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ON THE CONVERGENCE TO STATIONARY POINTS OF
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Abstract. This paper studies the class of nonsmooth nonconvex problems in which the differ-
ence between a continuously differentiable function and a convex nonsmooth function is minimized
over linear constraints. Our goal is to attain a point satisfying the stationarity necessary optimality
condition, defined as the lack of feasible descent directions. Although elementary in smooth opti-
mization, this condition is nontrivial when the objective function is nonsmooth, and, correspondingly,
there are very few methods that obtain stationary points in such settings. We prove that station-
arity in our model can be characterized by a finite number of directions and develop two methods,
one deterministic and one random, that use these directions to obtain stationary points. Numerical
experiments illustrate the benefit of obtaining a stationary point and the advantage of using the
random method to do so.
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1. Introduction.

1.1. Background and problem formulation. In this paper we consider the
problem

(P ) min{h(x) ≡ f(x)− g(x) : x ∈ B}

under the following assumption.

Assumption 1.
• f : Rn → R is continuously differentiable.
• g : Rn → R is convex.
• B ≡ {x ∈ Rn : Ax ≤ b}, where b ∈ Rm and A ∈ Rm×n comprises the rows

aT1 ,a
T
2 , . . . ,a

T
m so that ‖ai‖2 = 1 for any i = 1, 2, . . . ,m and A is the m× n

matrix whose rows are aT1 ,a
T
2 , . . . ,a

T
m.

• h is lower bounded over B: There exists h∗ ∈ R for which h(x) ≥ h∗ for all
x ∈ B.

We emphasize that f, g, h,A, and b are given parameters and that the require-
ment that ‖ai‖2 = 1 for any i does not restrict the generality of the model.

Problem (P) can model a large variety of trending applications, as described by
the very recent works [1, 18]. A few other examples are shortly described below.

Example 1.1 (difference of convex programming). When f is in addition convex,
problem (P) falls under the category of difference of convex (DC) programming. A
huge number of applications can be cast as DC minimization problems; see, for ex-
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FEASIBLE DESCENT DIRECTIONS METHODS 57

ample, the recent study [1] in the context of learning. For more on DC programming,
including applications, see [2, 17, 22] and references therein.

Example 1.2 (single source localization). The single source localization problem
(e.g., [28]) objective is to locate an unknown source using the approximate distances
c1, c2, . . . , cm ∈ Rn

+ between the source and m given sensors b1,b2, . . . ,bm ∈ Rn. One
possible optimization model for this problem is given by

min
x

m∑
i=1

(ci − ‖x− bi‖2)
2
.

The above problem fits model (P) with f(x) =
∑m

i=1(‖x−bi‖22+c2i ), g(x) =
∑m

i=1 ci‖x−
bi‖2, and B = Rn.

Example 1.3 (convex piecewise linear programming). Piecewise linear functions
appear as cost functions of supply chain, transportation, and production planning
problems; see [19] for a concise review. The objective is to maximize the convex
piecewise linear function

max
x

{
gpwl(x) ≡ max{cT1 x + d1, c

T
2 x + d2, . . . , c

T
mx + dm} : x ∈ C

}
,

where c1, c2, . . . , cm ∈ Rn, d1, d2, . . . , dm ∈ R, and the set C is a compact. When C
is a polyhedron, this problem fits model (P) with f ≡ 0 and g(x) = gpwl(x).

Due to the hardness of problem (P), we are forced to settle with finding solutions
that satisfy some necessary optimality condition. The literature on nonsmooth prob-
lems is almost entirely devoted to the so-called criticality optimality condition, which
is none other than the generalized Fermat rule with respect to some general subdif-
ferential set. It is important to note that the term “criticality” is actually used to
describe several different optimality conditions, with different levels of restrictiveness,
as the restrictiveness of this condition depends on the specific type of subdifferential
set used in the definition. In the DC literature, the notion of criticality refers to a dif-
ferent condition which we discuss later on. For more on the criticality condition with
respect to various general subdifferential sets, see the comprehensive books [21, 27],
and for more specific instances, see, for example, [10, 11] and references therein.

The stationarity condition is defined as the lack of feasible descent directions.
Since f is differentiable and g is convex, the directional derivative for the nonsmooth
objective function h exists everywhere, and the stationarity condition can be defined
equivalently as the lack of negative directional derivatives (at any feasible direction).
When the objective function is smooth, criticality and stationarity coincide. In the
case where the objective function is not smooth, these conditions might not coincide.
To the best of our knowledge, there is no research connecting these two conditions
in the setting of (P) or in a similar setting other than [22], which proves that sta-
tionarity is more restrictive compared to criticality (called Clarke-stationarity in the
paper) defined with respect to the Clarke-generalized gradient in some classes of DC
problems. In any case, our goal is to develop methods that converge to stationary
points, and therefore we will not discuss the criticality condition any further.

For a nonsmooth objective function, it is hard to verify if a point satisfies station-
arity, as an infinite number of directions needs to be examined. Accordingly, there
are very few methods that are guaranteed to converge to stationary points in the case
of a nonsmooth and nonconvex objective function. Actually, to the best of our knowl-
edge, the only study that provides a method that converges to stationary points in
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58 AMIR BECK AND NADAV HALLAK

a general setting of minimizing a continuous (not necessarily differentiable) objective
function over a closed convex set is [23]. The method proposed in [23] achieves this
by minimizing at each iteration a multidimensional approximation function, which is
a consistent majorizer (recalled in section 4.1.1), over the feasible set. Hence, the
ability to minimize the approximation function is a necessary requirement, which is
not satisfied unless the approximation function itself is very simple (which is not the
case for most composite problems comprising nonconvex functions).

For a specific class of DC programming problems, two methods that are guaran-
teed to converge to a stationary point were presented in [22], along with a thorough
review of optimality conditions in nonsmooth DC problems. This class comprises
problems in which the objective DC function is of the form f̃(x) − g̃(x), where f̃ is
not necessarily differentiable and g̃ is the pointwise maximum of a finite number of
continuously differentiable convex functions. We also note the more recent paper [20],
which studied the same class of DC problems as the one considered in [22], in which
DCA-type methods were introduced and proven to converge to an optimality condi-
tion that is more restrictive than stationarity. As opposed to the aforementioned DC
methods, we assume neither a specific structure of the function g (aside from being
convex) nor the convexity of f , but we do assume that f is continuously differentiable.
Hence, although some problems belong to both models, problem (P) and the model
in [20, 22] differ from each other.

Paper layout. Section 2 deals with positively spanning sets, including methods
to obtain members of such sets or to construct an entire positively spanning set. No-
table examples of positively spanning sets are given at the end of section 2. Section 3
studies the notion of stationarity in the context of problem (P) and includes the result
that stationarity can be defined equivalently using a finite number of directions. This
equivalence is the pillar stone on which we will later build the methods that converge
to stationary points. The case in which f is convex and consequently (P) is a DC
problem is also discussed, and we compare the stationarity condition to the well-
known DC-criticality condition defined in the DC literature. In section 4 we present
a deterministic method and a random method, both of which converge (subsequently,
the latter almost surely) to a stationary point, and analyze their convergence. Finally,
we test our methods on two numerical experiments in section 5.

