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Abstract

The paper considers the sparse envelope function, defined as the biconjugate of the

sum of a squared `2-norm function and the indicator of the set of k-sparse vectors. It

is shown that both function and proximal values of the sparse envelope function can

be reduced into a one-dimensional search that can be efficiently performed in linear

time complexity in expectation. For inverse problems, the sparse envelope function

naturally serves as a regularizer that can handle both sparsity and grouping information

on the vector to be estimated, and the paper is concluded with a numerical example

illustrating the potential effectiveness of the approach.

1 Introduction

Many inverse problems in science have the form

min
x∈Rn

f(x) + s(x), (1.1)

where f is a data fidelity term (e.g., least squares) and s is a regularizer that models some

kind of an a priori knowledge on the vector that needs to be recovered. In many applications,

it is reasonable to assume that the sought vector should have a small number of nonzero

components, meaning that it is sparse. Perhaps the most natural regularizer in this case is the

so-called `0-norm1 function that counts the number of nonzero elements in the input vector:

‖x‖0 ≡ #{i : xi 6= 0}. Unfortunately, the `0-norm is a difficult function to handle being

nonconvex and even non-continuous. One way to circumvent this difficulty is by replacing

the `0-norm by the `1-norm, which is also a sparsity-inducing regularizer. It was actually

shown that in some important settings, the usage of the `1-norm leads to the same solution

as the one that would be obtained by using the `0-norm, see for example the review paper [5]

and references therein. One extremely popular model is to take f as a least squares fidelity

term and s as an `1 expression, leading to one of the formulations of the so-called LASSO

problem [11].

In [13] it was observed that in some statistical applications that posses the “grouping
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1Obviously, the `0-“norm” is not actually a norm.

1



effect”, the `1 regularizer does not yield satisfactory results. More specifically, quoting [13]:

if there exist a group of variables among which the pairwise correlations are very high, then

the lasso tends to select only one variable from the group, and and does not care which one

is selected. This is why the elastic net regularizer was proposed in [13]; the elastic net

regularizer function is a weighted sum of the squared `2-norm and the `1-norm.

In this paper we propose a regularizer that, much like the elastic net function, also takes

into account sparsity and grouping properties. The grouping property is handled as in the

elastic net regularizer, by a squared `2-norm, but the sparsity property is taken into account

by an `0-norm constraint, meaning that the starting point is the function

sk(x) =

{
1
2
‖x‖2

2, ‖x‖0 ≤ k,

∞, else.

From a modeling point of view, sk is a good regularizer in cases where we possess an a

priori information that the signal is indeed k-sparse. Unfortunately, sk is a nonconvex and

noncontinuous function, and therefore, it is in general a difficult task to solve optimization

problems incorporating it. Therefore, the path taken in this paper is to consider the best

convex estimator of the function, namely the biconjugate function Sk = s∗∗k , which we call

the sparse envelope function. In Section 2 we show that the evaluation of the sparse envelope

function reduces to a monotone one-dimensional root search problem that can be solved in

linear time complexity in expectation by a randomized root search method.

In addition, we establish that the sparse envelope function at a given vector is a weighted

sum of two functions: (1) the squared `2-norm of the components of the vector whose

magnitudes are above a certain threshold and (2) the squared `1-norm of the remaining

values. The threshold value is determined by the mentioned one-dimensional search. In

Section 3 we consider the proximal mapping of the sparse envelope function and show that

it can also be computed in linear time using a reduction to a one-dimensional monotone

root search. The ability to efficiently compute the proximal operator of the sparse envelope

function implies that it is possible to employ fast proximal gradient methods such as FISTA

[3] to solve the composite problem (1.1) in the case where f is convex and smooth. Section 4

describes an application of the sparse envelope function to the sparse SVM problem. Finally,

Section 5 illustrates numerically the potential of the proposed regularizer in solving linear

inverse problems.

Notation. The underlying space in the paper is Rn - the space of all real-valued n-

length column vectors endowed with the dot product 〈x,y〉 = xTy. For p ≥ 1, The `p-norm

of a vector x ∈ Rn is given by ‖x‖p ≡ p
√∑

i=1 |xi|p. The `∞-norm of a vector x ∈ Rn is

‖x‖∞ = maxi=1,2,...,n |xi|. e is the vector of all ones and 0 is the vector of all zeros. For

a positive integer m, we denote [m] ≡ {1, 2, . . . ,m}. For a vector x ∈ Rn and k ∈ [n],

the n-dimensional vector Hk(x) is a vector generated by keeping the k largest absolute value

components of x and setting all the others to zeros; the set of indices of the k largest absolute

value components is not unique, and we assume that in those situations an arbitrary vector

Hk(x) is chosen. It is well-known that Hk(x) is a vector which is closest to x among all the

k-sparse vectors, meaning that (see e.g., [1, Section 6.8.3])

Hk(x) ∈ argmin
y∈Ck

‖y − x‖2. (1.2)
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Given an extended real-valued function g : Rn → (−∞,∞], its conjugate is given by

g∗(y) = max
x∈Rn

{
xTy − g(x)

}
.

2 Sparse Envelope Evaluation

2.1 Reduction to One-Dimensional Search

As mentioned in the introduction, the paper is concerned with the function

sk(x) =
1

2
‖x‖2

2 + δCk(x). (2.1)

The main purpose of the section is to find the biconjugate of sk, which we call the sparse

envelope function.

Definition 2.1. Let k ∈ [n]. The sparse envelope function with sparsity level k, denoted

by Sk, is the biconjugate of sk:

Sk = s∗∗k .

By its definition, Sk is proper closed and convex. Throughout the paper, we will assume

that k ∈ [n] is given and fixed. Our ultimate goal in this section is to construct an efficient

method for computing Sk(x) = s∗∗k (x) at a given x ∈ Rn. We begin by proving that the

conjugate function s∗k is the squared norm of the k-hard thresholding function.

Lemma 2.1. s∗k(y) = 1
2
‖Hk(y)‖2

2 for any y ∈ Rn.

