A,B we write A�B (A�B) if
A−B is positive semidefinite (positive definite). The notation λmax(A) corresponds
to the maximal eigenvalue of the matrix A. The set ∆n is the unit simplex in Rn,
namely, ∆n := {x ∈ Rn : ∑

n
i=1 xi = 1, x ≥ 0}. The norm notation ‖ · ‖ denotes the

Euclidean norm in Rn, i.e., ‖x‖ := ‖x‖2 ≡
√
〈x,x〉. For a given closed convex set

B⊆ Rn the orthogonal projection on B is defined by PB(x) := argmin
y∈B

‖y−x‖.

2 Consistent Majorizers

2.1 Directionally Differentiable Functions

We consider the minimization problem

min{F(x) : x ∈ Rn} , (2)

where F : Rn→ (−∞,∞] is a proper, closed extended real-valued function which is
directionally differentiable, a simple notion that is defined below.

Definition 1 (directionally differentiable functions). A function F :Rn→ (−∞,∞]
is called directionally differentiable if it satisfies the following two properties:

• dom(F) is a convex set.
• For any x,y ∈ dom(F), the directional derivative F ′(x;y− x) exists (finite or

infinite).

Example 1 (additive composite model). Suppose that F = f + g, where f : Rn →
R is anywhere differentiable and g : Rn → (−∞,∞] is convex. The function F is
indeed directionally differentiable since dom(F) = dom(g) is convex and for any
x,y ∈ dom(F), by the convexity of g, g′(x;y−x) exists (finite or infinite) and thus
also F ′(x;y−x) exists and is given by
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F ′(x;y−x) = ∇ f (x)T (y−x)+g′(x;y−x).

Example 2 (dc functions). Let F = f − g where f : Rn→ (−∞,∞] and g : Rn→ R
are convex. Then dom(F) = dom( f ) and by the convexity of f and g both possess
directional derivatives at all feasible directions, and g′(x;y−x) is finite for all y,x∈
dom(F). In particular, for any x,y ∈ dom(F):

F ′(x;y−x) = f ′(x;y−x)−g′(x;y−x).

2.2 Definition

A basic ingredient in the analysis in this paper is the concept of a consistent ma-
jorizer.

Definition 2 (consistent majorizer). Given a directionally differentiable function
F : Rn → (−∞,∞], a function h : Rn×Rn → (−∞,∞] is called a consistent ma-
jorizer function of F if the following properties hold:

(A) h(y,x)≥ F(y) for any x,y ∈ Rn.
(B) h(y,y) = F(y) for any y ∈ dom(F).
(C) For any x ∈ dom(F), the function hx(y) := h(y,x) is directionally differen-

tiable and satisfies that dom(hx) = dom(F) and

h′x(x;z−x) = F ′(x;z−x) for any z ∈ dom(F).

(D) For any y ∈ dom(F) the function x 7→ −h(y,x) is closed1.

It is simple to show that the sum of two consistent majorizers is also a consistent
majorizer.

Theorem 1. Let F1 and F2 be two directionally differentiable functions where at
least one of them, say Fi, satisfies F ′i (x;y− x) ∈ R for all x,y ∈ dom(Fi). Suppose
that h1,h2 are consistent majorizers of F1 and F2, respectively. Then h1 + h2 is a
consistent majorizer of F1 +F2.

Proof. Follows directly by the definition of consistent majorizers and the facts that
(i) the sum of two closed functions is a closed function and (ii) the directional
derivative is additive in the sense that (h1 +h2)

′(x;d) = h′1(x;d)+h′2(x;d) for any
x,d ∈ Rn for which the relevant expressions are well-defined. ut

2.3 Examples

Below are several examples of consistent majorizers in several important settings.

1 which is the same as saying that the function x 7→ h(y,x) is upper semicontinuous.
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Example 3 (dd). If F : Rn→ (−∞,∞] is a directionally differentiable function, then
obviously, the function h(y,x) = F(y)+ η

2 ‖y− x‖2 is a consistent majorizer of F
for any η ≥ 0.

Example 4 (concave differentiable). Consider a function f : Rn→ R which is con-
cave and continuously differentiable. By the concavity of f , it follows that f (y) ≤
f (x)+ 〈∇ f (x),y−x〉 for any x,y ∈ Rn and therefore the function

h(y,x) = f (x)+ 〈∇ f (x),y−x〉

is a majorizer of f , meaning that property (A) holds. Property (B) holds since for
any y ∈ Rn, h(y,y) = f (y). The function hx(y) ≡ h(y,x), as an affine function, is
directionally differentiable and satisfies for any z ∈ Rn,

h′x(x;z−x) = 〈∇ f (x),z−x〉= f ′(x;z−x),

establishing the validity of property (C). Since f ,∇ f are continuous functions, it
also holds that for a fixed y, the function x 7→ h(y,x) is continuous over Rn, and is
in particular closed and thus property (D) holds.

Example 5 (differentiable concave+dd). Consider the function

F(x) = f (x)+g(x),

where f : Rn→R is concave and continuously differentiable and g : Rn→ (−∞,∞]
is proper and directionally differentiable. By Examples 3 and 4, h1(x,y) = f (x)+
〈∇ f (x),y− x〉 and h2(y,x) = g(y)+ η

2 ‖y− x‖2 are consistent majorizers of f and
g respectively, and hence, by Theorem 1,

h(y,x) = f (x)+ 〈∇ f (x),y−x〉+ η

2
‖y−x‖2 +g(y)

is a consistent majorizer of F for any η ≥ 0.

Example 6 (C1,1). Suppose that f is L-smooth (L > 0) on Rn, meaning that

‖∇ f (x)−∇ f (y)‖ ≤ L‖x−y‖ for any x,y ∈ Rn.

The set of functions satisfying the above is denoted by C1,1
L . By the descent lemma

[8, Proposition A.24],

f (y)≤ f (x)+ 〈∇ f (x),y−x〉+ L
2
‖x−y‖2.

Thus, the function

h(y,x) = f (x)+ 〈∇ f (x),y−x〉+ L
2
‖x−y‖2
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is a majorizer of f , meaning that it satisfies property (A) in the definition of consis-
tent majorizers. It is very simple to show that properties (B), (C) and (D) also hold
and hence h is a consistent majorizer of f .

Example 7 (C1,1+dd). Consider the function

F(x) = f (x)+g(x),

where f : Rn → R is L-smooth and g is a directionally differentiable function. By
Examples 3 and 6 along with Theorem 1, it follows that

h(y,x) = f (x)+ 〈∇ f (x),y−x〉+g(y)+
L
2
‖x−y‖2

is a consistent majorizer of F .

The following table summarizes the above examples.

Table 1

Model Assumptions Consistent majorizer h(y,x)

f +g f −C1, concave
g− dd f (x)+ 〈∇ f (x),y−x〉+g(y)+ η

2 ‖y−x‖2 (η ≥ 0)

f +g f −C1,1
L (L > 0)

g− dd
f (x)+ 〈∇ f (x),y−x〉+g(y)+ L

2 ‖y−x‖2

Example 8 (Polynomials). Consider a polynomial function

F(x) =
m

∑
i=1

fi(x),

where fi : Rn→ R are monomials, that is,

fi(x) = aix
pi,1
1 x

pi,2
2 · · ·x

pi,n
n , i = 1, . . . ,m,

where a1,a2, . . . ,am are real numbers, and pi, j ∈ N∪{0} for all i ∈ {1, . . . ,m}, j ∈
{1, . . . ,n}. A consistent majorizer of F can be constructed as the sum of majoriz-
ers of the monomials f1, . . . , fm, invoking Theorem 1 (as for all i fi is a differential
real-valued function). We now show how one can define a consistent majorizer of
a monomial. Given x,y ∈ Rn, by the Taylor formula we write the monomial as a
polynomial in y, developed around x. Then we upper bound each non-pure2 mono-
mial of the obtained polynomial by a sum of pure monomials, through repeatedly
applying the inequality

αab≤ 1
2
|α|(a2 +b2), (3)

2 A monomial is called pure if ∃ j∀k 6= j pi,k = 0.
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which holds for any real numbers α,a,b.
We now demonstrate a construction of consistent majorizers on two numerical

examples of third degree monomials.

f1(y) := y2
1y2

= x2
1x2 +2x1x2(y1− x1)+ x2

1(y2− x2)

+x2(y1− x1)
2 +2x1(y1− x1)(y2− x2)+(y1− x1)

2(y2− x2)

≤ x2
1x2 +2x1x2(y1− x1)+ x2

1(y2− x2)