Notation. Vectors are denoted by boldface lowercase letters, e.g., y, and matrices
by boldface uppercase letters, e.g., B. The vectors of all zeros and ones are denoted
by 0 and e, respectively. The canonical basis of Rn is denoted by e1, e2, . . . , en. The
matrix I is the identity matrix whose dimension will be clear from the context. We
use standard notation for the directional derivative; i.e., h′(x;d) is the directional
derivative of h at x ∈ Rn in the direction d ∈ Rn. Given a positive scalar ε > 0
and a vector x∗ ∈ Rn, Bε(x∗) = {x ∈ Rn : ‖x − x∗‖2 ≤ ε} denotes the closed
ball with center x∗ and radius ε. The n-dimensional unit-simplex set is given by
∆n = {x ∈ Rn : eTx = 1,x ≥ 0}. For a positive integer n, we use the standard
notation [n] ≡ {1, 2, . . . , n}. Given a set C ⊆ Rn and a point x ∈ C, the normal cone
of C at x is defined as NC(x) = {y ∈ Rn : yT (z − x) ≤ 0 for any z ∈ C}. Given a
linear system

(1.1) Bx = c, x ≥ 0,

where B ∈ Rm×n, c ∈ Rm, a basic feasible solution of system (1.1) is a vector x̃ that
satisfies (1.1) and has the following property: The columns of B corresponding to the
positive components in x̃ are linearly independent. It is well known (see, for example,
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FEASIBLE DESCENT DIRECTIONS METHODS 59

[9]) that the extreme points of the polyhedron defined by (1.1) are exactly its basic
feasible solutions.

2. Positive spanning feasible directions (PSD) sets.

2.1. Positive spanning sets. A cornerstone in the development of methods
seeking stationary points is the characterization of the stationarity condition in terms
of a finite number of feasible directions rather than in terms of all feasible directions.
This finite characterization of the stationarity condition will be obtained through the
notion of positive spanning sets ([13, 24]).

Definition 2.1 (positive span [24, Definition 2.3]). The positive span of a finite
set of vectors S = {v1,v2, . . . ,vk} ⊆ Rn, denoted by pos(S), is the convex cone given
by

pos(S) :=

{
k∑

i=1

λivi : λi ≥ 0, i = 1, 2, . . . , k

}
.

A linear combination with nonnegative coefficients is called a positive linear com-
bination, and thus pos(S) comprises all positive linear combinations of vectors from
S.

Definition 2.2 (positive spanning set [24, Definition 2.4]). A finite set S ⊆ Rn

is a positive spanning set of a convex cone C ⊆ Rn if pos(S) = C. In this case, S is
said to positively span C.

Example 2.1. Two well-known positive spanning sets of Rn are

(2.1) E1 = {e1, e2, . . . , en,−(e1 + e2 + · · ·+ en)}

and

(2.2) E2 = {±e1,±e2, . . . ,±en}.

These two sets are “irreducible” in the sense that neither of them will be a positive
spanning set of Rn if any one of the vectors comprising them is removed.

Example 2.2. Consider the linear subspace (which is a convex cone)

C = {x ∈ Rn : Dx = 0},

where D ∈ Rm×n. A positive spanning set of C is {±v1,±v2, . . . ,±vk}, where
{v1,v2, . . . ,vk} is a basis for the null space of D.

2.2. Generating positive spanning sets of general polyhedral cones. In
section 4 we will propose two methods that utilize positive spanning sets of certain
polyhedral cones. The first one will require finding a complete positive spanning set
of a polydehral cone given in the following general form:

(2.3) C = {d ∈ Rn : Bd ≤ 0},

where B ∈ Rp×n.
Finding a positive spanning set for C is none other than the classical representa-

tion conversion problem for convex cones, from the so-called H-representation to the
so-called V-representation (this conversion problem is also known as the vertex enu-
meration problem), and as such has well-established methods and implementations;
for more details, see [31, Chapter 1] or [14, section 9].
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60 AMIR BECK AND NADAV HALLAK

Off-the-shelf software that contains procedures to compute positive spanning sets
include cdd,1 PORTA,2 and Polymake3 [3]. A particular procedure designated to
converse H-representation to V-representation (i.e., finding a positive spanning set
for C) is lrs [4], which uses a smart implementation of the simplex method in linear
programming to compute the V-representation.4

2.3. Generating a random direction. The second method we will propose
requires that one vector from a spanning set is picked at random. The distribution
by which the vector is picked can be arbitrary (e.g., not necessarily uniform) but
must satisfy that each vector in the positive spanning set is picked with a positive
probability. If it is easy to compute all the points in the positive spanning set, as in
the cases of boxes and the unit-simplex (cf. Examples 2.5 and 2.8, respectively), then
picking a vector from the positive spanning set by any chosen discrete distribution is
a trivial task.

However, in the general case, generating the complete list of vectors in a positive
spanning set can be an exhaustive task. Instead, we exploit the equivalence relation
between extreme rays and basic feasible solutions of linear programming problems
(see [4, section 2]) to define a procedure that randomly chooses a direction from a
given positive spanning set without explicitly computing the entire set. The linear
programming-related details are very similar to those used in [4] (specifically, see
section 2 there) for the development of the lrs algorithm. Therefore, for brevity’s
sake, we refer the reader to [4] for additional background and information.

To define the randomized procedure, we consider the standardization of the sys-
tem of inequalities (see, e.g., [9]) in (2.3) done by replacing d by d+ − d−, where
d+,d− ≥ 0, and introduce a slack variables vector w to convert the inequalities into
equalities. Finally, we add to the system a constraint that imposes that the sum of
all variables is 1:

Bd+ −Bd− + w = 0

eTd+ + eTd− + eTw = 1

d+,d−,w ≥ 0.

(2.4)

The known fact (see, e.g., [4]) that we require is that the basic feasible solutions of
the above linear system induce a positive spanning set of C.

Theorem 2.1 ([4]). Let {(d+
i ,d

−
i ,wi)}ki=1 be the set of all basic feasible solutions

of the linear system (2.4). Then the set

V = {d+
i − d−i : i = 1, 2, . . . , k}

is a positive spanning set of Dx.

Remark 2.1. If the system of inequalities defining the cone already contains non-
negativity constraints on some of the variables, then there is no need to decompose
these variables. The refinement of Theorem 2.1 to this case is completely straightfor-
ward. To illustrate this generalization, assume that the first q (q ∈ [n]) variables are
constrained to be nonnegative. Therefore, we consider a cone of the form

S = {d ∈ Rn : Bd ≤ 0, di ≥ 0, i = 1, 2, . . . , q},

1http://www-oldurls.inf.ethz.ch/personal/fukudak/cdd home.
2https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/.
3https://polymake.org/.
4http://cgm.cs.mcgill.ca/∼avis/C/lrs.html.

D
ow

nl
oa

de
d 

01
/0

7/
20

 to
 1

32
.6

6.
11

.2
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www-oldurls.inf.ethz.ch/personal/fukudak/cdd_home
https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/
https://polymake.org/
http://cgm.cs.mcgill.ca/~avis/C/lrs.html


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEASIBLE DESCENT DIRECTIONS METHODS 61

where B ∈ Rp×n. We make the notation that d is composed of the vectors d1 ∈
Rq,d2 ∈ Rn−q as d =

(
d1

d2

)
. Then S can be written as

S = {d ∈ Rn : B1d1 + B2d2 ≤ 0,d1 ≥ 0},

where B1 ∈ Rp×q and B2 ∈ Rp×(n−q) are such that B = (B1,B2). To standardize the
system, we split d2 as d2 = d+

2 −d−2 , where d+
2 ,d

−
2 ≥ 0, and introduce a nonnegative

slack variables vector w. Also, we add a constraint that the sum of all variables is 1:

B1d1 + B2d
+
2 −B2d

−
2 + w = 0

eTd1 + eTd+
2 + eTd−2 + eTw = 1

d1,d
+
2 ,d

−
2 ,w ≥ 0.

