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Abstract

The paper considers the sparse envelope function, defined as the biconjugate of the
sum of a squared fo-norm function and the indicator of the set of k-sparse vectors. It
is shown that both function and proximal values of the sparse envelope function can
be reduced into a one-dimensional search that can be efficiently performed in linear
time complexity in expectation. For inverse problems, the sparse envelope function
naturally serves as a regularizer that can handle both sparsity and grouping information
on the vector to be estimated, and the paper is concluded with a numerical example
illustrating the potential effectiveness of the approach.

1 Introduction
Many inverse problems in science have the form

min f(x) + s(x), (1.1)
x€R™
where f is a data fidelity term (e.g., least squares) and s is a regularizer that models some
kind of an a priori knowledge on the vector that needs to be recovered. In many applications,
it is reasonable to assume that the sought vector should have a small number of nonzero
components, meaning that it is sparse. Perhaps the most natural regularizer in this case is the
so-called fy-norm! function that counts the number of nonzero elements in the input vector:
Ix|lo = #{¢ : z; # 0}. Unfortunately, the fy-norm is a difficult function to handle being
nonconvex and even non-continuous. One way to circumvent this difficulty is by replacing
the fo-norm by the ¢;-norm, which is also a sparsity-inducing regularizer. It was actually
shown that in some important settings, the usage of the ¢;-norm leads to the same solution
as the one that would be obtained by using the fg-norm, see for example the review paper [5]
and references therein. One extremely popular model is to take f as a least squares fidelity
term and s as an {; expression, leading to one of the formulations of the so-called LASSO
problem [11].
In [13] it was observed that in some statistical applications that posses the “grouping

*School of Mathematical Sciences, Tel Aviv University, becka@tauex.tau.ac.il
fSchool of Mathematical Sciences, Tel Aviv University, yonatanrefaell00@gmail.com
LObviously, the £o-“norm” is not actually a norm.



effect”, the ¢; regularizer does not yield satisfactory results. More specifically, quoting [13]:
iof there exist a group of variables among which the pairwise correlations are very high, then
the lasso tends to select only one variable from the group, and and does not care which one
is selected. This is why the elastic net regularizer was proposed in [13]; the elastic net
regularizer function is a weighted sum of the squared ¢s-norm and the ¢;-norm.

In this paper we propose a regularizer that, much like the elastic net function, also takes
into account sparsity and grouping properties. The grouping property is handled as in the
elastic net regularizer, by a squared f>-norm, but the sparsity property is taken into account
by an fp-norm constraint, meaning that the starting point is the function

1 2 <
sk(x) = { ;ﬂtza !Ego <k,
) .

From a modeling point of view, s; is a good regularizer in cases where we possess an a
priori information that the signal is indeed k-sparse. Unfortunately, s, is a nonconvex and
noncontinuous function, and therefore, it is in general a difficult task to solve optimization
problems incorporating it. Therefore, the path taken in this paper is to consider the best
convex estimator of the function, namely the biconjugate function & = s;*, which we call
the sparse envelope function. In Section 2 we show that the evaluation of the sparse envelope
function reduces to a monotone one-dimensional root search problem that can be solved in
linear time complexity in expectation by a randomized root search method.

In addition, we establish that the sparse envelope function at a given vector is a weighted
sum of two functions: (1) the squared fy-norm of the components of the vector whose
magnitudes are above a certain threshold and (2) the squared ¢;-norm of the remaining
values. The threshold value is determined by the mentioned one-dimensional search. In
Section 3 we consider the proximal mapping of the sparse envelope function and show that
it can also be computed in linear time using a reduction to a one-dimensional monotone
root search. The ability to efficiently compute the proximal operator of the sparse envelope
function implies that it is possible to employ fast proximal gradient methods such as FISTA
[3] to solve the composite problem (1.1) in the case where f is convex and smooth. Section 4
describes an application of the sparse envelope function to the sparse SVM problem. Finally,
Section 5 illustrates numerically the potential of the proposed regularizer in solving linear
inverse problems.