Proof. Let y ∈ Rn. Then

s∗k(y) = max
x∈Rn
{xTy − sk(x)} = max

x∈Ck

{
xTy − 1

2
‖x‖2

2

}
= max

x∈Ck

{
−1

2
‖x− y‖2

2 +
1

2
‖y‖2

2

}
(∗)
= −1

2
‖Hk(y)− y‖2

2 +
1

2
‖y‖2

2

(∗∗)
=

1

2
‖Hk(y)‖2

2,

where (*) follows from (1.2), and (**) follows by the fact that ‖Hk(y)− y‖2
2 is the sum of

squares of the n−k components of y with the smallest absolute values and 1
2
‖y‖2

2 is the sum

of squares of all the components of y. 2

The biconjugate function of sk is the conjugate of s∗k, which according to Lemma 2.1 is

given by

Sk(x) = s∗∗k (x) = max
y∈Rn

{
xTy − 1

2
‖Hk(y)‖2

2

}
. (2.2)

It is easy to see that

‖Hk(y)‖2
2 = max

u∈Dk

n∑
i=1

uiy
2
i , (2.3)

where Dk = {u ∈ Rn : eTu ≤ k,0 ≤ u ≤ e}. In particular, an optimal solution of the

maximization problem in (2.3) is a vector with k ones at the coordinates corresponding to
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the k largest absolute values in y, and zeros elsewhere. Plugging (2.3) into (2.2), we obtain

that

Sk(x) = max
y∈Rn

min
u∈Dk

{
xTy − 1

2

n∑
i=1

uiy
2
i

}
.

Since the above problem is convex in u and concave in y, by Sion’s minimax theorem

[10, Theorem 36.3], we can replace the roles of u and y, and obtain the following expression:

Sk(x) = min
u∈Dk

max
y∈Rn

{
xTy − 1

2

n∑
i=1

uiy
2
i

}
.

The optimal value of the inner maximization problem is

1

2

n∑
i=1

φ(xi, ui),

where φ is the well-known “quadratic over linear” function given by

φ(x, u) ≡


x2

u
, u > 0,

0, x = u = 0,

∞, else.

(2.4)

This function is known to be proper closed and convex, and it is an important example of

a closed convex function that is not continuous (see for example [10, p. 83]). Lemma 2.2

below summarizes the above discussion and presents a variational formula for Sk that will

be the key ingredient in the development of an efficient algorithm for computing its value.

Lemma 2.2. For any x ∈ Rn,

Sk(x) =
1

2
min
u∈Dk

n∑
i=1

φ(xi, ui). (2.5)

Our next task is to construct a more explicit expression for Sk. For that, we will construct

a dual problem to the minimization problem in (2.5). Associating a Largrange multiplier

only to the inequality constraint eTu ≤ k (defining Dk), and disregarding the constant 1
2
,

we obtain the following Lagrangian function for the minimization problem in (2.5):

L(u, µ) =
n∑
i=1

(φ(xi, ui) + µui)− kµ.

The dual objective function is therefore given by

q(µ) ≡ min
u:0≤u≤e

L(u, µ) =
n∑
i=1

ϕxi,0(µ)− kµ, (2.6)

where for any b 6= 0 and α ≥ 0, the function ϕb,α is defined by

ϕb,α(µ) ≡ min
0≤u≤1

{φ(b, α + u) + µu}, µ ≥ 0. (2.7)

Utilizing strong duality [10], we can conclude that the problem of evaluating Sk is equiv-

alent to a one-dimensional concave maximization problem.
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Lemma 2.3. For any x ∈ Rn,

2Sk(x) = max
µ≥0

q(µ) (2.8)

with q being the concave function defined by

q(µ) =
n∑
i=1

ϕxi,0(µ)− kµ, (2.9)

where ϕ is given in (2.7). In addition, the maximal value of the problem in (2.8) is attained

at some µ ≥ 0.

Our next task will be to study the properties of the function q that will enable us to

compute its maximal value efficiently. For that, we require the following lemma.2

Lemma 2.4. Let α ≥ 0, b ∈ R and consider the function ϕb,α : R+ → R given in (2.7).

Then

(a) if b = 0, then ϕb,α(µ) = 0 for any µ ≥ 0 and the set of minimizers in (2.7) is [0, 1] if

µ = 0 or the singleton {0} if µ > 0;

(b) if b 6= 0, then (using the convention that p/0 =∞ for p > 0) for any µ ≥ 0

ϕb,α(µ) =


b2

α+1
+ µ,

√
µ ≤ |b|

α+1
,

2|b|√µ− αµ, |b|
α+1

<
√
µ < |b|

α
,

b2

α
,

√
µ ≥ |b|

α
.

(2.10)

ϕb,α is differentiable at any µ > 0 and its derivative is given by

ϕ′b,α(µ) =


1,

√
µ ≤ |b|

α+1
,

|b|√
µ
− α, |b|

α+1
<
√
µ < |b|

α
,

0,
√
µ ≥ |b|

α
.

(2.11)

In addition, problem (2.7) has a unique minimizer ũ given by

ũ =


1,

√
µ ≤ |b|

α+1
,

|b|√
µ
− α, |b|

α+1
<
√
µ < |b|

α
,

0,
√
µ ≥ |b|

α
.

(c) The right derivative of ϕb,α at 0 is given by

(ϕb,α)′+(0) =

{
1, b 6= 0,

0, b = 0.

Proof. (a) If b = 0, then for any µ ≥ 0,

ϕ(µ) = min
0≤u≤1

(φ(0, α + u) + µu) = min
0≤u≤1

µu = 0,

2The lemma is written in a general way that will allow us to compute the prox operator of Sk later on.
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and the optimal set is either [0, 1] if µ = 0 or {0} if µ > 0.

(b) Assume that b 6= 0. We make the notation H(u) = φ(b, u+α)+µu and split the analysis

into two cases.

Case I: α > 0. Note that in this case H is differentiable over [0, 1], and that for any

u ∈ [0, 1],

H ′(u) = − b2

(α + u)2
+ µ.

The function H is strictly convex over [0, 1] and we denote its unique minimizer by ũ.

