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REGULARIZATION IN REGRESSION WITH BOUNDED NOISE:
A CHEBYSHEV CENTER APPROACH∗

AMIR BECK† AND YONINA C. ELDAR‡

Abstract. We consider the problem of estimating a vector z in the regression model b = Az+w,
where w is an unknown but bounded noise. As in many regularization schemes, we assume that an
upper bound on the norm of z is available. To estimate z we propose a relaxation of the Chebyshev
center, which is the vector that minimizes the worst-case estimation error over all feasible vectors
z. Relying on recent results regarding strong duality of nonconvex quadratic optimization problems
with two quadratic constraints, we prove that in the complex domain our approach leads to the
exact Chebyshev center. In the real domain, this strategy results in a “pretty good” approximation
of the true Chebyshev center. As we show, our estimate can be viewed as a Tikhonov regularization
with a special choice of parameter that can be found efficiently by solving a convex optimization
problem with two variables or a semidefinite program with three variables, regardless of the problem
size. When the norm constraint on z is a Euclidean one, the problem reduces to a single-variable
convex minimization problem. We then demonstrate via numerical examples that our estimator can
outperform other conventional methods, such as least-squares and regularized least-squares, with
respect to the estimation error. Finally, we extend our methodology to other feasible parameter sets,
showing that the total least-squares (TLS) and regularized TLS can be obtained as special cases of
our general approach.
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1. Introduction. Many problems in data fitting and estimation give rise to a
system of linear equations Az ≈ b where the right-hand side b is contaminated by
noise. More specifically, we consider the linear model

(1) b = Az + w,

where A ∈ F
m×n is the model matrix, b ∈ F

m is the observation vector, w ∈ F
m is

the unknown noise (or “error”), and z ∈ F
n is the unknown parameter vector. Here

F denotes either the real number field R or the complex number field C. Given the
observation b, we seek an estimator ẑ of z that is close in some sense to z. This
estimation problem arises in a large variety of areas in science and engineering, e.g.,
communication, economics, signal processing, seismology, and control.

The celebrated least-squares (LS) approach [5, 18] to estimating z in the model
(1) is to seek the vector ẑLS that minimizes the norm of the data error ‖Aẑ − b‖2,
where ‖v‖ stands for the Euclidean norm of the vector v. When A has full column
rank, ẑLS is given by

(2) ẑLS = (A∗A)−1A∗b.
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In practical situations the matrix A is often ill-conditioned—for example, when the
system is obtained via discretization of ill-posed problems such as integral equations
of the first kind (see, e.g., [16] and references therein). In these cases the LS solu-
tion might give poor results with respect to the estimation error. A well-established
approach for stabilizing the LS estimate is to incorporate prior information on the
true parameter vector z into the optimization problem (2) by adding a quadratic
constraint:

(3) ẑRLS ∈ argmin
z∈Fn

{‖Az − b‖2 : ‖Lz‖2 ≤ η}.

The matrix L is often chosen as the identity, or as a discrete approximation of some
derivative operator (see [5, 16]). The resulting estimator is referred to as the regu-
larized LS (RLS) estimator [5]. It is well known that ẑRLS is either equal to the LS
solution when ‖LzLS‖2 ≤ η or given by ẑRLS = zλ, where zλ satisfies the generalized
normal equations [5]

(4) (A∗A + λL∗L)zλ = A∗b.

The parameter λ is determined by the secular equation ‖Lzλ‖2 = η. Therefore, the
RLS solution is a Tikhonov estimator [28] with a choice of regularization parameter
λ that takes into account the norm constraint ‖Lz‖2 ≤ η.

It is important to note that both the LS and the RLS strategies are based on
minimizing the data error. However, in an estimation context, typically we would
like to minimize the squared estimation error ‖ẑ − z‖2. When the noise w in (1) is
assumed to be random with zero mean and known covariance matrix, the squared
estimation error will also be a random variable. Using the known statistics of w,
the average squared estimation error, referred to as the mean-squared error (MSE),
can be computed. Several different strategies based on the MSE have been recently
proposed [25, 9, 8, 2, 7]. These methods consider linear estimates of z and assume
knowledge of the statistics of w.

1.1. Bounded error estimation. In some scenarios, the distribution of the
noise might not be known exactly (or at all). There are also cases where the noise is not
inherently random (for example, in problems resulting from quantizing a continuous-
time signal). This leads to the bounded error estimation approach which deals with
unknown but bounded noise (see, e.g., [19] and the survey papers [21, 24]). In this
paper we adopt the bounded error methodology and assume that the noise is norm-
bounded ‖w‖2 ≤ ρ. As in the RLS strategy, in order to obtain a stable solution, we
further restrict z to have weighted bounded norm.

The first stage in the deterministic bounded error approach is to construct all
admissible solutions to the linear system (1); for this reason this approach is also
referred to as set-membership estimation [21]. In our setting, the feasible parameter
set (FPS) is given by the intersection of two ellipsoids1:

(5) FPS = {z ∈ F
n : ‖Lz‖2 ≤ η, ‖Az − b‖2 ≤ ρ}.

The second step is to choose a central representative of the FPS. A popular choice is
the Chebyshev center [29], which is defined as the solution ẑ to the following min-max
problem:

(6) min
ẑ∈Fn

max
z∈FPS

‖z − ẑ‖2.

1Note that here the norm bound ‖w‖2 ≤ ρ translates to ‖Az − b‖2 ≤ ρ.
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Geometrically, the Chebyshev center is the center of the minimum radius ball enclosing
the FPS; the optimal value of (6) is the squared radius of the minimal ball enclosing
the set. This is illustrated in Figure 1 with the filled area being the intersection of
two ellipsoids. The dotted circle is the minimum inscribing circle of the intersection
of the ellipsoids.

chebyshev
center

minimum enclosing
circle

Fig. 1. The Chebyshev center of the intersection of two ellipsoids.