+x2(y1− x1)
2 +2|x1| ·

1
2
(
(y1− x1)

2 +(y2− x2)
2)+ 1

2
(
(y1− x1)

4 +(y2− x2)
2)

=: h1(y,x).

f2(y) := y1y2y3

= x1x2x3 + x2x3(y1− x1)+ x1x3(y2− x2)+ x1x2(y3− x3)

+x3(y1− x1)(y2− x2)+ x2(y1− x1)(y3− x3)+ x1(y2− x2)(y3− x3)

+(y1− x1)(y2− x2)(y3− x3)

≤ x1x2x3 + x2x3(y1− x1)+ x1x3(y2− x2)+ x1x2(y3− x3)

+|x3| ·
1
2
(
(y1− x1)

2 +(y2− x2)
2)+ |x2| ·

1
2
(
(y1− x1)

2 +(y3− x3)
2)

+|x1| ·
1
2
(
(y2− x2)

2 +(y3− x3)
2)

+
1
2
(y1− x1)

2 +
1
4
(y2− x2)

4 +
1
4
(y3− x3)

4

=: h2(y,x),

where the upper bound on (y1− x1)(y2− x2)(y3− x3) is obtained by applying (3)
twice

(y1− x1)(y2− x2)(y3− x3) ≤
1
2
(y1− x1)

2 +
1
2
(
(y2− x2)

2(y3− x3)
2)

≤ 1
2
(y1− x1)

2 +
1
2
·
(

1
2
(y2− x2)

4 +
1
2
(y3− x3)

4
)

=
1
2
(y1− x1)

2 +
1
4
(y2− x2)

4 +
1
4
(y3− x3)

4.

By the construction, property (A) of consistent majorizers is satisfied. Since y 7→
fi(y) and y 7→ hi(y,x) are polynomials having the same constant and linear terms in
their Taylor expansion around x, properties (B) and (C) hold as well. Property (D)
is also satisfied, as x 7→ −hi(y,x) is continuous in x, and thus closed. Finally, y 7→
hi(y,x) are differentiable for all i, and in particular have finite directional derivatives
at any point and in any direction. Thus, by repeatedly applying Theorem 1 we obtain
that the function h(y,x) := ∑

m
i=1 hi(y,x) is a consistent majorizer of F.



8 Amir Beck and Dror Pan

An important property of the consistent majorizer of the form constructed above
is its separability. It comprises n pure monomials, each depending on one variable.
This property facilitates its minimization over a box in Rn.

Example 9 (quadratic forms). Let

F(x) = xT Qx

for some Q ∈ Sn. For any x,y ∈ Rn one has

F(y) = yT Qy = xT Qx+2(Qx)T (y−x)+(y−x)T Q(y−x).

Let Λ be a diagonal matrix satisfying Λ �Q. Denote

h(y,x) := xT Qx+2(Qx)T (y−x)+(y−x)T
Λ(y−x). (4)

Then, for all x,y ∈ Rn, the inequality h(y,x) ≥ F(y) holds, h(y,y) = F(y), and
∇hx(x) = ∇F(x). The function −h(y,x) is also continuous in x, and hence closed.
Thus, h is a consistent majorizer of F . In addition, h is separable in the components
of y = (y1,y2, . . . ,yn)

T . Denote e := (1,1, . . . ,1)T . We mention two possible options
(out of many) for choosing the diagonal matrix Λ := diag(λ̄ ).

1. Defining λ̄ as an optimal solution of the following SDP:

(SDP) min
λ∈Rn

{
eT

λ : diag(λ )�Q
}
.

2. Setting λ̄ := λmax(Q) · e.

2.4 Consistent Majorizers of Composite Functions

Our objective in this section is to show how consistent majorizers of composite
functions of the form

F(x) = ϕ( f1(x), f2(x), . . . , fm(x)), (5)

can be computed under certain assumptions in case where consistent majoriz-
ers of the functions f1, f2, . . . , fm are available. We will use the notation f(x) =
( f1(x), f2(x), . . . , fm(x))T , so that

F(x) = ϕ(f(x)).

The construction of consistent majorizers of F relies on Lemma 1 below that
presents an expression for directional derivatives of functions of this form, but first,
we explicitly write the required assumptions on ϕ and f.
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Assumption 1. (A) ϕ(x) = σC(x) := maxy∈C〈x,y〉, where C ⊆ Rm
+ is a nonnegative

compact convex set.
(B) The functions f1, f2, . . . , fm : Rn→R are closed and directionally differentiable

with f ′i (x;d) ∈ R for all i ∈ {1, . . . ,m} and x,d ∈ Rn.

An interesting example of a function satisfying property (A) of Assumption
1 is ϕ(x) = max{x1,x2, . . . ,xn}, which corresponds to the choice C = ∆n, (with
m = n). An interesting example of a composition F = ϕ ◦ f where (A) and (B)
are satisfied is F(x) = ‖x‖1 which corresponds to C = (∆2)

n (with m = 2n) and
f(x) = (x1,−x1,x2,−x2, . . . ,xn,−xn)

T .

Remark 1 (properties of ϕ). Note that the fact that ϕ is a support function of a com-
pact set implies that it is real-valued convex, subadditive and positively homoge-
nous. The fact that the underlying set is nonnegative implies that the function is in
addition nonincreasing in the sense that x≤ y implies that ϕ(x)≤ ϕ(y).

In the following lemma we use the following notation: if the m functions s1,s2, . . . ,sm
have a directional derivative at x in the direction d, then the corresponding direc-
tional derivative of the vector-valued function s = (s1,s2, . . . ,sm)

T is denoted by
s′(x;d) and is the m-dimensional column vector given by

s′(x;d) = (s′i(x;d))m
i=1.

Lemma 1. Let
S(x) = ϕ(s(x)), x ∈ Rn,

where

• ϕ : Rm→ R is a convex, subadditive and positively homogenous function.
• s = (s1,s2, . . . ,sm)

T is a function from Rn to Rm.

Let x,d∈Rn and suppose that s is differentiable at x in the direction d with s′i(x;d)∈
R for all i. Then S has a directional derivative at x in the direction d which is given
by

S′(x;d) = ϕ
′(s(x);s′(x;d)). (6)

Proof. Note that by the fact that the components of s have a directional derivative
at x in the direction d, it follows that there exists a function o : R+→ Rm satisfying
limt→0+

o(t)
t = 0 for which

s(x+ td) = s(x)+ ts′(x;d)+o(t).

By the subadditivity and positive homogeneity of ϕ , it follows that

ϕ(s(x+ td))−ϕ(s(x))
t

=
ϕ(s(x)+ ts′(x;d)+o(t))−ϕ(s(x))

t

≤ ϕ(s(x)+ ts′(x;d))−ϕ(s(x))
t

+ϕ

(
o(t)

t

)
. (7)

Similarly,



10 Amir Beck and Dror Pan

ϕ(s(x+ td))−ϕ(s(x))
t

≥ ϕ(s(x)+ ts′(x;d))−ϕ(s(x))
t

−ϕ

(
−o(t)

t

)
. (8)

By the definition of the function o, limt→0+
o(t)

t = 0, and thus, by the continuity

of ϕ (as it is a real-valued convex function), it follows that limt→0+ ϕ

(
o(t)

t

)
=

limt→0+ ϕ

(
− o(t)

t

)
= ϕ(0) = 0. It therefore follows by (7) and (8) that

S′(x;d) = lim
t→0+

ϕ(s(x+ td))−ϕ(s(x))
t

= lim
t→0+

ϕ(s(x)+ ts′(x;d))−ϕ(s(x))
t

= ϕ
′(s(x);s′(x;d)).

ut

Equipped with Lemma 1, we can now show how to construct a consistent ma-
jorizer of the function F given in (1) out of consistent majorizers of f1, f2, . . . , fm.

Theorem 2. Let
F(x) = ϕ( f1(x), f2(x), . . . , fm(x)),

where ϕ and f satisfy the properties in Assumption 1. Assume that for any i ∈
{1,2, . . . ,m} the function hi is a consistent majorizer of fi. Then the function

H(y,x) = ϕ(h1(y,x),h2(y,x), . . . ,hm(y,x))

is a consistent majorizer of F.

Proof. We will show that the four properties in the definition of consistent majoriz-
ers hold:
(A). By the monotonicity of ϕ (see Remark 1) and the fact that hi is a majorizer of
fi for any i, it follows that for any x,y ∈ Rn,

H(y,x) = ϕ(h1(y,x),h2(y,x), . . . ,hm(y,x))≥ ϕ( f1(y), f2(y), . . . , fm(y)) = F(y),

establishing property (A) for the pair (F,H).
(B). Follows by the following simple computation:

H(y,y) = ϕ(h1(y,y),h2(y,y), . . . ,hm(y,y)) = ϕ( f1(y), f2(y), . . . , fm(y)) = F(y).