(2.5)

A refinement of Theorem 2.1 states that if {(di
1,d

+,i
2 ,d−,i2 ,wi)}ki=1 are all the basic

feasible solutions of the system (2.5), then the set V = {( di
1

d+,i
2 −d−,i

2

) : i = 1, 2, . . . , k}
is a positive spanning set of S.

The next example demonstrates how to derive a positive spanning set from the
basic feasible solutions of a linear system.

Example 2.3. Consider the cone

C = {d ∈ Rn : eTd = 0, di ≥ 0, i = 1, 2, . . . , k}.

By Theorem 2.1 a positive spanning set of C can be extracted from the set of all basic
feasible solutions of the system

eTd1 + eTd+
2 − eTd−2 = 0,

eTd1 + eTd+
2 + eTd−2 = 1,

d1 ∈ Rk
+,d

+
2 ,d

−
2 ∈ Rn−k

+ .

(2.6)

A simple computation shows that the set of basic feasible solutions of (2.6) is A1∪A2,
where

A1 ≡
{

(d1,d
+
2 ,d

−
2 ) = 0.5 (ei,0, ej) : i ∈ [k], j ∈ [n− k]

}
,

A2 ≡
{

(d1,d
+
2 ,d

−
2 ) = 0.5 (0, ei, ej) : i, j ∈ [n− k]

}
.

The corresponding positive spanning set of C is (after also multiplying all vectors by
2)

W = {ei − ej+k, i ∈ [k], j ∈ [n− k]} ∪ {ej1+k − ej2+k, j1 ∈ [n− k], j2 ∈ [n− k]}.

Many of the vectors in W can be removed since they are positive combinations of
other vectors in the set. It is easy to show that the following subset of vectors from
W positively spans all the vectors in W and is therefore a positive spanning set of S:

V = {ei − ek+1 : i ∈ [k]} ∪ {ej+k − ej+k+1, ej+k+1 − ej+k : j ∈ [n− k − 1]} .

We will now show how to randomly generate a vector from the positive spanning
set defined by the procedure described in Theorem 2.1. Recall that each vector in the
spanning set corresponds to a basic feasible solution of the system (see (2.4))

Ãd̃ = b̃, d̃ ≥ 0,
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where

Ã =

(
B −B I
eT eT eT

)
∈ Rm̃×ñ, d̃ =

d+

d−

w

T

∈ Rñ,

b̃ =

(
0
1

)T

∈ Rm̃, ñ = 2n+ p, m̃ = p+ 1.

The random selection procedure is as follows.

Algorithm 1 Procedure RandS

Step 1. Pick randomly via the uniform distribution m̃ indices out of [ñ] without
repetitions. The chosen set of indices is denoted by I.
Step 2. If the following conditions are satisfied:

(i) the columns of Ã corresponding to I are linearly independent;
(ii) the unique solution (by (i)) of the system Ãd̃ = b̃, d̃i = 0 for any i /∈ I,

satisfies that d̃ ≥ 0,
then return d̃. Otherwise, return to Step 1.

It is not an easy task to compute the probability of each vector in the positive
spanning set to be picked by the procedure, but we can easily write a lower bound
for this probability. Indeed, each vector in the positive spanning set corresponds to
at least one choice of basis. This means that the probability that a certain vector
is picked is lower bounded by the probability that a certain set of indices is picked,
meaning by 1

( ñ
m̃)

= 1

(2n+p
p+1 )

.

2.4. PSD sets. Our interest is in positive spanning sets that span the cone of
feasible directions at an arbitrary point x ∈ B, which is given by

(2.7) Dx = {d ∈ Rn : aTi d ≤ 0, i ∈ I(x)},

where
I(x) ≡ {i ∈ {1, 2, . . . ,m} : aTi x = bi}

denotes the set of active constraints at x.

Definition 2.3 (PSD sets). Let x ∈ B, and let Dx be the corresponding cone
of feasible directions at x. Then a finite set Vx ⊆ Dx that positively spans Dx =
{d ∈ Rn : aTi d ≤ 0, i ∈ I(x)} is called a PSD set of B at x.

We now list several examples of PSD sets of frequently used constraints sets.

Example 2.4 (PSD set for Rn). If x ∈ B satisfies Ax < b, then Dx = Rn, and
consequently each of the sets E1 and E2 given in (2.1) and (2.2), respectively, are
PSD sets of B at x.

Example 2.5 (PSD set for a box). Suppose that B is a box,

B = Box[`,u] ≡ {x ∈ Rn : `i ≤ xi ≤ ui, i = 1, 2, . . . , n},

where `,u ∈ Rn are such that ` ≤ u. Denote

I0(x) = {i : xi ∈ (`i, ui)},
I−(x) = {i : xi = `i},
I+(x) = {i : xi = ui}.
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Obviously, for any x ∈ Rn, the set of all feasible directions at x is

Dx = {d ∈ Rn : di ≥ 0, i ∈ I−(x), dj ≤ 0, j ∈ I+(x)},

and the following is a PSD set of B at x:

(2.8) Vx = {±ei : i ∈ I0(x)} ∪ {ei : i ∈ I−(x)} ∪ {−ei : i ∈ I+(x)}.

Example 2.6 (PSD set for affine sets). Suppose that B is given by

B = {x ∈ Rn : Cx = f},

where C ∈ Rp×n and f ∈ Rp. Then at any x ∈ B, it holds that Dx = {d ∈ Rn :
Cd = 0}, and hence by Example 2.2, to construct a positive spanning set of Dx, we
can take any basis for the null space of C, say {v1,v2, . . . ,vk}, and the following will
be a positive spanning set of Dx, meaning a PSD set of B at x:

Vx = {±v1,±v2, . . . ,±vk}.

Example 2.7 (PSD set for the unit-sum set). Suppose that B is the unit-sum set
B = {x ∈ Rn : eTx = 1}, meaning that for any x̃ ∈ B it holds that

Dx̃ = {d ∈ Rn : eTd = 0}.

Therefore, by Example 2.2 it follows that a PSD set of B at x̃ is any set comprising
the plus and minus of a basis for the null space of Ã = eT . In this case, we can choose
the following PSD set:

Vx̃ = {ei − ei+1 : i ∈ [n− 1]} ∪ {ei+1 − ei : i ∈ [n− 1]}.

Example 2.8 (PSD set for the unit-simplex). Suppose that B is the unit-simplex
B = ∆n ≡ {x ∈ Rn : eTx = 1,x ≥ 0}. Then at a given x ∈ ∆n, the set of feasible
directions is given by

Dx = {d ∈ Rn : eTd = 0, di ≥ 0, i ∈ I(x)},

where
I(x) = {i ∈ [n] : xi = 0}.

Denote I(x) = {i1, i2, . . . , ik}, where i1 < i2 < · · · < ik and J(x) = [n] \ I(x) =
{j1, j2, . . . , jn−k}. Assume that ĩ ∈ J(x) is arbitrarily chosen. By Example 2.3, it
follows that a PSD set of B at x is given by

V =
{
eip − eĩ : p ∈ [k]

}
∪
{
ejp − ejp+1

, ejp+1
− ejp : p ∈ [n− k − 1]

}
.

3. Optimality conditions.

3.1. Stationarity. In this section we will establish the key result that station-
arity can be characterized via a (finite) PSD set. We begin by recalling well-known
properties of the directional derivative of g that follow from the convexity of g (see,
e.g., [26, section 23]).

Lemma 3.1. For any x ∈ Rn, it holds that
(a) g′(x;d) exists for any d ∈ Rn;
(b) the function d 7→ g′(x;d) is convex;
(c) g′(x;αd) = αg′(x;d) for any α ≥ 0 and d ∈ Rn.
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Note that both f and g have directional derivatives at all points in Rn since f is
differentiable and g is convex. In fact,

h′(x;d) = 〈∇f(x),d〉 − g′(x;d) for all x ∈ Rn.