The Chebyshev center of the FPS gives the best worst-case estimation error over
the set. Thus, it is aimed at optimizing an objective that depends on the estimation
error rather than the data error. In section 5 we demonstrate by simulations that
an estimator based on the Chebyshev center typically performs worse than the LS
and RLS approaches with respect to the data error; however, it appears to perform
significantly better in terms of the estimation error even when only loose bounds on
the norm of the noise (ρ) are known. Thus, this approach can improve the estimation
error without requiring much more knowledge than the RLS strategy.

Finding a Chebyshev center of a convex set is, in general, a hard problem. Two
exceptions are the case where the set is polyhedral and the enclosing ball is the l∞
ball [20], and the case when the set is finite (see, e.g., [30] and references therein).

The Chebyshev center problem (6) we tackle in this paper is seemingly hard. To
better understand the intrinsic difficulty of this min-max problem, note that the inner
maximization problem is a nonconvex quadratic optimization problem. However,
relying on some recent strong duality results derived in the context of quadratic
optimization [1], we will show that despite the nonconvexity of the problem, it can
be solved efficiently when F = C. The same approach can be used when F = R

to develop an approximation of the Chebyshev center. Simulation results show that
this approximation is pretty good in the sense that it yields favorable estimation
performance.
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1.2. Paper layout and main results. A review of the relevant optimization
concepts and the strong duality results of [1] is given in section 2. These results
are then used in section 3 to reduce the problem of finding the Chebyshev center
of the intersection of two level sets of quadratic functions2 with F = C to a convex
optimization problem in only two variables. This problem can also be recast as a
semidefinite program (SDP) involving linear matrix inequality (LMI) constraints, with
three variables.

In section 4 we present the relaxed Chebyshev center (RCC) estimator, which is
exactly the Chebyshev center of the FPS in the case F = C under strict feasibility
constraints. We show that the RCC, like the RLS solution, is a Tikhonov estimator.
However, in the RCC approach, as opposed to the RLS method, the regularization
parameter is chosen to account for both constraints defining the FPS. Furthermore, it
is designed to minimize an estimation error rather than a data error. We also show
that when considering the FPS with a Euclidean norm constraint on z (i.e., L = I),
the problem reduces to a convex optimization problem with a single variable.

Section 5 presents numerical examples demonstrating the effectiveness of the RCC
strategy. We also compare two methods for evaluating the RCC estimator: an imple-
mentation of the ellipsoid method [3] (described in full detail in Appendix A) and a
standard interior point method applied to the resulting SDP. We show both theoret-
ically and numerically that in our problem the ellipsoid method is more efficient.

Finally, in section 6, we extend our approach to several related problems, and
show that the total LS (TLS) [13, 17] and regularized TLS (RTLS) estimators [12]
can be viewed as special cases of our general methodology.

1.3. Notation. Throughout the paper, the following notation is used: vectors
are denoted by boldface lowercase letters, e.g., y, and matrices by boldface uppercase

letters, e.g., A. The ith component of a vector y is written as yi, and (̂·) is an estimated
vector. The identity matrix is denoted by I. The real and imaginary parts of scalars,
vectors, or matrices are written as �(·) and �(·). For a matrix A, A∗,AT ,A†, and
R(A) are the Hermitian conjugate, transpose, Moore-Penrose generalized inverse [14],
and image space. For a square symmetric matrix, λmin(A) is the minimum eigenvalue
of A. Given two matrices A and B, A � B (A 	 B) means that A − B is positive
definite (semidefinite). The value of the optimal objective function of an optimization
problem

(P ) : min /max{f(x) : x ∈ C}

is denoted by val(P ). For simplicity, instead of inf/sup we use min/max; however this
does not mean that we assume that the optimum is attained and/or finite.

2. Quadratically constrained quadratic programs: A review. Our goal
is to find the Chebyshev center of the FPS (5). The difficulty is that the inner
maximization in (6)

max
z∈FPS

‖z − ẑ‖2

is not convex. In this section, we summarize prior results concerning the minimization
of a general quadratic form subject to quadratic constraints. We will then show, in
sections 3 and 4, how these results can be applied in order to solve (6).

2This is a more general form than a set that is an intersection of two ellipsoids.
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Consider the general form quadratically constrained quadratic problem

(QPm) min
z∈Fn

{f0(z) : fi(z) ≤ 0, i = 1, . . . ,m},

where m denotes the number of constraints, and

fi(z) = z∗Aiz + 2�(b∗
i z) + ci

with Ai = A∗
i ∈ F

n×n,bi ∈ F
n, and ci ∈ R for i = 0, . . . ,m. Note that in the case

F = R, the quadratic functions fi(z) can be written as zTAiz + 2bT
i z + ci.

The problem (QPm) is in general not convex since Ai are not necessarily positive
semidefinite. The Lagrangian dual of (QPm) is the maximization problem [4, 26]

(7) max
α

{q(α) : α ≥ 0},

where q(α) is the dual objective function defined by

q(α) = min
z∈Fn

{
f0(z) +

m∑
i=1

αifi(z)

}
.

The function q(α) can also be written in the form

(8) q(α) = max
λ

{
λ : f0(z) +

m∑
i=1

αifi(z) ≥ λ for every z ∈ F
n

}
.

To obtain a more convenient representation of q(α) we exploit the following well-
known lemma.

Lemma 2.1 (see [3, p. 163]). Let g : F
n → R be given by g(z) = z∗Az +

2�(b∗z) + c, where A = A∗ ∈ F
n×n,b ∈ F

n, and c ∈ R. Then the two statements
below are equivalent:

(i) g(z) ≥ 0 for every z ∈ F
n.

(ii)

(
A b
b∗ c

)
	 0.

Applying Lemma 2.1 to (8), we can represent q(α) as

q(α) = max
λ

{
λ :

(
A0 b0

b∗
0 c0 − λ

)
+

m∑
i=1

αi

(
Ai bi

b∗
i ci

)
	 0

}
.

