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Abstract
The paper considers the sparse envelope function, defined as the biconjugate of the sum of
a squared �2-norm function and the indicator of the set of k-sparse vectors. It is shown that
both function and proximal values of the sparse envelope function can be reduced into a one-
dimensional search that can be efficiently performed in linear time complexity in expectation.
The sparse envelope function naturally serves as a regularizer that can handle both sparsity
and grouping information in inverse problems, and can also be utilized in sparse support
vector machine problems.

Keywords Biconjugate · Sparsity · Convex envelope · Randomized root search

1 Introduction

In this paper we investigate the extended real-valued function sk : Rn → (−∞,∞] given
by

sk(x) =
{ 1

2‖x‖22, ‖x‖0 ≤ k,
∞, else,

where k is a positive integer and ‖ · ‖0 is the so-called �0-norm1 function that counts the
number of nonzero elements in the input vector: ‖x‖0 ≡ #{i : xi �= 0}. Two motivating
examples for considering sk are given in the next subsection.

1.1 Prototype examples

(I) Sparse and grouping inducing regularizer Many inverse problems in science have the
form

1 Obviously, the �0-“norm" is not actually a norm.
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min
x∈Rn

f (x) + s(x), (1.1)

where f is a data fidelity term (e.g., least squares) and s is a regularizer that models some
kind of an a priori knowledge on the vector that needs to be recovered. In many applications,
it is reasonable to assume that the sought vector should have a small number of nonzero
components, meaning that it is sparse. Perhaps the most natural regularizer in this case is
the �0-norm. Unfortunately, the �0-norm is a difficult function to handle being nonconvex
and even non-continuous. One way to circumvent this difficulty is by replacing the �0-norm
by the �1-norm, which is also a sparsity-inducing regularizer. It was actually shown that in
some important settings, the usage of the �1-norm leads to the same solution as the one that
would be obtained by using the �0-norm, see for example the review paper [5] and references
therein. One extremely popular model is to take f as a least squares fidelity term and s as an
�1 expression, leading to one of the formulations of the so-called LASSO problem [11].

In [13] it was observed that in some statistical applications that posses the “grouping
effect", the �1 regularizer does not yield satisfactory results. This is why the elastic net
regularizer was proposed in [13]; the elastic net regularizer function is a weighted sum of the
squared �2-norm and the �1-norm.
The function sk , much like the elastic net function, also takes into account sparsity and
grouping properties. The grouping property is handled as in the elastic net regularizer, by a
squared �2-norm, but the sparsity property is treated in a straightforward manner by taking
into account the �0-norm constraint.
(II) Support Vector Machines In the linear separation problem, we are given n vectors in
a p-dimensional space x1, x2, . . . , xn ∈ R

p that belong to two classes described by the
labels vector y ∈ {−1, 1}n (yi = 1 means that xi belongs to the first class; otherwise, it
belongs to the second class). The support vector machine (SVM) problem finds a hyperplane
Hw,β = {x ∈ R

n : wT x + β = 0} that aims to separate the two classes with a small
classification error.

A well-known formulation of the SVM problem is given by (see e.g., [7])

min 1
2‖w‖22 + CeT ξ

s.t. Y(Xw + βe) ≥ e − ξ ,

ξ ≥ 0.
(1.2)

where the decision variables arew ∈ R
p, ξ ∈ R

n andβ ∈ R. The parameters areY = diag(y)
(the diagonal matrix whose diagonal elements are the components of y), the data matrix
X ∈ R

n×p whose rows are xT1 , xT2 , . . . , xTn and the constraint violation parameter C > 0.
Now consider the case where we seek to find a linear separator that is sparse, meaning

with only a few nonzero elements. In this way, we perform classification and feature selec-
tion simultaneously, see for example the paper [12]. Given that we know a bound on the
sparsity level of the separator, a natural mathematical formulation of the problem would be
to incorporate an �0-norm constraint in problem (1.2):
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Clearly, as highlighted in blue in the above formulation, the problem can be written
explicitly in terms of sk as

min sk(w) + CeT ξ

s.t. Y(Xw + βe) ≥ e − ξ ,

ξ ≥ 0.

1.2 Convexifying sk

Unfortunately, sk is a nonconvex and noncontinuous function, and therefore, it is in general
a difficult task to solve optimization problems incorporating it. Therefore, the path taken in
this paper is to consider the best convex estimator of the function, namely the biconjugate
function Sk = s∗∗

k , which we call the sparse envelope function. In Sect. 2 we show that Sk
is equal to half times the square of the so-called k-support norm, introduced and studied in
[1]. We show that the evaluation of the sparse envelope function reduces to a monotone one-
dimensional root search problem that can be solved in linear time complexity in expectation
by a randomized root search method.

In Sect. 3 we consider the proximal mapping of the sparse envelope function and show that
it can also be computed in linear time using a reduction to a one-dimensional monotone root
search. The obtained O(n) linear complexity result is an improvement of the2 O(n log n)

and O(n(k + log n)) complexities known [1] for evaluating the function value and proximal
operator of the k-support norm. The ability to efficiently compute the proximal operator of the
sparse envelope function implies that it is possible to employ fast proximal gradient methods
such as FISTA [3] to solve the composite problem (1.1) in the case where f is convex and
smooth. Section 4 describes how to construct a dual problem of a relaxation of the sparse
SVM problem which is based on the composite envelope function. The dual formulation has
a simple constraint set, and a smooth objective function, and can thus be tackled through
accelerated first-order methods.