(C). For a given x ∈ dom(F), define the functions hi,x(y) := hi(y,x), i = 1,2, . . . ,m
and the function

Hx(y) = H(y,x) = ϕ(h1,x(y),h2,x(y), . . . ,hm,x(y)).

We need to prove that for any x,z ∈ dom(F), H ′x(x;z−x) = F ′(x;z−x). Indeed, by
Lemma 1 invoked with s = f, it follows that

F ′(x;z−x) = ϕ
′(f(x); f′(x;z−x)). (9)
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Finally, for any x,z ∈ dom(F), invoking Lemma 1 once more with si(y) := hi,x(y),
and taking into account that hi is a consistent majorizer of fi for any i, we obtain

H ′x(x;z−x) = ϕ
′((h1,x(x), . . . ,hm,x(x))T ;(h′1,x(x;z−x), . . . ,h′m,x(x;z−x))T )

= ϕ
′(( f1(x), . . . , fm(x))T ;( f ′1(x;z−x), . . . , f ′m(x;z−x))T )

= ϕ
′(f(x); f′(x;z−x))

= F ′(x;z−x).

(D). For a fixed y ∈ Rn we need to show that x 7→ −H(y,x) is closed. Specifically,
let x ∈ Rn and ε > 0 be fixed; we need to establish the existence of δ > 0 such that

H(y, x̃)< H(y,x)+ ε

for all x̃ such that ‖x̃−x‖ < δ . That would show the equivalent assertion that x 7→
H(y,x) is upper semicontinuous.

Indeed, by the continuity of ϕ, for any z ∈ Rm there exists δz > 0 such that if
‖z̃− z‖∞ < δz, then |ϕ(z̃)−ϕ(z)|< ε. In particular, this holds for

z := (h1(y,x), . . . ,hm(y,x))T .

Since for any i ∈ {1, . . . ,m} the function x 7→ −hi(y,x) is closed, there exists δi > 0
such that if ‖x̃−x‖< δi, then

hi(y, x̃)< hi(y,x)+δz.

Define δ := min{δ1, . . . ,δm}, and let x̃ satisfy ‖x̃−x‖< δ . There exists two sets of
indices

Ix̃ := {i ∈ {1, . . . ,m} : hi(y, x̃)≤ hi(y,x)},
Jx̃ := {i ∈ {1, . . . ,m} : hi(y,x)< hi(y, x̃)< hi(y,x)+δz}

satisfying Ix̃∪Jx̃ = {1,2, . . . ,m} and Ix̃∩Jx̃ = /0. Define a vector u ∈Rm as follows,

ui =

{
hi(y,x), i ∈ Ix̃,
hi(y, x̃), i ∈ Jx̃.

By the monotonicity of ϕ it follows that

H(y, x̃) = ϕ(h1(y, x̃), . . . ,hm(y, x̃))≤ ϕ(u). (10)

In addition, by the construction, ‖u− z‖∞ < δz. Thus,

ϕ(u)< ϕ(z)+ ε = H(y,x)+ ε, (11)

and the result follows by a summation of (10) and (11). ut

Example 10. Suppose that
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F(x) = max{ f1(x), f2(x), . . . , fm(x)}+g(x),

where f1, f2, . . . , fm : Rn → R are C1,1 functions and g : Rn → (−∞,∞] is proper
closed and convex. We assume specifically that fi ∈C1,1

Li
(Li > 0) for any i. Then by

Example 6,

hi(y,x) = fi(x)+ 〈∇ fi(x),y−x〉+ Li

2
‖x−y‖2

is a consistent majorizer of fi, and thus, by Theorem 2, which can be invoked
since fi are directionally differentiable and ϕ = σ∆n , it follows that the function
(y,x) 7→maxi=1,2,...,m{hi(y,x)} is a consistent majorizer of x 7→maxi=1,2,...,m fi(x).
Consequently, by Theorem 1, it follows that

H(y,x) := max
i=1,2,...,m

{hi(y,x)}+g(y)

is a consistent majorizer of F .

Example 11. Let

F(x) =
m

∑
i=1
| fi(x)|,

where f1, f2, . . . , fm : Rn → R are differentiable convex functions. Note that F can
be rewritten as

F(x) =
m

∑
i=1

max{ fi(x),− fi(x)},

meaning that F = ϕ ◦ t, where

ϕ(w) =
m

∑
i=1

max{w2i−1,w2i},

t2i−1(x) = fi(x), i = 1,2, . . . ,m,

t2i(x) = − fi(x), i = 1,2, . . . ,m.

Since− fi is concave, it follows that (y,x) 7→− fi(x)−〈∇ fi(x),y−x〉 is a consistent
majorizer of − fi (Example 4); in addition,(y,x) 7→ fi(y) is a consistent majorizer
of x 7→ fi(x) (Example 3 with η = 0). Thus, by Theorem 2, which can be invoked
since the functions t1, t2, . . . , t2m are directionally differentiable and ϕ = σ(∆2)m , it
follows that the function

H(y,x) =
m

∑
i=1

max{ fi(y),− fi(x)−〈∇ fi(x),y−x〉}

is a consistent majorizer of F . It is interesting to note that this majorizer is a convex
function w.r.t. y.
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3 Stationarity Measures and Conditions

Stationarity is a fundamental concept in optimization problems. For the optimization
problem (2), perhaps the most natural stationarity condition of a given point is the
following.

Definition 3. Let F be a proper, closed, directionally differentiable function. A point
x∗ ∈ dom(F) is called a stationary point of problem (2) if it satisfies

F ′(x∗;y−x∗)≥ 0 for all y ∈ dom(F). (12)

Stationarity is a well-known necessary optimality condition for problem (2), and it
becomes also sufficient in the convex case, as stated in the following simple lemma.
For the convenience of the reader we provide its proof in the appendix.

Lemma 2. Let F be a proper, closed, directionally differentiable function. If x∗ is a
local minimizer of (2), then it is a stationary point. If, in addition, F is convex, then
any stationary point x∗ of (2) is a global minimizer.

Most of the known first-order methods are designed such that their limit points
would satisfy (12). Their analysis in many cases is based on some stationarity mea-
sure, which is a nonnegative function that vanishes exactly at stationary points. See
e.g., [4, 5, 10, 16] and references therein for the wide usage of stationarity measures
in analysis of first-order optimization algorithms.

In this section our main goal is to introduce stationarity measures that are based
on consistent majorizers of F, the objective function of problem (2). At this point we
introduce an additional property that will be assumed to be satisfied by consistent
majorizers.

Assumption 2. For any x ∈ Rn the value miny h(y,x) is finite.

Assumption 2 does not require that miny h(y,x) is attained; however, we always use
the notation “min” rather than “inf”. Now let h : Rn×Rn→ (−∞,∞] be a consistent
majorizer of F such that Assumption 2 is satisfied. Define the function SF,h : Rn→
(−∞,∞] by

SF,h(x) := F(x)−min
y

h(y,x).

By Assumption 2, the function SF,h is well defined, and its domain coincides with
dom(F). Though SF,h depends on F and on the consistent majorizer h, from now on
we simply denote

S≡ SF,h,

omitting the subscripts F and h whenever they are clear from the context. The fol-
lowing lemma establishes the main properties of S.

Lemma 3. Let F be a proper, closed, directionally differentiable function, and h be
a consistent majorizer of F. Suppose that Assumption 2 holds. Then the function S
satisfies the following properties:
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1. S(x)≥ 0 for any x ∈ dom(F).
2. Any x ∈ Rn and p ∈ argmin

y
h(y,x) satisfy

F(x)−F(p)≥ S(x).

3. S is lower semicontinuous, that is, if xk→ x̃ as k→ ∞, then

S(x̃)≤ liminf
k→∞

S(xk).

4. S(x) = 0 if and only if x ∈ argmin
y

h(y,x).

5. If S(x) = 0, then the inequality F ′(x;y−x) ≥ 0 holds for any y ∈ dom(F), that
is, x is a stationary point of (2).
If, in addition, y 7→ h(y,x) is a convex function of y for any x ∈ dom(F), then the
converse is also true.

Proof. 1. Let x ∈ Rn. Then by property (B) of consistent majorizers we get

S(x) = F(x)−min
y

h(y,x)

≥ F(x)−h(x,x) = F(x)−F(x) = 0.