Since H is convex, it follows that ũ = 0 if and only if H ′(0) ≥ 0, which is the same as

− b2

α2 + µ ≥ 0 ⇔ √µ ≥ |b|
α

. The optimal solution is ũ = 1 if and only if H ′(1) ≤ 0, which is

the same as − b2

(α+1)2
+ µ ≤ 0 ⇔ √µ ≤ |b|

α+1
. In all other cases, meaning if |b|

α+1
<
√
µ < |b|

α
,

we have that ũ is the unique scalar satisfying H ′(ũ) = 0, that is, ũ = |b|√
µ
− α. To conclude,

the optimal solution ũ is given by

ũ =


1,

√
µ ≤ |b|

α+1
,

|b|√
µ
− α, |b|

α+1
<
√
µ < |b|

α
,

0,
√
µ ≥ |b|

α
.

and thus,

ϕb,α(µ) = H(ũ) =


b2

α+1
+ µ,

√
µ ≤ |b|

α+1
,

2|b|√µ− αµ, |b|
α+1

<
√
µ < |b|

α
,

b2

α
,

√
µ ≥ |b|

α
,

establishing the result for Case I.

Case II: α = 0. Note that since b 6= 0, φ(b, 0) + µ · 0 = ∞ + 0 = ∞, and therefore, the

minimizer of H over [0, 1] is not 0. There are two options: (i) the minimizer of H over [0, 1]

is ũ = 1 and this occurs when H ′(1) ≤ 0 ⇔ √µ ≤ |b|; the corresponding function value

is ϕb,0(µ) = H(1) = φ(b, 1) + µ = b2 + µ; (2) the minimizer of H over [0, 1] is attained

at ũ ∈ (0, 1), and in this case H ′(ũ) = 0, meaning ũ = |b|√
µ

with corresponding value

ϕb,0(µ) = H(ũ) = φ(b, ũ) + µũ = 2|b|√µ. To conclude, we obtained that in the case α = 0,

ϕb,0(µ) =

{
2|b|√µ √

µ > |b|,
b2 + µ

√
µ ≤ |b|,

which fits formula (2.10).

The expression for for the derivative of ϕb,α readily follows from the formula of ϕb,α.

(c) Follows directly from the expressions for ϕb,α given in parts (a) and (b). 2

For the sake of evaluating the function Sk at a given point x ∈ Rn, it is enough to focus

on the structure of ϕb,α for the specific case α = 0. This is done in Corollary 2.1 below. The

general case with α 6= 0 will be used later on in Section 3 in order to compute the proximal

operator of positive scalar multiples of Sk .

Corollary 2.1. Let x ∈ Rn and i ∈ [n]. Then
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(a) for any µ ≥ 0,

ϕxi,0(µ) =

{
x2
i + µ

√
µ ≤ |xi|,

2|xi|
√
µ
√
µ > |xi|,

(2.12)

and for any µ > 0,

ϕ′xi,0(µ) = min

{
|xi|√
µ
, 1

}
; (2.13)

(b) the right derivative of q at 0 is given by q′+(0) = ‖x‖0 − k.

Proof. (a) Invoking Lemma 2.4(a,b), we obtain that ϕxi,0 has the form (2.12) and that if

µ > 0, ϕ′xi,0 is given by

ϕ′xi,0(µ) =

{
1

√
µ ≤ |xi|,

|xi|√
µ

√
µ > |xi|,

= min

{
|xi|√
µ
, 1

}
.

(b) By the definition of q (see (2.9)),

q′+(0) =
n∑
i=1

(ϕxi,0)′+(0)− k = ‖x‖0 − k,

where the last equality utilizes Lemma 2.4(c). 2

The following lemma shows that the sparse envelope function at a given x ∈ Rn is a

special sum of squared `2 and `1 norms, where the former is computed on the components

x with magnitude above a certain threshold, and the latter is computed on the remaining

values. The threshold is dictated by a root of a monotone one-dimensional function. To

present the lemma, we denote by x〈i〉 the component of x with the ith largest absolute value,

meaning in particular that |x〈1〉| ≥ |x〈2〉| ≥ . . . |x〈n〉|.

Lemma 2.5 (Sk as a sum of squared `1 and `2 norms). Let x ∈ Rn. Then

Sk(x) =
1

2

Nx∑
i=1

x2
〈i〉 +

1

2(k −Nx)

(
n∑

i=Nx+1

|x〈i〉|

)2

,

where Nx is determined as follows:

(a) if ‖x‖0 ≤ k, then Nx = k − 1, and consequently

Sk(x) =
1

2
‖x‖2

2;

(b) if ‖x‖0 > k, then Nx ∈ {0, 1, . . . , k − 1} is defined as

Nx = max

{
i ∈ [n] : |x〈i〉| ≥

1

η̃

}
, (2.14)

where η̃ is a root of the equation

gx(η) ≡
n∑
i=1

min {|xi|η, 1} − k = 0 (2.15)

over [0,∞).
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Proof. Suppose that ‖x‖0 ≤ k. In this case, by Corollary 2.1(b), q′+(0) = ‖x‖0 − k ≤ 0, and

therefore, by the concavity of q, it follows that 0 is a maximizer of q, and consequently, by

(2.8),

2Sk(x) = q(0) =
n∑
i=1

ϕxi,0(0) =
n∑
i=1

x2
i = ‖x‖2

2,

establishing part (a). To prove part (b), suppose that ‖x‖0 > k. By Corollary 2.1(b),

q′+(0) = ‖x‖0 − k > 0, and therefore a maximizer of the dual function q, which necessarily

exists by Lemma 2.3, must be a positive number. Recall that q(µ) =
∑n

i=1 ϕxi,0(µ)−kµ, and

that by Corollary 2.1(a), ϕxi,0 is differentiable over (0,∞) and hence µ̃ > 0 is a maximizer

of q if and only if

q′(µ̃) =
n∑
i=1

ϕ′xi,0(µ̃)− k︸ ︷︷ ︸
gx(µ̃)

= 0,

meaning (see Corollary 2.1(a)) if and only if

g̃x(µ̃) ≡
n∑
i=1

min

{
|xi|√
µ̃
, 1

}
− k = 0. (2.16)

Define

Nx = max{i ∈ [n] : |x〈i〉| ≥
√
µ̃}.

Then (2.16) translates to

Nx +
n∑

i=Nx+1

|x〈i〉|√
µ̃

= k. (2.17)

Consequently, Nx ≤ k since

Nx − k = −
n∑

i=Nx+1

|x〈i〉|√
µ̃
≤ 0.

