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Abstract This paper studies a general form problem in which a lower bounded con-
tinuously differentiable function is minimized over a block separable set incorporating
a group sparsity expression as a constraint or a penalty (or both) in the group spar-
sity setting. This class of problems is generally hard to solve, yet highly applicable in
numerous practical settings. Particularly, we study the proximal mapping that includes
group-sparsity terms, and derive an efficient method to compute it. Necessary optimal-
ity conditions for the problem are devised, and a hierarchy between stationary-based
and coordinate-wised based conditions is established. Methods that obtain points sat-
isfying the optimality conditions are presented, analyzed and tested in applications
from the fields of investment and graph theory.

Mathematics Subject Classification 90C26 · 90C30

1 Introduction

The group-sparsity setting, in which the decision vector’s components are grouped
together into several distinguishable index sets, has been extensively researched in
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recent years due to its applicability in numerous fields and practical problems, such as
signal and image processing, compressed sensing (CS), gene selection and analysis,
and many more (see the provided citations below and therein).

In statistical and machine learning literature ([20,23,25,30], [27, chapter 2] and
references therein) the group structure is imperative in many cases in which the
explanatory variables demonstrate high correlative nature that can be used to clas-
sify them into groups, or a priory belong to categories based on the properties of the
model. In these fields, the problem studied usually belongs to the family of regression
models (linear, logistic, etc.) and the sparsity is induced using �1-norm type convex
relaxations, also known as group lasso-type models.

In the setting of compressed sensing, group-sparsity is referred to as ‘block-
sparsity’, and is a particular example of ‘structured sparsity’ [15]. Block-sparsity
generalizes the standard sparse-signal model (see the in-depth reviews [13,15,16,29]),
making it suitable for dealingwith a larger family of problems and can lead to improved
performances; for example, it was shown that the block-sparse structure enables sig-
nal recovery from a reduced number of CS measurements, as presented in [18,28].
Many results and notions known for the standard sparse model were generalized to the
block-sparse settings. Among them are the well-known restricted isometry property
(RIP) ([2,10,18]), block convex relaxation techniques ([17,18]), and several �0-based
methods (the �0-norm counts the number of nonzero blocks) such as the generalized
CoSaMP and block IHT in [2,14]. For an additional comprehensive discussion on this
topic in the CS setting, the reader can refer to [15, section V, part B] and references
therein.

Recently, the two papers [1] and [19] studied the setting of group-sparsity with pos-
sibly overlapping groups, and with no other constraints other than the group-sparsity
bound. In [1], the authors studied the orthogonal projection operator for different
structures of the overlapping groups. In [19], the linear least-squares problem and
a greedy-IHT method that solves it were studied in the context of some restrictive
RIP-like condition and distribution assumptions.

Our research deals with group-sparsity of non-overlapping groups, in problems
consisting of minimizing a continuously differentiable objective function over a set
composed of blocks corresponding to the groups’ partition, such that each block is
constrained to be in the the union of a closed and possibly convex set with the zeros
vector. The group-sparsity term (which is a discrete function) appears both in the
objective function and in the constraints, forming a versatile model that can be tuned
to suit any non-overlapping group-sparsity problem. We do not assume that all the
blocks are of the same size or that they are constrained to be at the same set.

In this work, we will mainly address two topics; the computation of the proximal
mapping with respect to the group-sparsity term, and optimality conditions of the gen-
eral form problem. These two topics were tied together and studied in the series of
papers [4–6] dealing with the problem of minimizing a general continuously differ-
entiable function with a vector-sparsity penalty or constraint term over a symmetric
set (such as the �p-norm ball or the unit simplex). With no additional constraints
other than the sparsity of the solution, [4] provided the foundations for the following
papers in the series by establishing a hierarchy between stationary-based optimality
conditions and coordinate-based optimality conditions, and developing methods to
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obtain points satisfying these conditions. In [6], the constraint of belonging to a sym-
metric set (together with sparsity) was added to the problem, thus generalizing the
results of [4]. Efficient methods for computing sparse orthogonal projections under
various symmetry assumptions were devised, and a more general hierarchy between
stationary-based and coordinate-based optimality conditions was proved. Methods for
generating points satisfying the various optimality conditions were also provided and
analyzed. The paper [5] studied a class of problems consisting of minimizing a con-
tinuously differentiable function penalized with the sparsity term over a symmetric
set.

Roughly speaking, the conclusions from the above mentioned papers are that
although sparsity can render a problem hard to solve, the proximal mapping involving
a sparsity term can be computed efficiently in many standard problems as long as
the underlying set possesses a certain symmetry property, and that optimality condi-
tions based on stationarity are less restrictive than optimality conditions based on a
coordinate-wise comparison. These two conclusions will be established in our group-
sparsity setting as well, as wewill prove a closed form explicit formula of the proximal
mapping which will lead to an efficient procedure to compute it, and will establish a
hierarchy of optimality conditions in which the coordinate-wise conditions are more
restrictive than the stationarity condition based on the proximal gradient operator. We
note that in this paper we do not assume any symmetry assumptions on the underlying
set, and heavily utilize its block separable structure. Therefore, the techniques used in
this paper are completely different from those used in [4–6].

Paper layout We first properly formulate the problem and setting in Sect. 1.1. In
Sect. 2 we recall necessary mathematical preliminaries—stationarity in smooth prob-
lems over convex sets, and important results for the class of functions with Lipshcitz
continuous gradient. Section 3 studies the group-sparse proximal mapping, providing
a characterization of the proximal mapping, and deriving an efficient procedure that
obtain it. The results of Sect. 3 are then used in Sect. 4 to develop necessary optimality
conditions for the underlying problem, and to prove their hierarchy. Methods that gen-
erate points satisfying the latter are devised in Sect. 5. Finally, in Sect. 6, our results
are demonstrated on an investment problem as well as on a cardinality constrained
maximum weight clique problem.

NotationMatrices and vectors are denoted by boldface letters. The vector of all zeros
is denoted by 0 and the vector of all ones by 1. For a vector x ∈ R

n , the vector |x| is
the vector of absolute values of the components of x.

Given a function h : Rn → R ∪ {∞}, the proximal mapping of x with respect to h
is defined as

proxh(x) = argmin
u

{
h(u) + 1

2
‖u − x‖22

}
.

This concept was introduced and studied extensively by Moreau [24]. When h is not
convex, the proximal mapping might return multiple vectors and should therefore be
considered as a multivalued mapping.

The indicator function of a given set C ⊆ R
n is denoted by δC and is given by

δC (x) = 0 for x ∈ C and ∞ otherwise. The proximal mapping of the indicator
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function δC amounts to the orthogonal projection mapping onto C : for a given set
C ⊆ R

n , the orthogonal projection of x onto C is defined as

PC (x) ≡ proxδC
(x) = argmin{‖y − x‖22 : y ∈ C}.

The so-called l0-norm which counts the number of nonzero elements in the vector
is defined by ‖x‖0 ≡ |{i : xi 	= 0}|.
Given a vector x ∈ R

n , the subvector of x composed of the components of x whose
indices are in a given subset T ⊆ {1, . . . , n} is denoted by xT ∈ R

|T |. The matrix
UT denotes the submatrix of the n-dimensional identity matrix In constructed from
the columns corresponding to the index set T . In this notation xT = UT

T x (note
that the superscript stands for the transpose operation). In a similar manner, given a
continuously differentiable function f , we denote “the restriction of the vector∇ f (x)
to T ” by∇T f (x) = UT

T∇ f (x). For example, if f (x) = x1x2+x22+x33 and T = {1, 3},
then∇T f (x) = (x2, 3x23 )

T . Given a vector v ∈ R
m , v[i] denotes the i th largest value in

v. In particular, v[1] ≥ v[2] ≥ · · · ≥ v[m]. The set S j (v) comprises all index sets of size
j containing the j-largest elements in v. The set S j (v) is not necessarily a singleton as
vmight contain identical values. For example, if v = (1, 1)T , then S1(v) = {{1}, {2}}.

1.1 Problem formulation

In order to properly formulate the problem, we first require to define some group-
related notation.