2. Let x and p be as in the assumption. Then by property (A) of consistent majoriz-
ers

F(x)−F(p)≥ F(x)−h(p,x) = F(x)−min
y

h(y,x) = S(x).

3. By property (D) of consistent majorizers, the function −h(y, ·) is closed for any
y ∈ dom(F). Notice that

S(x)=F(x)−min
y

h(y,x)=F(x)− min
y∈dom(F)

h(y,x)=F(x)+ max
y∈dom(F)

{−h(y,x)}.

S is closed (equivalently, lower semicontinuous) as the sum of the closed function
and a pointwise maximum of closed functions.

4. S(x) = 0 if and only if F(x) = miny h(y,x) and by property (B) of consistent ma-
jorizers, the latter is valid if and only if h(x,x) =miny h(y,x), which is equivalent
to x ∈ argmin

y
h(y,x).

5. A necessary condition for x to be a global minimizer of hx(y) ≡ h(y,x) with
respect to y (i.e., for hx(x) to be the minimal value of hx) is (see Lemma 2)

(hx)
′ (x;y−x)≥ 0 ∀y ∈ dom(F). (13)

By property (C) of consistent majorizers, the condition (13) is equivalent to

F ′(x;y−x)≥ 0 ∀y ∈ dom(F),
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and the result follows.
If, in addition, the function hx is convex in y for all x ∈ dom(F), then the nec-
essary condition (13) becomes also sufficient (see Lemma 2), namely, it also
implies x ∈ argmin

y
h(y,x).

ut

As one can see by Lemma 3, if a point x̃ ∈ dom(F) satisfies S(x̃) = 0, it is
stationary, but in the nonconvex case there might exist some stationary points with
S(x̃) > 0. This observation leads us to formulate a necessary optimality condition,
based on a property which is stronger than stationarity.

Definition 4. Let F be a proper, closed, directionally differentiable function. We
say that x ∈ dom(F) is a strongly stationary point of problem (2) with respect to a
consistent majorizer h if S(x) = 0.

The following lemma establishes a necessary optimality condition for the optimiza-
tion problem (2).

Lemma 4. Let F be a proper, closed, directionally differentiable function and h be
a consistent majorizer of F. Suppose that Assumption 2 holds. Let x∗ ∈ dom(F) be a
global optimal solution for problem (2). Then x∗ is a strongly stationary point with
respect to any consistent majorizer h.

Proof. Assume otherwise, that is, S(x∗) > 0. Then there exists y ∈ dom(F) such
that h(y,x∗)< h(x∗,x∗). Since x∗ is a global minimizer of F over dom(F), for any
y ∈ dom(F) we have (utilizing properties (A) and (B) of consistent majorizers)

F(x∗)≤ F(y)≤ h(y,x∗)< h(x∗,x∗) = F(x∗),

which yields a contradiction. ut

By Lemma 4, any global minimizer of (2) is a strongly stationary point with re-
spect to any consistent majorizer, and by Lemma 3 any such point is also a stationary
point. These two observations might help in solving specific problems of the setting
(2) if, for example, a certain algorithm can be shown to converge to a strongly sta-
tionary point rather than just to a stationary point, it might have better chances of
converging to a global solution. The choice of the majorizer can affect the number
of strongly stationary points.

Example 12 (minimizing a concave quadratic form over a box). Consider the opti-
mization problem with the objective function defined in Example 9 for some Q� 0,
and box constraints. That is, the minimization problem is given by

(PQ) min
x∈Rn

{
F(x) := xT Qx : −e≤ x≤ e

}
.

A concave function attains its minimal value over a compact convex set at least on
one of its extreme points. Therefore, F attains its minimal value over [−1,1]n at
a vector in {−1,1}n. A well known combinatorial optimization problem that can
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be reformulated in the form of (PQ) is the MAXCUT problem; see e.g. [7, Section
3.4.1] and references therein.

For problem (PQ), the stationary points are the vectors x∗ ∈ [−1,1]n satisfying

F ′(x∗;x−x∗)≥ 0 ∀x ∈ [−1,1]n,

or equivalently,
〈Qx∗,x−x∗〉 ≥ 0 ∀x ∈ [−1,1]n.

We give two numerical examples with n = 5,7 by setting Q := Q j for j = 1,2,
where

Q1 ≡

−24 2 −8 0 −5
2 −26 0 −6 1
−8 0 −22 −7 0
0 −6 −7 −18 5
−5 1 0 5 −34

 Q2 ≡
1
2


−24 2 −8 0 −5 0 −6

2 −26 0 −6 1 −1 −3
−8 0 −22 −7 0 4 −1
0 −6 −7 −18 5 −1 1
−5 1 0 5 −34 0 −3
0 −1 4 −1 0 −28 −7
−6 −3 −1 1 −3 −7 −32

 .

Since Q1,Q2 ≺ 0, at least one global minimizer must be a vertex of [−1,1]n. There-
fore, we can reduce the discussion to the 2n vertices {−1,1}n.

For each vertex x ∈ {−1,1}n we checked whether it is a stationary point. It is
simple to show that stationarity in this case can be easily verified, utilizing the fol-
lowing explicit test. Denote by qi the ith column of Q. A vector x∗ ∈ [−1,1]n is
a stationary point of (PQ) if and only if for each i = 1, . . . ,n one of the following
holds:

• qT
i x∗ ≤ 0 and x∗i = 1,

• qT
i x∗ ≥ 0 and x∗i =−1,

• qT
i x∗ = 0.

We also checked for each vertex whether it is a strongly stationary point with respect
to the majorizers described in Example 9 from Sect. 2.3. Note that utilizing (4), a
consistent majorizer of F is given by

h(y,x) :=
n

∑
i=1

hi(yi,x)+xT Qx,

where
hi(yi,x) := 2(qT

i x)(yi− xi)+ λ̄i(yi− xi)
2, i = 1, . . . ,n,

with λ̄1, λ̄2, . . . , λ̄n being the diagonal entries of a given diagonal matrix Λ satisfying
Λ � Q. Since h is a separable sum of functions in the variables yi, for a given
x∈ [−1,1]n the test whether S(x) = 0 amounts to computing n numbers y∗1,y

∗
2, . . . ,y

∗
n

satisfying the conditions

y∗i ∈ argmin
yi∈[−1,1]

hi(yi,x), i = 1, . . . ,n,

and testing whether h(y∗,x) = h(x,x), where y∗ := (y∗1,y
∗
2, . . . ,y

∗
n)

T .
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Table 2 contains the number of stationary (W) and strongly stationary (S) points
out of the 2n vertices. The column (G) indicates how many vertices are global op-
timal solutions of (PQ). The results show that in these examples the standard sta-

Table 2 Stationarity and optimality of vertices.

Q Λ = diag(λ̄ ) n m = 2n W S G

Q1 λ̄ by (SDP) 5 32 32 12 4
Q1 λ̄ = λmax(Q1) 5 32 32 20 4
Q2 λ̄ by (SDP) 7 128 124 42 2
Q2 λ̄ = λmax(Q2) 7 128 124 86 2

tionarity condition almost does not rule out any of the vertices. Strong stationarity
is a more restrictive condition, and its strictness depends on the chosen consistent
majorizer.

4 The Inexact Majorization-Minimization Method

4.1 The General Scheme

We introduce now the main algorithm proposed for solving problem (2). Let F be a
directionally differentiable function, and let h be a given consistent majorizer of F.
For the first variant of the algorithm we need to make the following assumption that
is more restrictive than Assumption 2.

Assumption 3. For any x ∈ Rn the function hx(y)≡ h(y,x) has at least one global
minimizer.

Whenever Assumption 3 holds, and a minimizer of hx can be computed exactly for
any x ∈ dom(F), the general scheme for the so-called majorization-minimization
(MM) method described below is well-defined.

Algorithm 1. Majorization-Minimization (MM) Algorithm for Solving (2).

• Pick an arbitrary x0 ∈ dom(F)⊆ Rn.
• For k = 0,1, . . . compute a vector

xk+1 ∈ argmin
x

h(x,xk).

The choice of the specific minimizer in iterations where more than one minimizer of
hxk exist can be made arbitrarily, or, in some cases, according to some pre-specified
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policy. By part 2 of Lemma 3, the sequence generated by Algorithm 1 has a decrease
guarantee of

F(xk)−F(xk+1)≥ S(xk) for all k = 0,1, . . . .