Our main objective will be to construct an algorithm aiming at finding stationary
points of problem (P), where here a “stationarity point” means a point with no feasible
descent directions. Recall that the cone of all feasible directions at a point x ∈ B is
given by

Dx = {d ∈ Rn : aTi d ≤ 0, i ∈ I(x)}.

Definition 3.1. A point x∗ ∈ B is called a stationary point of (P) if it has no
feasible descent directions:

(3.1) h′(x∗;d) = 〈∇f(x∗),d〉 − g′(x∗;d) ≥ 0 for all d ∈ Dx∗ .

We can derive an equivalent condition for stationarity written in terms of ∇f and
∂g.

Lemma 3.2. x∗ ∈ B is a stationary point of (B) if and only if

(3.2) −∇f(x∗) + ∂g(x∗) ⊆ NB(x∗).

Proof. A vector x∗ ∈ B is a stationary point of (P) if and only if

〈∇f(x∗),d〉 − g′(x∗;d) ≥ 0 for all d ∈ Dx∗ .

By the max formula ([26, Theorem 23.4]), g′(x∗;d) = max {〈v,d〉 : v ∈ ∂g(x∗)},
and hence x∗ ∈ B is a stationary point of (P) if and only if for any v ∈ ∂g(x∗) it
holds that

(3.3) 〈∇f(x∗),d〉 ≥ 〈v,d〉 for all d ∈ Dx∗ .

In other words, if and only if for any v ∈ ∂g(x∗), it holds that x∗ is a stationary point
of the problem

min{f(x)− 〈v,x〉 : x ∈ B},

a property that can be equivalently written as v ∈ ∇f(x∗) + NB(x∗). To conclude,
x∗ ∈ B is a stationary point of (P) if and only if

∂g(x∗) ⊆ ∇f(x∗) +NB(x∗),

from which (3.2) readily follows.

We conclude this subsection by proving a key result, which states that a point
x ∈ B is a stationary point of problem (P) if and only if none of the directions in a
PSD set Vx of B at x is a descent direction.

Theorem 3.1 (characterization of stationarity via PSD sets). Let x∗ ∈ B, and
let Vx∗ = {v1,v2, . . . ,vs} be a PSD set of B at x∗. Then x∗ is a stationary point of
(P) if and only if

(3.4) h′(x∗;vi) ≥ 0, i = 1, 2, . . . , s.

D
ow

nl
oa

de
d 

01
/0

7/
20

 to
 1

32
.6

6.
11

.2
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEASIBLE DESCENT DIRECTIONS METHODS 65

Proof. If x∗ is a stationary point of (P), then h′(x∗;d) ≥ 0 for all d ∈ Dx∗ . Since
Vx∗ ⊆ Dx∗ (see Definition 2.3), it follows that (3.4) holds.

Suppose now that (3.4) holds. Let d ∈ Dx∗ . Then since Vx∗ positively spans
Dx∗ , we can conclude that there exists β ∈ Rs

+ such that

(3.5) d =

s∑
j=1

βjvj = ‖β‖1
s∑

j=1

βj
‖β‖1

vj .

We can now deduce

g′(x∗;d) = g′

x∗; ‖β‖1
s∑

j=1

βj
‖β‖1

vj

 [(3.5)]

= ‖β‖1g′
x∗;

s∑
j=1

βj
‖β‖1

vj

 [Lemma 3.1(c)]

≤ ‖β‖1
s∑

j=1

βj
‖β‖1

g′(x∗;vj) [Lemma 3.1(b)]

=

s∑
j=1

βjg
′(x∗;vj)

≤
s∑

j=1

βj〈∇f(x∗),vj〉 [(3.4)]

= 〈∇f(x∗),d〉 [(3.5)].

Thus, h′(x∗;d) = 〈∇f(x∗),d〉 − g′(x∗;d) ≥ 0 for any d ∈ Dx∗ , and hence x∗ is a
stationary point of (P).

3.2. Optimality conditions under convexity of f . In the special case where
f is convex, problem (P) falls under the class of DC programming problems. The DC
programming class contains a vast number of problems and accordingly has been
studied extensively in the past decades; the interested reader can refer to the review
paper [17] and references therein. For a thorough study of optimality conditions in
nonsmooth DC problems, see the recent work [22].

We note that our setting given in Assumption 1 is on the one hand more restrictive
than the DC setting since we assume that f is smooth but on the other is more general
since f can be nonconvex.

Probably the most used optimality condition in the DC literature is criticality
(see [22]). For the sake of simplicity of presentation, we will assume at the moment
that B = Rn and that f is convex. In this case, criticality of a point x∗ ∈ B means
that ∂f(x∗) ∩ ∂g(x∗) 6= ∅, which by the fact that ∂f(x∗) = {∇f(x∗)} implies that
criticality of x∗ is the same as the condition

(3.6) ∇f(x∗) ∈ ∂g(x∗).

On the other hand, by Lemma 3.2, it follows that stationarity in this setting is the
same as

(3.7) ∂g(x∗) = {∇f(x∗)},
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which in particular implies that g is differentiable at x∗. Obviously, the stationarity
condition (3.7) is stronger/more restrictive than the criticality condition (3.6). How-
ever, most algorithms in the DC literature and, in particular, the celebrated DCA
method (see, for example, [2] and references therein) are guaranteed to produce a
critical point which is not necessarily a stationary point. An exception for this state
of affairs is the work [22], which shows that in the special case where g is given
by a maximum of differentiable functions, convergence to a stationary point can be
warranted by a specialized procedure.

4. Feasible descent majorization minimization methods.

4.1. Preliminaries.

4.1.1. Consistent majorizers. We can now proceed to developing methods
that find stationary points of (P). Two methods will be presented—a deterministic
one in which the entire PSD set is used and a stochastic one in which a direction
in the PSD set is chosen randomly (without necessarily computing the entire PSD
set). Our proposed methods and the corresponding analysis will utilize an auxiliary
function u : Rn × Rn → R that is a consistent majorizer of h, a concept that is now
recalled (see, for example, [7, 23]).

Definition 4.1 (consistent majorizer). Given a function h : Rn → R, a function
u : Rn × Rn → R is called a consistent majorizer of h if it satisfies the following:

(a) u(y,x) ≥ u(y,y) for any x,y ∈ Rn.
(b) u(y,y) = h(y) for any y ∈ B.
(c) For any x ∈ Rn, the function ux(y) = u(y,x) is directionally differentiable

and satisfies that

u′x(x;d) = h′(x;d) for any d ∈ Rn.

(d) For any y ∈ B, the function x 7→ u(y,x) is continuous.

Two practical choices for the auxiliary function are

(4.1) u(y,x) ≡ f(y)− g(y) ≡ h(y)

and

(4.2) u(y,x) ≡ f(x)− g(y) + 〈∇f(x),y − x〉+
Lf

2
‖y − x‖22.

The auxiliary function (4.1) is obviously a consistent majorizer. In order for (4.2) to
be a consistent majorizer, it is sufficient to add the assumption that f : Rn → R is a
differentiable Lf -smooth (Lf > 0) function, meaning that

(4.3) ‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖ for all x,y ∈ Rn.

When f is Lf -smooth, it satisfies the property known as the descent lemma.

Lemma 4.1 (descent lemma [8, Proposition A.24]). For any x,y ∈ Rn,

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
Lf

2
‖y − x‖22.