In addition, Nx must be different than k, since otherwise, by (2.17),

1√
µ̃

n∑
i=k+1

|x〈i〉| = 0,

which is a contradiction to the condition that ‖x‖0 > k. We thus obtained that Nx ∈
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{0, 1, . . . , k − 1}. By (2.17), µ̃ ≡
(∑n

i=Nx+1 |x〈i〉|
k−Nx

)2

, and consequently, by (2.8), we have

2Sk(x) = q(µ̃)
(2.6)
=

Nx∑
i=1

ϕxi,0(µ̃) +
n∑

i=Nx+1

ϕxi,0(µ̃)− kµ̃

(2.12)
=

Nx∑
i=1

(x2
〈i〉 + µ̃) +

n∑
i=Nx+1

2|x〈i〉|
√
µ̃− kµ̃

=
Nx∑
i=1

x2
〈i〉 + (Nx − k)µ̃+ 2

√
µ̃

n∑
i=Nx+1

|x〈i〉|

=
Nx∑
i=1

x2
〈i〉 + (Nx − k)

1

(k −Nx)2

(
n∑

i=Nx+1

|x〈i〉|

)2

+
2

k −Nx

(
n∑

i=Nx+1

|x〈i〉|

)2

=
Nx∑
i=1

x2
〈i〉 +

1

k −Nx

(
n∑

i=Nx+1

|x〈i〉|

)2

.

Finally, making the change of variables η = 1√
µ
, η̃ = 1√

µ̃
, we obtain the expression (2.14) for

Nx and that η̃(=
√
µ̃) is a root of gx(η) = g̃x

(
1
η2

)
. 2

Remark 2.1. If k = 1, then by Lemma 2.5, since k−1 = 0, it follows that Nx = 0 regardless

of the value of x, and consequently

Sk(x) =
1

2
‖x‖2

1.

2.2 Solving the 1D Problem

2.2.1 Bisection

Consider the case where ‖x‖0 > k. The function gx given in (2.15) is continuous and

nondecreasing. We can also describe two values for which gx has opposite signs, implying

that the one-dimensional problem can be solved by simple root-finding procedures such as

bisection. To describe the point for which gx is positive, denote q = ‖x‖0, and observe that

in our notation |x〈q〉| is the minimal absolute value among all the nonzero components of x.

Since min
{
|xi|
|x〈q〉|

, 1
}

= 1 if xi 6= 0 and 0 otherwise, it follows that

gx

(
1

|x〈q〉|

)
=

n∑
i=1

min

{
|xi|
|x〈q〉|

, 1

}
− k = ‖x‖0 − k > 0.

In addition, if we denote γ = max
{
‖x‖1
‖x‖∞k , 1

}
, then

gx

(
1

γ‖x‖∞

)
=

n∑
i=1

min

{
|xi|

γ‖x‖∞
, 1

}
− k γ≥1

=
n∑
i=1

|xi|
γ‖x‖∞

− k =
‖x‖1

γ‖x‖∞
− k

γ≥ ‖x‖1
‖x‖∞k

≤ 0.
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Therefore, the search for the root of gx can be over the bounded interval

(γ‖x‖∞)−1︸ ︷︷ ︸
`

, |x〈q〉|−1︸ ︷︷ ︸
u

.

The simplest approach for numerically solving the equation will be to employ a bisection

procedure. The worst case number of iterations of the bisection method is O(log(u−`
ε

)),

where ε is the required accuracy. Since a single evaluation of gx at any point requires O(n)

amount of elementary operations, the overall computational effort is O(log(u−`
ε

)n).

Remark 2.2. Since gx can also be written as gx(η) =
∑

j:xj 6=0 min{|xj|η, 1} − k, then given

that we know beforehand the locations of the nonzero elements in x, the evaluation of gx
can be done in O(‖x‖0) operations, meaning that the overall computational effort can be

reduced to O(log(u−`
ε1

)‖x‖0).

2.2.2 Randomized Root Search

A second option for solving the one-dimensional problem (2.15) would be to construct a

method similar to randomized median finding [6, Section 9.2] that exploits the fact that the

function is a sum of piecewise linear functions, each with a single breakpoint. The presented

algorithm is a simple extension of the randomized algorithm from [8] used to solve the one-

dimensional problem arising in the orthogonal projection onto the l1-ball, see also [4] for

a similar approach for finding a root of a different one-dimensional function. The exact

formulation of the one-dimensional problem we consider in this paper is as follows.

Problem 1D-G

Input: α1,α2,β1,β2,γ ∈ Rm, δ ∈ R.

Functional representation of the input:

F (η) =
m∑
j=1

Fj(η)− δ, where Fj(η) =

{
α1
jη + β1

j , η ≤ γj,

α2
jη + β2

j , η > γj.
(2.18)

Assumptions: (a) α1
jγj + β1

j = α2
jγj + β2

j for any j ∈ [m]. [this condition ensures

continuity of Fj.]

(b) F is nondecreasing and has a root.

Output: a point η∗ ∈ R for which F (η∗) = 0

The randomized approach will lead to an algorithm with an expected amount of com-

putations that is at most linear in m (number of piecewise linear functions with a single

breakpoint), and the number of computations will not depend on any tolerance, or on a size

of an initial interval, like in the bisection method. To use the randomized method, we will

exploit properties (a) and (b) described in the assumptions of problem 1D-G.

The algorithm is based on the following observation: suppose that we randomly choose

p ∈ [m], and that this index p satisfies F (γp) < 0. Define Ω = {j : γj > γp}. Then by the

monotonicity and continuity of F , the function has a root in (γp,∞) and for any j /∈ Ω, by

the structure Fj, it holds that Fj(η) = α2
jη+β2

j for any η > γp (since η > γp ≥ γj), implying

that for any η > γp,

F (η) =
∑
j∈Ω

Fj(η) + α̃η + β̃, (2.19)
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where α̃ =
∑

j /∈Ω α
2
j , β̃ =

∑
j /∈Ω β

2
j − δ. A similar argument, shows that if F (γp) > 0, then

(2.19) holds for any η < γp with Ω = {j : γj < γp}, α̃ =
∑

j /∈Ω α
1
j and β̃ =

∑
j /∈Ω β

1
j − δ.