The dual problem (7) then becomes

(Dm) max
αi≥0,λ

{
λ :

(
A0 b0

b∗
0 c0 − λ

)
+

m∑
i=1

αi

(
Ai bi

b∗
i ci

)
	 0

}
.

Note that (Dm), also called Shor’s relaxation, is an SDP [3], i.e., a problem involving
the minimization of a linear function subject to LMIs.

The weak duality theorem [4] states that one always has val(Dm) ≤ val(QPm).
A fundamental question is whether or not there is strong duality, i.e., is val(QPm) =
val(Dm)? When all the functions fi, i = 0, . . . ,m, are convex and strict feasibility
holds, the answer is affirmative (this follows from the well-known strong duality the-
orem for convex programming [26]). However, if even one of the functions is not
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convex, then strong duality can be violated. Two exceptions are (i) the case of a sin-
gle quadratic constraint (m = 1) (see, e.g., [10, 22]) and (ii) the case of two quadratic
constraints (m = 2) in which the underlying number field is complex (strong duality
is not guaranteed when F = R). The latter result was recently derived in [1] and is
recalled in Theorem 2.1.

Theorem 2.1 (see [1]). Suppose that F = C and that problem (QP2) is strictly
feasible, i.e., there exists z̃ ∈ F

n such that f1(z̃) < 0, f2(z̃) < 0. Further assume that

(9) ∃γ1 ≥ 0, γ2 ≥ 0 : γ1A1 + γ2A2 � 0.

Then the minimum and maximum of problems (QP2) and (D2), respectively, are at-
tained and val(QP2) = val(D2).

3. The two-quadratic Chebyshev center. We now apply the results of the
previous section to the problem of finding the Chebyshev center of the intersection
of two level sets of quadratic functions. Specifically, we show that if the underlying
number field is complex (F = C), then the Chebyshev center can be found by solving
a convex optimization problem with two variables, or an SDP with three variables,
thus rendering the problem tractable. In the case F = R the proposed methodology
results in an approximation of the exact Chebyshev center.

Consider the set Ω given as the intersection of level sets of two quadratic functions:

(10) Ω = {z ∈ F
n : fi(z) ≤ 0, i = 1, 2},

where fi(z) = z∗Aiz + 2�(b∗
i z) + ci with Ai = A∗

i ∈ F
n×n,bi ∈ F

n, and ci ∈ R for
i = 1, 2. We assume that condition (9) holds true. This is the case, for example, when
at least one of the functions is strictly convex, which is equivalent to saying that the
corresponding level set is a nondegenerate ellipsoid.

The Chebyshev center of Ω is the vector ẑ ∈ F
n which is the solution to

(11) min
ẑ∈Fn

max
z∈Ω

‖z − ẑ‖2.

Theorem 3.1 below shows that finding the Chebyshev center of Ω can be recast as a
convex optimization problem with only two variables. In order to prove the theorem,
we will require the following lemma on Schur complements of singular matrices.

Lemma 3.1 (see [6, Appendix A.5]). Let

X =

(
A B
B∗ C

)
,

where A = A∗ ∈ F
k×k,B ∈ F

k×p, and C = C∗ ∈ F
p×p. Then X 	 0 if and only if

A 	 0, C − B∗A†B 	 0, (I − AA†)B = 0.

Remark 3.1. Note that the condition (I − AA†)B = 0 is equivalent to saying
that AY = B for some Y ∈ F

p×k.
Theorem 3.1. Let Ω be the set given in (10) with F = C. Suppose that there

exists z̃ ∈ F
n such that f1(z̃) < 0 and f2(z̃) < 0 and that (9) is satisfied. Then the

solution to (11) is

(12) ẑ = − (α1A1 + α2A2)
−1

(α1b1 + α2b2) ,
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where (α1, α2) is an optimal solution of the following convex optimization problem in
two variables:

(13)
minα1,α2

{
−c1α1 − c2α2 + (α1b1 + α2b2)

∗(α1A1 + α2A2)
−1(α1b1 + α2b2)

}
s.t. α1A1 + α2A2 	 I, α1 ≥ 0, α2 ≥ 0.

Proof. Problem (11) can be rewritten as

min
ẑ∈Fn

{
‖ẑ‖2 + max

z∈Ω

{
‖z‖2 − 2z∗ẑ

}}
.

By using the strong duality result of Theorem 2.1 (note that all the conditions are
satisfied), we conclude that the value of the inner maximization

max
z∈Ω

{‖z‖2 − 2z∗ẑ}

is equal to the value of the dual minimization problem (see section 2):

minα1,α2,λ λ

s.t.

(
−I ẑ
ẑ∗ λ

)
+ α1

(
A1 b1

b∗
1 c1

)
+ α2

(
A2 b2

b∗
2 c2

)
	 0,

α1 ≥ 0, α2 ≥ 0.

Therefore, we can write (11) as

(14)

minα1,α2,ẑ,λ

{
λ + ‖ẑ‖2

}
s.t.

(
−I + α1A1 + α2A2 ẑ + α1b1 + α2b2

(ẑ + α1b1 + α2b2)
∗ λ + α1c1 + α2c2

)
	 0,

α1 ≥ 0, α2 ≥ 0.

Using Lemma 3.1 and Remark 3.1, problem (14) is equivalent to

(15)

minα1,α2,ẑ,λ

{
λ + ‖ẑ‖2

}
s.t. Bα 	 0,

ẑ + α1b1 + α2b2 ∈ R(Bα),

λ + α1c1 + α2c2 ≥ (ẑ + α1b1 + α2b2)B†
α(ẑ + α1b1 + α2b2),

α1 ≥ 0, α2 ≥ 0,

where we defined

Bα ≡ −I + α1A1 + α2A2.

Noting that at the optimum we will have equality in the third constraint of (15), our
problem reduces to

(16)

minα1,α2,ẑ

{
−α1c1 − α2c2 + (ẑ + α1b1 + α2b2)B†

α(ẑ + α1b1 + α2b2) + ‖ẑ‖2
}

s.t. Bα 	 0,
ẑ + α1b1 + α2b2 ∈ R(Bα),
α1 ≥ 0, α2 ≥ 0.