It is easy to show that by the underlying Assumption 1 and the descent lemma,
u given in (4.2) is a consistent majorizer of h.
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4.1.2. ε-active constraints. A known phenomenon in feasible directions meth-
ods is the jamming phenomenon, which, in plain words, means that the algorithm does
not converge to an optimal/stationary solution. Roughly speaking, this is due to the
fact that the algorithmic map of the feasible direction scheme in constrained problems
is not necessarily closed (cf. [30, section 13]). The study of general closed algorithmic
maps and their convergence is much due to Zangwill; see his comprehensive book [30]
for more details or the more recent [5, Chapters 7 and 10].

To deal with this phenomenon, our methods execute the strategy of using “almost
active” (called ε-perturbed in [30, section 13.4]) constraints instead of the actual set
of active constraints. This strategy is known by its use in the ε-perturbation method
(cf. [30, section 13.4] or [5, section 10.2]), which is designated for minimizing a continu-
ously differentiable function over linear constraints. Unfortunately, the ε-perturbation
method cannot be used or adjusted for minimizing a nonsmooth objective function,
as the continuity of the derivative is essential for its proper convergence. Accordingly,
our Algorithm 2 significantly differs from the ε-perturbation method.

We note that [22] also implemented an “almost-active” approach, but instead
of doing so for the constraints set, it was applied on the pointwise maximum term
(on a set of continuously differentiable functions) in the objective function of the DC
problem minx∈X{f(x)−maxi=1,2,...,m gi(x)}; see [22, section 5] for additional details.

The definition of ε-active constraints ([30, section 13.4]) is given next.

Definition 4.2 (ε-active constraints). Let x ∈ B and ε > 0. A constraint in-
dexed by i is called an ε-active constraint if bi − aTi x ≤ ε. The set of ε-active con-
straints is given by

Iε(x) = {i ∈ [m] : bi − aTi x ≤ ε}.
It is well known (see, for example, [6, Example 10.11]) that the distance between

x ∈ B and the hyperplane corresponding to the ith constraint {y : aTi y = bi} is
(recall that ‖ai‖2 = 1)

(4.4) min
y
{‖y − x‖2 : aTi y = bi} =

|aTi x− bi|
‖ai‖2

= bi − aTi x.

From the above observation, it follows that the set of ε-active constraints at x ∈ B is
nothing more than the set of all constraints whose corresponding hyperplanes are at
a distance of at most ε from x.

4.2. The greedy feasible descent directions method. So far, we have con-
sidered the cone of feasible directions to be associated with a certain point x ∈ B.
Note that the dependency of Dx in x is through the set of active constraints, meaning
that if for two points x,y ∈ B it holds that I(x) = I(y), then Dx = Dy. This leads us
to generalize the concept of the cone of feasible directions at a point to the notion of
the cone of feasible directions relative to a set of constraints. Specifically, if S ⊆ [m],
then the cone of feasible directions relative to S is defined by

DS = {d ∈ Rn : aTi d ≤ 0, i ∈ S}.

Evidently, in this notation, for any x ∈ B,

Dx = DI(x).

Remark 4.1. For any x ∈ B and ε > 0, I(x) ⊆ Iε(x), and consequently

DIε(x) = {d : aTi d ≤ 0, i ∈ Iε(x)} ⊆ {d : aTi d ≤ 0, i ∈ I(x)} = DI(x).
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The following algorithm generates points whose accumulation points are station-
ary points of (P). It does so by computing a PSD set at the current point and then
minimizing the approximation function along each of the directions in the PSD set.

At each iteration, the algorithm requires minimizing a univariate function over
a compact interval per direction in the chosen PSD set. The inputs are a feasible
starting point x0 ∈ B, a consistent majorizer u of h, a bound on the stepsize r > 0
at each iteration k, and a tolerance parameter ε > 0 which is required in the conver-
gence analysis. We denote by C(·) an operator whose input is an index set signifying
constraints S ⊆ [m], and its output is a positive spanning set of DS . In the general
case, the methods and software listed in section 2.2 can be used to compute C(·).

Algorithm 2 Greedy Feasible Descent Directions Method (GFD Method).

Input. x0 ∈ B, ε > 0, r > 0, consistent majorizer u of h.
General step.

Step 1. Compute ε-active constraints

Iε(xk) = {i ∈ [m] : bi − aTi x
k ≤ ε};

Step 2. Compute a positive spanning set of Iε(xk):

V k = {vk
1 ,v

k
2 , . . . ,v

k
sk
} ← C(Iε(xk));

Step 3. For any i ∈ [sk] compute

qi ∈ argmin
q∈[0,r]

{
u(xk + qvk

i ,x
k) : xk + qvk

i ∈ B
}

;

Step 4. Update

(ik, tk) ∈ argmin
(i,q)

{
u(xk + qvk

i ,x
k) : i ∈ {1, 2, . . . , sk}, q ∈ {q1, q2, . . . , qsk}

}
,

xk+1 = xk + tkv
k
ik
.

Remark 4.2. Several remarks on the definition of the GFD method are in order:
• Whenever the zero value is a solution for the optimization problem in Step

3, we make the convention that it is always chosen.
• For the problems solved in Steps 3 and 4, we assume that there exists a

predetermined deterministic rule to choose exactly one solution in the case of
multiple solutions.

• We note that it is necessary that the stepsize in Step 3 will be determined
by an exact line search in order to establish the convergence properties of
the GFD method. There are various techniques to minimize a univariate
function over a compact interval; see, for example, the short discussion in
[25, section 8.7] or specifically the commonly used method [15]. In practice,
univariate optimization over compact intervals is considered a very plausible
task due to today’s computational power.

Remark 4.3 (on the value of ε). When the feasible set is bounded, a too large value
of the parameter ε will yield Iε(x) = [m] for some or all feasible points. Consequently,
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since the set is bounded, the resulting PSD set with respect to Iε(xk) will be a
singleton containing the zeros vector. Obviously, taking a sufficiently small ε will solve
this issue. Moreover, the method can be adjusted so that if the PSD set computed in
Step 2 is a singleton, then the value of ε is reduced.

Remark 4.4 (on the fixed point condition of the GFD). By the update step of
the GFD method, a fixed point x∗ ∈ B of the algorithm is not only a stationary
point but also must be a directional-wise minimum (on a bounded interval) for any
direction in the PSD set at x∗. This means that the fixed point condition of the GFD
method may be strictly more restrictive compared to the stationarity condition, as
also demonstrated by the results of the numerical experiments in section 5.1.

Remark 4.5 (comparison to the literature). We note two methods that in some
cases can be used to obtain stationary points for problem (P).

The first was studied by [23], where it was shown that given a consistent majorizer,
the majorization-minimization algorithm defined by the update step

xk+1 ∈ argmin
x∈B

u(x,xk)

has the property that its accumulation points are stationary points of (P). We note
that this approach cannot be taken in problems in which minimizing the auxiliary
function is hard—i.e., when g is not “simple.” Among others, the GFD method
differs from the “standard” majorization-minimization method by the fact that it
employs a univariate function minimization over a compact interval, as opposed to
minimization of a multidimensional function over a closed and convex set.

The second was proposed by [22] to obtain stationary (named there d-stationary)
points in DC programming, where f is convex and g is a piecewise maximum of
a collection of continuously differentiable convex functions (note that [22] does not
assume that f is differentiable). We emphasize that the GFD method does not assume
any special structure of g and only exploits the fact that it is convex. Additionally,
the GFD method does not use any information on the derivatives, in contrast to the
method proposed in [22].

In many cases, Steps 1 and 2 have a very simple implementation, as demonstrated
by the following example.