In many cases, either Assumption 3 does not hold, or, it does, but an exact min-
imizer of hxk cannot be computed. In such cases, we formulate Algorithm 2, which
is an inexact version of Algorithm 1. Let γ ∈ (0,1] be a given parameter. Algorithm
2 is based on the ability to compute vectors that achieve a decrease of at least γ

times S(xk), which is the decrease that exact minimization of hxk would have guar-
anteed. We still assume that Assumption 2 holds (but not necessarily Assumption
3) whenever we seek to apply Algorithm 2 with γ < 1. The choice γ := 1 corre-
sponds to the exact version (Algorithm 1) as the only vectors that satisfy (14) for
γ = 1 are exact minimizers of hxk . Thus, γ = 1 requires the validity of Assumption 3.

Algorithm 2. Inexact Majorization-Minimization (IMM) Algorithm for Solving
(2).

• Input: γ ∈ (0,1].
• Pick an arbitrary x0 ∈ dom(F)⊆ Rn.
• For k = 0,1, . . . , set xk+1 to be any vector satisfying

F(xk)−h(xk+1,xk)≥ γ ·S(xk). (14)

In the context of the IMM method, for any x ∈ Rn, a vector y satisfying

F(x)−h(y,x)≥ γ ·S(x)

is called an approximate γ-vector at x. In this terminology, xk+1 is also chosen
as an approximate γ-vector at xk. The inexact minimization criterion (14) indeed
guarantees a decrease of

F(xk)−F(xk+1)≥ γ ·S(xk) for all k = 0,1, . . . ,

as follows by property (A) of consistent majorizers. The following is an example
of a simple case where the exact method (Algorithm 1) can be implemented. In
particular, the constructed consistent majorizer satisfies Assumption 3.

Example 13. Let f : R3→ R given by

f (x) := 2x2
1x2 +5x3

2 +5x1x2
3 +8x3

3,

and B := [−100,1000]× [−78,802]× [−123,77] ⊆ R3. Then, following Example
8, a consistent majorizer of f can be given by
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h(y,x) := 5y3
2 +8y3

3 +2x2
1x2 +4x1x2(y1− x1)+2x2

1(y2− x2)

+2x2(y1− x1)
2 +2|x1| ·

(
(y1− x1)

2 +(y2− x2)
2)+(y1− x1)

4 +(y2− x2)
2

+5x1x2
3 +10x1x3(y3− x3)+5x2

3(y1− x1)

+5x1(y3− x3)
2 +5|x3| ·

(
(y1− x1)

2 +(y3− x3)
2)+2.5(y3− x3)

4

+2.5(y1− x1)
2.

Consider now the optimization problem of minimizing f over the box-shaped do-
main B. In the setting of Example 1, we set F := f +g, where g : R3→ (−∞,∞] is
the indicator function of B, that is,

g(x) :=
{

0, x ∈ B,
∞, x /∈ B.

The constrained problem can therefore be recast as

min
x

F(x). (15)

The function H(y,x) := h(y,x)+g(y) is a consistent majorizer of F. Hence, the ex-
act Algorithm 1 for solving (15) solves at each iteration k the minimization problem

min
y∈B

h(y,xk)≡min
y

H(y,xk),

which amounts to solving the three univariate minimization problems

miny1∈[−100,1000] 4xk
1xk

2(y1− xk
1)+2xk

2(y1− xk
1)

2 +2|xk
1|(y1− xk

1)
2

+(y1− xk
1)

4 +5(xk
3)

2(y1− xk
1)+5|xk

3|(y1− xk
1)

2 +2.5(y1− xk
1)

2,

miny2∈[−78,802] 5y3
2 +2(xk

1)
2(y2− xk

2)+2|xk
1|(y2− xk

2)
2 +(y2− xk

2)
2,

miny3∈[−123,77] 8y3
3 +10xk

1xk
3(y3− xk

3)+5xk
1(y3− xk

3)
2 +5|xk

3|(y3− xk
3)

2

+2.5(y3− xk
3)

4.

Each of the above problems can be solved by any solver that calculates roots of
univariate polynomials, applied on each derivative. The obtained roots and the edge
points of the intervals are the candidates among which the minimizers are those
corresponding to the lowest function values.

4.2 Convergence Analysis of the IMM method

We are now able to formulate the main convergence results of Algorithm IMM for
a pre-determined fixed parameter γ ∈ (0,1].

Theorem 3 (Convergence of IMM (Algorithm 2)). Let F be a proper, closed, di-
rectionally differentiable function. Consider the minimization problem (2) along
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with h being a given consistent majorizer of F. Let γ ∈ (0,1) be given. Suppose
that Assumption 2 holds, and let {xk}k≥0 be the sequence generated by the IMM
method (Algorithm 2). Then the following properties hold.

1. For any k = 0,1, . . . ,
F(xk)−F(xk+1)≥ γ ·S(xk).

2. F(xk)≥ F(xk+1) for any k = 0,1, . . . , and F(xk)> F(xk+1) if S(xk)> 0.
3. Any accumulation point x∗ of the sequence {xk}k≥0 is strongly stationary, that

is, S(x∗) = 0.
4. For any K ∈ N and an accumulation point x∗ of the sequence {xk}k≥0 one has

(N) min{S(x0),S(x1), . . . ,S(xK−1)} ≤ F(x0)−F(x∗)
γ ·K

.

5. If γ = 1, and Assumption 3 holds, then properties 1-4 remain valid.

Proof. 1. By (14) and property (A) of consistent majorizers,

F(xk)−F(xk+1)≥ F(xk)−h(xk+1,xk)≥ γ ·S(xk).

2. By part 1 of Lemma 3 S(xk) ≥ 0, so the monotonicity follows directly by the
previous assertion. A strict decrease when S(xk)> 0 is guaranteed since γ > 0.

3. Since the sequence
{

F(xk)
}

is non-increasing, it either has a limit F∗ >−∞, or
it tends to −∞ as k→ ∞.
Case 1. {F(xk)}k≥0 has a finite limit F∗. In this case we have F(xk)−F(xk+1)→
F∗−F∗ = 0 as k→ ∞, and by the inequalities F(xk)−F(xk+1) ≥ γ ·S(xk) ≥ 0
it follows that

S(xk)→ 0.

Let
{

xkl
}

l≥1 a convergent subsequence of the generated sequence, and denote its
limit by x∗. Then, by parts 1 and 3 of Lemma 3 we have

0≤ S(x∗)≤ liminf
l→∞

S(xkl ) = lim
k→∞

S(xk) = 0,

and thus, S(x∗) = 0.
Case 2. F(xk)→−∞ as k→∞. We will show by contradiction that the sequence
{xk}k≥0 has no accumulation points. Let

{
xkl
}

l≥1 a convergent subsequence, that
is, xkl → x∗ as l→ ∞. Then since F is closed

liminf
l→∞

F(xkl )≥ F(x∗)>−∞,

contradicting the fact that F(xk)→−∞. Thus, no accumulation points exist in
such a case, and the result holds trivially.

4. Again, by part 1 of the current theorem and Lemma 3, part 1,

F(xk)−F(xk+1)≥ γ ·S(xk)≥ 0 ∀k ≥ 0,
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for any K ∈ N we get by summing over k = 0, . . . ,K the inequalities

F(x0)−F(x∗) ≥ F(x0)−F(xK) =
K−1

∑
k=0

(F(xk)−F(xk+1))≥ γ ·
K−1

∑
k=0

S(xk)

≥ γ · min
k∈{0,...,K−1}

{S(xk)} ·K,

where the leftmost inequality F(xK) ≥ F(x∗) holds by the monotonicity of
{F(xk)}k≥0. Thus,

min
k∈{0,...,K−1}

{S(xk)} · γ ·K ≤ F(x0)−F(x∗) ∀K ∈ N,

from which (N) readily follows.
5. Under Assumption 3, the iterates where γ = 1 (Algorithm 1) are well-defined.

The property F(xk)−F(xk+1) ≥ S(xk) is satisfied for any k = 0,1, . . . by part 2
of Lemma 3. The other properties follow by the same arguments as in the case
0 < γ < 1.

ut

At this point, it seems unclear how to verify condition (14) in cases where the
inexact method is employed (γ < 1) since S(xk) is not actually computed. In the
next section we discuss some specific models on which Algorithm 2 is shown to be
implementable. When γ = 1, assuming that exact minimizers of hxk are computable,
the implementation of Algorithm 1 is clear, up to properly choosing a stopping
criteria, and deciding on a rule for determining which minimizer of hxk should be
taken when multiple minimizers exist.