Notation. The underlying space in the paper is R" - the space of all real-valued n-
length column vectors endowed with the dot product (x,y) = x’y. For p > 1, The ¢,-norm
of a vector x € R™ is given by ||x|, = ¢/>,_; |z:]?. The l-norm of a vector x € R" is
|X|lc = max;—12. n|z;|]. e is the vector of all ones and 0 is the vector of all zeros. For
a positive integer m, we denote [m] = {1,2,...,m}. For a vector x € R" and k € [n],
the n-dimensional vector Hy(x) is a vector generated by keeping the k largest absolute value
components of x and setting all the others to zeros; the set of indices of the k largest absolute
value components is not unique, and we assume that in those situations an arbitrary vector
Hy(x) is chosen. It is well-known that Hy(x) is a vector which is closest to x among all the
k-sparse vectors, meaning that (see e.g., [1, Section 6.8.3])

Hi(x) € argmin ||y — x||2. (1.2)
y€Ci



Given an extended real-valued function g : R™ — (—o00, o], its conjugate is given by

g*(y) =max {x"y — g(x)}.

xeR”

2 Sparse Envelope Evaluation

2.1 Reduction to One-Dimensional Search

As mentioned in the introduction, the paper is concerned with the function

s200) = 5 el + e (). 2.)

The main purpose of the section is to find the biconjugate of s, which we call the sparse
envelope function.

Definition 2.1. Let k € [n]. The sparse envelope function with sparsity level k, denoted
by Sk, is the biconjugate of si:
Sk =s)".

By its definition, S}, is proper closed and convex. Throughout the paper, we will assume
that k € [n] is given and fixed. Our ultimate goal in this section is to construct an efficient
method for computing Si(x) = s3*(x) at a given x € R". We begin by proving that the
conjugate function sj is the squared norm of the k-hard thresholding function.

Lemma 2.1. sj(y) = 3||Hi(y)|3 for any y € R™.

Proof. Let y € R™. Then

1 1 1
* _ T, _ T, = 2 _ - e 1P A 2
i) = ey — 60} = max {xy = Il = ma {3 Ix - vIE + JIvIE}
1 , 1
=5 1H:(y) = ylls + 51112
1
2 L)

where (*¥) follows from (1.2), and (**) follows by the fact that ||Hy(y) — y|5 is the sum of
squares of the n — k components of y with the smallest absolute values and 1||y||3 is the sum
of squares of all the components of y. |

The biconjugate function of sj is the conjugate of s;, which according to Lemma 2.1 is
given by

k% 1
i) =510 = max {xTy = SRR} 22)
yeRn? 2
It is easy to see that
2 _ 22
I H(y)ll5 = {lré%);;uzyi, (2.3)

where Dj, = {u € R" : efu < k,0 < u < e}. In particular, an optimal solution of the
maximization problem in (2.3) is a vector with k& ones at the coordinates corresponding to
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the k largest absolute values in y, and zeros elsewhere. Plugging (2.3) into (2.2), we obtain

that
1 n
Sp(x) = in {xTy — =5 2 b
K mmD{X-‘f QZH“%}

Since the above problem is convex in u and concave in y, by Sion’s minimax theorem
[10, Theorem 36.3|, we can replace the roles of u and y, and obtain the following expression:

1 n
— 1min m Ty, _ = E )2
Sk(x) a ueg}C }’E%)Tg {X Y 2 —1 Uil } .

The optimal value of the inner maximization problem is

% Zil ¢(x17 ui>7

where ¢ is the well-known “quadratic over linear” function given by

2
=, u>0,
gb(l‘v ’LL) = 07 r=u= 07 (24)
oo, else.

This function is known to be proper closed and convex, and it is an important example of
a closed convex function that is not continuous (see for example [10, p. 83]). Lemma 2.2
below summarizes the above discussion and presents a variational formula for S that will
be the key ingredient in the development of an efficient algorithm for computing its value.

Lemma 2.2. For any x € R",

Si(x) = = min qu(xi, u;). (2.5)

Our next task is to construct a more explicit expression for S;. For that, we will construct
a dual problem to the minimization problem in (2.5). Associating a Largrange multiplier
only to the inequality constraint e’u < k (defining D},), and disregarding the constant %,
we obtain the following Lagrangian function for the minimization problem in (2.5):

n

L(w, p) = > (i, i) + pss) — kpa.

