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a b s t r a c t

We introduce a first-order Mirror-Descent (MD) type algorithm for solving nondifferentiable convex
problems having a combination of simple constraint set X (ball, simplex, etc.) and an additional functional
constraint. The method is tuned to exploit the structure of X by employing an appropriate non-Euclidean
distance-like function. Convergence results and efficiency estimates are derived. The performance of the
algorithm is demonstrated by solving certain image deblurring problems.
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1. Introduction

Consider the problem
min{f (x) : x ∈ X}, (1.1)
where f : Rn

→ R is a convex, possibly nondifferentiable function
satisfying a Lipschitz condition with constant L and where X ⊆

Rn is a compact convex set. One of the most basic methods for
solving problem (1.1) is the subgradient projection method (see e.g.,
[3,13,15] and the references therein):
xk+1 = PX (xk − tkf ′(xk)).
Here f ′(x) denotes a subgradient of f at x, PX (·) is the Euclidean
orthogonal projection operator onto the set X , and tk is an appro-
priately chosen stepsize. The main advantage of the subgradient
projection method is that when X is a ‘‘simple’’ set (e.g., ball, box,
simplex or spectrahedron), then the projection operation can be
executed efficiently so that the method becomes extremely sim-
ple in comparison to methods that use, for instance, second-order
information. The major drawback of the subgradient projection
method is its slow rate of convergence. Indeed, when X is a com-
pact convex set, its efficiency estimate is given by (for some appro-
priately chosen stepsizes)

min
1≤s≤k

f (xs) − f ∗
≤ O(1)

LDiam(X)
√
k

, (1.2)

where Diam(X) = maxx,y∈X ‖x − y‖2 (see [10]).
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One way to improve the performance of the method is to
use a non-Euclidean projection operator that reflects the specific
geometry of the feasible set X . This was the idea behind theMirror-
Descent (MD) method originated in [10] and developed further
in [2]. It was later interpreted in [1] as a subgradient non-Euclidean
projectionmethod. To understand the idea behind theMDmethod,
let us consider the following well-known equivalent presentation
of the subgradient projection method:

xk+1 = argmin
x∈X


f (xk) + ⟨f ′(xk), x − xk⟩ +

1
2tk

‖x − xk‖2
2


,

that is, the next iterate is a minimizer of the linear approximation
of the function at the previous iterate regularized by a prox term.
A standard generalization of the subgradient projection method is
devised by replacing the prox term with a distance-like function:

xk+1 = argmin
x∈X


f (xk) + ⟨f ′(xk), x − xk⟩ +

1
tk
D(x, xk)


. (1.3)

The term D(u, v), which replaces the prox function 1
2‖u − v‖2, is

assumed to be nonnegative and zero if and only if u = v. A popular
choice for D is to take it as a Bregman distance [1,2,9,16] whose
definition is now briefly recalled. Suppose we are given a strongly
convex function ω on X with respect to a norm ‖ · ‖, which is
not necessarily the Euclidean norm, and which is assumed to be
continuously differentiable over some open set containing X . Let
α > 0 be the strong-convexity parameter associated with the ω
and the norm, i.e.,

⟨∇ω(u) − ∇ω(v),u − v⟩ ≥ α‖u − v‖2 for every u, v ∈ Rn.

The corresponding Bregman distance is:

Bω(u, v) = ω(u) − ω(v) − ⟨∇ω(v),u − v⟩.
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By the gradient inequality we have that Bω(u, v) ≥ 0 for every
u, v ∈ Rn and that Bω(u, v) = 0 if and only if u = v. Note that
this function is neither necessarily symmetric nor does it satisfy
the triangle inequality and therefore it is not a ‘‘standard’’ distance
function. When ω(u) =

1
2‖u‖

2 we have Bω(u, v) =
1
2‖u − v‖2

2,
so that the Bregman distance amounts to the squared-Euclidean
distance functionmultiplied by half. TheMDmethod is the scheme
(1.3) with D ≡ Bω and with an ‘‘optimal’’ choice of the stepsizes
given by tk =

√
Θα

‖f ′(xk)‖∗

√
k
whereΘ is the non-Euclidean diameter of

X:

Θ = max{Bω(u, v) : u, v ∈ X}.

The MD method is summarized in Box I. Note that the term in
the general step was rearranged and constants were ignored.