Notation The underlying space in the paper is Rn - the space of all real-valued n-length
column vectors endowed with the dot product 〈x, y〉 = xT y. For p ≥ 1, The �p-norm of

a vector x ∈ R
n is given by ‖x‖p ≡ p

√∑n
i=1 |xi |p . The �∞-norm of a vector x ∈ R

n is
‖x‖∞ = maxi=1,2,...,n |xi |. e is the vector of all ones and 0 is the vector of all zeros. For a
positive integer m, we denote [m] ≡ {1, 2, . . . ,m}. For a vector x ∈ R

n and k ∈ [n], the
n-dimensional vector Hk(x) is a vector generated by keeping the k largest absolute value
components of x and setting all the others to zeros; the set of indices of the k largest absolute
value components is not unique, and we assume that in those situations an arbitrary vector
Hk(x) is chosen. It is well-known that Hk(x) is a vector which is closest to x among all the
k-sparse vectors, meaning that (see e.g., [2, Section 6.8.3])

Hk(x) ∈ argmin
y∈Ck

‖y − x‖2, (1.3)

where Ck is the set of all k-sparse vectors: Ck = {x : ‖x‖0 ≤ k}. Given an extended
real-valued function g : Rn → (−∞,∞], its conjugate is given by

g∗(y) = max
x∈Rn

{
xT y − g(x)

}
.

2 n being the underlying dimension and k being the sparsity level.
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2 Sparse envelope evaluation

2.1 Reduction to one-dimensional search

As mentioned in the introduction, the paper is concerned with the function

sk(x) = 1

2
‖x‖22 + δCk (x). (2.1)

The main purpose of the section is to find the biconjugate of sk , which we call the sparse
envelope function.

Definition 2.1 Let k ∈ [n]. The sparse envelope function with sparsity level k, denoted by
Sk , is the biconjugate of sk :

Sk = s∗∗
k .

By its definition, Sk is proper closed and convex. Throughout the paper, we will assume that
k ∈ [n] is given and fixed. Our ultimate goal in this section is to construct an efficient method
for computing Sk(x) = s∗∗

k (x) at a given x ∈ R
n . We begin by proving that the conjugate

function s∗
k is the squared norm of the k-hard thresholding function.

Lemma 2.1 s∗
k (y) = 1

2‖Hk(y)‖22 for any y ∈ R
n.

Proof Let y ∈ R
n . Then

s∗
k (y) = max

x∈Rn
{xT y − sk(x)} = max

x∈Ck

{
xT y − 1

2
‖x‖22

}
= max

x∈Ck

{
−1

2
‖x − y‖22 + 1

2
‖y‖22

}

(∗)= −1

2
‖Hk(y) − y‖22 + 1

2
‖y‖22

(∗∗)= 1

2
‖Hk(y)‖22,

where (*) follows from (1.3), and (**) follows by the fact that ‖Hk(y) − y‖22 is the sum of
squares of the n− k components of y with the smallest absolute values and 1

2‖y‖22 is the sum
of squares of all the components of y. �
Remark 2.1 (connection to the k-support norm) The k-support norm, denoted by ‖ · ‖spk was
introduced in [1], and is defined as the norm whose unit ball is given by

conv({w : ‖w‖0 ≤ k, ‖w‖2 ≤ 1}).
It was shown in [1, Section 2.1] that the dual norm of the k-support norm is given by
‖ · ‖H ≡ ‖Hk(·)‖2, that is, ‖ · ‖H∗ = ‖ · ‖spk (‖ · ‖H∗ denotes the dual norm of ‖ · ‖H ).
Therefore, by [2, Section 4.4.15],

Sk = (s∗
k )

∗ =
(
1

2
‖ · ‖2H

)∗
= 1

2
(‖ · ‖H∗)2 = 1

2
(‖ · ‖spk )2.

The conclusion is that the sparse envelope function equals half times the square of the
k-support norm. The analysis that will follow will be aimed at showing how the sparse
envelope function and its proximal operator can be efficiently computed in expected linear
time by randomized root search methods, as opposed to the complexities of O(n log n) and
O(n(k + log n)) currently known [1] for the computations of the function and proximal
operator of the k-support norm.
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The biconjugate function of sk is the conjugate of s∗
k , which according to Lemma 2.1 is

given by

Sk(x) = s∗∗
k (x) = max

y∈Rn

{
xT y − 1

2
‖Hk(y)‖22

}
. (2.2)

It is easy to see that

‖Hk(y)‖22 = max
u∈Dk

n∑
i=1

ui y
2
i , (2.3)

where Dk = {u ∈ R
n : eT u ≤ k, 0 ≤ u ≤ e}. In particular, an optimal solution of the

maximization problem in (2.3) is a vector with k ones at the coordinates corresponding to
the k largest absolute values in y, and zeros elsewhere. Plugging (2.3) into (2.2), we obtain
that

Sk(x) = max
y∈Rn

min
u∈Dk

{
xT y − 1

2

n∑
i=1

ui y
2
i

}
.

Since the above problem is convex in u and concave in y, by Sion’s minimax theorem [9,
Theorem 36.3], we can replace the roles of u and y, and obtain the following expression:

Sk(x) = min
u∈Dk

max
y∈Rn

{
xT y − 1

2

n∑
i=1

ui y
2
i

}
.

The optimal value of the inner maximization problem is

1

2

n∑
i=1

φ(xi , ui ),

where φ is the well-known “quadratic over linear" function given by

φ(x, u) ≡
⎧⎨
⎩

x2
u , u > 0,
0, x = u = 0,
∞, else.

(2.4)

This function is known to be proper closed and convex, and it is an important example of a
closed convex function that is not continuous (see for example [9, p. 83]). Lemma 2.2 below
summarizes the above discussion and presents a variational formula for Sk that will be the
key ingredient in the development of an efficient algorithm for computing its value.