Example 4.1. Suppose that B = ∆′n is the unit-sum set. Then by Example 2.7
the set

V = {(ei − ei+1) : i ∈ [n− 1]} ∪ {−(ei − ei+1) : i ∈ [n− 1]}

is a PSD set at any point x ∈ B. Thus, the actual executions of Steps 1 and 2 can
be skipped by using V as the PSD set in all iterations. Due to the definition of V ,
the 2n − 2 optimization problems in Step 3 can be replaced by the equivalent n − 1
optimization problems

qi ∈ argmin
q∈[−r,r]

u(xk + q(ei − ei+1),xk).

For any i ∈ [n− 1], if u is chosen as in (4.1), then

qi ∈ argmin
q∈[−r,r]

h(xk + q(ei − ei+1)),

and if it is chosen as in (4.2) (in case where f is Lf -smooth), then

qi ∈ argmin
q∈[−r,r]

{
−g(xk + q(ei − ei+1)) + q(∇if(xk)−∇i+1f(xk)) + Lfq

2
}
.

D
ow

nl
oa

de
d 

01
/0

7/
20

 to
 1

32
.6

6.
11

.2
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

70 AMIR BECK AND NADAV HALLAK

Fig. 1. Solid black lines are the constraints defining B. Solid red lines are the neighborhoods
of x∗ and x; the radii of the neighborhoods are colored in dashed red. Some feasible directions at x∗

are colored in green.

Two technical lemmas used in the convergence analysis will now be stated and
proved. Roughly speaking, these lemmas state that for any point x ∈ B in a suffi-
ciently small neighborhood of x∗ ∈ B, the ε-active constraints set at x is the same
as the active constraints set of x∗, and any feasible direction at x∗ is also a feasible
direction at x. This occurs when ε is taken to be smaller than half the distance from
x∗ to its closest hyperplane corresponding to a nonactive constraint of x∗ (denoted
by εx∗); Figure 1 illustrates this phenomenon.

Lemma 4.2. Let x∗ ∈ B. Define

(4.5) εx∗ :=

{
minl/∈I(x∗){bl − aTl x

∗}, if I(x∗) 6= [m],

∞, otherwise.

Then for any ε ∈ (0, εx∗
2 ) the following implication holds true:

x ∈ Bε(x∗) ∩B ⇒ Iε(x) = I(x∗).

Proof. The result is trivial if I(x∗) = [m]. Suppose that I(x∗) 6= [m]. Let ε ∈
(0, εx∗

2 ), and suppose that x ∈ B and ‖x−x∗‖2 ≤ ε. We will show that Iε(x) = I(x∗).
If l ∈ I(x∗), then aTl x

∗ = bl, and we have that

bl − aTl x = |aTl x∗ − bl + aTl (x− x∗)| ≤ |aTl x∗ − bl|+ ‖al‖2‖x− x∗‖2
= |aTl x∗ − bl|+ ‖x− x∗‖2 ≤ ε.

Thus, l ∈ Iε(x), and consequently I(x∗) ⊆ Iε(x).
If l /∈ I(x∗), then the definition of εx∗ implies the inequality bl−aTl x

∗ ≥ εx∗ , and
we have that

bl − aTl x = |aTl x− bl| = |aTl x∗ − bl + aTl (x− x∗)|
≥ |aTl x∗ − bl| − |aTl (x− x∗)|
≥ |aTl x∗ − bl| − ‖al‖2‖x− x∗‖2
≥ εx∗ − ε
> ε.

Thus, l /∈ Iε(x), and consequently Iε(x) ⊆ I(x∗).
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Example 4.2. Suppose that B is the box B = [−a, a]n for some a > 0. Then for
any extreme point of B, x∗ ∈ {−a, a}n, it holds that εx∗ = 2a.

The second technical lemma is given next.

Lemma 4.3. Let x∗ ∈ B, r > 0, and d ∈ Dx∗ such that d 6= 0. Then for any
ε ∈ (0, εx∗

2 ) there exists rε ∈ (0, r] such that

(4.6) x + td ∈ B for any x ∈ Bε(x∗) ∩B, t ∈ [0, rε].

Proof. Let ε ∈ (0, εx∗
2 ). Then by Lemma 4.2, for any x ∈ Bε(x∗)∩B it holds that

Iε(x) = I(x∗), and subsequently I(x) ⊆ I(x∗). Let i ∈ [m]; we will show that there
exists riε > 0 such that

(4.7) aTi (x + td) ≤ bi for any x ∈ Bε(x∗) ∩B, t ∈ [0, riε].

Consider the following complementary cases:
(i) Suppose that aTi d ≤ 0. For any x ∈ B it holds that aTi x ≤ bi, and thus

aTi x + taTi d ≤ bi for any t ≥ 0. In particular, (4.7) holds for riε = r.
(ii) Suppose that aTi d > 0. Then d ∈ Dx∗ implies that i /∈ I(x∗). Since I(x) ⊆

I(x∗) for any x ∈ Bε(x∗) ∩B, it holds that i /∈ I(x) for any x ∈ Bε(x∗) ∩B.
That is,

aTi x < bi for any x ∈ Bε(x∗) ∩B.

Consequently, for any x ∈ Bε(x∗) ∩B we have that
bi−aT

i x

aT
i d

> 0, and it holds

that aTi (x + td) ≤ bi for any t ∈ [0, αi
x], where

αi
x = min

{
r,
bi − aTi x

aTi d

}
> 0.

Since αi
x is a positive and continuous function of x over the compact set

Bε(x∗) ∩ B, it follows by the Weierstrass extreme value theorem that it has
a positive minimal value r̃i > 0. Obviously, (4.7) holds with riε = r̃i.

Hence, for rε = min{riε : i ∈ [m]} the required (4.6) holds.

The next theorem establishes the main convergence result of the GFD method.

Theorem 4.1 (convergence of the GFD method). Let {xk}k≥0 be the sequence
generated by the GFD method with input x0 ∈ B, r > 0 and ε > 0. Then

(a) the sequence {h(xk) ≡ f(xk)− g(xk)}k≥0 is nonincreasing;
(b) any accumulation point x∗ of the sequence {xk}k≥0 satisfying that ε < εx∗

2 ,
is a stationary point of (P ).

Proof.
(a) Proof follows from the chain of equalities and inequalities below. The specific

property used from the definition of a consistent majorizer (Definition 4.1)
is indicated. Inequality (*) is due to the definition of the update step of the
method:

f(xk+1)− g(xk+1)
(b)
= u(xk+1,xk+1)

(a)

≤ u(xk+1,xk)

(∗)
≤ u(xk,xk)

(b)
= f(xk)− g(xk).

(b) Let x∗ be an accumulation point of the sequence {xk}k≥0 satisfying that ε <
εx∗
2 . Then there exists a subsequence {xkj}j≥1 such that xkj → x∗ as j →∞,
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and we can assume without loss of generality that {xkj}j≥1 ⊆ Bε(x∗) ∩ B.
Thus, by Lemma 4.2, Iε(xkj ) = I(x∗), and consequently V kj = C(Iε(xkj )) =
C(I(x∗)) for any j ≥ 1. For simplicity, we will use the notation C(I(x∗)) to
denote V kj and C(Iε(xkj )).
By utilizing part (a) and the properties of the consistent majorizer u listed
in Definition 4.1 we obtain that

u(xkj+1 ,xkj+1)

= f(xkj+1)− g(xkj+1) [Definition 4.1(b)]

≤ f(xkj+1)− g(xkj+1) [part (a)]

≤ u(xkj+1,xkj ) [Definition 4.1(a)]

≤ u(xkj + qv,xkj ) ∀v ∈ C(I(x∗)),

q ∈ {t ∈ [0, r] : xkj + tv ∈ B}. [general step]

By Lemma 4.3, since C(I(x∗)) ⊆ Dx∗ , for any v ∈ C(I(x∗)) there exists
rv > 0 such that xkj + rvv ∈ B for any j ≥ 1. By the continuity of h and
the closedness of B, for any v ∈ C(I(x∗)) and any q ∈ [0, rv], we have that
(utilizing the above chain of equalities and inequalities)

u(x∗,x∗) = h(x∗) = lim
j→∞

h(xkj+1) = lim
j→∞

u(xkj+1 ,xkj+1)

≤ lim
j→∞

u(xkj + qv,xkj ) = u(x∗ + qv,x∗),

which implies, by the fact that rv > 0, that v is not a descent direction of
ux∗ at x∗, and consequently u′x∗(x∗;v) ≥ 0. By part (c) in Definition 4.1,

u′x∗(x∗;v) = h′(x∗;v),

and thus

h′(x∗;v) ≥ 0 for any v ∈ C(I(x∗)).