The efficiency estimate of the MD method was analyzed in [2]
and is given by

min
1≤s≤k

f (xs) − f ∗
≤ O(1)

L
√

Θ
√

α
√
k
,

which is clearly a generalization of (1.2). We see that the efficiency
estimate depends on the ratio Θ

α
, so there is a freedom to choose

α (a characteristic of the function ω) and Θ (a characteristic of the
norm used and the shape of the feasible set X) so as to minimize
Θ

α
. In [1,2] it was shown that when X is a ball: X = {x ∈ Rn

:

‖x‖2 ≤ r}, the Euclidean setting is the most appropriate, namely
‖ · ‖ = ‖ · ‖2 and ω(x) ≡

1
2‖x‖

2; when X is the unit simplex, X =

{x ∈ Rn
: eTx = 1, x ≥ 0} (The vector e denotes the vector of all

ones with an appropriate dimension.), the l1 norm combined with
the regularized entropy function ω(x) =

∑n
i=1(xi + σ) log(xi + σ)

is an appropriate choice (σ being a small number). We also note
that the non-regularized version of the entropy can also be used.
This requires a slightly more subtle analysis since the gradient of
the entropy function is not defined on the boundaries of the unit
simplex. Such an analysis can be found in [1].

In this paper we present an extension of the MD method
for convex problems with an additional functional constraint (in
addition to the simple constraint set). This method, termed the
CoMirror method, requires at each iteration the computation of
the functional constraint value and of the gradient of either
the objective or constraint function (depending on the feasibil-
ity/infeasibility of the current iteration). A variation of this method
in the Euclidean setting was analyzed by Nesterov in [11] and by
Polyak in [12]. The roots of MD methods are in the 1983 book of
Nemirovsky and Yudin [10]. Themethod and its convergence anal-
ysis are presented in Section 2. It is shown that in order to obtain an
ε-feasible and optimal solution O(1/ε2) iterations are required. It
is also shown that under additional conditions, an ε-optimal solu-
tion which is also feasible can be reached. An example from image
deblurring demonstrating the potential of the method is given in
Section 3.

2. Functional constraints

The Mirror-Descent method is capable of dealing with mini-
mization problems with a simple feasible set. Our objective now is
to show how the method can be adapted to tackle problems with
an additional functional constraint. Suppose then thatwe are given
a general convex problem of the form

(P) : min{f (x) : g(x) ≤ 0, x ∈ X}. (2.1)

The following assumptions are made on problem (P):

• X is a compact convex subset of Rn.
• f and g are convex subdifferentiable functions on X .
• The subgradients of f and g are bounded over X . Specifically,
we assume that there are positive constants Lf and Lg such that
‖f ′(x)‖∗ ≤ Lf and ‖g ′(x)‖∗ ≤ Lg for all x ∈ X where ‖ · ‖∗

denotes the dual norm of ‖ · ‖:

‖y‖∗ = sup {⟨x, y⟩ : ‖x‖ ≤ 1} .

• The optimal set of (P) denoted by X∗ is nonempty. The optimal
function value is denoted by f∗.

Model (2.1) is comprised of only one convex functional constraint,
but it essentially includes the case of several convex constraints.
Indeed, if the feasible set is of the form {x ∈ X : gi(x) ≤ 0, i =

1, 2, . . . ,m}, then it can be rewritten using a single constraint:

{x ∈ X : g(x) ≤ 0},

by choosing g(x) = maxi=1,2,...,m gi(x).

2.1. The ε-CoMirror method

We present the ε-CoMirror method that finds an ε-feasible
and optimal solution with a similar efficiency estimate to the one
devised for the MD method. The parameter ε is assumed to be
nonnegative. When ε = 0 is zero, the ‘‘ε’’ prefix is omitted and the
method is called the ‘‘CoMirror’’method. A variation of thismethod
when ε > 0 in the Euclidean setting was analyzed in [11,12]. The
detailed method is given in Box II.

We will use the following notation for the set of indices of the
ε-feasible solutions among the first n iterations:

Iεn = {k ∈ {1, 2, . . . , n} : g(xk) ≤ ε}.

One of the fundamental identities used in the analysis of the
ε-CoMirror method (and of many other Bregman-based methods)
is the following ‘‘three point lemma’’ which is stated via the
terminology used in this paper.