1.1.1 Groups notation

Throughout the paper we will regard {Gi }mi=1 as a predetermined partition of
{1, 2, . . . , n} comprising m groups of sizes n1, n2, . . . , nm respectively. Without loss
of generality, we will hereafter assume that the groups are given by

G1 = {1, 2, . . . , n1},G2 = {n1 + 1, n1 + 2, . . . , n1 + n2}, . . . ,
Gm = {nm−1 + 1, nm−1 + 2, . . . , n}.

The mapping g : Rn → {0, 1}m that indicates which groups contain indices corre-
sponding to nonzero components in a given vector is defined for any i = 1, 2, . . . ,m
by

g(x)i =
{
1, xGi 	= 0,
0, otherwise.

(1.1)

For example, if G1 = {1, 2} and G2 = {3}, then

g
(
(0, 0, 5)T

)
= (0, 1)T , g

(
(0, 5, 0)T

)
= (1, 0)T , g

(
(5, 0, 5)T

)
= (1, 1)T .

AgroupGi will be called active at a point x ∈ R
n if g(x)i = 1, and inactive otherwise.

The set of all real vectors with at most s ∈ {1, 2, . . . ,m} active groups will be denoted
by Cs :
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Cs = {x ∈ R
n : ‖g(x)‖0 ≤ s}. (1.2)

When the groups are singletons, Cs amounts to the set of all s-sparse vectors. The set
of the active groups of a vector x ∈ R

n will be called the group-support of x, and is
defined by I1(x) = {i ∈ {1, 2, . . . ,m} : g(x)i = 1}.

The operatorA : 2{1,2,...,m} → 2{1,2,...,n} that returns the set comprising all indices
in the groups in a given index set is defined by

A(T ) ≡
⋃
i∈T

Gi .

For example, if G1 = {1, 2}, G2 = {3, 4}, and G3 = {5, 6}, then

A({1}) = {1, 2}, A({1, 3}) = {1, 2, 5, 6}, A({1, 2, 3}) = {1, 2, 3, 4, 5, 6}.

We can now properly formulate the problem.

1.1.2 Problem formulation

In this paper we study the following optimization problem:

min f (x) + λ‖g(x)‖0
s.t. x ∈ Cs ∩ B,

(P)

where f : Rn → R is a lower bounded continuously differentiable function, λ ≥ 0
is a penalty parameter on the number of active groups, s ∈ {1, 2, . . . ,m} is an upper
bound on the number of active groups, and the set B ⊆ R

n is defined by

B ≡
m∏
i=1

(Di ∪ {0}) = (D1 ∪ {0}) × (D2 ∪ {0}) × · · · × (Dm ∪ {0}) , (1.3)

where Di ⊆ R
ni is a nonempty closed set for any i . In Sect. 4 we will add the

assumption that Di is also convex for any i = 1, 2, . . . ,m. Denoting h(x) ≡
λ‖g(x)‖0 + δB∩Cs (x), problem (P) can be rewritten as

min
x∈Rn

f (x) + h(x).

We will sometimes refer to a restriction of the set
∏m

i=1 Di to an index set T ⊆
{1, 2, . . . ,m} by using the operator B defined by

B(T ) ≡
∏
i∈T

Di .

Following are four simple examples for minimization problems which are special
cases of the general model (P).
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Example 1.1 (group-sparsity constrained minimization) In this problem Di ≡ R
ni ,

s < m, and λ = 0.
min
x

{ f (x) : x ∈ Cs}.

Example 1.2 (group-sparsity penalized minimization) In this problem Di ≡ R
ni ,

s = m, and λ > 0.
min
x∈Rn

f (x) + λ‖g(x)‖0.

Example 1.3 (double-sparsity constrained minimization) This model incorporates
group-sparsity and sparsity within each group. In this problem Di ≡ {y ∈ R

ni :
‖y‖0 ≤ si } where si ≤ ni is the sparsity level within each group, s < m, and λ = 0.

min
x

{ f (x) : x ∈ Cs, ‖xGi ‖0 ≤ si ∀i = 1, 2, . . . ,m}.

Example 1.4 (binary constrained minimization) In this model Di ≡ {1} for any i =
1, 2, . . . ,m = n, s < m, and λ = 0, which results with a minimization problem over
n-length binary vectors with a cardinality constraint.

min
x∈{0,1}n

{
f (x) :

n∑
i=1

xi ≤ s

}
.

The necessary notation and assumptions regarding the optimization problem discussed
in this paper are summarized in the following.

Standing notation and assumptions (made throughout the paper)

• g : Rn → R is given in (1.1).
• s ∈ {1, 2, . . . ,m} is given and Cs = {x ∈ R

n : ‖g(x)‖0 ≤ s}.
• D1, D2, . . . , Dm are nonempty closed sets and B is given in (1.3).
• λ ≥ 0 is given.
• h(x) ≡ λ‖g(x)‖0 + δB∩Cs (x).
• f : Rn → R is a lower bounded continuously differentiable function.

2 Mathematical preliminaries

2.1 Stationarity in smooth problems over convex sets

We begin by recalling the notion of stationarity in problems comprising the minimiza-
tion of smooth functions over closed and convex sets. Consider the problem

min{ f0(x) : x ∈ C}, (2.1)
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where f0 : R
n → R is a continuously differentiable function and C ⊆ R

n is a
nonempty closed and convex set. A vector x∗ is called a stationary point of (2.1) if

∇ f0(x∗)T (x − x∗) ≥ 0 for any x ∈ C. (2.2)

This necessary optimality conditionmeans that there are no feasible descent directions
at x∗. It is well known (see for example [3,8]) that the condition can be rewritten as

x∗ = PC

(
x∗ − 1

L
∇ f0(x∗)

)
(2.3)

for some L > 0. Even though condition (2.3) is expressed in terms of the parameter
L , it is independent of L by its equivalence to condition (2.2). When the objective
function f0 is convex, then stationarity is a necessary and sufficient condition for
optimality.

2.2 The class of C1,1
L functions

A function f0 : Rn → R is said to belong to C1,1
L if it is continuously differentiable

and its gradient is Lipschitz continuous with parameter L > 0, meaning that

‖∇ f0(x) − ∇ f0(y)‖2 ≤ L‖x − y‖2 for all x, y ∈ R
n .

An important property ofC1,1
L functions is described in thewell-knowndescent lemma.

Lemma 2.1 (descent lemma [8, Proposition A.24]) Suppose that f0 ∈ C1,1
L f0

. Then

for any x,d ∈ R
n and L ≥ L f0 , the following inequality is satisfied:

f0(x + d) ≤ f0(x) + ∇ f0(x)Td + L

2
‖d‖22.

Denote
h(·) ≡ λ‖g(·)‖0 + δB∩Cs (·). (2.4)

The sufficient decrease lemma for the proximal gradient mapping is given next.

Lemma 2.2 (sufficient decrease lemma [11, Lemma 3.2]) Let f0 ∈ C1,1
L f0

and L >

L f0 . Let the functions g and h be defined in (1.1) and (2.4) respectively with B and Cs

given in (1.2) and (1.3). Then for any λ ≥ 0, y ∈ R
n and z ∈ prox 1

L h

(
y − 1

L ∇ f0(y)
)
,

it holds that

f0(y) + λ‖g(y)‖0 − f0(z) − λ‖g(z)‖0 ≥ L − L f0

2
‖z − y‖22 .
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We will also be interested in a more refined version of the descent lemma, which
we call the group descent lemma, in which the perturbation vector d has at most two
active groups. For that, we will define the group Lipschiz constant. Let f0 ∈ C1,1

L f0
.

Then for any i 	= j there exists a constant Li, j for which

‖∇Gi∪G j f0(x) − ∇Gi∪G j f0(x + d)‖2 ≤ Li, j‖d‖2, (2.5)

for any x ∈ R
n and any d ∈ R

n for which g(d)k = 0 for any k /∈ {i, j}. The group
Lipschitz constant is defined as

LG
f0 ≡ max

i 	= j
Li, j . (2.6)

Clearly, we can always pick LG
f0

= L f0 , but in general the group Lipschitz constant

LG
f0
can be much smaller than the global Lipschitz constant L f0 . The group Lipschitz

constant is used in a more refined version of the descent lemma.