The above observation implies that no matter what is the sign of F (γp), from this point

onwards, in order to evaluate the function F on values from the relevant intervals ((γp,∞) or

(−∞, γp)), the solution algorithm can just keep the values of α̃ and β̃ and take into account

only the indices in Ω (disregarding the indices in [m]\Ω). If for a certain index p, F (γp) = 0,

the algorithm stops and returns η∗ = γp. Otherwise, at a certain point, Ω = ∅, and the root

of the function is the root of the affine function α̃η + β̃, meaning η∗ = − β̃
α̃

(we assume that

all arithmetic can be performed exactly).

Algorithm 1: Randomized Root Search

Input: α1,α2,β1,β2,γ ∈ Rm, δ ∈ R
Output: η∗ ∈ R for which F (η∗) = 0, where F =

∑n
j=1 Fj − δ with Fj given in (2.18).

Initialization: Ω = [m], α̃ = 0, β̃ = −δ.
General step:

while Ω 6= ∅
pick p ∈ Ω at random

compute F (γp) = α̃γp + β̃ +
∑

j∈Ω Fj(γp)

if (F (γp) < 0)

A← {j ∈ Ω : γj > γp}
α̃← α̃ +

∑
j∈Ω\A α

2
j , β̃ ← β̃ +

∑
j∈Ω\A β

2
j

Ω← A

elseif F (γp) > 0

A← {j ∈ Ω : γj < γp}
α̃← α̃ +

∑
j∈Ω\A α

1
j , β̃ ← β̃ +

∑
j∈Ω\A β

1
j

Ω← A

elseif F (γp) = 0

return η∗ = γp.

end if

end while

return η∗ = − β̃
α̃

The complexity analysis of Algorithm 1 is essentially identical to the complexity analysis

of the randomized median finding algorithm [6, Section 9.2], and therefore the expected

amount of iterations is O(m).

Solving problem (2.15): In the case where F = gx, we can write F as

F (η) =
∑
i∈I(x)

min{|xi|η, 1} − k,

where I(x) = {i : xi 6= 0}. Denote I(x) = {i1, i2, . . . , iq} where i1 < i2 < · · · < iq (q = ‖x‖0).

We can thus define in this case Fj(η) =

{
|xij |η, η ≤ 1

|xij |
,

1, η > 1
|xij |

,
j ∈ [q], and consequently solve

the one-dimensional problem (2.15) by employing Algorithm 1 with input

α1
j = |xij |, β1

j = 0, α2
j = 0, β2

j = 1, γj =
1

|xij |
, δ = k, j ∈ [q].

11



The algorithm requires an expected amount of O(n) (or even just O(‖x‖0)) operations.

3 Proximal Mapping of the Sparse Envelope Function

In this section we will show how to efficiently compute the proximal operator of positive

scalar multiples of Sk. The ability to perform such an operation efficiently implies that

proximal-based methods for optimization problems involving the sparse envelope function.

For example, FISTA [3] can be employed to solve the composite model (1.1) in the case

where f is convex and smooth. We begin with the following lemma that shows that the

proximal operator can be determined in terms of the optimal solution of a convex problem

that resembles the optimization problem defined in Lemma 2.2 for computing the value of

Sk.

Lemma 3.1. Let λ > 0 and x ∈ Rn. Then w = proxλSk(x) is given by

wi =
xiui
λ+ ui

, i ∈ [n], (3.1)

where (u1, u2, . . . , un)T is the optimal solution of the problem

min
u∈Dk

n∑
i=1

φ(xi, λ+ ui). (3.2)

Proof. By definition,

w = proxλSk(x) = argmin
z

{
λSk(z) +

1

2
‖z− x‖2

2

}
.

Using Lemma 2.2, we thus need to solve (reversing the order of minimizations with respect

to z,u):

min
u∈Dk

{
Φ(z,u,x) ≡ λ

2

n∑
i=1

φ(zi, ui) +
1

2
(zi − xi)2

}
.

Solving for z, we get that for any i ∈ [n], if ui > 0, then λz̄i
ui

+ z̄i − xi = 0, meaning that

z̄i ≡ wi =
xiui
λ+ ui

, (3.3)

where u is the minimizer of the problem minu∈Dk Φ(u, z̄,x). Equation (3.3) also holds when

ui = 0, since in that case, z̄i = 0. Plugging the expression (3.3) for z̄ in Φ, yields (using the

“convention” that 0/0 = 0)

Φ(u, z̄,x) =
1

2

n∑
i=1

(
λ
z̄2
i

ui
+ (z̄i − xi)2

)
=

1

2

n∑
i=1

(
λ

λx2
iu

2
i

ui(λ+ ui)2
+

λ2x2
i

(λ+ ui)2

)
=
λ

2

n∑
i=1

x2
i

λ+ ui
=
λ

2

n∑
i=1

φ(xi, λ+ ui),

which proves the desired claim. 2
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Assigning a Lagrange multiplier for the inequality constraint eTu ≤ k in problem (3.2),

we obtain the Lagrangian function

L(u, µ) =
n∑
i=1

(φ(xi, λ+ ui) + µui)− kµ.

Utilizing the definition of ϕb,α as given in (2.7), we can deduce that the dual objective

function is given by

Q(µ) ≡ min
u:0≤u≤e

L(u, µ) =
n∑
i=1

ϕxi,λ(µ)− kµ.

Therefore, the dual of problem (3.2) is the maximization problem

max{Q(µ) : µ ≥ 0}. (3.4)

Remark 3.1. A direct consequence of Lemma 2.4 is that if µ̃ > 0, the function u 7→ L(u, µ̃)

has a unique minimizer over {u : 0 ≤ u ≤ e} given by ui = ϕ′xi,λ(µ̃).

The next theorem shows how the proximal operator of the sparse envelope function

reduces to a one-dimensional search.