Lemma 2.2 For any x ∈ R
n,

Sk(x) = 1

2
min
u∈Dk

n∑
i=1

φ(xi , ui ). (2.5)

Our next task is to construct a more explicit expression for Sk . For that, we will construct
a dual problem to the minimization problem in (2.5). Associating a Largrange multiplier
only to the inequality constraint eT u ≤ k (defining Dk), and disregarding the constant 1

2 , we
obtain the following Lagrangian function for the minimization problem in (2.5):

L(u, μ) =
n∑

i=1

(φ(xi , ui ) + μui ) − kμ.
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The dual objective function is therefore given by

q(μ) ≡ min
u:0≤u≤e

L(u, μ) =
n∑

i=1

ϕxi ,0(μ) − kμ, (2.6)

where for any b ∈ R and α ≥ 0, the function ϕb,α is defined by

ϕb,α(μ) ≡ min
0≤u≤1

{φ(b, α + u) + μu}, μ ≥ 0. (2.7)

Utilizing strong duality [9],we can conclude that the problemof evaluatingSk is equivalent
to a one-dimensional concave maximization problem.

Lemma 2.3 For any x ∈ R
n,

2Sk(x) = max
μ≥0

q(μ) (2.8)

with q being the concave function defined by

q(μ) =
n∑

i=1

ϕxi ,0(μ) − kμ, (2.9)

where ϕ is given in (2.7). In addition, the maximal value of the problem in (2.8) is attained
at some μ ≥ 0.

Our next task will be to study the properties of the function q that will enable us to compute
its maximal value efficiently. For that, we require the following lemma.3

Lemma 2.4 Let α ≥ 0, b ∈ R and consider the function ϕb,α : R+ → R given in (2.7). Then

(a) if b = 0, then ϕb,α(μ) = 0 for any μ ≥ 0 and the set of minimizers in (2.7) is [0, 1] if
μ = 0 or the singleton {0} if μ > 0;

(b) if b �= 0, then (using the convention that p/0 = ∞ for p > 0) for any μ ≥ 0

ϕb,α(μ) =

⎧⎪⎨
⎪⎩

b2
α+1 + μ,

√
μ ≤ |b|

α+1 ,

2|b|√μ − αμ,
|b|

α+1 <
√

μ <
|b|
α

,
b2
α

,
√

μ ≥ |b|
α

.

(2.10)

ϕb,α is differentiable at any μ > 0 and its derivative is given by

ϕ′
b,α(μ) =

⎧⎪⎨
⎪⎩
1,

√
μ ≤ |b|

α+1 ,|b|√
μ

− α,
|b|

α+1 <
√

μ <
|b|
α

,

0,
√

μ ≥ |b|
α

.

(2.11)

In addition, problem (2.7) has a unique minimizer ũ given by

ũ =

⎧⎪⎨
⎪⎩
1,

√
μ ≤ |b|

α+1 ,|b|√
μ

− α,
|b|

α+1 <
√

μ <
|b|
α

,

0,
√

μ ≥ |b|
α

.

(c) The right derivative of ϕb,α at 0 is given by

(ϕb,α)′+(0) =
{
1, b �= 0,
0, b = 0.

3 The lemma is written in a general way that will allow us to compute the prox operator of Sk later on.
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Proof (a) If b = 0, then for any μ ≥ 0,

ϕ(μ) = min
0≤u≤1

(φ(0, α + u) + μu) = min
0≤u≤1

μu = 0,

and the optimal set is either [0, 1] if μ = 0 or {0} if μ > 0.
(b) Assume that b �= 0.Wemake the notation H(u) = φ(b, u+α)+μu and split the analysis
into two cases.

Case I α > 0. Note that in this case H is differentiable over [0, 1], and that for any
u ∈ [0, 1],

H ′(u) = − b2

(α + u)2
+ μ.

The function H is strictly convex over [0, 1] and we denote its unique minimizer by ũ.
Since H is convex, it follows that ũ = 0 if and only if H ′(0) ≥ 0, which is the same as

− b2

α2 +μ ≥ 0 ⇔ √
μ ≥ |b|

α
. The optimal solution is ũ = 1 if and only if H ′(1) ≤ 0, which is

the same as− b2

(α+1)2
+μ ≤ 0 ⇔ √

μ ≤ |b|
α+1 . In all other cases, meaning if |b|

α+1 <
√

μ <
|b|
α
,

we have that ũ is the unique scalar satisfying H ′(ũ) = 0, that is, ũ = |b|√
μ

− α. To conclude,

the optimal solution ũ is given by

ũ =

⎧⎪⎨
⎪⎩
1,

√
μ ≤ |b|

α+1 ,|b|√
μ

− α,
|b|

α+1 <
√

μ <
|b|
α

,

0,
√

μ ≥ |b|
α

.

and thus,

ϕb,α(μ) = H(ũ) =

⎧⎪⎨
⎪⎩

b2
α+1 + μ,

√
μ ≤ |b|

α+1 ,

2|b|√μ − αμ,
|b|

α+1 <
√

μ <
|b|
α

,
b2
α

,
√

μ ≥ |b|
α

,

establishing the result for Case I.
Case II α = 0. Note that since b �= 0, φ(b, 0) + μ · 0 = ∞ + 0 = ∞, and therefore,
the minimizer of H over [0, 1] is not 0. There are two options: (i) the minimizer of H over
[0, 1] is ũ = 1 and this occurs when H ′(1) ≤ 0 ⇔ √

μ ≤ |b|; the corresponding function
value is ϕb,0(μ) = H(1) = φ(b, 1) + μ = b2 + μ; (ii) the minimizer of H over [0, 1] is
attained at ũ ∈ (0, 1), and in this case H ′(ũ) = 0, meaning ũ = |b|√

μ
with corresponding

value ϕb,0(μ) = H(ũ) = φ(b, ũ) + μũ = 2|b|√μ. To conclude, we obtained that in the
case α = 0,

ϕb,0(μ) =
{
2|b|√μ

√
μ > |b|,

b2 + μ
√

μ ≤ |b|,
which fits formula (2.10).