Lemma 2.3 (group descent lemma) Suppose that f0 ∈ C1,1
L f0

, and that L ≥ LG
f0
.

Then

f0(x + d) ≤ f0(x) + ∇ f0(x)Td + L

2
‖d‖22

for any vector d ∈ R
n with at most two active groups.

3 The group-sparse proximal mapping

This section is devoted to the study of the proximal mapping operator with respect
to the function h(·) ≡ λ‖g(·)‖0 + δB∩Cs (·), where λ ≥ 0 and s ∈ {1, 2 . . . ,m}. The
proximal mapping with respect to h is given by

proxh(x) = argmin
u∈B∩Cs

{
λ‖g(u)‖0 + 1

2
‖u − x‖22

}
. (3.1)

In general, it is hard to compute prox operators of nonconvex functions, and in par-
ticular of those who contain sparsity terms that induce combinatorial elements into
the problem. Yet in some cases, the properties of the set can be exploited in order to
obtain a solution to (3.1) efficiently, such as in [9] and [14] where the lack of con-
straints (other than sparsity) was exploited to compute the orthogonal projection onto
the set of s-sparse/s-group-sparse real vectors; in [6], some symmetry properties of the
underlying sets were exploited to compute the orthogonal projection onto the intersec-
tion of a closed convex and symmetric set and the set of s-sparse vectors; the case in
which the sparsity term appears as a penalty rather than as a constraint was studied in
[5], where it was shown how to compute a member of the prox mapping under similar
symmetry conditions and/or submodularity-like properties related to the underlying
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set. We will show in this section how the proximal mapping can be evaluated in our
setting as well, with no additional symmetry assumptions on the underlying set B.

Given x ∈ R
n , for any j = 1, 2, . . . ,m denote

dDj (xG j ) = min
z∈Dj

∥∥xG j − z
∥∥
2
.

Note that for any j , dDj (xG j ) is well-defined due to the closedness of Dj . A key
component of the analysis ahead is the mapping ω : Rn → R

m defined below, which
we will show to have a major role in determining the identities of the active groups of
the vectors in the proximal mapping. It is defined as

ω(x) j = ∥∥xG j

∥∥2
2
− d2Dj

(xG j ), j = 1, 2, . . . ,m.

The next lemma formulates the main benefit from using the mapping ω.

Lemma 3.1 Let x ∈ R
n, and T, S ⊆ {1, 2, . . . ,m}. For any z, y ∈ R

n satisfying

zGi ∈
{
PDi (xGi ), i ∈ T,

{0}, i /∈ T,
yGi ∈

{
PDi (xGi ), i ∈ S,

{0}, i /∈ S.

It holds that
‖z − x‖22 − ‖y − x‖22 =

∑
i∈S

ω(x)i −
∑
i∈T

ω(x)i . (3.2)

Proof By rearrangement of terms,

‖z − x‖22 − ‖y − x‖22 =
∑
i /∈T

‖xGi ‖22 +
∑
i∈T

‖zGi − xGi ‖22

−
∑
i /∈S

‖xGi ‖22 −
∑
i∈S

‖yGi − xGi ‖22

=
∑
i∈S\T

‖xGi ‖22 +
∑
i∈T \S

‖zGi − xGi ‖22 −
∑
i∈T \S

‖xGi ‖22

−
∑
i∈S\T

‖yGi − xGi ‖22

=
∑
i∈S\T

ω(x)i −
∑
i∈T \S

ω(x)i .

By adding the elements in {ω(x)i : i ∈ S ∩ T } to each of the sums, we obtain (3.2). ��
The characterization of the proximal mapping with respect to h is given by the next

theorem.

Theorem 3.2 (prox characterization) Let x ∈ R
n. Then u ∈ proxh(x) if and only if

the following conditions hold:
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(a) uGi ∈ PDi (xGi ) for any i ∈ I1(u).
(b) There exists T ∈ Ss(ω(x)) for which

T ∩ { j : ω(x) j > 2λ} ⊆ I1(u) ⊆ T ∩ { j : ω(x) j ≥ 2λ}. (3.3)

Proof Suppose thatu satisfies (a) and (b) for someT ∈ Ss(ω(x)), and lety ∈ proxh(x).
It will be shown that u ∈ proxh(x) and that y satisfies (a) and (b) for some T̃ ∈
Ss(ω(x)). Since y ∈ proxh(x),

2λ(‖g(u)‖0 − ‖g(y)‖0) + ‖u − x‖22 − ‖y − x‖22 ≥ 0. (3.4)

Obviously, yGi ∈ PDi (xGi ) for any i ∈ I1(y) (as otherwise a better solution for the
problem defining proxh(x) could be obtained) and we assumed that ui ∈ PDi (xGi )

for any i ∈ I1(u). Thus by Lemma 3.1, (3.4) is the same as

∑
i∈I1(y)

(ω(x)i − 2λ) −
∑

i∈I1(u)

(ω(x)i − 2λ) ≥ 0,

which is the same as

∑
i∈I1(y)∩{ j :ω(x) j≥2λ}

(ω(x)i − 2λ) +
∑

i∈I1(y)∩{ j :ω(x) j<2λ}
(ω(x)i − 2λ)

−
∑

i∈I1(u)

(ω(x)i − 2λ) ≥ 0. (3.5)

By (3.3), it follows that

∑
i∈I1(u)

(ω(x)i − 2λ) =
∑

i∈T∩{ j :ω(x) j≥2λ}
(ω(x)i − 2λ).

Since T contains indices of a set of s largest elements of ω(x)
and y ∈ Cs , we have

∑
i∈T∩{ j :ω(x) j≥2λ}

(ω(x)i − 2λ) ≥
∑

i∈I1(y)∩{ j :ω(x) j≥2λ}
(ω(x)i − 2λ).

Combining the last two relations, we get

∑
i∈I1(u)

(ω(x)i − 2λ) ≥
∑

i∈I1(y)∩{ j :ω(x) j≥2λ}
(ω(x)i − 2λ). (3.6)
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Utilizing the valid inequality1

∑
i∈I1(y)∩{ j :ω(x) j<2λ}

(ω(x)i − 2λ) ≤ 0

along with (3.6) yields

0 ≥
∑

i∈I1(y)∩{ j :ω(x) j≥2λ}
(ω(x)i − 2λ) −

∑
i∈I1(u)

(ω(x)i − 2λ)

≥
∑

i∈I1(y)∩{ j :ω(x) j≥2λ}
(ω(x)i − 2λ) +

∑
i∈I1(y)∩{ j :ω(x) j<2λ}

(ω(x)i − 2λ)

−
∑

i∈I1(u)

(ω(x)i − 2λ)

≥ 0,

(3.7)

where the third inequality follows from (3.5). Thus, the chain of inequalities in (3.7)
is satisfied as a chain of equalities, and subsequently (3.4) is satisfied as an equality,
which implies that u ∈ proxh(x). The fact that (3.7) is a chain of equalities also implies
that

∑
i∈I1(y)∩{ j :ω(x) j<2λ}

(ω(x)i − 2λ) = 0,

which in turn implies that

∑
i∈I1(y)

(ω(x)i − 2λ) =
∑

i∈I1(y)∩{ j :ω(x) j≥2λ}
(ω(x)i − 2λ) =

∑
i∈I1(u)

(ω(x)i − 2λ).