=1

The dual objective function is therefore given by

u:0<u<e

g(p) = min L(w,p) = @u0(n) = kp, (2.6)
i=1
where for any b # 0 and o > 0, the function ¢y, is defined by
Poo(p) = min {¢(b, a+u) +puy,  p>0. (2.7)

Utilizing strong duality [10], we can conclude that the problem of evaluating Sy is equiv-
alent to a one-dimensional concave maximization problem.
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Lemma 2.3. For any x € R",
28(x) = max q(p) (2.8)

with q being the concave function defined by

Z ar0(1) = ki, (2.9)

where @ is giwen in (2.7). In addition, the maximal value of the problem in (2.8) is attained
at some p > 0.

Our next task will be to study the properties of the function ¢ that will enable us to
compute its maximal value efficiently. For that, we require the following lemma.>

Lemma 2.4. Let « > 0,b € R and consider the function ppo : Ry — R given in (2.7).
Then

(a) if b =0, then vpo(p) =0 for any u > 0 and the set of minimizers in (2.7) is [0,1] if
=0 or the singleton {0} if u > 0;

(b) if b # 0, then (using the convention that p/0 = oo for p > 0) for any p >0

b
a+1 —I—,u, \//7 — oJ—&—‘l’ b
Poalt) = 9 20bly/E —ap, L2 < \/_< B (2.10)
b2
E’ \/_— a'

©ba 18 differentiable at any p > 0 and its derivative is given by

1, N
/ Y U ol - \ 2.11
SOb,a(:u) = N o, o1 < \/_ < ( . )

0 ,u>M.

In addition, problem (2.7) has a unique minimizer 4 given by

gun
]-7 /1“ — a+1?

16| bl lbl
Vi T % a1 <VES
Oa \/_ 2> ‘bl :

I~g1
Il

(¢) The right derivative of gy at 0 is given by

w0 ={ 5 )70

Proof. (a) If b= 0, then for any u > 0,

() = min ($(0, o +u) + pu) = min pu =0,

2The lemma is written in a general way that will allow us to compute the prox operator of Sy later on.
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and the optimal set is either [0, 1] if =0 or {0} if u > 0.
(b) Assume that b # 0. We make the notation H(u) = ¢(b, u+ «) 4 pu and split the analysis
into two cases.
Case I: a > 0. Note that in this case H is differentiable over [0, 1], and that for any
u € [0,1],

b2
(a4 u)?
The function H is strictly convex over [0,1] and we denote its unique minimizer by .
Since H is convex, it follows that @ = 0 if and only if H'(0) > 0, which is the same as
L tu>0s \/— > . The optimal solution is @ = 1 if and only if H’(1) < 0, which is
— + M <0& ,p< |b| . In all other cases, meaning if ‘b| < Vi< ‘b‘

H'(u) = — + L.

the same as —

(a+1)
we have that @ is the unique scalar satlsfylng H'(a) = 0, that is, u = \% — Q. To Conclude,
the optimal solution « is given by
1 L
b e
=9 i T SVE< S
0, N
and thus,
b L
a+1 + i, \ﬁ'llj = at1’ )
(pb,a(l'll) = H(U) - 2|b|\/l_’['_ ap, a1 <ypu< )

establishing the result for Case I.

Case II: a = 0. Note that since b # 0, ¢(b,0) + - 0 = co + 0 = oo, and therefore, the
minimizer of H over [0, 1] is not 0. There are two options: (i) the minimizer of H over [0, 1]
is & = 1 and this occurs when H'(1) < 0 < /u < |b|; the corresponding function value
is ppo(p) = H(1) = ¢(b,1) + p = b*> + p; (2) the minimizer of H over [0,1] is attained
at 4 € (0,1), and in this case H'(4) = 0, meaning @ = % with corresponding value

1),
wpo(p) = H(u) = ¢(b,u) + pt = 2|b[y/it. To conclude, we obtained that in the case oo = 0,

_ [ 2lyvE > bl
Sob,O(H) - { b2 +:U’ \//7 S |b’,

which fits formula (2.10).
The expression for for the derivative of ¢, readily follows from the formula of ¢y .
(c) Follows directly from the expressions for ¢y, given in parts (a) and (b). O

For the sake of evaluating the function S, at a given point x € R”, it is enough to focus
on the structure of ¢y, for the specific case o = 0. This is done in Corollary 2.1 below. The
general case with a # 0 will be used later on in Section 3 in order to compute the proximal
operator of positive scalar multiples of S, .