The expression for for the derivative of ϕb,α readily follows from the formula of ϕb,α .
(c) Follows directly from the expressions for ϕb,α given in parts (a) and (b). �

For the sake of evaluating the function Sk at a given point x ∈ R
n , it is enough to focus

on the structure of ϕb,α for the specific case α = 0. This is done in Corollary 2.1 below. The
general case with α �= 0 will be used later on in Sect. 3 in order to compute the proximal
operator of positive scalar multiples of Sk .
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Corollary 2.1 Let x ∈ R
n and i ∈ [n]. Then

(a) for any μ ≥ 0,

ϕxi ,0(μ) =
{
x2i + μ

√
μ ≤ |xi |,

2|xi |√μ
√

μ > |xi |, (2.12)

and for any μ > 0,

ϕ′
xi ,0(μ) = min

{ |xi |√
μ

, 1

}
; (2.13)

(b) the right derivative of q at 0 is given by q ′+(0) = ‖x‖0 − k.

Proof (a) Invoking Lemma 2.4(a,b), we obtain that ϕxi ,0 has the form (2.12) and that if
μ > 0, ϕ′

xi ,0
is given by

ϕ′
xi ,0(μ) =

{
1

√
μ ≤ |xi |,

|xi |√
μ

√
μ > |xi |, = min

{ |xi |√
μ

, 1

}
.

(b) By the definition of q (see (2.9)),

q ′+(0) =
n∑

i=1

(ϕxi ,0)
′+(0) − k = ‖x‖0 − k,

where the last equality utilizes Lemma 2.4(c). �
The following lemma shows that the sparse envelope function at a given x ∈ R

n is a
special sum of squared �2 and �1 norms, where the former is computed on the components x
with magnitude above a certain threshold, and the latter is computed on the remaining values.
The threshold is dictated by a root of a monotone one-dimensional function. To present the
lemma, we denote by x〈i〉 the component of x with the i th largest absolute value, meaning in
particular that |x〈1〉| ≥ |x〈2〉| ≥ . . . |x〈n〉|.
Lemma 2.5 (Sk as a sum of squared �1 and �2 norms) Let x ∈ R

n. Then

Sk(x) = 1

2

Nx∑
i=1

x2〈i〉 + 1

2(k − Nx)

⎛
⎝ n∑

i=Nx+1

|x〈i〉|
⎞
⎠

2

, (2.14)

where Nx is determined as follows:

(a) if ‖x‖0 ≤ k, then Nx = k − 1, and consequently

Sk(x) = 1

2
‖x‖22;

(b) if ‖x‖0 > k, then Nx ∈ {0, 1, . . . , k − 1} is defined as

Nx = max

{
i ∈ [n] : |x〈i〉| ≥ 1

η̃

}
, (2.15)

where η̃ is a root of the equation

gx(η) ≡
n∑

i=1

min {|xi |η, 1} − k = 0 (2.16)

over [0,∞).
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Proof Suppose that ‖x‖0 ≤ k. In this case, by Corollary 2.1(b), q ′+(0) = ‖x‖0 − k ≤ 0, and
therefore, by the concavity of q , it follows that 0 is a maximizer of q , and consequently, by
(2.8),

2Sk(x) = q(0) =
n∑

i=1

ϕxi ,0(0) =
n∑

i=1

x2i = ‖x‖22,

establishing part (a). To prove part (b), suppose that ‖x‖0 > k. By Corollary 2.1(b), q ′+(0) =
‖x‖0 − k > 0, and therefore a maximizer of the dual function q , which necessarily exists by
Lemma 2.3, must be a positive number. Recall that q(μ) = ∑n

i=1 ϕxi ,0(μ) − kμ, and that
by Corollary 2.1(a), ϕxi ,0 is differentiable over (0,∞) and hence μ̃ > 0 is a maximizer of q
if and only if

q ′(μ̃) =
n∑

i=1

ϕ′
xi ,0(μ̃) − k

︸ ︷︷ ︸
gx(μ̃)

= 0,

meaning (see Corollary 2.1(a)) if and only if

g̃x(μ̃) ≡
n∑

i=1

min

{
|xi |√

μ̃
, 1

}
− k = 0. (2.17)

Define

Nx = max{i ∈ [n] : |x〈i〉| ≥ √
μ̃}.

Then (2.17) translates to

Nx +
n∑

i=Nx+1

|x〈i〉|√
μ̃

= k. (2.18)

Consequently, Nx ≤ k since

Nx − k = −
n∑

i=Nx+1

|x〈i〉|√
μ̃

≤ 0.

In addition, Nx must be different than k, since otherwise, by (2.18),

1√
μ̃

n∑
i=k+1

|x〈i〉| = 0,

which is a contradiction to the condition that ‖x‖0 > k. We thus obtained that Nx ∈
{0, 1, . . . , k − 1}. By (2.18), μ̃ ≡

(∑n
i=Nx+1 |x〈i〉|
k−Nx

)2
, and consequently, by (2.8), we have

2Sk(x) = q(μ̃)
(2.6)=

Nx∑
i=1

ϕxi ,0(μ̃) +
n∑

i=Nx+1

ϕxi ,0(μ̃) − kμ̃

(2.12)=
Nx∑
i=1

(x2〈i〉 + μ̃) +
n∑

i=Nx+1

2|x〈i〉|
√

μ̃ − kμ̃
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=
Nx∑
i=1

x2〈i〉 + (Nx − k)μ̃ + 2
√

μ̃

n∑
i=Nx+1

|x〈i〉|

=
Nx∑
i=1

x2〈i〉 + (Nx − k)
1

(k − Nx)2

⎛
⎝ n∑

i=Nx+1

|x〈i〉|
⎞
⎠

2

+ 2

k − Nx

⎛
⎝ n∑

i=Nx+1

|x〈i〉|
⎞
⎠

2

=
Nx∑
i=1

x2〈i〉 + 1

k − Nx

⎛
⎝ n∑

i=Nx+1

|x〈i〉|
⎞
⎠

2

.