The constraint ẑ+α1b1 +α2b2 ∈ R(Bα) is satisfied if and only if there exists w ∈ F
n

such that ẑ+α1b1 +α2b2 = Bαw. Using this observation combined with the identity
BαB†

αBα = Bα, (16) becomes

(17)
minα1,α2,w

{
−α1c1 − α2c2 + w∗Bαw + ‖ − α1b1 − α2b2 + Bαw‖2

}
s.t. Bα 	 0,

α1 ≥ 0, α2 ≥ 0.
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Fixing (α1, α2) and minimizing with respect to w, we obtain that an optimal w
is any vector satisfying

Bα(I + Bα)w = Bα(α1b1 + α2b2).

Choosing w = (I + Bα)−1(α1b1 + α2b2) together with the identity

Bα(I + Bα)−1 = I − (I + Bα)−1

leads to the following form of (11):

(18)
minα1,α2

{
−α1c1 − α2c2 + (α1b1 + α2b2)

∗(α1A1 + α2A2)
−1(α1b1 + α2b2)

}
s.t. α1A1 + α2A2 	 I,

α1 ≥ 0, α2 ≥ 0.

Since the objective in (18) is convex and the constraints are convex conic constraints,
the problem (18) is convex. Finally,

ẑ = −α1b1 − α2b2 + Bαw

= (−I + Bα(I + Bα)−1)(α1b1 + α2b2)

= −(I + Bα)−1(α1b1 + α2b2),

completing the proof.
An immediate consequence of Theorem 3.1 is that at the expense of adding an

additional variable, we can recast the problem of finding the Chebyshev center of Ω
as an SDP with three variables.

Corollary 3.2. Consider the setting of Theorem 3.1. Then the solution to (11)
is given by

(19) ẑ = − (α1A1 + α2A2)
−1

(α1b1 + α2b2),

where (α1, α2) is an optimal solution of the SDP:

(20)

minα1,α2,t {−α1c1 − α2c2 + t}
s.t. α1A1 + α2A2 	 I,(

α1A1 + α2A2 α1b1 + α2b2

(α1b1 + α2b2)
∗ t

)
	 0,

α1 ≥ 0, α2 ≥ 0.

Proof. The proof follows from rewriting (13) as

minα1,α2,t {−α1c1 − α2c2 + t}
s.t. α1A1 + α2A2 	 I,

(α1b1 + α2b2)
∗(α1A1 + α2A2)

−1(α1b1 + α2b2) ≤ t,
α1 ≥ 0, α2 ≥ 0,

and invoking Lemma 3.1.
Since problem (20) is an SDP, it can be solved efficiently via interior point methods

[23]. Alternatively, we may solve the convex optimization problem (13) using the
ellipsoid method [3], which is attractive given the small number of variables (two). In
section 5 we compare these approaches.

The Chebyshev center of Ω can be calculated using Theorem 3.1 only when F = C.
In the real case (F = R), strong duality is not guaranteed, and therefore the vector ẑ
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defined by (12), with (α1, α2) being the optimal solution of (13) (or of (20)), is not
necessarily the exact Chebyshev center. In fact, the weak duality theorem implies
that the resulting ball will enclose the set but will not necessarily be the smallest one
possible. In Figure 2, four examples of intersections of ellipsoids in the real domain are
given. The vector ẑ was calculated by solving the SDP problem (20) with the software
package SeDuMi [27]. The radius of each ball is the square root of the corresponding
optimal value of problem (20). In the two upper examples it seems that strong duality
holds while in the two lower examples it is evident that the circle defined by Theorem
3.1 (or Corollary 3.2) is not minimal.

An important property of an optimal solution (ᾱ1, ᾱ2) of problem (13) is that
the matrix ᾱ1A1 + ᾱ2A2 − I is not positive definite, i.e., the minimum eigenvalue of
ᾱ1A1 + ᾱ2A2 − I is zero. This is proved in Theorem 3.3 below. This result is valid
both in the complex and real domains. In section 4.2 we use this result in order to
further reduce (13) to a single-variable convex optimization problem when L = I.

Theorem 3.3. Suppose that there exists z̃ ∈ F
n such that f1(z̃) < 0 and

f2(z̃) < 0 and that (9) is satisfied. Let (ᾱ1, ᾱ2) be an optimal solution of (13). Then
λmin (ᾱ1A1 + ᾱ2A2 − I) = 0.

Proof. Denote the objective function in (13) by

h(α) = −c1α1 − c2α2 + (α1b1 + α2b2)
∗(α1A1 + α2A2)

−1(α1b1 + α2b2).

Then the following hold:
(i) h(α) is homogeneous, i.e., h(λα) = λh(α) for every λ �= 0 and feasible α.
(ii) h(ᾱ) > 0.
The first property is obvious by a simple substitution. To prove the second prop-

erty note that by the weak duality theorem, h(ᾱ) is greater than or equal to the
value of the min-max problem (11). Let ẑ be the optimal solution of (11). Then
h(ᾱ) ≥ maxz∈Ω ‖z− ẑ‖2 and maxz∈Ω ‖z− ẑ‖2 must be positive since, by our assump-
tions, Ω has a nonempty interior.

Suppose that ᾱ1A1 + ᾱ2A2 � I. Then there exists 0 < λ < 1 such that λᾱ1A1 +
λᾱ2A2 � I so that (λᾱ1, λᾱ2) is a feasible point of (13). However, from properties (i)
and (ii),

h(λᾱ) = λh(ᾱ) < h(ᾱ),

contradicting the optimality of ᾱ.

4. The RCC estimator.

4.1. The RCC: Definition and form. We now return to the problem of finding
the Chebyshev center of FPS (5), which is the solution of the min-max problem (6).
The set FPS can be represented as an intersection of two ellipsoids:

FPS = {z ∈ F
n : z∗L∗Lz ≤ η, z∗A∗Az − 2�(b∗Az) + ‖b‖2 ≤ ρ}.