Example 14 (Example 13 revisited). We implemented the MM method (Algorithm
1) on problem (15) with 100 independent initial guesses x0 being randomly gen-
erated from a uniform distribution in B. For the sake of comparison, we also im-
plemented the gradient projection (GP) method on the same 100 initial points. The
GP is a first-order optimization method, whose accumulation points are guaranteed
to be stationary; see e.g., [4, Section 9.4]. If a constant stepsize t > 0 is used, the
general update step of the GP method is given by

xk+1 = PB(xk− t∇ f (xk)),

where PB is the orthogonal projection operator on the box B. We roughly pre-
estimated the smoothness parameter L, which is a positive number satisfying ‖∇ f (y)−
∇ f (x)‖ ≤ L‖x−y‖ for all x,y ∈ B. We used the estimate L≈ 7250, and then set the
constant stepsize t := 1/L. We stopped both algorithms (MM and GP) at the first
iterate k for which the inequality

F(xk)−F(xk+1)< 10−7
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held true. In the MM method (Algorithm 1), whenever multiple minimizers were
found for a univariate subproblem (in a variable yi), we took the minimizer whose
distance from xk

i was maximal.
We compared the results of the two methods. To test the results in terms of the

problem’s objective, we also computed the global optimal value of (15), by apply-
ing the solver SCIP (see [1] and references therein). The solver found the global
minimizer x∗ = (1000,−78,0)T with an optimal value F∗ =−158372760. Table 3
presents the following results regarding the 100 runs of each method (with the same
100 initial points).

• P-Glo: number of runs (out of 100) in which the method reached a global optimal
solution, that is, with value F∗.

• IT-min, IT-max, IT-ave: minimal, maximal and average numbers of iterations
(among 100 runs) till the method stopped.

• ITG-min, ITG-max, ITG-ave: minimal, maximal and average iteration numbers
only among the runs in which a global solution was reached.

Table 3 Chances of reaching a global solution and iteration numbers of GP and MM.

Method P-Glo IT-min IT-max IT-ave ITG-min ITG-max ITG-ave

GP 56 827 69079 5353.84 1360 30371 4524.3
MM 75 3 42 18.53 4 42 20.81

In addition, in 28 of 100 runs the MM method yielded a final output with a better
(lower) objective value than the GP, while in all those 100 runs its final output was
not worse than GP in objective value. Moreover, for each of the 100 final outputs of
the GP method we also tested the performance of MM initialized at that output. In
27 cases we found that a run of MM initialized at those points yielded a better final
output (a vector having a lower objective value).

Remark 2. It might be possible that the better chances of achieving a global opti-
mum by MM are related to the phenomena demonstrated in Example 12 where it
was demonstrated that strongly stationary points can be much less common than
standard stationary points. While accumulation points of Algorithm 1 are always
strongly stationary by part 3 of Theorem 3, those obtained by first-order methods
such as Algorithm GP are only guaranteed to be (standard) stationary points. Since
by Lemma 4 global minimizers of (2) must be strongly stationary points, Algorithm
1 seems to be more likely to reach one of them.
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5 Applying the IMM Method on Compositions of Strongly
Convex Majorizers

The subproblem that is being approximately solved at each iteration k of the IMM
method for solving (2) is

(Hk) min
y

H(y,xk),

where H denotes a consistent majorizer of F . In this section we treat the case where
F is given as a composition F = ϕ ◦ f, which is the setting described in Section 2.4.
We introduce an algorithm that we relate to as the “inner” method. For each iter-
ate k, it computes an approximate minimizer of problem (Hk) within the tolerance
required to ensure the convergence properties established in Theorem 3. Let

F(x) = ϕ( f1(x), f2(x), . . . , fm(x)), (16)

H(y,x) = ϕ(h1(y,x),h2(y,x), . . . ,hm(y,x)), (17)

where f1, f2, . . . , fm : Rn→R and ϕ satisfy Assumption 1. For any i ∈ {1,2, . . . ,m}
let the function hi be a consistent majorizer of fi which satisfies Assumption 2. By
Theorem 2, the function H is a consistent majorizer of F, and since all the functions
hi satisfy Assumption 2, it follows by the monotonicity of ϕ , that H = ϕ ◦ f also
satisfies Assumption 2. Recalling that by Assumption 1 we have ϕ = σC for some
convex compact set C ⊆ Rm

+, we further use the following notation. Denote for any
given λ ∈C and x ∈ Rn

q(λ ,x) := min
y

λ
T h(y,x),

where h(y,x) ≡ (h1(y,x),h2(y,x), . . . ,hm(y,x))T . It should be noted that the mini-
mum in the definition of q(λ ,x) is finite for any x ∈Rn as hi satisfies Assumption 2
for all i ∈ {1, . . . ,m}, and λ ∈ Rm

+.
For any given x∈Rn we consider the two functions Hx(y)≡H(y,x) and qx(λ )≡

q(λ ,x) as “primal” and “dual”, respectively. In addition, we denote

Qx := max
λ∈C

qx(λ ),

and recall that by (17) and Assumption 1(A) H(y,x) = maxλ∈C λ
T h(y,x). In the

setting of this section, for any x ∈ Rn one has dom(Hx) = dom(F) = Rn. The fol-
lowing theorem provides the theoretical basis of the proposed inner method.

Theorem 4 (Strong duality). Let C ⊆ Rm
+ be nonempty, convex and compact, fi :

Rn → R be closed and directionally differentiable for all i ∈ {1, . . . ,m}, and let
F be defined by (16), with ϕ ≡ σC. Assume that hi is a consistent majorizer of fi
which satisfies Assumption 2 for any i ∈ {1, . . . ,m}. Assume further that for any
i ∈ {1, . . . ,m} and x ∈ Rn the function y 7→ hi(y,x) is convex. Let H be defined by
(17). Then for any x ∈ Rn it holds that



24 Amir Beck and Dror Pan

Qx = Mx

[
:= min

y
H(y,x)

]
.

Proof. Let x ∈ Rn be given. We utilize the classical min-max theorem of Sion [22].
The set C is convex and compact; Rn is convex and closed. For each λ ∈C ⊆ Rm

+

the function λ
T h(y,x) is convex in y as a nonnegative linear combination of convex

functions, and for each y ∈ Rn the function λ
T h(y,x) is concave in λ as an affine

function. Thus, by Sion’s min-max theorem [22, Theorem 3.4], it follows that

Mx = min
y

H(y,x) = min
y

max
λ∈C

λ
T h(y,x) = max

λ∈C
min

y
λ

T h(y,x) = max
λ∈C

q(λ ,x) = Qx.

ut

The equality Qx = Mx enables to formulate a criterion ensuring that a tested
vector x̃ ∈ Rn is an approximate γ-vector at x.

Lemma 5 (stopping criteria). Consider problem (2), where F is given by (16) for
f1, . . . , fm and ϕ = σC that satisfy Assumption 1. Let H be defined by (17) for some
consistent majorizers h1, . . . ,hm of f1, . . . , fm, respectively, which satisfy Assumption
2. Let x∈Rn, and γ ∈ (0,1]. Assume that a vector x̃∈Rn and a vector λ̃ ∈C satisfy
the inequality

Hx(x̃)−qx(λ̃ )≤
1− γ

γ
(F(x)−Hx(x̃)) . (18)

Then x̃ is a γ-approximate vector at x:

F(x)−F(x̃)≥ F(x)−Hx(x̃)≥ γ ·S(x).

Proof. By Theorem 4 and the definitions of Mx,Qx, we obtain

Hx(x̃)≥Mx = Qx ≥ qx(λ̃ ).

Thus, along with (18),

Hx(x̃)−Mx ≤ Hx(x̃)−qx(λ̃ )≤
1− γ

γ
(F(x)−Hx(x̃)) .

Rearrangement yields

−γMx ≤ (1− γ)F(x)−Hx(x̃),

or, equivalently,

Hx(x̃)≤Mx +(1− γ)(F(x)−Mx) = Mx +(1− γ) ·S(x).

By property (A) of consistent majorizers along with the definition of S, it follows
that
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F(x)−F(x̃) ≥ F(x)−Hx(x̃)
≥ F(x)−Mx− (1− γ) ·S(x)
= S(x)− (1− γ) ·S(x) = γ ·S(x).

ut

Lemma 5 covers the result of part 2 of Lemma 3 for γ = 1; in this case x̃ is an
exact minimizer of Hx. Notice that the verification of (18) does not require to know
the value S(x). To complete the description of the implementation of Algorithm 2
with γ < 1 in this case we need to explain how we calculate vectors λ̃ ∈ C and
x̃ ∈ Rn satisfying (18). We further assume two additional assumptions on C and on
the consistent majorizers h1, . . . ,hm.