Finally, making the change of variables η = 1√
μ
, η̃ = 1√

μ̃
, we obtain the expression (2.15)

for Nx and that η̃(= √
μ̃) is a root of gx(η) = g̃x

(
1
η2

)
. �

Remark 2.2 If k = 1, then by Lemma 2.5, since k − 1 = 0, it follows that Nx = 0 regardless
of the value of x, and consequently

Sk(x) = 1

2
‖x‖21.

Remark 2.3 The formula (2.14) was already established in [1, Proposition 2.1], but with
a different expression for the choice of Nx. Specifically, the choice of Nx in [1] requires
the sorting of the elements of x, meaning O(n log n) operations. In contrast, the choice of
Nx in terms of the root of the one-dimensional function gx given in (2.16) will be the key
to proving an expected O(n) complexity of the evaluation of both the function value and
proximal operator of the sparse envelope function.

2.2 Solving the 1D problem

2.2.1 Bisection

Consider the case where ‖x‖0 > k. The function gx given in (2.16) is continuous and
nondecreasing. We can also describe two values for which gx has opposite signs, implying
that the one-dimensional problem can be solved by simple root-finding procedures such as
bisection. To describe the point for which gx is positive, denote q = ‖x‖0, and observe that
in our notation |x〈q〉| is the minimal absolute value among all the nonzero components of x.

Since min
{ |xi ||x〈q〉| , 1

}
= 1 if xi �= 0 and 0 otherwise, it follows that

gx

(
1

|x〈q〉|
)

=
n∑

i=1

min

{ |xi |
|x〈q〉| , 1

}
− k = ‖x‖0 − k > 0.

In addition, if we denote γ = max
{ ‖x‖1‖x‖∞k , 1

}
, then

gx

(
1

γ ‖x‖∞

)
=

n∑
i=1

min

{ |xi |
γ ‖x‖∞

, 1

}
− k

γ≥1=
n∑

i=1

|xi |
γ ‖x‖∞

− k = ‖x‖1
γ ‖x‖∞

− k
γ≥ ‖x‖1‖x‖∞k≤ 0.

Therefore, the search for the root of gx canbeover the bounded interval [(γ ‖x‖∞)−1︸ ︷︷ ︸
�

, |x〈q〉|−1︸ ︷︷ ︸
u

].
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The simplest approach for numerically solving the equation will be to employ a bisection
procedure. The worst case number of iterations of the bisection method is O(log( u−�

ε
)),

where ε is the required accuracy. Since a single evaluation of gx at any point requires O(n)

amount of elementary operations, the overall computational effort is O(log( u−�
ε

)n).

Remark 2.4 Since gx can also be written as gx(η) = ∑
j :x j �=0 min{|x j |η, 1} − k, then given

that we know beforehand the locations of the nonzero elements in x, the evaluation of gx can
be done in O(‖x‖0) operations, meaning that the overall computational effort can be reduced
to O(log( u−�

ε
)‖x‖0).

2.2.2 Randomized root search

A second option for solving the one-dimensional problem (2.16) would be to construct a
method similar to randomized median finding [6, Section 9.2] that exploits the fact that the
function is a sum of piecewise linear functions, each with a single breakpoint. The presented
algorithm is a simple extension of the randomized algorithm from [10] used to solve the
one-dimensional problem arising in the computation of the orthogonal projection onto the
l1-ball, see also [4] for a similar approach for finding a root of a different one-dimensional
function. The exact formulation of the one-dimensional problem we consider in this paper is
as follows.

Problem 1D-G
Input: α1, α2, β1, β2, γ ∈ R

m, δ ∈ R.
Functional representation of the input:

F (η) =
m∑

j=1

Fj(η) − δ, where Fj(η) =
{

α1
jη + β1

j , η ≤ γj,

α2
jη + β2

j , η > γj.
(2.19)

Assumptions: (a) α1
jγj + β1

j = α2
jγj + β2

j for any j ∈ [m]. [this condition ensures
continuity of Fj.]
(b) F is nondecreasing and has a root.
Output: a point η∗ ∈ R for which F (η∗) = 0

The randomized approach will lead to an algorithm with an expected amount of com-
putations that is at most linear in m (number of piecewise linear functions with a single
breakpoint), and the number of computations will not depend on any tolerance, or on a size
of an initial interval, like in the bisection method. To use the randomized method, we will
exploit properties (a) and (b) described in the assumptions of problem 1D-G.

The algorithm is based on the following observation: suppose that we randomly choose
p ∈ [m], and that this index p satisfies F(γp) < 0. Define � = { j : γ j > γp}. Then by
the monotonicity and continuity of F , the function has a root in (γp,∞) and for any j /∈ �,
by the structure Fj , it holds that Fj (η) = α2

jη + β2
j for any η > γp (since η > γp ≥ γ j ),

implying that for any η > γp ,

F(η) =
∑
j∈�

Fj (η) + α̃η + β̃, (2.20)

where α̃ = ∑
j /∈� α2

j , β̃ = ∑
j /∈� β2

j − δ. A similar argument, shows that if F(γp) > 0, then

(2.20) holds for any η < γp with � = { j : γ j < γp}, α̃ = ∑
j /∈� α1

j and β̃ = ∑
j /∈� β1

j − δ.
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The above observation implies that no matter what is the sign of F(γp), from this point
onwards, in order to evaluate the function F on values from the relevant intervals ((γp,∞) or
(−∞, γp)), the solution algorithm can just keep the values of α̃ and β̃ and take into account
only the indices in� (disregarding the indices in [m]\�). If for a certain index p, F(γp) = 0,
the algorithm stops and returns η∗ = γp . Otherwise, at a certain point, � = ∅, and the root

of the function is the root of the affine function α̃η + β̃, meaning η∗ = − β̃
α̃
(we assume that

all arithmetic can be performed exactly).

Algorithm 1: Randomized Root Search
Input: α1, α2, β1, β2, γ ∈ R

m, δ ∈ R

Output: η∗ ∈ R for which F (η∗) = 0, where F =
∑n

j=1 Fj − δ with Fj given in (2.19).
Initialization: Ω = [m], α̃ = 0, β̃ = −δ.