Hence, by the validity of (a) and (b) and the fact that y ∈ Cs , y must also satisfy
(b) (with u replaced by y). Finally, as was already noted, yGi ∈ PDi (xGi ) for any
i ∈ I1(y), showing that (a) also holds for y. ��

Theorem 3.2 provides a characterization of the proximal mapping set (3.1) that can
be written as a closed-form formula (see explanation after the formula).2

proxh(x) =

⎧⎪⎨
⎪⎩

{
UA(T )y : y ∈ PB(T )(xA(T )), I+(x) ⊆ T ⊆ I+(x) ∪ I?(x), |T | = s

}
, ω(x)[s] > 2λ,{

UA(T )y : y ∈ PB(T )(xA(T )), I+(x) ⊆ T ⊆ I+(x) ∪ I?(x), |T | ≤ s
}
, ω(x)[s] = 2λ,{

UA(T )y : y ∈ PB(T )(xA(T )), I+(x) = T
}
, ω(x)[s] < 2λ,

1 If I1(y) ∩ { j : ω(x) j < 2λ} = ∅, then the sum equals 0, and otherwise it is negative.
2 We use a convention that if T = ∅, then UA(T )y = 0.
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where

I+(x) = {
j : ω(x) j > max{ω(x)[s], 2λ}} ,

I?(x) = {
j : ω(x) j = max{ω(x)[s], 2λ}, xG j 	= 0

}
.

This explicit expression is written using two index sets: (i) the set I+(x)which contains
indices that are necessarily in the group-support of any vector in the prox since they
are among the largest s−1 (in the sense of themappingω) and they are greater than the
threshold of 2λ; (ii) the set I?(x) which contains indices that are in the group-support
of some, but not necessarily all, the vectors in the prox. This might be due to the
existence of several indices having the value of the s-largest component in ω(x), or
due to equality to the threshold 2λ. For example,

• When ω(x) = 2λ · 1 , we have that I+(x) = ∅ and I?(x) = {1, 2, . . . ,m}, and any
subset of {1, 2, . . . ,m} is a group-support of a vector in the prox.

• When ω(x) = (2λ + 1) · 1 , we have that I+(x) = ∅ and I?(x) = {1, 2, . . . ,m},
and any subset of {1, 2, . . . ,m} of size s is a group-support of a vector in the prox.

• When ω(x) j = (2λ + m − j) · 1 for all j = 1, 2, . . . ,m , we have that I+(x) =
{1, 2, . . . , s − 1} and I?(x) = {s}, and the prox is a singleton with group-support
of {1, 2, . . . , s}.
Theorem 3.2 suggests the following procedure to obtain a specific vector in

proxh(x).

Algorithm 1: group-sparse proximal mapping
Input: x ∈ R

n ;
Output: u ∈ proxh(x);

1. compute T ∈ Ss (ω(x)) (arbitrarily chosen)
2. set R = { j ∈ T : ω(x) j > 2λ}
3. return u = UA(R)PB(R)(xA(R)).

4 Necessary optimality conditions

We will now exploit the result of the previous section in order to analyze optimality
conditions of the following problem:

min f (x) + λ‖g(x)‖0
s.t. x ∈ Cs ∩ B,

(P)

where B ⊆ R
n is given by (1.3), and as before, s ∈ {1, 2, . . . ,m}, λ ≥ 0.

This study begins with a stationarity-based condition that is defined as a fixed point
of a proximal gradient procedure. Then, under the additional assumption that the sets
Di ⊆ R

ni are convex,we devise and study coordinate-based conditions that are defined
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with respect to a small change of the support. Some of the presented results require
the standard assumption that f ∈ C1,1

L f
, which will be stated upon use.

Our approach is similar to that taken in the context of sparse optimization in [4–6],
and somewhat in [7]. In all these studies the underlying set enjoyed some symmetry
properties and the coordinate-wise based conditions were proved to bemore restrictive
than the stationary based conditions under the assumption that f ∈ C1,1

L f
. We will

show that similar results can be established in our setting which does not involve any
symmetry properties, and consequently requires a different line of analysis.

We will frequently use the operator TL : Rn → R
n denoting a gradient step at

y ∈ R
n with stepsize L > 0:

TL(y) ≡ y − 1

L
∇ f (y). (4.1)

4.1 L-stationarity

The following optimality condition is defined as a fixed point condition of the process
xk+1 ∈ prox 1

L h

(
TL(xk)

)
, where we recall that h(·) ≡ λ‖g(·)‖0 + δB∩Cs (·). In Sect. 5

we will study and analyze this method in more depth.

Definition 4.1 (L-stationarity) Let L > 0. A vector x ∈ R
n is called an L-stationary

point of (P) if
x ∈ prox 1

L h
(TL(x)) . (4.2)

If f ∈ C1,1
L f

, then the L-stationarity condition is a necessary optimality condition
whenever L ≥ L f .

Theorem 4.2 (optimality ⇒ L-stationarity) Let x∗ ∈ B ∩ Cs be an optimal solution
of (P), and suppose that f ∈ C1,1

L f
. Then for any L ≥ L f

x∗ ∈ prox 1
L h

(
TL(x∗)

)
. (4.3)

Proof Let L > L f , and let z ∈ prox 1
L h

(TL(x∗)). Then by the sufficient decrease

lemma (Lemma 2.2) and by the optimality of x∗,

f (x∗) + λ‖g(x∗)‖0 ≥ L − L f

2

∥∥z − x∗∥∥2
2 + f (z) + λ‖g(z)‖0

≥ L − L f

2

∥∥z − x∗∥∥2
2 + f (x∗) + λ‖g(x∗)‖0.

Since L > L f , we conclude that z = x∗, implying the validity of (4.3).
Now, for any L > L f , x∗ satisfies (4.3) and thus for any u ∈ B ∩ Cs

λ

L
‖g(x∗)‖0 + 1

2
‖x∗ − TL(x∗)‖22 ≤ λ

L
‖g(u)‖0 + 1

2
‖u − TL(x∗)‖22.
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By the continuity of the expressions in the above inequality as a function of L , taking
L → L f results with

λ

L f
‖g(x∗)‖0 + 1

2
‖x∗ − TL f (x

∗)‖22 ≤ λ

L f
‖g(u)‖0 + 1

2
‖u − TL f (x

∗)‖22,

which implies that x∗ satisfies (4.3) for L = L f as well. ��
In the next part we will define coordinate-based conditions, under the additional

assumption of convexity of the sets Di (i = 1, 2, . . . ,m).

4.2 Coordinate based conditions

Throughout this subsection we will assume that Di ⊆ R
ni is, in addition to the under-

lying assumptions, convex for any i = 1, 2, . . . ,m. Note that since the orthogonal
projection onto a nonempty closed and convex set is unique, this assumption together
with Theorem 3.2 imply the following characterization of the L-stationarity condition.

Corollary 4.3 (L-stationarity characterization) Let x ∈ R
n. Then x is an L-stationary

point of (P) if and only if

(a) xGi = PDi (TL(x)Gi ) for any i ∈ I1(x).
(b) There exists Q ∈ Ss(ω(TL(x))) for which

Q ∩ { j : ω(TL(x)) j > 2λ/L} ⊆ I1(x) ⊆ Q ∩ { j : ω(TL(x)) j ≥ 2λ/L}.

For a given set of indices S ⊆ {1, 2 . . . ,m}, we define O to be an oracle that
produces the set of minimizers of f restricted to the index set S by

O(S) ≡ argmin
u

{
f (u) : I1(u) ⊆ S, uGi ∈ Di ∀i ∈ S

}
. (4.4)

In practice, we will only require one arbitrary solution from O(S).

4.2.1 Support optimality

Webegin by presenting an optimality condition called group support optimality (GSO)
that, as its name suggests, states that the vector is an optimal solution of the restriction
of f to its own support.

Definition 4.4 (support optimality) A vector x ∈ B ∩ Cs is called a group support
optimal (GSO) point of (P) if x ∈ O(I1(x)).

Example 4.5 1. When the sets Di , i = 1, 2, . . . ,m, do not contain the zeros vector,
for any possible group support there exists at least one GSO point: Suppose that
G1 = {1, 2},G2 = {3, 4}, D1 = D2 = �2, s = 1, and f (x) = x1 + x3. Then the
GSO points are (0, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 0, 1)T .
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2. When the sets Di , i = 1, 2, . . . ,m, do contain the zeros vector, some group sup-
ports might not have a corresponding GSO point: Suppose thatG1 = {1, 2},G2 =
{3, 4}, D1 = D2 = R

2+, s = 1, and f (x) = x1 + x3. Then the only GSO point is
(0, 0, 0, 0)T .

It is easy to show that group support optimality is a necessary optimality condition.