Theorem 3.1. Let x ∈ Rn and λ > 0;

(a) if ‖x‖0 ≤ k, then proxλSk(x) = 1
λ+1

x;

(b) if ‖x‖0 > k, then w = proxλSk(x) is given by

wi =
xiui
λ+ ui

, i = 1, 2, . . . , n, (3.5)

where ui = ui(η̃) with ui(·) being defined as3

ui(η) ≡


0, η ≤ λ

|xi| ,

|xi|η − λ, λ
|xi| < η < λ+1

|xi| ,

1, η ≥ λ+1
|xi| ,

i = 1, 2, . . . , n, (3.6)

and η̃ is a root of the function

hx(η) ≡
n∑
i=1

ui(η)− k, (3.7)

which is nondecreasing and satisfies

hx

(
λ

‖x‖∞

)
< 0, hx

(
λ+ 1

|x〈q〉|

)
> 0, q = ‖x‖0.

3If xi = 0, then the formula (3.6) implies that ui(η) = 0 for all η ≥ 0

13



Proof. First note that by Lemma 2.4(c) it follows that

Q′+(0) =
n∑
i=1

(ϕxi,λ)
′
+(0)− k = ‖x‖0 − k. (3.8)

(a) Suppose that ‖x‖0 ≤ k. Then by (3.8),

Q′+(0) = ‖x‖0 − k ≤ 0.

and therefore, since Q is concave over R+ (being a dual objective function), it follows that

0 is a maximizer of Q, and thus

max
µ∈R+

Q(µ) = Q(0) =
n∑
i=1

ϕxi,λ(0)− k · 0 =
n∑
i=1

x2
i

λ+ 1
.

On the other hand, plugging into the objective function of the primal problem (3.2) the

feasible choice

ui = I(xi) ≡
{

1 xi 6= 0,

0, xi = 0.
(3.9)

we obtain the same function value as the one of the dual problem:

n∑
i=1

x2
i

λ+ I(xi)
=

∑
i:xi 6=0

x2
i

λ+ 1
+
∑
i:xi=0

x2
i

λ+ 0

=
∑
i:xi 6=0

x2
i

λ+ 1
+
∑
i:xi=0

x2
i

λ+ 1
=

n∑
i=1

x2
i

λ+ 1
= Q(0),

implying, by weak duality, that u given by (3.9) is the optimal solution of problem (3.2),

meaning that by Lemma 3.1,

proxλSk(x) =
x

λ+ 1
.

(b) Since ‖x‖0 − k > 0, it follows by (3.8) that

Q′+(0) = ‖x‖0 − k > 0,

and thus all maximizers of Q over R+ are positive. The existence of a maximizer for the dual

problem (3.4) follows by the strong duality theorem. By Lemma 2.4(a,b) the function q is

differentiable over the positive numbers, and thus µ̃ > 0 is a maximizer of Q iff Q′(µ̃) = 0,

meaning if and only if µ̃ > 0 is a solution of the equation

Q′(µ) =
n∑
i=1

ϕ′xi,λ(µ)− k = 0. (3.10)

By Remark 3.1, the function u 7→ L(u, µ̃) has a unique minimizer over {u : 0 ≤ u ≤ e}
given by

ui = ϕ′xi,λ(µ̃) =


1,

√
µ̃ ≤ |xi|

λ+1
,

|xi|√
µ̃
− λ, |xi|

λ+1
<
√
µ̃ < |xi|

λ
,

0,
√
µ̃ ≥ |xi|

λ

14



By (3.10), u satisfies the primal constraint
∑n

i=1 ui ≤ k (actually, it is satisfied as an equal-

ity), and thus by strongly duality, it is is the optimal solution of problem (3.2). Consequently,

by Lemma 3.1 it follows that w given by (3.5) is equal to proxλSk(x).

Making the change of variables η = 1√
µ
, η̃ = 1√

µ̃
, we obtain that equation (3.10) is trans-

formed into the equation hx(η) = 0, where

hx(η) = Q′
(

1

η2

)
, (3.11)

and that the relation ui = ϕ′xi,λ(µ̃) becomes ui = ui(η̃) with ui(·) defined in (3.6). Also, since

Q′, as a derivative of the concave dual function is nonincreasing, it follows that hx defined

by the relation (3.11) is nondecreasing. Finally, denoting q = ‖x‖0, it holds that

hx

(
λ

‖x‖∞

)
= 0− k = −k < 0,

hx

(
λ+ 1

|x〈q〉|

)
=

∑
i:xi 6=0

ui

(
λ+ 1

|x〈q〉|

)
− k = ‖x‖0 − k > 0.

2

We thus conclude from Theorem 3.1 that, much like the problem of computing the sparse

envelope function itself, evaluation of the proximal mapping of the sparse envelope function

boils down to a one-dimensional search problem (in the case ‖x‖0 > k) that can be solved

in expected linear time using randomized root search.

Randomized Root Search: The function hx as represented in (3) is not of the form

required by the randomized root search method since the functions ui(·) (given in (3.6)) have

two breakpoints each. Consequently, randomized root search cannot be employed directly,

but fortunately, it is possible to represent hx as the sum of 2n continuous piecewise linear

functions with a single breakpoint. To explain the transformation, note that the functions

ui(·) in the case where xi 6= 0 are of the form

G(η) =


0 η ≤ α,

mη + n, α < η < β,

1, η ≥ β.

(3.12)

where m ∈ R \ {0}, n ∈ R, α < β and

α = − n
m
, β =

1− n
m

.

The above relations are necessary to ensure that G is continuous. The main observation

established in Lemma 3.2 and illsutated in Figure 1 is that G can be decomposed into two

continuous piecewise linear functions with a single breakpoint.

Lemma 3.2. Let G be given in (3.12) where m ∈ R \ {0}, n ∈ R, α = − n
m

and β = 1−n
m
.

Then for any η ∈ R,

G(η) =
1

2
G1(η) +

1

2
G2(η),

where

G1(η) = m|η − α|, G2(η) = 1−m|η − β|.
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Proof. The proof is technical and split into three cases:

Case I: η ≤ α. In this case, G1(η) = m(α− η), G2(η) = 1−m(β − η), and thus,

G1(η) +G2(η) = m(α− η) + 1−m(β − η) = 1 +m(α− β) = 1 +m ·
(
− 1

m

)
= 0 = 2G(η).