General step:
while Ω �= ∅

pick p ∈ Ω at random
compute F (γp) = α̃γp + β̃ +

∑
j∈Ω Fj(γp)

if (F (γp) < 0)
A ← {j ∈ Ω : γj > γp}
α̃ ← α̃ +

∑
j∈Ω\A α2

j , β̃ ← β̃ +
∑

j∈Ω\A β2
j

Ω ← A

elseif F (γp) > 0
A ← {j ∈ Ω : γj < γp}
α̃ ← α̃ +

∑
j∈Ω\A α1

j , β̃ ← β̃ +
∑

j∈Ω\A β1
j

Ω ← A

elseif F (γp) = 0
return η∗ = γp.

end if
end while
return η∗ = − β̃

α̃

The complexity analysis of Algorithm 1 is essentially identical to the complexity analysis
of the randomized median finding algorithm [6, Section 9.2], and therefore the expected
amount of iterations is O(m).

Solving problem (2.16): In the case where F = gx, we can write F as

F(η) =
∑
i∈I (x)

min{|xi |η, 1} − k,

where I (x) = {i : xi �= 0}. Denote I (x) = {i1, i2, . . . , iq} where i1 < i2 < · · · < iq

(q = ‖x‖0). We can thus define in this case Fj (η) =
⎧⎨
⎩

|xi j |η, η ≤ 1
|xi j | ,

1, η > 1
|xi j | ,

j ∈ [q], and
consequently solve the one-dimensional problem (2.16) by employing Algorithm 1 with
input

α1
j = |xi j |, β1

j = 0, α2
j = 0, β2

j = 1, γ j = 1

|xi j |
, δ = k, j ∈ [q].

The algorithm requires an expected amount of O(n) (or even just O(‖x‖0)) operations.
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3 Proximal mapping of the sparse envelope function

In this sectionwewill showhow to efficiently compute the proximal operator of positive scalar
multiples of Sk . The ability to perform such an operation efficiently opens the possibility
of using proximal-based methods for solving optimization problems involving the sparse
envelope function. For example, FISTA [3] can be employed to solve the composite model
(1.1) in the casewhere f is convex and smooth.Webeginwith the following lemma that shows
that the proximal operator can be determined in terms of the optimal solution of a convex
problem that resembles the optimization problem defined in Lemma 2.2 for computing the
value of Sk .
Lemma 3.1 Let λ > 0 and x ∈ R

n. Then w = proxλSk
(x) is given by

wi = xi ui
λ + ui

, i ∈ [n], (3.1)

where (u1, u2, . . . , un)T is the optimal solution of the problem

min
u∈Dk

n∑
i=1

φ(xi , λ + ui ). (3.2)

Proof By definition,

w = proxλSk
(x) = argmin

z

{
λSk(z) + 1

2
‖z − x‖22

}
.

Using Lemma 2.2, we thus need to solve (reversing the order of minimizations with respect
to z,u):

min
u∈Dk

min
z

{
(z,u, x) ≡ λ

2

n∑
i=1

φ(zi , ui ) + 1

2
(zi − xi )

2

}
.

Solving for z, we get that for any i ∈ [n], if ui > 0, then λz̄i
ui

+ z̄i − xi = 0, meaning that

z̄i ≡ wi = xi ui
λ + ui

, (3.3)

where u is the minimizer of the problemminu∈Dk (u, z̄, x). Equation (3.3) also holds when
ui = 0, since in that case, z̄i = 0. Plugging the expression (3.3) for z̄ in , yields (using the
“convention" that 0/0 = 0)

(u, z̄, x) = 1

2

n∑
i=1

(
λ
z̄2i
ui

+ (z̄i − xi )
2

)

= 1

2

n∑
i=1

(
λx2i u

2
i

ui (λ + ui )2
+ λ2x2i

(λ + ui )2

)
= λ

2

n∑
i=1

x2i
λ + ui

= λ

2

n∑
i=1

φ(xi , λ + ui ),

which proves the desired claim. �
Assigning a Lagrange multiplier for the inequality constraint eT u ≤ k in problem (3.2),

we obtain the Lagrangian function

L(u, μ) =
n∑

i=1

(φ(xi , λ + ui ) + μui ) − kμ.
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Utilizing the definition ofϕb,α as given in (2.7), we can deduce that the dual objective function
is given by

Q(μ) ≡ min
u:0≤u≤e

L(u, μ) =
n∑

i=1

ϕxi ,λ(μ) − kμ.

Therefore, the dual of problem (3.2) is the maximization problem

max{Q(μ) : μ ≥ 0}. (3.4)

Remark 3.1 A direct consequence of Lemma 2.4 is that if μ̃ > 0, the function u �→ L(u, μ̃)

has a unique minimizer over {u : 0 ≤ u ≤ e} given by ui = ϕ′
xi ,λ

(μ̃).

The next theorem shows how the proximal operator of the sparse envelope function reduces
to a one-dimensional search.

Theorem 3.1 Let x ∈ R
n and λ > 0;

(a) if ‖x‖0 ≤ k, then proxλSk
(x) = 1

λ+1x;
(b) if ‖x‖0 > k, then w = proxλSk

(x) is given by

wi = xi ui
λ + ui

, i = 1, 2, . . . , n, (3.5)

where ui = ui (η̃) with ui (·) being defined as4

ui (η) ≡

⎧⎪⎨
⎪⎩
0, η ≤ λ

|xi | ,
|xi |η − λ, λ

|xi | < η < λ+1
|xi | ,

1, η ≥ λ+1
|xi | ,

i = 1, 2, . . . , n, (3.6)

and η̃ is a root of the function

hx(η) ≡
n∑

i=1

ui (η) − k, (3.7)

which is nondecreasing and satisfies

hx

(
λ

‖x‖∞

)
< 0, hx

(
λ + 1

|x〈q〉|
)

> 0, q = ‖x‖0.