Corollary 2.1. Let x € R" and i € [n]. Then



(a) for any p. >0,

i < |z
| _ 2 S T, 2.12
§0$Z,O(M> { 2|$z|\/ﬁ \/I[_L> |JZZ|, ( )

and for any p > 0,

holi) = min {1 213

(b) the right derivative of q at 0 is given by ¢ (0) = [|x|lo — k

Proof. (a) Invoking Lemma 2.4(a,b), we obtain that ¢,, o has the form (2.12) and that if
p>0, ¢, o is given by

1 < |z; i
L) = | Lo visloh g flel b
(X} \/_>|l,z| \/ﬁ

(b) By the definition of ¢ (see (2.9)),

¢ (0) = (£2.0)}(0) = k = [|x[lo — &

=1

where the last equality utilizes Lemma 2.4(c). O

The following lemma shows that the sparse envelope function at a given x € R" is a
special sum of squared ¢5 and ¢; norms, where the former is computed on the components
x with magnitude above a certain threshold, and the latter is computed on the remaining
values. The threshold is dictated by a root of a monotone one-dimensional function. To
present the lemma, we denote by ;) the component of x with the ith largest absolute value,
meaning in particular that |z > [z > ... 2w

Lemma 2.5 (S; as a sum of squared ¢; and ¢5 norms). Let x € R". Then
" 2
L ‘xl ‘ )
“ihh (3 )
where Ny is determined as follows:

(a) if ||x|lo < k, then Nx =k — 1, and consequently

1
Silo0) = 1 ]
(b) if ||x|lo > k, then Ny € {0,1,...,k — 1} is defined as
Ny = max{i €n]: eyl >

} , (2.14)

n) Ezmin{mm,l}—k:o (2.15)

|

where 1 1s a root of the equation

over [0, 00).



Proof. Suppose that ||x|o < k. In this case, by Corollary 2.1(b), ¢’.(0) = ||x||o —k < 0, and
therefore, by the concavity of ¢, it follows that 0 is a maximizer of ¢, and consequently, by

23),
28k(x Z%z = al =|x]|3,
i=1

establishing part (a). To prove part (b), suppose that ||x|l¢ > k. By Corollary 2.1(b),
¢'.(0) = ||x|][o — & > 0, and therefore a maximizer of the dual function ¢, which necessarily
exists by Lemma 2.3, must be a positive number. Recall that ¢(p) = Y7 ©u0(p) — kp, and
that by Corollary 2.1(a), ¢,, ¢ is differentiable over (0, 00) and hence i > 0 is a maximizer

1) = ZSD;Z,O(/]) - k = 07
=1

-~

of ¢ if and only if

gx (1)

meaning (see Corollary 2.1(a)) if and only if

T Eimim{'\‘jﬂ,l}—kzo. (2.16)

Define
Ny = max{i € | wl > Vit

Then (2.16) translates to

Ny + Z (2.17)
i=Nx+1
Consequently, Ny < k since
- |x(z |
Ne—k=— > <0.
i=Nx+1 Vi

In addition, Ny must be different than &, since otherwise, by (2.17),

Z|x | =0,

1 k+1

which is a contradiction to the condition that ||x|¢ > k. We thus obtained that Nx €



n 2
{0,1,...,k—1}. By (2.17), i = <M> , and consequently, by (2.8), we have

k—Nx
(2.6) al -
i=1 i=Ny+1
(2.12) ik _
=0 > @+ + ) 20ep|ViE— ki
i=1 i=Ny+1
Nx n
= > aly+(Ne—R)a+2vi Y )
i=1 i=Ny+1
Nx 1 n 2 2 n 2
- Ym0 l) 2 (3 )
i=1 x i=Nx+1 * \i=Nx+1
Nx n 2
N 23%+k_wg(§jmm0
=1 i=Nx+1
Finally, making the change of variables n = \/iﬁ, N = \/Lﬁ, we obtain the expression (2.14) for
Ny and that 7(= v/[1) is a root of gx(n) = Jx (n% . O