Assumption 4 (Strongly convex components). There exists a number σ > 0, such
that for any i∈ {1, . . . ,m} and x∈Rn the function y 7→ hi(y,x) is σ -strongly convex.

Assumption 5 (Nondegeneracy of the composition). 0 /∈C.

Assumptions 4 and 5 guarantee that for each λ ∈ C and x ∈ Rn the function
y 7→ λ

T h(y,x) is strongly convex with convexity parameter uniformly bounded
away from zero over λ ∈ C. Indeed, λ

T h(y,x) is a nonnegative linear combina-
tion of σ -strongly convex functions, where at least one coefficient is positive. The
convexity parameter is lower bounded by σ ·minλ∈C λ

T e, where the latter quantity
is positive since C ⊆ Rm

+ is compact, and 0 /∈ C. In particular, they imply that H
satisfies Assumption 2. We further note that Assumption 4 is not very restrictive, as
its does not relate for the model itself, but rather only to the constructed majorizers
h1, . . . ,hm.

The above two assumptions are needed for establishing smoothness properties
on qx, which in turn, enable to apply some fast first-order optimization methods
on the dual problem maxλ∈C qx(λ ). Such a method can be utilized to compute an
approximate minimizer of the primal problem miny Hx(y). For x = xk the latter is
the subproblem needed to be solved approximately at the kth iterate of the IMM
method (Algorithm 2). The following shows how two vectors x̃ and λ̃ satisfying
(18) can be obtained given a vector λ̃ whose corresponding objective value is close
in some sense to Qx.

Proposition 1. Let C ⊆ Rm
+ be compact and convex set, and let f1, . . . , fm and ϕ ≡

σC satisfy Assumption 1. Let F be defined by (16) and H be defined by (17) for some
consistent majorizers h1, . . . ,hm of f1, . . . , fm. Suppose that Assumptions 4 and 5
hold. Let x ∈ Rn be a point satisfying S(x)> 0. Denote lC := minλ∈C λ

T e. For any
λ ∈C let yλ = argmin

y
λ

T h(y,x).

1. For any λ ∈C the inequality

σ · lC
2
‖y∗−yλ‖2 ≤ Qx−qx(λ )

holds, where y∗ ∈ argmin
y

Hx(y).
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2. For any γ ∈ (0,1) there exists some εγ > 0 such that if Qx−qx(λ )< εγ , then

Hx(yλ )−qx(λ )<
1− γ

γ
(F(x)−Hx(yλ )).

Proof. To show part 1, first we denote for all λ ∈C and y ∈ Rn

kx,λ (y) := λ
T h(y,x).

By Assumption 5, lC > 0. The function kx,λ is (σ · lC)-strongly convex by Assump-
tion 4. Thus, yλ exists and is unique, and for any y ∈ Rn it holds that

kx,λ (y)≥ kx,λ (yλ )+
(σ · lC)

2
‖y−yλ‖2. (19)

In addition,

kx,λ (y∗) = λ
T h(y∗,x)≤max

λ∈C
λ

T h(y∗,x) = Hx(y∗) = Qx, (20)

where the last equality is the result of Theorem 4 (Assumption 2 holds for all
hi by Assumption 4). Therefore, combining (19), (20) and the fact that qx(λ ) =
miny kx,λ (y) = kx,λ (yλ ), we conclude that

(σ · lC)
2
‖y∗−yλ‖2 ≤ kx,λ (y∗)− kx,λ (yλ )≤ Qx− kx,λ (yλ ) = Qx−qx(λ ).

Let us now show part 2. Since S(x) > 0, the vector x is not a minimizer of Hx,
and thus,

F(x) = Hx(x)> Hx(y∗).

Denote
ε1 :=

1
2
(F(x)−Hx(y∗)).

Since Hx is convex with dom(Hx) =Rn, it is continuous at y∗, so there exists δH > 0
such that if ‖y−y∗‖< δH , then

|Hx(y)−Hx(y∗)|< ε1.

In particular, for all such y it holds that

Hx(y) < Hx(y∗)+
1
2
(F(x)−Hx(y∗))

=
1
2

F(x)+
1
2

Hx(y∗)

=
1
2

F(x)+
1
2

F(x)− ε1 = F(x)− ε1,

or, equivalently,
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F(x)−Hx(y)> ε1. (21)

Denote εγ,1 := 1−γ

2γ
ε1, and let δH,γ > 0 be such that if ‖y−y∗‖< δH,γ , then

|Hx(y)−Hx(y∗)|<
εγ,1

2
.

Now, if λ ∈C satisfies

Qx−qx(λ )< εγ := min
{

σ · lC
2

δ
2
H,γ ,

1− γ

2γ
ε1

}
, (22)

then by part 1 it follows that ‖y∗−yλ‖< δH,γ , and thus,

|Hx(yλ )−Hx(y∗)|< εγ,1.

In particular,

Hx(yλ )−Qx = Hx(yλ )−Hx(y∗)< εγ,1 =
1− γ

2γ
ε1,

and by (22),

Qx−qx(λ )<
1− γ

2γ
ε1.

Summation of the above two inequalities yields

Hx(yλ )−qx(λ )<
1− γ

γ
ε1

(21)
<

1− γ

γ
(F(x)−Hx(yλ )).

ut

By Proposition 1, if λ ∈ C satisfies Qx− qx(λ ) < εγ , one can choose x̃ := yλ and
λ̃ := λ , and (18) holds. This means in particular that any iterative method for solving
the dual problem

max
λ∈C

qx(λ ) (23)

whose generated sequence {λ k}k≥0 satisfies

qx(λ
k)→ Qx (24)

will eventually produce two vectors x̃ := y
λ

k and λ̃ := λ
k that satisfy the stopping

criteria (18).
One possible method that satisfies the convergence condition (24) is a variant of

the fast gradient projection (FGP) algorithm, described in [24, p.12, eq.37-39] and
[2, Section 8]. To apply the FGP method we first need to establish some smoothness
properties on the dual function qx over C. Unlike other accelerated gradient projec-
tion schemes, e.g., FISTA [6], the proposed FGP algorithm does not evaluate the
gradient ∇qx on vectors that are not included in C. Thus, for the FGP method to be
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well defined, and for its convergence properties to hold, we need to show that for
any x ∈ Rn, there exists some Kx > 0, such that the function qx is Kx-smooth over
C. The smoothness of qx is proven in the following proposition. Here we make an
assumption that replaces Assumptions 4 and 5 and is somewhat stronger; we essen-
tially assume strong convexity of the function y 7→ λ

T h(y,x) for any λ that belongs
to an open set containing C, and not just to C. Note that in cases where this assump-
tion cannot be verified (but rather only Assumptions 4 and 5), some other method
should be applied, as qx might not be smooth at boundary points of C.

Proposition 2. Let F be defined by (16) for some f1, . . . , fm and ϕ = σC which sat-
isfy Assumption 1. Let x ∈ Rn be fixed. Let h1, . . . ,hm be consistent majorizers of
f1, . . . , fm respectively which satisfy Assumption 2. Assume that for a given σ > 0
the function y 7→ λ

T h(y,x) is σ -strongly convex for any λ ∈ C̃, where C̃ is an open
set satisfying C ⊆ C̃. Then the following properties hold.

1. [3, Thm 6.3.3]. For any λ ∈ C̃ the function qx is differentiable at λ and

∇qx(λ ) = h(yλ ,x).

2. If, in addition, the mapping h is C1, then there exists Lx > 0 such that

‖∇qx(λ̄ )−∇qx(λ )‖ ≤
L2

x
σ
‖λ̄ −λ‖

for all λ̄ ,λ ∈C.

Proof. A full proof of part 1 can be found in [3, p.278-9] where it is assumed that the
domain for the minimization in y is compact, but this assumption is used only for the
establishment of the existence of a minimizer yλ for each λ . Under the assumption
of strong convexity, such a minimizer always exists even over Rn. The uniqueness
of such a minimizer also follows by the strong convexity of y 7→ λ

T h(y,x).
Let us prove the second part. Since for any λ ∈ C the function y 7→ kx,λ (y) :=

λ
T h(y,x) is σ -strongly convex, it follows that for all λ , λ̄ ∈C one has

kx,λ (yλ̄
) ≥ kx,λ (yλ )+

σ

2
‖y

λ̄
−yλ‖2

= λ
T h(yλ ,x)+

σ

2
‖y

λ̄
−yλ‖2

= λ
T

∇qx(λ )+
σ

2
‖y

λ̄
−yλ‖2,

where the last equality is valid by part 1, stating that qx is differentiable in C̃ ⊇ C
with ∇qx(λ ) = h(yλ ,x). In addition, as

kx,λ (yλ̄
) = λ

T h(y
λ̄
,x) = λ

T
∇qx(λ̄ ),

we get
λ

T
∇qx(λ̄ )≥ λ

T
∇qx(λ )+

σ

2
‖y

λ̄
−yλ‖2.
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Similarly, by changing roles of λ and λ̄ we also get

λ̄
T

∇qx(λ )≥ λ̄
T

∇qx(λ̄ )+
σ

2
‖y

λ̄
−yλ‖2.