Proof First note that by Lemma 2.4(c) it follows that

Q′+(0) =
n∑

i=1

(ϕxi ,λ)
′+(0) − k = ‖x‖0 − k. (3.8)

(a) Suppose that ‖x‖0 ≤ k. Then by (3.8),

Q′+(0) = ‖x‖0 − k ≤ 0.

and therefore, since Q is concave over R+ (being a dual objective function), it follows that
0 is a maximizer of Q, and thus

max
μ∈R+

Q(μ) = Q(0) =
n∑

i=1

ϕxi ,λ(0) − k · 0 =
n∑

i=1

x2i
λ + 1

.

4 If xi = 0, then the formula (3.6) implies that ui (η) = 0 for all η ≥ 0.

123



Journal of Global Optimization

On the other hand, plugging into the objective function of the primal problem (3.2) the
feasible choice

ui = I (xi ) ≡
{
1 xi �= 0,
0, xi = 0,

(3.9)

we obtain the same function value as the one of the dual problem:

n∑
i=1

x2i
λ + I (xi )

=
∑
i :xi �=0

x2i
λ + 1

+
∑
i :xi=0

x2i
λ + 0

=
∑
i :xi �=0

x2i
λ + 1

+
∑
i :xi=0

x2i
λ + 1

=
n∑

i=1

x2i
λ + 1

= Q(0),

implying, by weak duality, that u given by (3.9) is the optimal solution of problem (3.2),
meaning that by Lemma 3.1,

proxλSk
(x) = x

λ + 1
.

(b) Since ‖x‖0 − k > 0, it follows by (3.8) that

Q′+(0) = ‖x‖0 − k > 0,

and thus all maximizers of Q overR+ are positive. The existence of a maximizer for the dual
problem (3.4) follows by the strong duality theorem. By Lemma 2.4(a,b) the function q is
differentiable over the positive numbers, and thus μ̃ > 0 is a maximizer of Q iff Q′(μ̃) = 0,
meaning if and only if μ̃ > 0 is a solution of the equation

Q′(μ) =
n∑

i=1

ϕ′
xi ,λ(μ) − k = 0. (3.10)

By Remark 3.1, the function u �→ L(u, μ̃) has a unique minimizer over {u : 0 ≤ u ≤ e}
given by

ui = ϕ′
xi ,λ(μ̃) =

⎧⎪⎨
⎪⎩
1,

√
μ̃ ≤ |xi |

λ+1 ,|xi |√
μ̃

− λ,
|xi |
λ+1 <

√
μ̃ <

|xi |
λ

,

0,
√

μ̃ ≥ |xi |
λ

By (3.10),u satisfies the primal constraint
∑n

i=1 ui ≤ k (actually, it is satisfied as an equality),
and thus by strongly duality, it is the optimal solution of problem (3.2). Consequently, by
Lemma 3.1 it follows that w given by (3.5) is equal to proxλSk

(x).
Making the change of variablesη = 1√

μ
, η̃ = 1√

μ̃
, we obtain that Eq. (3.10) is transformed

into the equation hx(η) = 0, where

hx(η) = Q′
(

1

η2

)
, (3.11)

and that the relation ui = ϕ′
xi ,λ

(μ̃) becomes ui = ui (η̃) with ui (·) defined in (3.6). Also,
since Q′, as a derivative of the concave dual function is nonincreasing, it follows that hx
defined by the relation (3.11) is nondecreasing. Finally, denoting q = ‖x‖0, it holds that

hx

(
λ

‖x‖∞

)
= 0 − k = −k < 0,
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hx

(
λ + 1

|x〈q〉|
)

=
∑
i :xi �=0

ui

(
λ + 1

|x〈q〉|
)

− k = ‖x‖0 − k > 0.

�
We thus conclude from Theorem 3.1 that, much like the problem of computing the sparse

envelope function itself, evaluation of the proximal mapping of the sparse envelope function
boils down to a one-dimensional search problem (in the case ‖x‖0 > k) that can be solved
in expected linear time using randomized root search.
Randomized Root Search The function hx as represented in (3.7) is not of the form required
by the randomized root search method since the functions ui (·) (given in (3.6)) have two
breakpoints each. Consequently, randomized root search cannot be employed directly, but
fortunately, it is possible to representhx as the sumof2n continuouspiecewise linear functions
with a single breakpoint. To explain the transformation, note that the functions ui (·) in the
case where xi �= 0 are of the form

G(η) =
⎧⎨
⎩
0 η ≤ α,

mη + n, α < η < β,

1, η ≥ β.

(3.12)

where m ∈ R \ {0}, n ∈ R, α < β and

α = − n

m
, β = 1 − n

m
.

The above relations are necessary to ensure that G is continuous. The main observation
established in Lemma 3.2 and illsutated in Figure 1 is that G can be decomposed into two
continuous piecewise linear functions with a single breakpoint.

Lemma 3.2 Let G be given in (3.12) where m ∈ R \ {0}, n ∈ R, α = − n
m and β = 1−n

m .

Then for any η ∈ R,

G(η) = 1

2
G1(η) + 1

2
G2(η),

where

G1(η) = m|η − α|,G2(η) = 1 − m|η − β|.
Proof The proof is technical and split into three cases:

CaseI η ≤ α. In this case, G1(η) = m(α − η),G2(η) = 1 − m(β − η), and thus,

G1(η) + G2(η) = m(α − η) + 1 − m(β − η)

= 1 + m(α − β) = 1 + m ·
(

− 1

m

)
= 0 = 2G(η).

CaseII α < η < β. Here G1(η) = m(η − α),G2(η) = 1 − m(β − η), and consequently,

G1(η) + G2(η) = m(η − α) + 1 − m(β − η) = 2mη + 1 − m(α + β)

= 2mη + 1 − m
1 − 2n

m
= 2mη + 2n = 2G(η).