Remark 2.1. If £ = 1, then by Lemma 2.5, since k—1 = 0, it follows that Ny = 0 regardless
of the value of x, and consequently

1
Si(x) = 5|

2.2 Solving the 1D Problem
2.2.1 Bisection

Consider the case where |x||o > k. The function gx given in (2.15) is continuous and
nondecreasing. We can also describe two values for which g, has opposite signs, implying
that the one-dimensional problem can be solved by simple root-finding procedures such as
bisection. To describe the point for which g is positive, denote ¢ = ||x||o, and observe that
in our notation || is the minimal absolute value among all the nonzero components of x.

Since min{ 2] 1} = 1if z; # 0 and 0 otherwise, it follows that

21
—~ |
gx ( ) = mln{
; |7(g)]

In addition, if we denote v = max { ”L':"'le, 1}, then

1
J}—k=”ﬂb—k>0
|z )]

lI>l1

1 ~ | ol |zl 1x]]1 V2 Taflock
Jx :me A —k = — k= —k < 0
VMxllo/ = VIIx[ — 7%l VIIx[[o




Therefore, the search for the root of g, can be over the bounded interval | (]|x/|oo) ™", |2(g] ™"
N———

¢ u
The simplest approach for numerically solving the equation will be to employ a bisection

procedure. The worst case number of iterations of the bisection method is O(log(“=t)),
where ¢ is the required accuracy. Since a single evaluation of g, at any point requires O(n)
amount of elementary operations, the overall computational effort is O(log(*=%)n).

Remark 2.2. Since gx can also be written as gx(n) = Zj:mﬂéo min{|z;|n, 1} — k, then given
that we know beforehand the locations of the nonzero elements in x, the evaluation of g4
can be done in O(]|x||o) operations, meaning that the overall computational effort can be
reduced to O(log(“g—’lg)HxHo).

2.2.2 Randomized Root Search

A second option for solving the one-dimensional problem (2.15) would be to construct a
method similar to randomized median finding [6, Section 9.2] that exploits the fact that the
function is a sum of piecewise linear functions, each with a single breakpoint. The presented
algorithm is a simple extension of the randomized algorithm from [8] used to solve the one-
dimensional problem arising in the orthogonal projection onto the l;-ball, see also [4] for
a similar approach for finding a root of a different one-dimensional function. The exact
formulation of the one-dimensional problem we consider in this paper is as follows.

Problem 1D-G
Input: o', a? 3!, 8%, v €R™ § € R.
Functional representation of the input:

041.7] + 51 n < Vi
= . — . — J 77 — I
F(n) =) Fi(n) =6, where F;(y) { oty + B2 n >, (2.18)

Assumptions: (a) ojvy; + 8 = ajvy; + 7 for any j € [m]. [this condition ensures
continuity of F}.]

(b) F is nondecreasing and has a root.

Output: a point n* € R for which F(n*) =0

The randomized approach will lead to an algorithm with an expected amount of com-
putations that is at most linear in m (number of piecewise linear functions with a single
breakpoint), and the number of computations will not depend on any tolerance, or on a size
of an initial interval, like in the bisection method. To use the randomized method, we will
exploit properties (a) and (b) described in the assumptions of problem 1D-G.