Finally, by Theorem 3.1, x∗ is a stationary point.

4.3. The randomized feasible descent directions method. Evidently, there
are two drawbacks in the GFD method depending on the scale of the problem: (i)
Step 2 requires finding the entire PSD set, which might require computing all the
extreme points of a convex polyhedral (see section 2.2), and (ii) Step 3 executes a
univariate minimization procedure for any element in the acquired PSD set before
updating.

A natural way to cope with these drawbacks is to utilize a stochastic approach
(such as in [22, section 5.2]) in which only a single randomly chosen direction in the
PSD set is computed, and the univariate minimization is executed for this direction
only. This idea is implemented by the Randomized Feasible Descent Directions (RFD)
Method detailed in Algorithm 3.

The RFD method randomly selects a direction from the PSD set of the ε-active
constraints in the current iterate. The probability to choose any direction v ∈ C(S)
for any S ⊆ {1, 2, . . . ,m} is assumed to be a positive constant, meaning that it is
independent of the iteration number. Note that there is a finite number of subsets
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Algorithm 3 Randomized Feasible Descent Directions (RFD) Method.

Input. x0 ∈ B, ε > 0, r > 0, consistent majorizer u of h.
General step.

Step 1. Compute ε-active constraints

Sk = Iε(xk) ≡ {i ∈ [m] : bi − aTi x
k ≤ ε};

Step 2. Randomly select a direction vk ∈ V k ≡ C(Sk);
Step 3. Compute

tk ∈ argmin
q∈[0,r]

{
u(xk + qvk,xk) : xk + qvk ∈ B

}
;

Step 4. Update
xk+1 = xk + tkv

k.

S ⊆ {1, 2, . . . ,m}, and hence the probability to randomly select any direction in any
possible PSD set is bounded away from zero.

Remark 4.6. It is possible that at the kth iteration the choice of vk will result in
tk = 0, meaning that xk+1 = xk. Yet vk may still be chosen at the (k+1)th iteration,
which results in some inefficiency. This can be altered by sensible implementation—
setting the probability to choose vk at the (k + 1)th iteration to 0 (mildly changing
the method).

In what follows, we will often use classic results and definitions regarding mar-
tingales. For brevity, these will only be cited, from the classic textbook [29], without
restatement.

The analysis will be done with respect to the stochastic process {xk}k≥0 and its
corresponding process {hk ≡ h(xk)}k≥0, generated by the RFD method. Note that
the random variable xk+1 depends solely on xk, meaning that the process is a Markov
chain [29, section 0.6]. The filtration {Fk}k≥0 and F∞ are defined in the standard
way (see [29, section 10.1]); i.e., Fk contains information on {x0,x1, . . . ,xk}, and
F∞ is the filtration obtained from the union of all filtrations ([29, section 10.1]). A
statement is said to be true almost surely (a.s.) if the probability that it is true equals
1 (see [29, section 2.4]).

Before proving that any accumulation point of the RFD method is a.s. a stationary
point, we establish some required technical properties of the generated sequence.

Lemma 4.4. Let {xk}k≥0 be the sequence generated by the RFD method, and let
{hk}k≥0 be the corresponding sequence of function values. Then

(i) {hk}k≥0 is a supermartingale (relative to {Fk}k≥0) and

(4.8) h∗ ≤ hk+1 ≤ hk ≤ h0 ∀k ≥ 0,

where h∗ is a lower bound on (P) (see Assumption 1);
(ii) h∗ = limk→∞ hk exists, E(|h∗|) <∞, and h∗ ≤ h∗ ≤ hk for any k ≥ 0;
(iii) limk→∞ E(h∗|Fk) = E(h∗|F∞) = h∗ a.s.
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Proof.
(i) By the definition of the method and the underlying assumptions on (P),

the sequence {hk}k≥0 is monotonic nonincreasing and lower-bounded, which
means that (4.8) holds true. Relation (4.8) in particular implies that E(|hk|) <
∞ and E(hk+1|Fk) ≤ E(hk|Fk) = hk, and thus {hk}k≥0 is a supermartingale.

(ii) The claim follows by invoking Doob’s martingale convergence theorem (cf.
the first theorem in [29, section 14.1]) considering the result in part (a).

(iii) By the previous parts, {hk}k≥0 is uniformly integrable (cf. [29, section 13.3]),
and thus the required follows immediately from Levy’s upward theorem (cf. [29,
section 14.2]) applied to E(h∗|Fk).

We will now show that the RFD method a.s. converges to a stationary point.

Theorem 4.2 (convergence of the RFD method). Let {xk}k≥0 be the sequence
generated by the RFD method with input x0 ∈ B, r > 0 and ε > 0. Then any accu-
mulation point x∗ of the sequence {xk}k≥0 satisfying that ε < εx∗

2 is a.s. a stationary
point of (P).

Proof. Let x∗ be an accumulation point of the sequence {xk}k≥0 satisfying that
ε < εx∗

2 . Then there exists a subsequence {xkj}j≥1 such that xkj → x∗ as j → ∞,
and we can assume without loss of generality that {xkj}j≥1 ⊆ Bε(x∗) ∩B. Thus, by
Lemma 4.2, Iε(xkj ) = I(x∗), and consequently V kj = C(Iε(xkj )) = C(I(x∗)) for any
j ≥ 1.

Denote the distribution over the PSD set C(I(x∗)) = {v1,v2, . . . ,vs} by (p∗1, . . . ,
p∗s)T > 0. By Lemma 4.3 and the assumption that {xkj}j≥1 ⊆ Bε(x∗) ∩ B, there
exists rε ∈ (0, r] such that

xkj + tv ∈ B for any v ∈ C(I(x∗)), j ≥ 1, t ∈ [0, rε].

We will now prove a chain of inequalities based on the properties of u (cf. Defini-
tion 4.1) using the relation

(4.9) tikj
∈ argmin

q∈[0,rε]
u(xkj + qvi,x

kj ), j ≥ 1, i ∈ [s],

and the fact that
(4.10)

min
q∈[0,r]

{
u(xkj + qvi,x

kj ) : xkj + qvi ∈ B
}
≤ u(xkj + tikj

vi,x
kj ) ≤ u(xkj ,xkj ).