Theorem 4.6 (optimality ⇒ GSO) Let x∗ ∈ B ∩ Cs be an optimal solution of (P).
Then x∗ is a GSO point of (P).

Proof For any z ∈ {u : I1(u) ⊆ I1(x∗), uGi ∈ Di ∀i ∈ I1(z)} it holds that
‖g(z)‖0 ≤ ‖g(x∗)‖0, and subsequently by the optimality of x∗ (recalling that z is
feasible),

f (x∗) + λ‖g(x∗)‖0 ≤ f (z) + λ‖g(z)‖0 ≤ f (z) + λ‖g(x∗)‖0.

Thus, f (x∗) ≤ f (z), and consequently x∗ ∈ O(I1(x∗)). ��
The next lemma shows that group support optimality implies a condition that can

be seen as a “support stationarity” condition.

Lemma 4.7 Let x ∈ B ∩ Cs be a GSO point of (P). Then for any L > 0, x satisfies

xGi = PDi

(
TL(x)Gi

)
for any i ∈ I1(x). (4.5)

Proof Let C̃ = ∏m
i=1 D̃i where for any i = 1, 2, . . . ,m,

D̃i =
{
Di , i ∈ I1(x),
{0}, otherwise.

Then by the definition of C̃ , x ∈ O(I1(x)) holds if and only if x is an optimal solution
of

min
u

{ f (u) : u ∈ C̃}. (4.6)

Since C̃ is a nonempty closed convex set, it follows that x must be a stationary point
of (4.6), meaning that

x = PC̃

(
x − 1

L
∇ f (x)

)
,

which in turn implies the validity of (4.5). ��
In the case where B = R

n , the condition of Lemma (4.7) translates to the property
that the components of ∇ f (x) at the active groups are zeros.
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Corollary 4.8 Suppose that B = R
n. Let x ∈ R

n be a GSO point of problem (P).
Then

∇Gi f (x) = 0 for any i ∈ I (x).

Proof Since Di = R
ni , it follows by Lemma 4.7 that for any i ∈ I1(x)

xGi = PRni

(
xGi − 1

L
∇Gi f (x)

)
= xGi − 1

L
∇Gi f (x),

and hence, ∇Gi f (x) = 0. ��
When f is convex, the L-stationarity condition implies the GSO condition.

Lemma 4.9 (L-stationarity⇒GSO ( f convex)) Let L > 0. Suppose that f is convex
and that x ∈ R

n is an L-stationary point of (P). Then x is a GSO point of (P).

Proof Denote S = A(I1(x)) and C̃ = B(I1(x)). Since

x ∈ prox 1
L h

(TL(x)) ,

it follows that

λ

L
‖g(x)‖0 + 1

2
‖x − TL(x)‖22 = min

u

{
λ

L
‖g(u)‖0 + 1

2
‖u − TL(x)‖22 : u ∈ B ∩ Cs

}

≤ min
u

{
λ

L
‖g(u)‖0 + 1

2
‖u − TL(x)‖22 : u ∈ B, I1(u) ⊆ I1(x)

}

≤ min
u

{
λ

L
‖g(x)‖0 + 1

2
‖u − TL(x)‖22 : u ∈ B, I1(u) ⊆ I1(x)

}
,

and hence,

‖x − TL(x)‖22 ≤ min
u

{
‖u − TL(x)‖22 : u ∈ B, I1(u) ⊆ I1(x)

}

≤ min
d

{
‖USd − TL(x)‖22 : d ∈ C̃

}
.

Decomposing the expressions in both sides of the above inequality with respect to the
two sets of indices S and Sc, we obtain

‖xS − TL(x)S‖22 + ‖TL(x)Sc‖22 ≤ min
d

{
‖d − TL(x)S‖22 : d ∈ C̃

}
+ ‖TL(x)Sc‖22,

that is,

‖xS − TL(x)S‖22 ≤ min
d

{
‖d − TL(x)S‖22 : d ∈ C̃

}
,
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meaning that xS = PC̃ (TL(x)S), which is precisely the condition that xS is a stationary
point of the problem

min{ f (USd) : d ∈ C̃}. (4.7)

Since problem (4.7) is convex (by the convexity of f and C̃), it follows that xS is an
optimal solution of (4.7), establishing the fact that it is a GSO point. ��

4.2.2 Coordinate-wise optimality

In the rest of this section we will consider two coordinate-wise based conditions–
the partial coordinate-wise optimality (PCWO) condition and the coordinate-wise
optimality (CWO) condition. Loosely speaking, these conditions state that the function
value does not improve if a small change in the support is performed. For a given GSO
point x, the conditions that we will consider will compare the function value of x with
those of other GSO points defined by:

xi,− ∈ O(J i ) : J i = I1(x) \ {i}, (4.8)

x j,+ ∈ O(J j ) : J j = I1(x) ∪ { j}, (4.9)

xi, j ∈ O(J ij ) : J ij = (I1(x) ∪ { j}) \ {i}, (4.10)

for indices i ∈ I1(x) and j /∈ I1(x) (note that i and j are group indices). The PCWO
property is defined for a specific parameter L > 0 and indices ix,L , jx,L , chosen
according to the rule:

ix,L ∈ argmin
�∈I1(x)

{ω(TL(x))�}, (4.11)

jx,L ∈ argmax
�/∈I1(x)

{ω(TL(x))�} . (4.12)

Note that the choice of ix,L and jx,L in (4.11) and (4.12) respectively is affected by
the parameter L > 0 as it changes the order of the elements in ω(TL(x)). A special
case in which the order is not affected by L is when B = R

n .

Remark 4.10 Suppose that B = R
n and let x be a GSO point. Then since Di = R

ni ,

ω(TL(x))� = ‖TL(x)G�
‖22 − d2

R
n� (TL(x)G�

) = ‖TL(x)G�
‖22 − 0 = ‖TL(x)G�

‖22.

If � ∈ I (x), then by Corollary 4.8 it follows that ∇G�
f (x) = 0 and hence

ω(TL(x))� = ‖TL(x)G�
‖22 =

∥∥∥∥xG�
− 1

L
∇G�

f (x)

∥∥∥∥
2

2
= ‖xG�

‖22.

If � /∈ I (x), then xG�
= 0, and thus,

ω(TL(x))� = ‖TL(x)G�
‖22 =

∥∥∥∥xG�
− 1

L
∇G�

f (x)

∥∥∥∥
2

2
= 1

L2 ‖∇G�
f (x)‖22.
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Therefore, in the setting of B = R
n , conditions (4.11) and (4.12) translate into the

following relations which are independent of L:

ix,L ∈ argmin
�∈I1(x)

‖xG�
‖2,

jx,L ∈ argmax
�/∈I1(x)

‖∇G�
f (x)‖2.

Wemake two important assumptions regarding the possible ambiguity in the choices
of xi,−, x j,+, xi, j , ix,L , jx,L .

Remark 4.11 To simplify the exposition of the coordinate-wise based conditions anal-
ysis, wewill assume that whenever xi,−,xi, j or x j,+ (or other vectors similarly defined)
appear, the corresponding required conditions on ‖g(x)‖0 given below are satisfied:

• when xi,− appears it holds that ‖g(x)‖0 > 0,
• when x j,+ appears it holds that ‖g(x)‖0 < s,
• when xi, j appears it holds that 0 < ‖g(x)‖0 ≤ s < m.

Remark 4.12 Note that the choice of the GSO points in (4.8), (4.9), (4.10), or the
choice of ix,L and jx,L in (4.11) and (4.12), is not necessarily unique. We assume that
there exists some well-defined deterministic policy by which the selection is made.

The partial coordinate-wise optimality (PCWO) property will now be defined.

Definition 4.13 (L-partial coordinate-wise optimality) Let L > 0 and x ∈ B ∩Cs be
a GSO point of (P). Then x is called an L-partial coordinate-wise optimal (L-PCWO)
point of (P) if for i = ix,L and j = jx,L

f (x) + λ‖g(x)‖0 ≤ min
{
f (y) + λ‖g(y)‖0 : y ∈ {xi,−, x j,+, xi, j }

}
. (4.13)

The CWO property is similar to the L-PCWO property with a substantial
modification—it imposes the condition that the function value does not decrease by
any change of at most two indices in the support.