The algorithm is based on the following observation: suppose that we randomly choose
p € [m], and that this index p satisfies F(,) < 0. Define Q = {j : 7; > ~,}. Then by the
monotonicity and continuity of F', the function has a root in (y,,00) and for any j ¢ €, by
the structure F}, it holds that Fj(n) = a?n + BJQ for any n > =, (since n > 7, > +;), implying
that for any n > ~,,

F(p) =) F(n)+an+5, (2.19)

jen
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where & = Zj¢9 oz?,B = ngéQ 5]2 — . A similar argument, shows thiit if F(vy,) > 0, then
(2.19) holds for any n < 7, with Q@ = {j : 75 <}, & =3 sqaj and B =37 .05 — 0

The above observation implies that no matter what is the sign of F'(v,), from this point
onwards, in order to evaluate the function F' on values from the relevant intervals ((-y,, c0) or
(—00,7,)), the solution algorithm can just keep the values of & and 3 and take into account
only the indices in €2 (disregarding the indices in [m]\ §2). If for a certain index p, F'(y,) = 0,
the algorithm stops and returns n* = ,. Otherwise, at a certain point, 2 = ), and the root
of the function is the root of the affine function an + 3, meaning N = —g (we assume that
all arithmetic can be performed exactly).

Algorithm 1: Randomized Root Search
Input: o', 0?8, 8%,y R" 5 eR
Output: n* € R for which F( ) =0, Where F=3%7"_, F;— ¢ with Fj given in (2.18).

Initialization: Q = [m],a =0, =

General step:
while Q # ()
pick p € 2 at random
compute F(7y,) = ay, + 8+ ZjeQ Ej ()
if (F(v,) <0)
Ae{jeq: ”Y]>’Yp}
Q4= a+ 3o 0d, B+ B+ > jeana B
Q<+ A
elseif F'(v,) >0
A—{jeq: 71<7p}
= G+ Yo @)y B B+ Yicona B
Q<+ A
elseif F(vy,) =0
return n* = ,.
end if

end while

T

return n* = —

The complexity analysis of Algorithm 1 is essentially identical to the complexity analysis
of the randomized median finding algorithm [6, Section 9.2], and therefore the expected
amount of iterations is O(m).

Solving problem (2.15): In the case where F' = g4, we can write F' as

F(p) = Y min{|ziln, 1} — k,

i€l (x)
where I(x) = {i : x; # 0}. Denote I(x) = {i1,1%2,...,1,} where i; < iy < --- <1, (¢ = |x]lo)-
. . ‘xi]’|n7 n= < ﬁ) )
We can thus define in this case Fj(n) = 1 n > J € [q], and consequently solve
) ‘LL‘ ‘7

the one-dimensional problem (2.15) by employing Algorlthm 1 with input

1 .
= ’ngyuﬂjl 2070‘32'207532 =1,7; = I—,(SZR,j € lq].

|z
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The algorithm requires an expected amount of O(n) (or even just O(||x||o)) operations.

3 Proximal Mapping of the Sparse Envelope Function

In this section we will show how to efficiently compute the proximal operator of positive
scalar multiples of §;. The ability to perform such an operation efficiently implies that
proximal-based methods for optimization problems involving the sparse envelope function.
For example, FISTA [3] can be employed to solve the composite model (1.1) in the case
where f is convex and smooth. We begin with the following lemma that shows that the
proximal operator can be determined in terms of the optimal solution of a convex problem
that resembles the optimization problem defined in Lemma 2.2 for computing the value of

Sk

Lemma 3.1. Let A > 0 and x € R". Then w = prox,s, (X) is given by

Ty
w; = ———, i€ [n], 3.1
I e (3.)
where (uy,us, ..., u,)T is the optimal solution of the problem

E 7 A l .2

1
W = DIoX,g, (X) = argmin {/\Sk(z) + §||z — ng} :

Using Lemma 2.2, we thus need to solve (reversing the order of minimizations with respect

to z,u):
. 2
l{fég}ﬂ{ Z,u,X) E O(zi,ui) + = (2 — xl)}

Solving for z, we get that for any i € [n], if u; > 0, then % + z; — x; = 0, meaning that

T;U;

where u is the minimizer of the problem min,ep, ®(u,z, x). Equation (3.3) also holds when
u; = 0, since in that case, z; = 0. Plugging the expression (3.3) for z in @, yields (using the
“convention” that 0/0 = 0)

<I>(u, Z, X) = 1 ()\Z—l + (Z — 372)2)
i=1

2 U;
)\2 2
— — — 5 (3] >‘ 7
Z( u,)\+u +()\+u ) Z:)\#—uZ ;gbx )
which proves the desired claim. O
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Assigning a Lagrange multiplier for the inequality constraint e’u < k in problem (3.2),
we obtain the Lagrangian function

n

L(u,p) = Z(gb(xi, A+ w;) + pug) — k.