We assume that condition (9) is satisfied, which means that

(21) ∃γ1 ≥ 0, γ2 ≥ 0, γ1L
∗L + γ2A

∗A � 0.

By Theorem 3.1, if F = C and there exists z̃ such that ‖Az̃ − b‖2 < ρ, ‖Lz̃‖2 < η,
then the Chebyshev center of FPS has the form

ẑ = α2(α1L
∗L + α2A

∗A)−1A∗b,
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Fig. 2. Four examples of intersection of ellipsoids (dashed lines). The filled area is the in-
tersection of the ellipsoids. The center of the dotted circle is given by (12) with (α1, α2) being an
optimal solution of (13) and the radius being the square root of the corresponding optimal value.

where (α1, α2) is an optimal solution of the problem

(22)
minα1,α2

{
α1η + α2(ρ− ‖b‖2) + α2

2b
∗A(α1L

∗L + α2A
∗A)−1A∗b

}
s.t. α1L

∗L + α2A
∗A 	 I,

α1, α2 ≥ 0.

We now define ẑ for both the real and complex domains, and for the case when
the conditions stated above are not necessarily satisfied.

Definition 4.1. The relaxed Chebyshev center (RCC) estimator is the vector

ẑRCC = α2(α1L
∗L + α2A

∗A)−1A∗b,

where (α1, α2) is an optimal solution of the convex optimization problem (22).
If the optimal α2 is positive, then the RCC estimator can be written as

(23) ẑRCC = (A∗A + (α1/α2)L
∗L)−1A∗b.
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Therefore, the RCC estimator is essentially a Tikhonov regularization with a special
choice of λ that also takes into account the bounded noise constraint. This is in
contrast to the choice of the regularization parameter in the RLS estimator that
exploits only the norm constraint ‖Lz‖2 ≤ η.

In section 5 we demonstrate that although the RCC estimator is only an approxi-
mation of the Chebyshev center in the real domain, it can still significantly outperform
the LS and RLS methods with respect to the estimation error. This is the case even
when the bound on the noise is loose; thus, with almost the same information as used
by the RLS approach, we can significantly reduce the estimation error by using our
proposed strategy. The two key ingredients that lead to the improved performance
are treating the estimation error directly and the added constraint on the noise.

4.2. The case L = I. We now show that in the interesting special case L = I,
the task of calculating the RCC estimator reduces to a single-variable convex mini-
mization problem. To this end we rely on Theorem 3.3.

Theorem 4.1. Let L = I and denote δ = λmin(A∗A). Then the RCC estimator
is given by

ẑRCC =

{
(A∗A + λI)−1A∗b, 0 ≤ λ < ∞,
0, λ = ∞,

where λ is determined as follows3:
(i) If δ > 0, then λ = 1/μ− δ, where μ is the solution of the convex minimization

problem

(24) min
0≤μ≤1/δ

{
(1 − δμ)η + μ(ρ− ‖b‖2) + μ2b∗A(μ(A∗A − δI) + I)−1A∗b

}
.

(ii) If δ = 0, then λ = 1/ξ, where ξ is the solution of the convex minimization
problem

(25) min
ξ≥0

{
ξ(ρ− ‖b‖2) + ξ2b∗A(ξA∗A + I)−1A∗b

}
.

Proof. Substituting L = I into (22) we find

(26)
minα1,α2

{
α1η + α2(ρ− ‖b‖2) + α2

2b
∗A(α2A

∗A + α1I)
−1A∗b

}
s.t. α2A

∗A + α1I 	 I,
α1, α2 ≥ 0.

The LMI constraint can be written equivalently as

(27) α2λmin(A∗A) + α1 = α2δ + α1 ≥ 1.

From Theorem 3.3, we conclude that (27) must be satisfied with equality. Therefore,

(28) α1 = 1 − δα2.

Substituting (28) into (26) we obtain that in the case δ > 0, (26) becomes

minα2

{
(1 − δα2)η + α2(ρ− ‖b‖2) + α2

2b
∗A(α2(A

∗A − δI) + I)−1A∗b
}

s.t. 0 ≤ α2 ≤ 1/δ,

3We use the standard terminology a
0

= ∞ whenever a > 0.
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which is the same as (24) after μ is replaced by α2. The result for the case δ = 0 is
similarly derived.

To solve the single-variable convex problems (24) and (25), we can use any solver
of one-dimensional convex minimization problems—for instance, a simple bisection
algorithm on the derivative of the function. Denoting by q(μ) and q′(μ) the objective
in (24) and its derivative, respectively, we have

q′(μ) = −δη + ρ− ‖b‖2 + 2μb∗A(μ(A∗A − δI) + I)−1A∗b

−μ2b∗A(μ(A∗A − δI) + I)−1(A∗A − δI)(μ(A∗A − δI) + I)−1A∗b.

Since μ(A∗A − δI) + I is a positive definite matrix for every choice of μ ≥ 0, we can
calculate the derivative using a single Cholesky factorization in the following manner.

Calculation of q′(μ).

1. Calculate a Cholesky factorization D∗D = μ(A∗A − δI) + I.

2. Solve the system D∗y = A∗b.

3. Solve the system Dx = y.

4. The derivative is given by q′(μ) = −δη+ρ−‖b‖2+2μb∗Ax−μ2x∗(A∗A−δI)x.

Note that the Cholesky factorization is the most expensive component in the
calculation of q′(μ) (the calculation of A∗A is done in a preprocess). The other
operations—solution of triangular systems and matrix/vector multiplications—are
significantly cheaper. An alternative approach for computing the derivative is us-
ing the singular value decomposition of A. This approach is viable for small-size
problems but is not applicable for medium- and large-scale problems in which the
Cholesky or the sparse Cholesky factorization can be employed. The complete de-
scription of the algorithm for calculating the RCC estimator when L = I and δ > 0
is as follows.