CaseIII η ≥ β. Here G1(η) = m(η − α) and G2(η) = 1 − m(η − β), and hence

G1(η) + G2(η) = m(η − α) + 1 − m(η − β) = 1 − m(α − β)
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Fig. 1 The function G in solid black lines has two breakpoints, and it can be decomposed into to piecewise
linear functions with a single breakpoint (one convex and one concave)

= 1 − m

(
− 1

m

)
= 2 = 2G(η).

�
Using Lemma 3.2, we conclude that hx has the representation (recalling that ui (η) ≡ 0

whenever xi = 0)

hx(η) = 1

2

∑
i :xi �=0

vi (η) + 1

2

∑
i :xi �=0

wi (η) − k,

where

vi (η) ≡ |η|xi | − λ| , wi (η) ≡ 1 − |η|xi | − (λ + 1)| , i = 1, 2, . . . , n.

Thus, employing the randomized root search method with the 2‖x‖0 functions vi , wi , as
input, we obtain that the root of hx can be found in O(‖x‖0) computational effort. Since
‖x‖0 ≤ n, this also establishes the O(n) complexity result.

4 Application to sparse support vector machines

As described in the introduction, a possible formulation of the sparse SVM problem is given
by

min 1
2‖w‖22 + CeT ξ

s.t. ‖w‖0 ≤ k,
Y(Xw + βe) ≥ e − ξ ,

ξ ≥ 0.
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Obviously, for any parameter λ ∈ [0, 1], the last problem is the same as

min 1−λ
2 ‖w‖22 + λ

2‖w‖22 + CeT ξ

s.t. ‖w‖0 ≤ k,
Y(Xw + βe) ≥ e − ξ ,

ξ ≥ 0.

(4.1)

Recalling the definition of sk [Eq. (2.1)], the last problem can be rewritten as

min 1−λ
2 ‖w‖22 + λsk(x) + CeT ξ

s.t. Y(Xw + βe) ≥ e − ξ ,

ξ ≥ 0.
(P)

Since the above is a nonconvex problem that is difficult to tackle, we consider a relaxation
constructed by replacing sk with its convex biconjugate Sk .

min 1−λ
2 ‖w‖22 + λSk(x) + CeT ξ

s.t. Y(Xw + βe) ≥ e − ξ ,

ξ ≥ 0.
(R)

Obviously, since Sk is an underestimator of sk , it follows that val(R) ≤ val(P). The choice
parameter λ controls the trade-off between the tightness of the relaxation and the strong
convexity parameter of the objective function w.r.t. w: large λ means tighter relaxation and
small strong convexity parameter and small λ means looser relaxation with large strong
convexity parameter. To solve problem (R), we suggest to construct the dual problem, which
much like the dual of the original SVM problem (1.2) is much easier to handle [7]. As we
will see, even though the sparse envelope function has no explicit expression, it is possible
to write the dual of (R) in terms of its Moreau envelope, which can be computed via the
proximal mapping. We begin with the construction of the Lagrangian (with α ∈ R

n+ being
the dual variables vector)

L(w, β, ξ ;α) = 1 − λ

2
‖w‖22 + λSk(w) + CeT ξ − αT [Y(Xw + βe) − e + ξ

]

= 1 − λ

2

∥∥∥∥w − XTYα

1 − λ

∥∥∥∥
2

2
+ λSk(w) − (eTYα)β + (Ce − α)T ξ

− 1

2(1 − λ)
‖XTYα‖22 + eTα

= λ

[
1 − λ

2λ

∥∥∥∥w − XTYα

1 − λ

∥∥∥∥
2

2
+ Sk(w)

]
− (eTYα)β + (Ce − α)T ξ

− 1

2(1 − λ)
‖XTYα‖22 + eTα.

We recall that for a proper closed and convex function h : Rn → (−∞,∞], the Moreau

envelope [8] is given by Mμ
h (x) ≡ minu

{
h(u) + 1

2μ‖x − u‖22
}

= h(proxμh(x)) + 1
2μ‖x −

proxμh(x)‖22, and hence the dual function is given by

min
w,β,ξ

L(w, β, ξ ;α) = λM
λ

1−λ

Sk

(
XTYα

1 − λ

)
− 1

2(1 − λ)
‖XTYα‖22 + eTα

in the case where eTYα = 0 and α ≤ Ce and −∞ otherwise. The minimizer of the above
minimization problem provides the relation between the optimal primal and dual solutions:
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w = prox λ
1−λ

Sk

(
XTYα
1−λ

)
. The obtained dual problem in minimization form is given by

min F(α) ≡ −λM
λ

1−λ

Sk

(
XTYα
1−λ

)
+ 1

2(1−λ)
‖XTYα‖22 − eTα

s.t. eTYα = 0,
0 ≤ α ≤ Ce.

(DR)

Problem (DR) can be solved using accelerated gradient-based methods such as FISTA [3].
For that, we first notice that the objective function F is differentiable over Rn and that, using
the basic properties of the Moreau envelope and the proximal mapping [2], the gradient ∇F

is Lipschitz continuous with constant
‖X‖22
1−λ

and given by

∇F(α) = YXprox λ
1−λ

Sk

(
XTYα

1 − λ

)
− e.

In addition, the orthogonal projection onto the feasible set can be efficiently computed, see
for example [2, Theorem 6.27].

5 Concluding remarks

In this paper we studied the sparse envelope function which is the biconjugate of the function
x �→ 1

2‖x‖22 + δ{x:‖x‖0≤k}. This function serves as a natural regularizer in cases where both
sparsity and grouping properties are expected.We have shown that both the function value and
proximal operator of the sparse envelope function can be computed in linear time complexity
in expectation. A natural future direction will be to consider different combinations of the �2
and �0 norms, as well as investigating general �p norms (p ≥ 0).

Funding Funding was provided by Israel Science Foundation (Grant Number 92621).
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