=1

Utilizing the definition of ¢, as given in (2.7), we can deduce that the dual objective
function is given by

u:0<u<e

Qu) = min L(w ) =D @un(k) = k.

Therefore, the dual of problem (3.2) is the maximization problem

max{Q(u) : p > 0}. (3.4)

Remark 3.1. A direct consequence of Lemma 2.4 is that if i > 0, the function u — L(u, fi)
has a unique minimizer over {u: 0 < u < e} given by u; = ¢, ,(fi).

The next theorem shows how the proximal operator of the sparse envelope function
reduces to a one-dimensional search.

Theorem 3.1. Let x € R™ and A > 0;

(a) if ||x|lo < k, then prox,s (x) = ,\LHX;

(b) if |[x]lo > k, then w = prox,g, (x) is given by

Ty
A-+1Q7

w;

i=1,2,...,n, (3.5)

where u; = u;(77) with u;(+) being defined as®

07 TI S ﬁ)
ui(n) = < aln — A, ﬁ <n< ﬁ, i=1,2,...,n, (3.6)
1, n >,A+1

which is nondecreasing and satisfies

A A1
. (—) <0,hx( i )>0,q— Ixlo.
(1% oo Eamy

3If x; = 0, then the formula (3.6) implies that u;(n) =0 for all n > 0
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Proof. First note that by Lemma 2.4(c) it follows that

n

Q4 (0) = (2, 0)}(0) = k = [|x[lo — k. (3.8)

i=1
(a) Suppose that ||x||o < k. Then by (3.8),
Q' (0) = [[x[lo — k < 0.

and therefore, since ) is concave over R, (being a dual objective function), it follows that
0 is a maximizer of (), and thus

n 2

xT:
v —k-0= L.

xQ0) = Q) = 30 2541

On the other hand, plugging into the objective function of the primal problem (3.2) the
feasible choice

= 1(x;) = ’ .
wp = 1(z;) { 0. = =0 (3.9)
we obtain the same function value as the one of the dual problem:
i x2 22 x2
) e e Sl D s ) Dl s
i=1 ¢ i 70 i:;=0
T x? "oz
— 7 7 — 7 — O
M,#O)\Jrl A=A+l A+ @(0),

implying, by weak duality, that u given by (3.9) is the optimal solution of problem (3.2),
meaning that by Lemma 3.1,

proxys, (x) = S

(b) Since ||x||o — & > 0, it follows by (3.8) that

Q' (0) = lIxllo — & >0,

and thus all maximizers of () over R, are positive. The existence of a maximizer for the dual
problem (3.4) follows by the strong duality theorem. By Lemma 2.4(a,b) the function g is
differentiable over the positive numbers, and thus g > 0 is a maximizer of @ iff Q'(f) = 0,
meaning if and only if i > 0 is a solution of the equation

= “oaln) —k=0. (3.10)
i=1

By Remark 3.1, the function u — L(u, ) has a unique minimizer over {u : 0 < u < e}

given by
L, Vi < ;?;L,
U; = @;i,A(ﬂ) = % N ,‘\jfl

0, Vi 2 '”“

14



By (3.10), u satisfies the primal constraint ) ., u; < k (actually, it is satisfied as an equal-
ity), and thus by strongly duality, it is is the optimal solution of problem (3.2). Consequently,
by Lemma 3.1 it follows that w given by (3.5) is equal to prox,s (x).