Algorithm RCC-S.
Input: A ∈ F

m×n, the model matrix; b ∈ F
m, the (noisy) right-hand side vector; η,

an upper bound on ‖z‖2; and ρ, an upper bound on the squared-norm of the noise
‖Az − b‖2.
Output: The RCC estimator ẑRCC, which is the solution to problem (22) with L = I.

1. If q′(0) ≥ 0 then h = 0, and go to step 5.
2. If q′(1/δ) ≤ 0 then h = 1/δ, and go to step 5.
3. Set lb = 0, ub = 1/δ.
4. Repeat the following steps until |ub− lb| < η:

(a) Set h = lb+ub
2 .

(b) Calculate d = q′(h).
(c) If d ≥ 0 then ub = h; else lb = h.

5. Set ẑRCC = (A∗A + (1 − δh)/hI)−1A∗b.

A similar algorithm can be defined for the case δ = 0.

5. Numerical examples. We now present some examples comparing the RCC
estimator with the LS and RLS methods, given by (2) and (3), respectively. The
comparison was employed on two sets of problems: randomly chosen problems and
the discretized inverse heat equation from “Regularization tools” [15]. All experiments
were performed in MATLAB.

We note that in the simulations we assume knowledge of a very loose bound ρ on
the noise so that essentially our method exploits almost the same knowledge as the
RLS approach.
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5.1. Random test problems. We chose a problem with dimensions m =
10, n = 7. Each component of A was randomly generated from a uniform distri-
bution (i.e., A = rand(m,n)). The “true” vector zT is the vector of all ones. In the
constraints, L = I and η = 2‖zT‖2. The observed vector b was generated by

b = AzT + σw,

where σ takes the values 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 and each compo-
nent of w was randomly generated from a standard normal distribution. The upper
bound on the squared norm of the noise was chosen as 10‖w‖2 (i.e., 10 times the true
squared norm).

Table 1 describes the average of the data error ‖Aẑ − b‖2 (here ẑ is ẑLS, ẑRLS,
or ẑRCC) and the squared error residual ‖zT − ẑ‖2 over 100 realizations of w. The
best results in each half row are marked in boldface. The RLS approach (3) was
implemented using the function lsqi from [15] and the RCC estimator was generated
by the RCC-S algorithm of section 4.2.

Table 1

Comparison of the LS, RLS, and RCC estimators with respect to estimation error and data error.

σ Squared estimation error Squared data error
LS RLS RCC LS RLS RCC

0.01 1.9e-3 1.9e-3 1.9e-3 3.0e-4 3.0e-4 3.0e-4
0.1 2.1e-1 2.1e-1 1.8e-1 3.0e-2 3.0e-2 3.1e-2
0.2 6.6e-1 6.6e-1 3.6e-1 1.2e-1 1.2e-1 1.5e-1
0.3 1.8e+0 1.8e+0 2.0e-1 2.6e-1 2.6e-1 1.2e+0
0.4 3.1e+0 2.9e+0 2.5e-1 5.3e-1 5.3e-1 2.7e+0
0.5 4.3e+0 3.9e+0 3.3e-1 7.2e-1 7.3e-1 4.8e+0
0.6 6.5e+0 5.0e+0 4.7e-1 1.1e+0 1.2e+0 7.3e+0
0.7 9.6e+0 5.4e+0 5.5e-1 1.5e+0 1.7e+0 1.0e+1
0.8 1.4e+1 6.6e+0 6.8e-1 2.1e+0 2.4e+0 1.4e+1
0.9 1.5e+1 6.7e+0 9.0e-1 2.4e+0 2.9e+0 1.8e+1
1.0 1.8e+1 6.8e+0 9.9e-1 2.8e+0 3.6e+0 2.2e+1

It is evident that the LS and RLS estimators are significantly and consistently
worse than the RCC method with respect to the estimation error. This is despite the
fact that the bound on the data error was chosen to be very large—much larger than
the true bound. Thus, this approach does not require much prior information. On the
other hand, the LS and RLS estimators result in a smaller data error than the RCC
approach. This is not surprising since, as was already mentioned, the RCC method is
designed to minimize a measure of estimation error while the LS and RLS strategies
are aimed at minimizing the data error, which is less relevant in an estimation context.

Note that the RCC method was implemented in the case F = R. Recall that
in the real domain the RCC estimator is only an approximation of the Chebyshev
center of the FPS. We also implemented a set of random examples over F = C. The
results were essentially the same as those reported in Table 1. Therefore, it seems
that at least from an empirical point of view the RCC strategy is a “good enough”
approximation of the Chebyshev center.

As we already pointed out, both the RCC and RLS strategies are Tikhonov esti-
mators with different regularization parameters. In all the simulations in this section
we observed that the regularization parameter of the RCC method,4 denoted by λRCC,

4α2 was always nonzero in our experiments.
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is consistently greater than or equal to the parameter λRLS of the RLS approach. Fur-
thermore, the RCC estimator was always feasible so that ‖LẑRCC‖2 ≤ η. The latter
observation explains why λRCC ≥ λRLS. To see this, we define ϕ(λ) ≡ ‖Lzλ‖2, where
zλ is given by (4). It is straightforward to show that the function ϕ is strictly de-
creasing under our assumption (21). Now, if ‖LẑLS‖2 ≤ η, then λRLS = 0, which
immediately implies λRCC ≥ λRLS. Otherwise, when ‖LẑLS‖2 > η, λRLS satisfies
ϕ(λRLS) = η. On the other hand, ϕ(λRCC) = ‖LẑRCC‖2 ≤ η, and by the fact that ϕ
is decreasing, λRCC ≥ λRLS.

5.2. Inverse heat equation. We now treat the problem of estimating the func-
tion f(t) that solves the heat equation∫ 1

0

k(s− t)f(t) = g(s),

with k(t) = t−3/2

2
√
π

exp
(
− 1

4t

)
. By means of a simple collocation and midpoint rule with

n points, the problem reduces to an n×n linear system AzT = bT. This system and
its solution zT are implemented in the function heat(n,1) from [15]. We note that this
example is ill-conditioned. We compare the RCC estimator to the RLS method (the
results for the LS approach are not given because it produces extremely poor results).