Definition 4.14 (coordinate-wise optimality) Let x ∈ B ∩Cs be a GSO point of (P).
Then x is a coordinate-wise optimal (CWO) point of (P) if for any i ∈ I1(x) and
j /∈ I1(x) relation (4.13) is satisfied.

Obviously, the CWO property implies the L-PCWO property for any L > 0.

Theorem 4.15 (CWO ⇒ L-PCWO) Let x∗ be a CWO point of (P). Then x∗ is an
L-PCWO point of (P) for any L > 0.

Another straightforward observation is that both CWO and L-PCWO conditions
are necessary optimality conditions.

Theorem 4.16 (optimality ⇒ CWO) Let x∗ be an optimal solution of (P), then x∗ is
a CWO as well as an L-PCWO point of (P) for any L > 0.
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The next theorem states thatwhen f ∈ C1,1
L f

, the L-PCWOconditionwith parameter

L ≥ LG
f implies L-stationarity. Recall that f ∈ C1,1

L f
is a required assumption for the

necessity of the L-stationarity condition (together with L ≥ L f , Theorem 4.2), and
that LG

f might be smaller than L f (and in any case can be chosen as LG
f = L f ).

Theorem 4.17 (L-PCWO ⇒ L-stationarity) Suppose that f ∈ C1,1
L f

. Let L ≥ LG
f ,

and x ∈ R
n be an L-PCWO point of (P). Then x is an L-stationary point of (P).

Proof Denote i ≡ ix,L and j ≡ jx,L .Wewill show that the condition for L-stationarity
given in Corollary 4.3 holds. Utilizing the group descent lemma (Lemma 2.3) for any
z ∈ {zi,−, z j,+, zi, j }, we have

f (z) − f (x) ≤ 〈∇ f (x), z − x〉 + L

2
‖z − x‖22, (4.14)

where

zi,− = x − UGi xGi , (4.15)

z j,+ = x + UG j PDj

(
TL(x)G j

)
, (4.16)

zi, j = x − UGi xGi + UG j PDj

(
TL(x)G j

)
. (4.17)

Note that since x is a GSO point, by Lemma 4.7 it satisfies

xG�
= PD�

(TL(x)G�
) for any � ∈ I1(x). (4.18)

By the definitions of xi,−, x j,+ and xi, j , we have that for y ∈ {xi,−, x j,+, xi, j },

‖g(x)‖0 − ‖g(y)‖0 ≥

⎧⎪⎨
⎪⎩
1, y = xi,−,

−1, y = x j,+,

0, y = xi, j ,

and thus, by the L-PCWO property of x, it holds that

f (y) − f (x) ≥ λ(‖g(x)‖0 − ‖g(y)‖0) ≥

⎧⎪⎨
⎪⎩

λ, y = xi,−,

−λ, y = x j,+,

0, y = xi, j .

(4.19)

Sincexi,− ∈ O(J i ) and I1(zi,−) ⊆ J i ,x j,+ ∈ O(J j ) and I1(z j,+) ⊆ J j ,xi, j ∈ O(J ij )

and I1(zi, j ) ⊆ J ij , we have [by invoking (4.19)] that

f (zi,−) − f (x) ≥ f (xi,−) − f (x) ≥ λ, (4.20)

f (z j,+) − f (x) ≥ f (x j,+) − f (x) ≥ −λ, (4.21)

f (zi, j ) − f (x) ≥ f (xi, j ) − f (x) ≥ 0. (4.22)
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For the i th component in ω(TL(x)) we have that

ω(TL (x))i = ∥∥TL (x)Gi

∥∥2
2 − ∥∥TL (x)Gi − PDi (TL (x)Gi )

∥∥2
2 [def. of ω]

= − 2

L
〈∇Gi f (x), xGi 〉 + ‖xGi ‖22 [algebra, (4.18), def. of TL ]

= 2

L
〈∇ f (x), zi,− − x〉 + ‖zi,− − x‖22 [(4.15)]

≥ 2

L
( f (zi,−) − f (x)) ≥ 2λ

L
. [(4.14) and (4.20)] (4.23)

Thus, if 0 < ‖g(x)‖0, then since i = ix,L ,

ω(TL(x))l1 ≥ ω(TL(x))i ≥ 2λ

L
for any l1 ∈ I1(x). (4.24)

In particular, if ‖g(x)‖0 = m (in this case s = m), then I1(x) = {1, 2, . . . ,m}, and
by (4.24) for any l1 = 1, 2, . . . ,m it holds that ω(TL(x))l1 ≥ 2λ

L . Hence,

I1(x) ∩ { j : ω(x) j ≥ 2λ/L} = I1(x). (4.25)

Since Ss(ω(TL(x))) = Sm(ω(TL(x))) = {I1(x)}, we have that I1(x) ∈ Ss(ω(TL(x))).
Thus, the latter together with (4.25) and (4.18) imply by Corollary 4.3 that x is an
L-stationary point.

For the j th component in ω(TL(x)) we have that

ω(TL (x)) j = ∥∥TL (x)G j

∥∥2
2
− ∥∥TL (x)G j − PDj (TL (x)G j )

∥∥2
2

[def. of ω]
= − 2

L
〈∇G j f (x), (z j,+)G j 〉 − ‖(z j,+)G j ‖22 [algebra, (4.16), def. of TL ]

= − 2

L
〈∇ f (x), z j,+ − x〉 − ‖z j,+ − x‖22 [(4.16)]

≤ − 2

L
( f (z j,+) − f (x)) ≤ 2λ

L
, [(4.14) and (4.21)]

(4.26)

which implies that if3 ‖g(x)‖0 < s, then since j = jx,L ,

ω(TL(x))l2 ≤ ω(TL(x)) j ≤ 2λ

L
for any l2 /∈ I1(x). (4.27)

In particular, if ‖g(x)‖0 = 0 then I1(x) = ∅, and thus by (4.27) ω(TL(x))l2 ≤ 2λ
L for

any l2 = 1, 2, . . . ,m. Consequently,

{ j : ω(x) j > 2λ/L} = ∅ = I1(x),

and thus for any Q ∈ Ss(ω(TL(x))) it holds that Q ∩ { j : ω(x) j > 2λ/L} = I1(x),
which implies by Corollary 4.3 that x is an L-stationary point.

3 This result assumes that x j,+ exists, which happens only if ‖g(x)‖0 < s, see Remark 4.11.
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If 0 < ‖g(x)‖0 < s, then by combining (4.24) and (4.27) we have that

ω(TL(x))l1 ≥ ω(TL(x))i ≥ 2λ

L
≥ ω(TL(x)) j

≥ ω(TL(x))l2 for all l1 ∈ I1(x), l2 /∈ I1(x). (4.28)

Hence, there exists a Q ∈ Ss(ω(TL(x))) for which I1(x) ⊆ Q, and { j : ω(TL(x)) j >

2λ/L} ⊆ I1(x) ⊆ { j : ω(TL(x)) j ≥ 2λ/L}. Therefore,

Q ∩ { j : ω(TL(x)) j > 2λ/L} ⊆ I1(x) ⊆ Q ∩ { j : ω(TL(x)) j ≥ 2λ/L},

which together with (4.18) implies by Corollary 4.3 that x is an L-stationary point.
For the i th and j th components of ω(TL(x)) we have that

ω(TL(x))i − ω(TL(x)) j

= ‖xGi ‖22 − 2

L
〈∇Gi f (x), xGi 〉

+ 2

L
〈∇G j f (x), (z j,+)G j 〉 + ‖(z j,+)G j ‖22 [(4.23), (4.26)]

= 2

L
〈∇ f (x), zi, j − x〉 + ‖zi, j − x‖22 [algebra, (4.17)]

≥ 2

L
( f (zi, j ) − f (x)) ≥ 0. [(4.14), (4.22)]

Thus, if 0 < ‖g(x)‖0 = s < m, then

ω(TL(x))l1 ≥ ω(TL(x))i ≥ ω(TL(x)) j ≥ ω(TL(x))l2 for all l1 ∈ I1(x), l2 /∈ I1(x).
(4.29)

Noting that |I1(x)| = s, (4.29) implies that I1(x) ∈ Ss(ω(TL(x))). In addition, by
(4.24) we have that

I1(x) ∩ {l : ω(TL(x))l ≥ 2λ/L} = I1(x),

which together with (4.18) implies by Corollary 4.3 that x is an L-stationary point.
Hence, for any value of ‖g(x)‖0 the L-PCWO point x is an L-stationary point, as

required. ��

The hierarchy of the optimality conditions, under the assumption that Di ’s are
convex, is illustrated by Figure 1.