For any z ∈ [s] and q ∈ [0, rε] we have that

E(hkj+1|Fkj ) = E(u(xkj+1,xkj+1)|Fkj ) [Definition 4.1(b)]

≤ E(u(xkj+1,xkj )|Fkj
) [Definition 4.1(a)]

=

s∑
i=1

p∗i · min
q∈[0,r]

{
u(xkj + qvi,x

kj ) : xkj + qvi ∈ B
}

[Steps 3 and 4]

≤
s∑

i=1

p∗i · u(xkj + tikj
vi,x

kj ) [(4.10)]

≤ (1− p∗z) · u(xkj ,xkj ) + p∗z · u(xkj + tzkj
vz,x

kj ) [(4.10)]

≤ (1− p∗z) · u(xkj ,xkj ) + p∗z · u(xkj + qvz,x
kj ). [(4.9)]
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Consequently, for any z ∈ [s] and q ∈ [0, rε] it holds that

h∗
a.s.
= lim

j→∞
E(h∗|Fkj

) [Lemma 4.4(iii)]

≤ lim
j→∞

E(hkj+1|Fkj
) [Lemma 4.4(ii)]

≤ lim
j→∞

(
(1− p∗z) · u(xkj ,xkj ) + p∗z · u(xkj + qvz,x

kj )
)

= (1− p∗z) · h∗ + p∗z · u(x∗ + qvz,x
∗). [Definition 4.1(b) and (d)]

Recalling that p∗z > 0 for any z ∈ [s], the latter implies that for any z ∈ [s] we have
that

h∗ = u(x∗,x∗)
a.s.
≤ u(x∗ + qvz,x

∗) ∀q ∈ [0, rε],

which in turn implies, by the fact that rε > 0, that vz is a.s. not a descent direction
of ux∗ at x∗, and consequently

u′x∗(x∗;vz)
a.s.
≥ 0.

Finally, by Definition 4.1(c),

h′(x∗;vz) = u′x∗(x∗;vz)
a.s.
≥ 0 ∀z ∈ [s],

and thus Theorem 3.1 implies that x∗ is a.s. a stationary point.

5. Numerical experiments.

5.1. Fixed point restrictiveness. This experiment will assess the restrictive-
ness of the fixed point (FP) conditions related to each of the three methods—DCA
[2, section 2.5], PRA [22, Algorithm 1], and GFD—in the problem of minimizing a
concave piecewise linear function (Example 1.3) over a box set:
(5.1)

min
x∈[−10,10]n

{−g(x) ≡ −max{c1x + d1, c2x + d2, . . . , cmx + dm} ≡ −max{Cx + d}} .

In this setting, a global optimal solution must reside in one of the extreme points of
the feasible set, i.e., in the set E = {`i, ui}n (note that |E| = 2n). As such, it is
rather easy to compare between the different fixed points of the different methods by
comparing them only on the extreme points.

Recalling Example 4.2 and Remark 4.3, we note that for any extreme point x∗ it
holds that εx∗ = 10, which means that any ε ∈ (0, 5) will suffice in order to guarantee
the convergence properties of the GFD method (given in Theorem 4.1). Moreover,
any ε ∈ (0, 5) will yield the same outcome.

The experiment was conducted as follows. For several values of [m,n] (listed in
Table 1), 100 problems were randomly created by generating 100 realizations of the
parameters C ∈ R100×10 and d ∈ R100 via the standard normal distribution. For each
problem, we counted the number of extreme points that are fixed points of the three
methods and the overall number of stationary points and global solutions.

The inputs of the GFD method were r = 20, u(y,x) ≡ −g(y), and ε = 10−4. We
tested the PRA method with two values of the input εPRA ∈ {10−1, 10}, where εPRA
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Table 1
Mean number of extreme points over 100 experiments that are extreme points, stationary points,

DCA fixed points, PRA fixed points, GFD fixed points, and global optima.

m n Extreme Stationary DCA FP PRA FP (εPRA = 10−1) PRA FP (εPRA = 10) GFD FP Opt

50 5 32 13.8 13.8 8.9 8.7 2.8 1
100 5 32 15.5 15.5 10.9 10.6 2.5 1
50 10 1024 33.2 33.2 14.1 13.9 12.8 1
100 10 1024 52.2 52.2 22.2 21.9 14.2 1

refers to the “almost-activeness” of the functions in the pointwise maximum (cf. sec-
tion 4.1.2). We note that the PRA method’s fixed point becomes increasingly more
restrictive as the value of εPRA increases, as more functions in the pointwise maximum
are taken into account at each iteration (cf. [22, section 5]). However, increasing εPRA

also results in more computational effort, as more optimization problems are solved
at each iteration as part of the PRA procedure.

We chose the maximal value of εPRA = 10 so that the running time of a single
iteration of the PRA method will be approximately three times the running time of
a single iteration of the GFD method5 when [m,n] = [100, 10] and chose its minimal
value εPRA = 10−1 such that the running time of the GFD and PRA methods is
approximately the same when [m,n] = [50, 5]. The results of the experiments are
given in Table 1.

Some remarks and conclusions on the numerical results:
• As illustrated in Table 1, the number of fixed points of the GFD method can

be strictly smaller than the number of stationary points; see Remark 4.4 for
an explanation.

• The DCA fixed point condition was not found to be more restrictive com-
pared to the stationarity condition. The (DC) criticality condition and the
stationarity condition coincided in all the instances of the experiment.

• The PRA method fixed point condition was found to be more restrictive
compared to the stationarity condition for εPRA ∈ {10−1, 10}.

• The number of fixed points of the GFD was strictly smaller than the number
of fixed points of the other methods and even strictly smaller than the number
of stationary points. This fact suggests that the GFD method will more likely
find the optimal solution and that it is less susceptible to the choice of the
starting point.

• There was exactly one global optimum point in each of the 100 experiments.

5.2. Deterministic versus random: Multidimensional scaling. This ex-
periment will compare the GFD and RFD methods in a small multidimensional scaling
problem preformed on a part of the old MovieLens 100K dataset [16].

The multidimensional scaling problem’s goal is to find a lower-dimensional repre-
sentation of the data that preserves some pairwise dissimilarity measure; for additional
details, see [12, section 8]. We will create a two-dimensional map of the users (each
user will be located on the plane) according to their ratings, using the Euclidean
distance between the users’ ratings as the dissimilarity measure (cf. [12, section 8.1]).

For this purpose, we solve the following problem:

min
x∈Box[`,u]

h(x) ≡
∑
i 6=j

(ci,j − ‖xi − xj‖2)
2
,

5An empirical observation.
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Fig. 2. Function value versus running time. The bold red line corresponds to the sequence
generated by the GFD method, and all the other lines correspond to the sequences generated by the
RFD method (10 lines for 10 runs); the bold blue line is the average of the RFD sequences.

where
• ci,j > 0 is the Euclidean distance between the ratings of user i and the ratings

of user j, both of which are sparse vectors of size 163,949;
• the decision variable x comprises vectors having two dimensions, which in-

dicate the location of the users in the plane, that is, x = [xT
1 ,x

T
2 , . . . ,x

T
n/2],

where n/2 is the number of users and xi ∈ R2 is the location of user i;
• the feasible set is the box set with ` = −10 · e and u = 10 · e.

The MovieLens 100K dataset comprises ratings between 1 and 5 from 671 users on
163,949 films. We ran two experiments on a cropped dataset of sizes 10 and 100 users
(higher dimensions are less relevant for the GFD) and their ratings. Both methods’
inputs were x0 = 0, r = 25, u(y,x) = h(y), and ε = 10−6. The only stopping
condition of both methods was passing the running time of 2.5 seconds/1200 seconds
(stopping after the current iteration ended) for 10/100 users, respectively. In both
the 10- and 100-user experiments, the RFD method was executed 10 times from the
same starting point. The function values versus the running time in both settings
(10, 100 users) are plotted in Figure 2.

Note that in the 10-user experiment both methods demonstrated convergence in
terms of function values with RFD instances demonstrating a slightly faster conver-
gence. In the 100-user experiment, the RFD methods demonstrated convergence after
less than 200 seconds, while the GFD was still at points with a much higher function
value after 1200 seconds, which suggests that (at least in this model) the GFD method
is no match for the RFD method in higher dimensions.D
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