Case II: α < η < β. Here G1(η) = m(η − α), G2(η) = 1−m(β − η), and consequently,

G1(η) +G2(η) = m(η − α) + 1−m(β − η) = 2mη + 1−m(α + β)

= 2mη + 1−m1− 2n

m
= 2mη + 2n = 2G(η).

Case III: η ≥ β. Here G1(η) = m(η − α) and G2(η) = 1−m(η − β), and hence

G1(η) +G2(η) = m(η − α) + 1−m(η − β) = 1−m(α− β) = 1−m
(
− 1

m

)
= 2 = 2G(η).

2
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Figure 1: The function G in solid black lines has two breakpoints, and it can be decomposed

into to piecewise linear functions with a single breakpoint (one convex and one concave).

Using Lemma 3.2, we conclude that hx has the representation (recalling that ui(η) ≡ 0

whenevery xi = 0)

hx(η) =
1

2

∑
i:xi 6=0

vi(η) +
1

2

∑
i:xi 6=0

wi(η)− k,

where

vi(η) ≡ |η|xi| − λ| , wi(η) ≡ 1− |η|xi| − (λ+ 1)| , i = 1, 2, . . . , n.

Thus, employing the randomized root search method with the 2‖x‖0 functions vi, wi, as

input, we obtain that the root of hx can be found in O(‖x‖0) computational effort. Since

‖x‖0 ≤ n, this also establishes the O(n) complexity result.
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4 Application to Sparse Support Vector Machines

We describe an additional application in which the sparse envelope function naturally arises.

In the linear separation problem, we are given n vectors in a p-dimensional space x1,x2, . . . ,xn ∈
Rp that belong to two classes described by the labels vector y ∈ {−1, 1}n (yi = 1 means that

xi belongs to the first class; otherwise, it belongs to the second class). The support vector

machine (SVM) problem finds a hyperplane Hw,β = {x ∈ Rn : wTx + β = 0} that aims to

separate the two classes with a small classification error.

A well-known formulation of the SVM problem is given by (see e.g., [7])

min 1
2
‖w‖2

2 + CeTξ

s.t. Y(Xw + βe) ≥ e− ξ,
ξ ≥ 0.

, (4.1)

where the decision variables are w ∈ Rp, ξ ∈ Rn and β ∈ R. The parameters are Y = diag(y)

(the diagonal matrix whose diagonal are the components of y), the data matrix X ∈ Rn×p

whose rows are xT1 ,x
T
2 , . . . ,x

T
n and the constraint violation parameter C > 0.

Now consider the case where we seek to find a linear separator that is sparse, meaning

with only a few nonzero elements. In this way, we perform classification and feature selec-

tion simultaneously, see for example the paper [12]. Given that we know a bound on the

sparsity level of the separator, a natural mathematical formulation of the problem would be

to incorporate an `0-norm constraint in problem (4.1):

min 1
2
‖w‖2

2 + CeTξ

s.t. ‖w‖0 ≤ k,

Y(Xw + βe) ≥ e− ξ,
ξ ≥ 0.

.

Obviously, for any parameter λ ∈ [0, 1], the last problem is the same as

min 1−λ
2
‖w‖2

2 + λ
2
‖w‖2

2 + CeTξ

s.t. ‖w‖0 ≤ k,

Y(Xw + βe) ≥ e− ξ,
ξ ≥ 0.

(4.2)

Recalling the definition of sk (equation (2.1)), the last problem can be rewritten as

(P)

min 1−λ
2
‖w‖2

2 + λsk(x) + CeTξ

s.t. Y(Xw + βe) ≥ e− ξ,
ξ ≥ 0.

.

Since the above is a nonconvex problem that is difficult to tackle, we consider a relaxation

constructed by replacing sk with its convex biconjugate Sk.

(R)

min 1−λ
2
‖w‖2

2 + λSk(x) + CeTξ

s.t. Y(Xw + βe) ≥ e− ξ,
ξ ≥ 0.

.
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Obviously, since Sk is an underestimator of sk, it follows that val(R) ≤ val(P). The choice

parameter λ controls the trade-off between the tightness of the relaxation and the strong

convexity parameter of the objective function w.r.t. w: large λ means tighter relaxation

and small strong convexity parameter and small λ means looser relaxation with large strong

convexity parameter. To solve problem (R), we suggest to construct the dual problem, which

much like the dual of the original SVM problem (4.1) is much easier to handle [7]. As we

will see, even though the sparse envelope function has no explicit expression, it is possible

to write the dual of (R) in terms of its Moreau envelope, which can be computed via the

proximal mapping. We begin with the construction of the Lagrangian (with α ∈ Rn
+ being

the dual variables vector)

L(w, β, ξ;α) =
1− λ

2
‖w‖2

2 + λSk(w) + CeTξ −αT [Y(Xw + βe)− e + ξ]

=
1− λ

2

∥∥∥∥w − XTYα

1− λ

∥∥∥∥2

2

+ λSk(w)− (eTYα)β + (Ce−α)Tξ

− 1

2(1− λ)
‖XTYα‖2

2 + eTα

= λ

[
1− λ

2λ

∥∥∥∥w − XTYα

1− λ

∥∥∥∥2

2

+ Sk(w)

]
− (eTYα)β + (Ce−α)Tξ

− 1

2(1− λ)
‖XTYα‖2

2 + eTα.

We recall that for a proper closed and convex function h : Rn → (−∞,∞], the Moreau

envelope [9] is given by Mµ
h (x) ≡ minu

{
h(u) + 1

2µ
‖x− u‖2

2

}
= h(proxµh(x)) + 1

2µ
‖x −

proxµh(x)‖2
2, and hence the dual function is given by

min
w,β,ξ

L(w, β, ξ;α) = λM
λ

1−λ
Sk

(
XTYα

1− λ

)
− 1

2(1− λ)
‖XTYα‖2

2 + eTα

in the case where eTα = 0 and α ≤ Ce and −∞ otherwise. The minimizer of the above

minimization problem provides the relation between the optimal primal and dual solutions:

w = prox λ
1−λSk

(
XTYα

1−λ

)
. The obtained dual problem in minimization form is given by

(DR)
min F (α) ≡ −λM

λ
1−λ
Sk

(
XTYα

1−λ

)
+ 1

2(1−λ)
‖XTYα‖2

2 − eTα

s.t. eTYα = 0,

0 ≤ α ≤ Ce.