In the next section we will derive methods to obtain points satisfying the defined
optimality conditions.
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optimality CWO PCWO GSO

L-stat.

Thm. 4.16 Thm. 4.15, ∀L > 0 Def.

f ∈ C1,1
Lf

, Thm. 4.17, L ≥ LG
f

f convex, Lem. 4.9

Thm. 4.6

f ∈ C1,1
Lf

, Thm. 4.2, L ≥ Lf

Fig. 1 Optimality conditions’ hierarchy

5 Methods

5.1 The proximal gradient method

L-stationary points can be attained by the so-called proximal gradient method
with stepsize 1

L ; the prox operator can be computed using Algorithm 1. Note
that we no longer assume that Di ⊆ R

ni are convex for any i = 1, 2, . . . ,m.

Algorithm 2: proximal gradient method

Input: x0 ∈ R
n , L > 0.

repeat

1. xk+1 ∈ prox 1
L h

(
TL(xk)

)
;

2. k ← k + 1;

Since f is lower bounded, the sufficient decrease lemma (Lemma 2.2) can be
utilized in order to prove that limit points of the sequence generated by the proximal
gradient method with L > L f are L-stationary points.

Theorem 5.1 Suppose that f ∈ C1,1
L f

, and let {xk}k≥0 be the sequence generated by
the proximal gradient method with L > L f . Then

(a) f (xk) + λ‖g(xk)‖0 − f (xk+1) − λ‖g(xk+1)‖0 ≥ L−L f
2

∥∥xk+1 − xk
∥∥2
2 ;

(b) any limit point of the sequence {xk}k≥0 is an L-stationary point.

Proof Part (a) readily follows from the sufficient decrease lemma (Lemma 2.2).
To prove part (b), note that by part (a) the sequence of function values { f (xk) +
λ‖g(xk)‖0}k≥0 is nonincreasing and in addition, by the standing assumption that f is
lower bounded, it follows that the sequence is also lower bounded and hence conver-
gent. We can thus conclude by part (a) that

‖xk+1 − xk‖2 → 0 as k → ∞. (5.1)

Let x∗ be a limit point of the sequence. Then there exists a subsequence {xki }i≥1
that converges to x∗, and hence, by (5.1), xki+1 → x∗ as i → ∞. Since xki+1 ∈
prox 1

L h
(TL(xki )), by the definition of the prox operator we have
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λ

L
‖g(xki+1)‖0 + 1

2
‖xki+1 − TL(xki )‖22 ≤ λ

L
‖g(x)‖0

+1

2
‖x − TL(xki )‖22 for all x ∈ B ∩ Cs .

Taking the limit i → ∞, and exploiting the continuity of TL , and the lower semicon-
tinuity of ‖ · ‖0, yields
λ

L
‖g(x∗)‖0 + 1

2
‖x∗ − TL(x∗)‖22 ≤ λ

L
‖g(x)‖0 + 1

2
‖x− TL(x∗)‖22 for all x ∈ B ∩Cs,

and consequently x∗ ∈ prox 1
L h

(TL(x∗)), meaning that x∗ is an L-stationary point. ��

5.2 Group coordinate descent methods

We present two coordinate descent methods that obtain points that satisfy the
coordinate-wise optimality conditions defined in Sect. 4.2. The convexity of Di ⊆ R

ni

for any i = 1, 2, . . . ,m is a prerequisite and thus will be assumed throughout this
section.

5.2.1 Partial group coordinate descent

The partial group coordinate descent (PGCD) algorithm is designed to obtain an L-
PCWO point, and under the assumption that f ∈ C1,1

L f
, which is a required assumption

for the necessity of the L f -stationarity condition (Theorem 4.2), an LG
f -PCWO point

that is also LG
f -stationary. Consequently, the PGCDmethod returns points satisfying a

more restrictive optimality condition than that of the outputs of the proximal gradient
method.

The PGCD algorithm moves between GSO points. At each iteration it examines
the current GSO point and three other GSO points according to the PCWO condition,
and if a better point is found, then it is chosen as the next point. Otherwise, the current
point is an L-PCWO point and this point is returned.

As in the previous section, to simplify the discussion we will make the assumptions
described in Remarks 4.11 and 4.12 regarding the ambiguity in choosing a GSO point
given an index set and the choices of the indices that will enter or exit the support set.

The PGCD method is finite; since the update condition in step 4 dictates a strict
decrease in the function value when moving from the current GSO point to the next
and no group support is repeated, meaning that every group support is examined at
most once. Therefore, the number of iterations is bounded by the number of possible
group supports – at most 2m (in the case s = m).

The properties of the output of the PGCD method are given next.

Lemma 5.2 Let x be the output of the PGCDmethod with input (L , x0) (L > 0, x0 ∈
B ∩ Cs). Then

1. x is an L-PCWO point of (P).
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Algorithm 3: partial group coordinate descent (PGCD)
Input: L > 0, x0 ∈ B ∩ Cs .

1. initialize: x ∈ O(I1(x0));
2. compute: i ∈ argmin

�∈I1(x)
{ω(TL (x))�} and j ∈ argmax

�/∈I1(x)
{ω(TL (x))�};

3. compute:

xi,− ∈ O(J i ) J i = I1(x) \ {i},
x j,+ ∈ O(J j ), J j = I1(x) ∪ { j},
xi, j ∈ O(J ij ), J ij = (I1(x) ∪ { j}) \ {i};

4. if f (x) + λ‖g(x)‖0 > min
{
f (y) + λ‖g(y)‖0 : y ∈ {xi,−, x j,+, xi, j }

}
, then set

x ∈ argmin
{
f (y) + λ‖g(y)‖0 : y ∈ {xi,−, x j,+, xi, j }

}
, k ← k + 1 and goto 2.

5. Return x.

2. If f ∈ C1,1
L f

and L = LG
f . Then x is an LG

f -PCWO point of (P) and an LG
f -

stationary point of (P).

Proof The first part is a direct result of the finiteness of the PGCD method together
with the stopping criteria in step 4 (and choice of indices in step 2).

For the second part, suppose that f ∈ C1,1
L f

and that L = LG
f . By the first part, x is

an LG
f -PCWO point of (P), and thus, by Theorem 4.17, it is an LG

f -stationary point.��

5.2.2 Full group coordinate descent

The full group coordinate-wise descent (FGCD) algorithm given below generates a
sequence of GSO points and terminates when a CWO point is obtained after a finite
amount of steps.

Remark 5.3 We assume that the order by which the indices in step 2 are chosen is
given.

The FGCD method is finite as the update in step 2(b) dictates a strict decrease in the
function value when moving from the current GSO point to the next, thus no group
support is repeated. Since there are at most 2m possible group supports, the number
of iterations is finite.

The FGCD method obviously returns a CWO point.

Theorem 5.4 Let x be the output of the FGCD. Then x is a CWOpoint of problem (P).
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Algorithm 4: full group coordinate descent (FGCD)
Input: x0 ∈ B ∩ Cs .

1. initialize: x ∈ O(I1(x0))
2. for [i, j] ∈ I1(x) × I1(x)c do:

(a) compute:

xi,− ∈ O(J i ) J i = I1(x) \ {i};
x j,+ ∈ O(J j ), J j = I1(x) ∪ { j};
xi, j ∈ O(J ij ), J ij = (I1(x) ∪ { j}) \ {i};

(b) if f (x) + λ‖g(x)‖0 > min
{
f (y) + λ‖g(y)‖0 : y ∈ {xi,−, x j,+, xi, j }

}
, then

(b.1) set: x ∈ argmin
{
f (y) + λ‖g(y)‖0 : y ∈ {xi,−, x j,+, xi, j }

}
;

(b.2) goto 2;
end for.