Lemma 2.1 ([5]). Let X ⊆ Rn be a compact convex set and let ω :

X → R be continuously differentiable on some open set containing
X. Then for any three points a, b, c ∈ X, the following identity holds
true:

Bω(c, a) + Bω(a, b) − Bω(c, b) = ⟨∇ω(b) − ∇ω(a), c − a⟩. (2.5)

Next we prove the following lemmawhich is the key ingredient
in proving the convergence result.

Lemma 2.2. Let {xk} be the sequence generated by (2.2)–(2.4) (in
Box II) and let i < j be two integers. Then

j−
k=i

tk⟨ek, xk − u⟩ ≤ Θ +
1
2α

j−
k=i

t2k ‖ek‖
2
∗

(2.6)

for every u ∈ X.

Proof. By the optimality condition for the problem on the right-
hand side of (2.2) we have

⟨tkek − ∇ω(xk) + ∇ω(xk+1),u − xk+1⟩ ≥ 0 for every u ∈ X .

Hence,

tk⟨ek,u − xk+1⟩ ≥ ⟨∇ω(xk) − ∇ω(xk+1),u − xk+1⟩

for every u ∈ X . (2.7)

Using (2.5) with a = xk+1, b = xk and c = u we have:

Bω(u, xk+1) − Bω(u, xk) + Bω(xk+1, xk)
= ⟨∇ω(xk) − ∇ω(xk+1),u − xk+1⟩. (2.8)
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.4)
Mirror Descent (MD)
Initialization: x0 ∈ X arbitrary
General Step: for every k = 0, 1, 2, . . .:

xk+1 = argmin

⟨tkf ′(xk) − ∇ω(xk), x⟩ + ω(x) : x ∈ X


(1

where

tk =

√
Θα

‖f ′(xk)‖∗

√
k

Box I.
.2)

.3)

.4)
ε-CoMirror
Initialization: x0 ∈ X arbitrary.
General step: for every k = 0, 1, 2, . . .

xk+1 = argmin {⟨tkek − ∇ω(xk), x⟩ + ω(x) : x ∈ X} , (2

where

ek =


f ′(xk) if g(xk) ≤ ε,
g ′(xk) else, (2

and

tk =

√
Θα

‖ek‖∗

√
k

(2

Box II.
Combining (2.7) and (2.8) yields

tk⟨ek,u − xk+1⟩ ≥ Bω(u, xk+1) − Bω(u, xk) + Bω(xk+1, xk).

Now,

tk⟨ek, xk − u⟩ ≤ Bω(u, xk) − Bω(u, xk+1)

− Bω(xk+1, xk) + tk⟨ek, xk − xk+1⟩

≤ Bω(u, xk) − Bω(u, xk+1) −
α

2
‖xk − xk+1‖

2

+ tk‖ek‖∗‖xk − xk+1‖

≤ Bω(u, xk) − Bω(u, xk+1)

+ max
r


tk‖ek‖∗r −

α

2
r2


= Bω(u, xk) − Bω(u, xk+1) +

1
2α

t2k ‖ek‖
2
∗
.

Summing the above inequality for k = i, i + 1, . . . , j, we obtain

j−
k=i

tk⟨ek, xk − u⟩ ≤ Bω(u, xi) − Bω(u, xj+1) +
1
2α

j−
k=i

t2k ‖ek‖
2
∗
.

Finally, using the inequality Bω(u, xi) − Bω(u, xj+1) ≤ Θ , the
desired result (2.6) follows. �

The efficiency estimate for the ε-CoMirror method is derived next.

Theorem 2.1. Let {xk} be the sequence generated by (2.2) and (2.4).
Then

min

min
k∈Iεn

f (xk) − f∗, ε


≤ C

√
Θ max{Lf , Lg}

√
α
√
n

, (2.9)

where

C =
(1 + ln(2))

2 −
√
2

. (2.10)
Proof. Letx∗ be anoptimal solution of (P). Substitutingu = x∗, i =

n0 and j = n in (2.6) we obtain

n−
k=n0

tk⟨ek, xk − x∗
⟩ ≤ Θ +

1
2α

n−
k=n0

t2k ‖ek‖
2
∗
. (2.11)

In addition,
n−

k=n0

tk⟨ek, xk − x∗
⟩ ≥


min

k=n0,n0+1,...,n
⟨ek, xk − x∗

⟩

 n−
k=n0

tk. (2.12)

If k ∈ Iεn , then by the (sub)gradient inequality:

f (x∗) + ⟨ek, xk − x∗
⟩ ≥ f (xk), (2.13)

and if k ∉ Iεn , then

⟨ek, xk − x∗
⟩ ≥ g(x∗) + ⟨ek, xk − x∗

⟩ ≥ g(xk) > ε. (2.14)

Combining (2.11), (2.13) and (2.14), it follows that

⟨ek, xk − x∗
⟩ ≥


f (xk) − f∗ k ∈ Iεn ,
ε k ∉ Iεn .