Problem (DR) can be solved using accelerated gradient-based methods such as FISTA

[3]. For that, we first notice that the objective function F is differentiable over Rn and that,

using the basic properties of the Moreau envelope and the proximal mapping [1], the gradient

∇F is Lipschitz continuous with constant
‖X‖22
1−λ and given by

∇F (α) = YXprox λ
1−λSk

(
XTYα

1− λ

)
− e.

In addition, the orthogonal projection onto the feasible set can be efficiently computed, see

for example [1, Theorem 6.27].
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5 A Numerical Example

To illustrate the potential effectiveness of the new regularizer, we considered the solution of

a linear inverse problem using the sparse envelope function as a regularizer. The example is

based on [13, Example 4], and is an artificial experiment in which the correct reconstruction

is a sparse vector whose nonzero components correspond to columns of the matrix forming

groups which are “almost” identical. We first note that we say that a matrix or vector were

“randomly” generated if their components were generated independently from a standard

normal distribution. Consider the linear model

b = Axtrue + σw,

where xtrue = (3, 3, . . . , 3︸ ︷︷ ︸
15 times

, 0, 0, . . . , 0︸ ︷︷ ︸
25 times

)T ; σ > 0 is a given standard deviation and w ∈ Rn is

a randomly generated vector. The matrix A ∈ Rn×40 is constructed as follows: first, three

n-length column vectors z1, z2, z3 ∈ Rn are randomly generated. Than A is constructed as

A = (Z1 + 0.01W1,Z2 + 0.01W2,Z3 + 0.01W3,W),

where W1,W2,W3 ∈ Rn×5,W ∈ Rn×25 are randomly generated and

Zi = (zi, zi, zi, zi, zi) ∈ Rn×5, i = 1, 2, 3.

Each of the first three groups of five columns of A contains vectors which are “almost” the

same. We will compare two possible solutions for the problem of approximating xtrue out of

the observed vector b:

• Elastic-Net. The elastic-net estimator [13] uses a regularizer which is a combination

of the `1-norm and squared `2-norm functions:

(E-NET) min
x

1

2
‖Ax− b‖2

2 +
λ1

2
‖x‖2

2 + λ2‖x‖1.

If λ2 = 0, then this is the so-called Ridge estimator, and in the case λ1 = 0, the

estimator amounts to the LASSO solution [11]. The regularization parameters were

picked as (λ1, λ2) = (αλ, (1− α)λ) with α and λ being chosen from the the geometric

sequences α ∈ {0.01 · 1.58` : ` = 1, 2, . . . , 10}, λ ∈ {0.01 · 2` : ` = 1, 2, . . . , 15}. The

specific choice of (λ1, λ2) out of the 150 possible values was determined by the minimal

validation error, which was computed by dividing the n samples into training/validation

sets of sizes 0.7n/0.3n. The solution of (E-NET) was computed via FISTA [3] with the

implementation from [2] .

• Sparse-Envelope. Here we assume that we have an a priori upper bound k on the

number of nonzero elements in xtrue, and we pick the tight bound k = 15. We solve

the optimization problem

(SE) min
x

1

2
‖Ax− b‖2

2 + λ3S15(x)

via FISTA [3] with the proximal operator computed using the development in Section

3. The regularization parameter λ3 was picked from the geometric sequence {0.01 · 2` :

` = 1, 2, . . . , 15} with the same training/validation technique described above.
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The solution of the elastic net regularized problem (E-NET) is denoted by x̂en, and

the solution of the sparse envelope-regularized problem (SE) is denoted by x̂se. For each

possible value n ∈ {40, 80, 200} and σ ∈ {0.1, 1, 2}, 100 realizations of the data (A,b) were

generated. The third column of Table 1 contains the number of times out of 100 where

the estimation error of x̂se was smaller/better than the estimation error x̂en, meaning that

‖x̂se− xtrue‖ < ‖x̂se− xtrue‖. The fourth column of Table 2 contains the mean improvement

in percents of the sparse envelope-based solution over the elastic net estimator. Specifically,

it is the mean of the 100 realizations of the expression
(
‖x̂en−xtrue‖
‖x̂se−xtrue‖ − 1

)
·100. It evident from

Table 1 that the estimator based on the sparse envelope function is significantly superior to

the one based on the elastic net – it has a better estimation error in the majority of cases

and on the average, the estimation error incurred by the elastic net estimator is larger in

hundreds of percents than the estimation error of the sparse envelope solution.

As an additional illustration, we also describe the solutions of (SE) and (E-NET) for a

specific realization with n = 40 and σ = 0.1 in Figure 2. Obviously, the sparse envelope

estimator is much closer to the “true” vector xtrue than the elastic net solution. This is also

clear when comparing estimation errors: ‖x̂en−xtrue‖ = 1.4866 while ‖x̂se−xtrue‖ = 0.0882.

n σ SE WIN SE IMPROVE(%)

40.0000 0.1000 96.0000 572.0354

40.0000 1.0000 96.0000 246.9063

40.0000 2.0000 91.0000 120.7844

80.0000 0.1000 98.0000 514.2297

80.0000 1.0000 95.0000 271.4156

80.0000 2.0000 95.0000 118.0473

200.0000 0.1000 97.0000 536.2906

200.0000 1.0000 92.0000 245.1019

200.0000 2.0000 97.0000 133.3172

Table 1: Comparison between the solutions based on the elastic net and sparse envelope

regularizers.
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[9] J. J. Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France,

93:273–299, 1965.

[10] R. T. Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton

University Press, Princeton, N.J., 1970.

[11] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc.

Ser. B, 58(1):267–288, 1996.

[12] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature

selection for svms. In Advances in Neural Information Processing Systems 13, pages

668–674. MIT Press, 2001.

[13] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. R.

Stat. Soc. Ser. B Stat. Methodol., 67(2):301–320, 2005.

21


	Introduction
	Sparse Envelope Evaluation
	Reduction to One-Dimensional Search
	Solving the 1D Problem
	Bisection
	Randomized Root Search


	Proximal Mapping of the Sparse Envelope Function
	Application to Sparse Support Vector Machines
	A Numerical Example