3. return x.

6 Numerical illustrations

6.1 Investment problems

In many investment problems such as portfolio optimization or index tracking (see
[26]), the decision variables are stocks that are already partitioned into disjoint groups
according to their activity sector, such as transportation or retail trade. In some cases,
one of the objectives is to bound the number of different sectors the investor wishes
to invests in.

To illustrate the results obtained for the different optimality conditions derived in
this paper, we experimented on a portfolio optimization problem. We assume that we
are given the following parameters: µ ∈ R

n - mean return vector,C ∈ R
n×n - positive

semidefinite covariance matrix, and the parameter γ > 0 that penalizes the variance
with respect to the mean return. The set �k = {x ∈ R

k : x ≥ 0,
∑k

i=1 xi = 1} is the
unit-simplex. The portfolio optimization problem we consider minimizes a weighted
sum of the variance and minus the expected return subject to budget constraints and a
limit on the number of invested sector. The mathematical formulation is as follows:

min−µT x + γ · xTCx
s.t.x ∈ Cs ∩ B,

where B = ∏m
i=1

(
�ni ∪ {0}). The objective function belongs to the class of C1,1

L f

functions with parameters L f = 2γ λmax(C) and LG
f is computed by (2.6).

The experiment’s data was the stock returns of the n = 505 members of the SP500
belonging tom = 11 sectors, in the consecutive trading days between March 1st 2016
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to December 30 2016 (83 trading days).4 In purpose of demonstrating the difference
between the optimality conditions, two tests were conducted:

1. Restrictiveness of the optimality conditions. The number of points satisfying
each optimality condition was counted by going over all possible supports of size
s or less, computing its corresponding GSO point (by the choice of B, there is at
least one GSO point for each support, and in this problem instance exactly one)
and checking if it satisfies other optimality conditions as well.

2. Probability to reach the optimal solution. A hundred random starting points
were generated by choosing, for each point, s groups out ofm uniformly, and then
generating the values of the components corresponding to the chosen groups uni-
formly over the unit-simplex, for each group separately (by the method described
in [22, Algorithm 2.5.3]). We then ran the proximal gradient method from each
point, and computed the probability that it reached the optimal solution (unique
in this problem). Next, we ran the PGCD algorithm from the output of the proxi-
mal gradient method and counted the chances that the PGCD method reached the
optimal solution. This means that if the proximal gradient method obtained the
optimal solution, then the PGCD algorithm obtained it as well (as it started from
it).

Table 1 summarizes the results of both experiments for several values of γ and s.
In all instances, the number of GSO points was equal to the number of possible

different supports; in almost all instances, any L f -stationary point was also an LG
f -

stationary point, and therefore we only present the number of LG
f -stationary points.

In the PGCD algorithm we used L = LG
f .

Table description:
• GSO = number of different GSO points;
• LG

f -stat. = number of LG( f )-stationary points;

• LG
f -PCWO = number of LG( f )-PCWO points;

• CWO = number of CWO points;
• OPT = number of optimal points;
• PG =% the proximal gradient method reached the optimal solution from a random
point;

• PG+PGCD=% the PGCD algorithm reached the optimal solution from the output
of the proximal gradient method.

Main observations:
1. The number of PCWO points is significantly smaller than the number of LG

f -
stationary points for almost any value of γ and s, which suggests that obtaining an
optimal solution using the PGCDmethod is more likely compared to the proximal
gradient algorithm.

2. There is only one CWO point (which is also the optimal solution) for any value
of γ and s. This means that the FGCD is guaranteed to converge to the optimal
solution in all problem instances that were explored in this experiment.

4 The data was acquired using Matlab’s built-in functions, see www.mathworks.com/help/datafeed/
retrieve-bloomberg-historical-data.html for details.
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Table 1 Number of points satisfying each optimality condition, and the percentage of reaching the optimal
solution from a random point by the prox-grad, and the percentage of reaching the optimal from the output
of the prox-grad by the PGCD

γ s GSO LGf -stat. LGf -PCWO CWO OPT PG (%) PG+PGCD (%)

0.02 8 1981 4 2 1 1 97 100

0.04 8 1981 20 2 1 1 83 100

0.06 8 1981 57 2 1 1 75 100

0.08 8 1981 84 2 1 1 79 100

0.24 8 1981 130 42 1 1 52 52

0.48 8 1981 171 55 1 1 20 20

0.96 8 1981 319 48 1 1 5 11

1.92 8 1981 1734 42 1 1 1 4

0.02 5 1024 3 1 1 1 100 100

0.04 5 1024 10 1 1 1 100 100

0.06 5 1024 48 1 1 1 100 100

0.08 5 1024 84 1 1 1 100 100

0.24 5 1024 336 133 1 1 48 53

0.48 5 1024 462 131 1 1 7 34

0.96 5 1024 463 63 1 1 2 8

1.92 5 1024 792 49 1 1 1 7

0.02 3 232 2 1 1 1 100 100

0.04 3 232 5 1 1 1 100 100

0.06 3 232 7 1 1 1 100 100

0.08 3 232 9 1 1 1 95 100

0.24 3 232 129 35 1 1 1 1

0.48 3 232 165 39 1 1 3 3

0.96 3 232 165 21 1 1 2 6

1.92 3 232 169 19 1 1 2 25

3. The PGCD method was able to improve the chances for obtaining the optimal
solution in many situations.

6.2 Binary decision variables

An interesting instance of problem (P) is the optimization over binary decision vari-
ables already described in Example 1.4. Many combinatorial optimization problems
can be formulated as binary constrained problems, see for example [21] and refer-
ence therein. Here we consider the maximum weight clique problem as described in
[12, Theorem 2.2], with the additional constraint of bound on the number of cho-
sen vertices. Let G = (V, E) be an undirected graph composed of the vertices set
V = {1, 2, . . . , n} and the edges set E ⊆ V ×V . Each vertex i ∈ V is associated with
a positive weight, collected in the weights vector w ∈ R

n++. The maximum weight
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Table 2 Mean number of points satisfying each optimality condition per n

n GSO L f -stat. LGf -stat. LGf -PCWO CWO OPT

10 637 522.3 450.59 30.19 3.66 1.38

12 1585 1393.04 1172.67 51.65 4.48 1.42

14 3472 3241.72 2690.19 83.79 5.82 1.5

16 6884 6703.56 5678.19 131.53 7.05 1.51

18 12615 12539.61 10732.97 178.2 8.98 1.63

20 21699 21678.67 18988.51 254.97 11.16 1.68

clique problem is given by (see [12, Theorem 2.4] in which the equivalence to the
independent set problem is also discussed)

min xTQx
s.t.

∑n
i=1 xi ≤ s, x ∈ {0, 1}n,

where

Qi, j =

⎧⎪⎨
⎪⎩

−wi , i = j,
1
2 (wi + w j ), (i, j) /∈ E,

0, (i, j) ∈ E .

In this setting, Di ≡ {1} for any i = 1, 2, . . . ,m = n, and subsequently, the GSO
condition is translated into the following trivial rule: x ∈ {0, 1}n , ‖x‖0 ≤ s, is a
GSO point if and only if xi = 1 for any i ∈ I1(x). Thus, the number of GSO points
in the problem is given by

∑s
i=0

(n
i

)
. We generated 100 graphs for 6 possible graph

sizes (n = 10, 12, 14, 16, 18, 20) and computed the number of points satisfying each
optimality condition. For each graph instance, the edges set E was randomly generated
(each edge exists in probability 1

2 ). The weights vector for the set V was generated
uniformly over the set {1, 2, . . . , 5}n , and the bound on the clique size was chosen
as s = 5. Table 2 summarizes the results by depicting the mean number of points
satisfying each optimality condition per size n = |V |.

Evidently, there is a very large gap between the number of points satisfying each
optimality condition in all problems, a gap which significantly increases as the number
of vertices increases.
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