(2.15)

Combining (2.15) and (2.12) we conclude that

min

min
k∈Iεn

f (xk) − f∗, ε


≤

Θ +
1
2α

n∑
k=n0

t2k ‖ek‖
2
∗

n∑
k=n0

tk
.

Plugging the expression for the stepsizes, tk =

√
Θα

‖ek‖∗

√
k
, on the

right-hand side of the above inequality and using the bound
‖ek‖∗ ≤ max{Lf , Lg}, we obtain that

min

min
k∈Iεn

f (xk) − f∗, ε


≤


Θ

α
max{Lf , Lg}

1 +
1
2

n∑
k=n0

1
k

n∑
k=n0

1
√
k

.
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Finally, letting n0 = ⌊n/2⌋ and using the inequalities:
n−

k=⌊ n
2⌋

1
k

≤ 2 ln(2),
n−

k=⌊ n
2⌋

1
√
k

≥ (2 −
√
2)

√
n,

the efficiency estimate (2.9) is obtained. �

The result of Theorem 2.1 essentially states that in order to
obtain an ε-optimal solution which is ε-feasible, O


1
ε2


iterations

of the MD method are required. The precise statement is given in
the following corollary.

Corollary 2.1. Let {xk} be the sequence generated by the ε-
CoMirror method given by (2.2)–(2.4). Let β < 1. Then for n ≥

C2Θ max{Lf ,Lg }
2

αβ2


1
ε2

with C defined in (2.10), we have that

min
k∈Iεn

f (xk) − f∗ ≤ βε.

2.2. The CoMirror method (ε = 0)

The ε-CoMirror produces an ε-feasible and optimal solution. In
some problems it is imperative to find a feasible solution, that is an
x ∈ X satisfying g(x) ≤ 0 rather than an ε-feasible solution (that is,
satisfying g(x) ≤ ε). Therefore, the arising question is whether the
CoMirrormethod converges afterO(1/ε2) iterations to the optimal
value. The first important observation is that the CoMirror method
is exactly the same as the ε-CoMirror method applied to

(Pε) f ε
∗

≡ min{f (x) : g(x) ≤ −ε, x ∈ X}.

Since the analysis will obviously rely on the feasibility of problems
of the above form we will assume that

g∗ ≡ min{g(x) : x ∈ X} < 0, (2.16)

so that the problem (Pε) will be considered only for ε < −g∗. Let
us denote the optimal function value of (Pε) by f ∗

ε and the set of
feasible solutions among the first n iterations is denoted by

In ≡ I0n = {k ∈ {1, 2, . . . , n} : g(xk) ≤ 0}.

We can now invoke Corollary 2.1 to obtain that for all 0 < ε <

−g∗, β < 1 and n ≥


C2Θ max{Lf ,Lg }

2

αβ2


1
ε2

it holds that

min
k∈In

f (xk) − f ε
∗

≤ βε.

The above result does not guarantee the O(1/ε2) complexity result
since the left-hand side of the above inequality depends on f ε

∗

rather than on f∗. In this section we will show that under an
additional assumption of strong convexity and differentiability of
the constraint function g , the difference f ε

∗
− f∗ is upper bounded

via ε and that as a consequence the O(1/ε2) result remains valid.
The additional assumptions in this section are:

• There exists an optimal solution x∗ of (P) such that g(x∗) = 0.
• The function g is continuously differentiable on some open set

containing X , and strongly convex on X (with respect to the
norm ‖ · ‖), that is, there exists a positive constant mg > 0 for
which

g(y) ≥ g(x) + ⟨∇g(x), y − x⟩ +
mg

2
‖x − y‖2.