The perturbed right-hand side is chosen as

(29) b = bT + 10−4w,

where each component of w is generated from a standard normal distribution. The
matrix L approximates the first-derivative operator implemented in the function
get l(n,1) from [15]. The upper bound η was chosen to be 2‖LzT‖2. In Figure 3 three
possible values of ρ were employed: ρ = ‖w‖2 (exact squared norm), ρ = 2‖w‖2, and
ρ = 10‖w‖2. The results of the RCC estimator in these three cases are very similar
and are much closer to the true vector zT than the RLS solution ẑRLS. Therefore,
it seems that at least in this example, the performance of the RCC method is quite
robust with respect to the choice of ρ. The fourth plot in Figure 3 describes the three
vectors AzT,AẑRLS, and AẑRCC (for ρ = 10‖w‖2). It can be readily seen that the
three vectors are almost identical, implying that the data errors of the RLS and RCC
approaches are both negligible.

5.3. Ellipsoid versus interior-point methods. In the case when L �= I (as in
the inverse heat equation problem), we are required to solve the convex optimization
problem (22) with two variables, or the SDP

(30)

minα1,α2,t

{
α1η + α2(ρ− ‖b‖2) + t

}
s.t. α1L

∗L + α2A
∗A 	 I,(

α1L
∗L + α2AA −α2A

∗b
−α2Ab∗ t

)
	 0, α1 ≥ 0, α2 ≥ 0.

Now, consider an SDP of the general form

min

{
cTx :

m∑
i=1

xiBi 	 E

}
,

where c ∈ R
m and E,Bi, i = 1, . . . ,m, are n × n Hermitian matrices. In order to

solve the general form SDP we can use a primal-dual interior-point method, which
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Fig. 3. Results for the inverse heat problem of the RCC and RLS estimators.
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requires O(n3.5m1.5+n2.5m2+n0.5m2.5) operations per accuracy digit. For the specific
problem (30) we have m = 3, and the amount of operations is therefore O(n3.5).

Another alternative is to use the ellipsoid method [3] directly on the problem
(22). This algorithm requires O(n3) operations per accuracy digit since it requires
at most two Cholesky factorizations at each iteration. Therefore, it is cheaper than
the SDP approach by a factor of order

√
n. To compare the performance of the two

algorithms, we implemented the ellipsoid method (see the appendix for full details)
and compared it to the interior-point method implemented in SeDuMi [27] on the
inverse heat equation problem with various values of n. The CPU time in seconds of
the ellipsoid and interior-point algorithms averaged over 10 realizations of the noise
w is given in Table 2 below (σ was fixed to be 1e-4). For n = 1000 SeDuMi failed due
to memory difficulties. Table 2 demonstrates the efficiency of the ellipsoid method.

Table 2

CPU time in seconds on a Pentium 4, 1.8Ghz.

n Ellipsoid SeDuMi
10 1.4e-1 5.5e-1
20 1.6e-1 9.3e-1
50 2.9e-1 3.5e+0
100 8.5e-1 1.8e+1
200 6.0e+0 1.0e+2
500 3.8e+1 8.3e+2
1000 2.4e+2 –

6. Extensions to other estimation problems. The RCC estimator was con-
structed to handle the situation in which only the right-hand side of the linear system
Ax ≈ b is contaminated by noise. The same methodology can be applied to deal
with other sources of noise. In this section, we briefly outline the resulting estimators
in two scenarios: (i) both A and b are uncertain, and (ii) A and b are uncertain and
regularization is required. In the first scenario, the proposed estimator has a similar
structure to the well-known TLS method [13, 17], and in the second scenario, the
estimator has a form similar to that of the RTLS solution [12]. Thus, these popular
methods of handling uncertainties in the basic regression model (1) can be shown to
be special cases of our general results.

The derivation of the estimators is very similar to that described in section 3;
therefore, we present the main results without proof.

6.1. Uncertainty in both A and b. Suppose that both A and b are uncertain
and are given by A+Δ,b+w with Δ,w being unknown but bounded perturbations.
This setting is assumed in the robust LS approach [11]. We assume that the bound
constraint is given by5 ‖(Δ,w)‖2

F ≤ ρ. The corresponding FPS is

FPS1 = {z ∈ F
n : ∃Δ ∈ F

m×n,w ∈ F
m : (A + Δ)z = b + w, ‖(Δ,w)‖2

F ≤ ρ}.

To apply our results, we first note that FPS1 can be written as the single quadratic
constraint

(31) FPS1 = {z ∈ F
n : z∗(A∗A − ρI)z − 2z∗A∗b + ‖b‖2 − ρ ≤ 0}.

This follows from writing FPS1 as

FPS1 = {z ∈ F
n : Az − b = Ez̃ for some ‖E‖2

F ≤ ρ}

5For a matrix B, ‖B‖F denotes the Frobenius norm of B.
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and applying the following simple lemma.

Lemma 6.1. Let x ∈ F
n and y ∈ F

m, and let η be a positive scalar. Then the
following two statements are equivalent:

(i) There exists Δ ∈ F
m×n such that Δx = y and ‖Δ‖F ≤ η.

(ii) The inequality ‖y‖ ≤ η‖x‖ holds.

Under the assumption that ρ < λmin(A∗A), it can be shown, using the same line
of analysis of section 3, that the Chebyshev center of FPS1 is given by

(32) ẑ = (A∗A − ρI)−1A∗b,

which is a deregularization of the LS solution. Since FPS1 consists of a single quadratic
constraint, this result is valid both in the real and in the complex domains. We note
that when ρ > λmin(A∗A), FPS1 is unbounded, and as a result the value of the inner
maximization problem in (6) is always ∞, which implies that the Chebyshev center
in this case is meaningless.