Summing the last two inequalities yields (after rearrangement)

(λ − λ̄ )T (∇qx(λ̄ )−∇qx(λ ))≥ σ‖y
λ̄
−yλ‖2. (25)

In addition, since h ∈C1(Rn,Rm), its Jacobian matrix is continuous, and by Weier-
strass theorem its norm is bounded on compact sets. We will now show that the
set U := {yλ : λ ∈C} ⊆ Rn is bounded. By Assumption 2, the monotonicity of ϕ

and Theorem 4, Qx = Mx is finite. In addition, by part 1, qx is differentiable over
C̃ and thus, also continuous over C̃. Thus, the term Qx−qx(λ ) is bounded, and by
Proposition 1, so is ‖y∗− yλ‖, and hence, U is bounded. In particular, Ū := cl(U)
is compact. Denote

Lx := max
y∈Ū
‖Jh(y)‖< ∞,

where Jh(y,x) denotes the Jacobian matrix of the mapping y 7→ h(y,x). Then, for
any λ , λ̄ ∈C we have

‖∇qx(λ̄ )−∇qx(λ )‖= ‖h(yλ̄
)−h(yλ )‖ ≤ Lx‖yλ̄

−yλ‖. (26)

By (25), (26) and the Cauchy-Schwartz inequality, we obtain that

‖λ̄ −λ‖ · ‖∇qx(λ̄ )−∇qx(λ )‖ ≥ (λ − λ̄ )T (∇qx(λ̄ )−∇qx(λ ))

≥ σ‖y
λ̄
−yλ‖2

≥ σ

L2
x
‖∇qx(λ̄ )−∇qx(λ )‖2,

or, equivalently,

‖∇qx(λ̄ )−∇qx(λ )‖ ≤
L2

x
σ
‖λ̄ −λ‖.

ut

For any x ∈ Rn, the function qx is (L2
x/σ)-smooth over C by Proposition 2, and

concave as a minimum of linear functions. Following [24], Algorithm 3 below
explicitly describes the FGP method with a constant stepsize setting, applied on
the dual problem maxλ∈C qx(λ ) for a given x, where for simplicity we denote

Lq := L2
x

σ
. Algorithm 3 is therefore guaranteed to generate a sequence {λ l}l≥0 such

that qx(λ l)→Qx as l→∞. See [24] for the complete details. As a result, for a large
enough l, it reaches vectors λ̃ := λ l ∈C and x̃ := yλ l

, such that (18) is satisfied.
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Algorithm 3. FGP for finding an approximate solution λ̃ for the dual problem.

• Pick arbitrary λ
0,η0 ∈C and θ0 = 1.

• For l = 0,1, . . . , until a stopping criterion (18) holds for λ̃ := λ
l and x̃ := y

λ̃
,

compute

µ
l = (1−θl)λ

l +θlη
l ,

η
l+1 = PC

(
η

l +
1

θlLq
∇qx(µ

l)

)
,

λ
l+1 = (1−θl)λ

l +θlη
l+1,

θl+1 =
1
2

(√
θ 4

l +4θ 2
l −θ

2
l

)
.

Example 15 (sparse source localization). Consider a scenario where one seeks to
find the best approximate solution for the system

‖x−ai‖ ≈ di, i = 1, . . . ,m,

where x ∈Rn is the unknown location of a radiating source, and a1,a2, . . . ,am ∈Rn

are m different known anchor points in Rn. At each anchor point there exists a sen-
sor that measures the distance from the source, but returns just a noisy measurement
di, where in most applications n = 2 or n = 3. The system can be reformulated as an
optimization problem called sparse source localization (SSL), where the approxima-
tion is in terms of the minimum sum of absolute values of the errors in the squared
measurements:

min
x∈Rn

{
F(x) :=

m

∑
i=1

∣∣‖x−ai‖2−d2
i
∣∣} .

As in Example 11, the objective F can be rewritten by F = ϕ ◦ f, where ϕ ≡ σC with
C := (∆2)

m ⊆ R2m
+ , and for all i ∈ {1, . . . ,m}

f2i−1(x) := ‖x−ai‖2−d2
i , f2i(x) :=−‖x−ai‖2 +d2

i .

Note that f2i−1 is strongly convex, and f2i is concave. Thus, a consistent majorizer
of F can be defined by H(y,x) := ϕ ◦h(y,x), where for all i ∈ {1, . . . ,m} we define

h2i−1(y,x) := f2i−1(y),

and
h2i(y,x) := f2i(x)+∇ f2i(x)T (y−x)+η‖y−x‖2

for some η > 0.
For all i, the functions h2i−1 and h2i are both strongly convex in y for any x ∈

Rn with parameters 2 and 2η , respectively, and thus, Assumption 4 holds with the
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choice σ :=min{2,2η}. In addition, Assumption 5 also holds, as 0 /∈C. In this case,
even the assumption required for the smoothness of the dual function in Proposition
2 is satisfied. Indeed, one can take

C̃ :=
⋃

λ∈C

{λ̃ ∈ R2m : ‖λ̃ −λ‖∞ < ε}

for some number ε satisfying 0 < ε < min
{

1
2+η

, η

1+2η

}
. Some algebraic manipu-

lations can show that indeed, for any λ̃ ∈ C̃ the function y 7→ λ̃
T h(y,x) is strongly

convex with parameter bounded below by the positive number 2mσ̃ , where

σ̃ := min{1− ε(2+η),η− ε(1+2η)}.

We now show how at each iteration of Algorithm 2 one can apply the FGP
method (Algorithm 3) on the dual problem. Denote by PC : R2m→C the orthogonal
projection on C. As C is a cartesian product of m copies of the two-dimensional unit
simplex, PC(λ ) can be calculated as m independent projections P∆2 : R2→ ∆2. Each
of those projections is given by

P∆2(λ1,λ2) =

 (1,0)T , λ2 < λ1−1,
(0,1)T , λ2 > λ1 +1,
0.5(1−λ2 +λ1,1+λ2−λ1)

T , |λ2−λ1| ≤ 1,

and thus, PC(λ ) =
(
P∆2(λ1,λ2)

T , . . . ,P∆2(λ2m−1,λ2m)
T
)T

. We denote by Lq := L2
x

2mσ̃

the smoothness parameter of qx guaranteed by Proposition 2. Since Lq is not known
in general, it can be estimated through a backtracking procedure.
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Appendix - a Proof of Lemma 2

We provide a proof of Lemma 2. The necessity is proven very similarly to the proof
given in [4, Theorems 9.2] for the case where F is continuously differentiable.

Proof. Let x∗ be a local minimizer of problem (2). Assume to the contrary that x∗
is not a stationary point of (2). Then, recalling that F is directionally differentiable
(dd), there exists y ∈ dom(F) such that F ′(x∗;y− x∗) < 0. By the definition of
a directional derivative, it follows that there exists a number 0 < δ < 1 such that
F(x∗+ t(y− x∗)) < F(x∗) for all 0 < t < δ . Since dom(F) is convex (as F is dd),
we have x∗+ t(y− x∗) = (1− t)x∗+ ty ∈ dom(F) for all 0 < t < δ , contradicting
the local minimality of x∗.

As for the sufficiency part when F is convex, let x∗ be a stationary point of (2),
and assume to the contrary that x∗ is not a global minimizer of (2). Then there exists
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y ∈ dom(F) such that F(y)< F(x∗). By the stationarity of x∗ and the convexity of
F , we obtain

0 ≤ F ′(x∗;y−x∗) = lim
t→0+

F(x∗+ t(y−x∗))−F(x∗)
t

= lim
t→0+

F(ty+(1− t)x∗)−F(x∗)
t

≤ lim
t→0+

tF(y)+(1− t)F(x∗)−F(x∗)
t

= lim
t→0+

t(F(y)−F(x∗))
t

= F(y)−F(x∗)< 0,

which is a contradiction. ut
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