The first assumption is rather mild. If the optimal solution is
always attained at points x̃ for which g(x̃) < 0, then problem (P)
is equivalent to the problem without the additional functional
constraint, that is, equivalent to min{f (x) : x ∈ X}, and in this case
the standard MD method can be invoked. The second assumption
– in particular the smoothness of g – precludes the consideration
of multiple constraints for the case ε = 0, as g cannot in general
be a maximum of functions. Note also that despite the fact that
the constraint function g is smooth, problem (P) is not necessarily
smooth due to the (potential) nonsmoothness of the objective
function f .

The analysis of the CoMirror method relies on the analysis of
perturbed problems of the form (Pε) where 0 < ε < −g∗. Ob-
viously the inequality f∗ ≤ f ε

∗
holds. The next result describes an

upper bound on f ε
∗
in terms of f∗ and is the key result in proving

the convergence of the CoMirror method.

Lemma 2.3. For every 0 < ε < −g∗ the following inequality holds:

f ε
∗

≤ f∗ + Lf


2
mg

√
ε.

Proof. Let x∗
∈ X be an optimal solution of (P) and let x̃ ∈ X be

an optimal solution of (2.16). In particular we have g(x∗) = 0. For
every t ∈ (0, 1) let us define xt ≡ x̃ + t(x∗

− x̃). By the strong
convexity of g we have

g(x∗) − g(xt) ≥ ⟨∇g(xt), x∗
− xt⟩ +

mg

2
‖x∗

− xt‖2. (2.17)

Since x̃ is the optimal solution of (2.16) it follows that the function
ϕ(η) = g(x̃ + η(x∗

− x̃)) is convex and increasing over [0, 1].
Therefore, ϕ′(t) = ⟨∇g(xt), x∗

− x̃⟩ ≥ 0, which combined with
the identity x∗

− xt = (1 − t)(x∗
− x̃) and (2.17) implies that

g(x∗) − g(xt) ≥
mg

2
‖x∗

− xt‖2. (2.18)

By the continuity of g we obtain that there exists t ∈ (0, 1) such
that g(xt) = −ε, and by inequality (2.18) it follows that ‖x∗

−

xt‖ ≤


2
mg

√
ε. Finally,

f ε
∗

≤ f (xt) = f (x∗) + (f (xt) − f (x∗)) = f (x∗) + |f (xt) − f (x∗)|

≤ f∗ + Lf


2
mg

√
ε. �

The following result shows that the CoMirror method requires
O(1/ε2) iterations in order to reach an ε-optimal solution.

Theorem 2.2. Let 0 < ε < min

Lf


−

8g∗
mg

, 1

. Then for every n ≥

1
β2

8C2Θ max{Lf ,Lg }
2L2f

αmg


1
ε2

with β = min


4L2f
mg

, 0.99

, the inequality

min
k∈In

f (xk) − f∗ ≤ ε

holds true.

Proof. Define ε̃ =
mg

8L2f
ε2. Then the given upper bound on ε implies

that ε̃ < −g∗. Therefore, by Lemma 2.3 it follows that

f ε̃
∗

− f∗ ≤ Lf


2
mg

√

ε̃ =
ε

2
.

Consider now the ε̃-CoMirrormethod applied on the problem (Pε̃).

Then if n ≥
1

β2 ε̃2
C2Θ max{Lf ,Lg }

2

α
with β = min


4L2f
mg

, 0.99

, it fol-

lows by Corollary 2.1 that

min
k∈In

f (xk) − f ε̃
∗

≤ βε̃ = β
mg

8L2f
ε2

≤
ε2

2
,
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Fig. 1. Left: the original image. Right: the blurred and noisy image.

implying that

min
k∈In

f (xk) − f∗ = min
k∈In

f (xk) − f ε̃
∗

+ f ε̃
∗

− f∗

≤
ε2

2
+

ε

2
≤

ε

2
+

ε

2
= ε. �

3. Application to total-variation-based deblurring

In this sectionwe demonstrate the performance of the CoMirror
method on an image deblurring problem.We consider images that
are defined on rectangle domains. Let b ∈ Rm×n be an observed
noisy and blurred image, x ∈ Rm×n the true (original) image to be
recovered, A an affine map representing a blurring operator, and
w ∈ Rm×n be a corresponding additive unknown noise satisfying
the relation:
b = A(x) + w. (3.1)
The problem of finding an x from the above relation is the
basic image deblurring problem; see e.g., [8]. It is well known
that the least-squares approach for this problem usually results
with meaningless huge-norm solutions. Several regularization
methods aimed at stabilizing the solution have been proposed
in the literature. In this example we concentrate on the total-
variation (TV) regularizer. There are several types of total-variation
functions. One popular choice of a TV function, which will be used
in our experiments, is the anisotropic TV defined by (see [4]),