If we choose

ρ = λmin

(
A∗A A∗b
b∗A ‖b‖2

)
,

then the estimator (32) coincides with the TLS estimator [17, Theorem 2.7].

6.2. Uncertainty in both A and b with regularization. Suppose now we
add regularization to the previous scenario; i.e., we consider the feasible set

FPS2 = {z ∈ F
n : ‖Lz‖2 ≤ η,∃Δ ∈ F

m×n,w ∈ F
m : (A+Δ)z = b+w, ‖(Δ,w)‖2

F ≤ ρ},

which can also be written as

FPS2 = {z ∈ F
n : ‖Lz‖2 ≤ η, z∗(A∗A − ρI)z − 2z∗A∗b + ρ− ‖b‖2 ≤ 0}.

In the case F = C, the Chebyshev center of FPS2 is given by

(33) ẑ = α2(α1L
∗L + α2(A

∗A − ρI))−1A∗b,

where (α1, α2) is an optimal solution of the convex optimization problem

minα1,α2 {α1η + α2(ρ− ‖b‖2) + α2
2b

∗A(α1L
∗L + α2(A

∗A − ρI))−1A∗b}
s.t. α1L

∗L + α2A
∗A 	 I,

α1, α2 ≥ 0.

If α2 �= 0 then ẑ of (33) can be written as

ẑ = (A∗A − ρI + α1/α2L
∗L)−1A∗b.

This estimator has the same structure as the RTLS method, which solves the equation

(A∗b − λI + μL∗L)xRTLS = A∗b

for some choice of parameters λ, μ [12].
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7. Conclusion. In this paper we discussed a Chebyshev center regularization
method that is based on an estimation error criterion. In contrast to previous reg-
ularization strategies that invoke a data error–based criterion, here we focus on the
estimation error and try to minimize it in some sense. Since the estimation error de-
pends on the unknown vector, we choose as our estimate the Chebyshev center of an
FPS, which consists of a constraint both on the data error and on the weighted norm
of the true parameter. Although the resulting problem is nonconvex, by exploiting
recent duality results, we show that in the complex domain it can be formulated as
a solution to a convex optimization problem in two unknowns, and in the real case
the same approach can be used to get a “pretty good” approximation of the true
Chebyshev center. From a numerical standpoint, we provide two solution methods
and compare their performance. The first is based on an SDP and the second on an el-
lipsoid algorithm. The latter turns out to be more efficient as the problem size grows.
Finally, we show that the popular TLS and RTLS methods can also be formulated
within our framework.

Appendix. The ellipsoid method for problem (13).
In this appendix we describe in detail the ellipsoid method as applied to the

convex optimization problem (13).
The two basic ingredients in the ellipsoid method are a separation oracle and a

first-order oracle (see, e.g., [3]). The main linear algebra procedure we use in both
oracles is the Cholesky factorization. We assume that the input to the Cholesky
procedure is a symmetric matrix B, and its output consists of three arguments flag,
D, and x. If flag = 1 then B is positive definite, B = D∗D with D being a lower
triangular matrix, and x is NULL. If flag = 0 then B is not positive definite, x is a
vector satisfying x∗Bx ≤ 0, and D is NULL.

The input to the separation oracle is a vector α ∈ R
2. The output is either a

statement that the vector is feasible (up to some tolerance) or a hyperplane separating
the vector from the feasible set. ε is a tolerance parameter chosen as 10−6 in our
implementation.
Algorithm SEP-ORA.
Input: α = (α1, α2)

T ∈ R
2.

Output: flag equals one if α is feasible (up to some tolerance) and zero otherwise.
d ∈ R

2 is a separating hyperplane.
1. If α1 ≤ −ε then flag=0, d = (−1, 0)T , STOP.
2. If α2 ≤ −ε then flag=0, d = (0,−1)T , STOP.
3. Set M = α1A1 + α2A2 − I + εI.
4. Invoke the Cholesky factorization procedure with input M and obtain an

output {flag, D, x}.
(a) If flag = 1 then STOP.
(b) If flag = 0 then (d1, d2) = (x∗A1x,x

∗A2x), STOP.
The first-order oracle is invoked in the case when the current vector α = (α1, α2)

T

is feasible. Its main computational effort is the Cholesky factorization of the matrix
α1A1 + α2A2, which by feasibility of α, must be positive definite.
Algorithm FO-ORA.
Input: α = (α1, α2)

T ∈ R
2, an η-feasible solution of (13).

Output: f , the gradient of the objective function of (13) at α.
1. Set M = α1A1 + α2A2.
2. Invoke the Cholesky factorization procedure with input M and obtain an

output {flag,D,x}.
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3. Solve the following linear systems in x1,x2: D∗x1 = b1,D
∗x2 = b2.

4. Solve the following linear systems in v1,v2: Dv1 = x1,Dv2 = x2.
5. Set

f1 = −c1 + 2α1b
∗
1v1 − α2

1v
∗
1A1v1 + 2α2b

∗
1v2 − 2α1α2v

∗
1A1v2 − α2

2v
∗
2A1v2,

f2 = −c2 + 2α2b
∗
2v2 − α2

2v
∗
2A2v2 + 2α1b

∗
1v2 − 2α1α2v

∗
1A2v2 − α2

1v
∗
1A2v1.

We are now ready to describe the implementation of the ellipsoid method on the
convex optimization problem (13).
Algorithm Ellipsoid.
Input: The optimization problem (13).
Output: α ∈ R

2, a solution to problem (13) (up to some tolerance).
1. Set R = 108,B = RI2,α = (0, 0)T , v = π1016.
2. Repeat the following steps until v < ε.

(a) Invoke the separation oracle SEP-ORA with input α and obtain an
output {flag,d}. If flag = 0 then go to step (c).

(b) Invoke the first-order oracle FO-ORA with input α and obtain an output
d.

(c) p = BTd√
dTBBTd

.

(d) α = α− 1
3Bp.

(e) B = 2√
3
B + ( 2

3 − 2√
3
)BppT .

(f) v = π det(B).
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