x ∈ Rm×n, TV(x) =

m−1−
i=1

n−1−
j=1


|xi,j − xi+1,j| + |xi,j − xi,j+1|


+

m−1−
i=1

|xi,n − xi+1,n| +

n−1−
j=1

|xm,j − xm,j+1|.

A common TV-based deblurring model consists of minimizing
a total-variation function subject to a least-squares constraint; see
for example [14]. Specifically, we will consider here the following
optimization problem:

min TV(x)
s.t. ‖A(x) − b‖

2
≤ ρ,

m−
i=1

n−
j=1

xij ≤ B,

xij ≥ 0, i = 1, . . . ,m, j = 1, 2, . . . , n.

(3.2)
In the above problem ρ is a bound on the squared norm of the
noise and B is a bound on the sum of all pixels. The nonnegativity
constraints on the pixels are inherent from typical image coding. Of
course, problem (3.2) is a special instance of the general problem
(P) (see (2.1)) with f (x) ≡ TV(x), g(x) ≡ ‖A(x) − b‖

2
− ρ and

X =

x ∈ Rm×n

:
∑

i,j xij ≤ B, xij ≥ 0

.

3.1. Example I

In this example we consider a small 40 × 40 simple test image
extracted from the function blur in the ‘‘regularization toolbox’’ [7].
The pixels of the image were scaled to be between 0 and 1. The
image goes through a 5× 5 Gaussian blur with standard deviation
2 followed by an additive normally distributed noisewith standard
deviation 0.01 This results in the blurred and noisy image shown
in Fig. 1.

We solved problem (3.2) with ρ chosen to be 10% higher than
the actual squared norm of the noise and B to be also 10% higher
than the actual sum of pixel values. We compared three solvers:

• SDPT3—The interior point method of SDPT3 [17] using the CVX
interface [6].

• MD—The CoMirror method (ε = 0) with ω(x) chosen to be the
entropy function and with the norm set to be the l1 norm.

• SD—The CoMirror method with ω(x) =
1
2‖x‖

2. In this setting
the method is almost identical to the subgradient projection
methodwith the sole difference that when the current iterate is
not feasible, the subgradient of the constraint function is used.

The results of the three methods are shown in Fig. 2. MD (after
20000 iterations) obtained a function value of 118.73 and SDPT3
obtained a function value of 116.89. Although the value obtained
by SDPT3 is slightly better, the two corresponding images look
identical. SD (after 50000 iterations) obtained a function value of
174.901 which is significantly higher than the other two methods.
This difference is clearly seen by the poor reconstruction in the
right image of Fig. 2.

This example demonstrates the usefulness of using non-
Euclidean distances. In addition, the CPU times (on a Pentium 4,
1.8 GHz) of SDPT3 was 587 s while the CPU time of MD was
56 s. That is, SDPT3 required in this example 10 times more CPU
resources, but obtained essentially the same quality of result.

3.2. Example II

The first example considered a small problem with only 1600
variables. Such a problem can still be solved by an interior point
method such as SDPT3. More realistic image deblurring problems
consist of hundreds of thousands or even millions of variables. In
these cases, interior pointmethods are not a viable choice.We now
consider the 512 × 512 ‘‘france’’ test image, so that the number
of variables in this example is 262,144. The image goes through
the same blur operator as in the first example followed by an
additive normally distributed noise with standard deviation 0.01.
We solved problem (3.2)withρ and B chosen to be 10% higher than
Fig. 2. Left: SDPT3 solution. Middle: MD solution. Right: SD solution.



498 A. Beck et al. / Operations Research Letters 38 (2010) 493–498
Fig. 3. Left: blurred and noisy image. Right: MD solution.
the actual values. SDPT3 is not capable of handling such a huge
problem, and the SD method was not able to even find feasible
points. MD, on the other hand, was able to find a good quality
solution after 423 s, which is presented in Fig. 3 together with the
blurred and noisy image.
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