Making the change of variables n = n= \/Lﬁ, we obtain that equation (3.10) is trans-

1
\/_ﬁa
formed into the equation hy(n) = 0, where

1
n
and that the relation u; = ¢, (i) becomes u; = u;(7) with u,(-) defined in (3.6). Also, since

@', as a derivative of the concave dual function is nonincreasing, it follows that h, defined
by the relation (3.11) is nondecreasing. Finally, denoting ¢ = ||x||o, it holds that

hx(L) — 0—k=—k<0,
Tl
A1 A1
hx( i ) _ E:ui< i )—k:||x||0—k>0.

|7 (g)] = \lzwl

|

We thus conclude from Theorem 3.1 that, much like the problem of computing the sparse

envelope function itself, evaluation of the proximal mapping of the sparse envelope function
boils down to a one-dimensional search problem (in the case ||x||p > k) that can be solved
in expected linear time using randomized root search.
Randomized Root Search: The function hy as represented in (3) is not of the form
required by the randomized root search method since the functions u;(+) (given in (3.6)) have
two breakpoints each. Consequently, randomized root search cannot be employed directly,
but fortunately, it is possible to represent hy as the sum of 2n continuous piecewise linear
functions with a single breakpoint. To explain the transformation, note that the functions
u;(+) in the case where z; # 0 are of the form

0 n<a
Gn) =4 mn+n, a<n<B (3.12)
1, n=p.
where m € R\ {0},n € R, < § and
1—
04:—2,5: n
m m

The above relations are necessary to ensure that G is continuous. The main observation
established in Lemma 3.2 and illsutated in Figure 1 is that G can be decomposed into two
continuous piecewise linear functions with a single breakpoint.

Lemma 3.2. Let G be given in (3.12) where m € R\ {0},n € R,a = == and = 1_7"
Then for any n € R,

1 1
G(n) = 5G1(n) + 5Ga(),
where

Gi(n) =mln —al,Ga(n) =1 —m|n — B

15



Proof. The proof is technical and split into three cases:
Case I: n < a. In this case, G1(n) = m(a —n),G2(n) =1 —m(8 —n), and thus,

Gu(n) + Gala) = mla = 1)+ 1= m(3 1) = L mla = 5) = L me (=) =0 =26(n)

Case II: a < m < 8. Here G1(n) = m(n — a),Gy(n) =1 —m(p — n), and consequently,

Gi(n)+Ga(n) = mn—a)+1—m(B—n)=2mn+1—m(a+ )
1—2n

= 2mn+1—m = 2mn + 2n = 2G(n).

Case III: n > 8. Here G1(n) = m(n — «) and G2(n) =1 — m(n — ), and hence

Gi(n) + Galo) =l = ) + 1=l — 6) = 1 = mlar— ) =1 = m ) =2 = 26

a

Figure 1: The function G in solid black lines has two breakpoints, and it can be decomposed
into to piecewise linear functions with a single breakpoint (one convex and one concave).

Using Lemma 3.2, we conclude that hy has the representation (recalling that u;(n) =0

whenevery z; = 0)

hse (1) :% > viln) +% > wiln) — k,

1:x;7#0 1:2;7#0
where
vi(n) = x| — A, wi(n) =1 —|n|z;| — A+ 1)|,i=1,2,... n.

Thus, employing the randomized root search method with the 2||x||o functions vy, w;, as
input, we obtain that the root of hy can be found in O(]|x||o) computational effort. Since
|1x|lo < n, this also establishes the O(n) complexity result.
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4 Application to Sparse Support Vector Machines

We describe an additional application in which the sparse envelope function naturally arises.
In the linear separation problem, we are given n vectors in a p-dimensional space x1, Xs, ..., X, €
R? that belong to two classes described by the labels vector y € {—1,1}" (y; = 1 means that
x; belongs to the first class; otherwise, it belongs to the second class). The support vector
machine (SVM) problem finds a hyperplane Hy, 5 = {x € R" : w/x + 3 = 0} that aims to
separate the two classes with a small classification error.

A well-known formulation of the SVM problem is given by (see e.g., [7])

min |wl3 + Ce’¢
st. Y(Xw+fpe) >e—&, , (4.1)
£>0.

where the decision variables are w € RP £ € R™ and § € R. The parameters are Y = diag(y)
(the diagonal matrix whose diagonal are the components of y), the data matrix X € R"*?
whose rows are x7,x2,...,x. and the constraint violation parameter C' > 0.

Now consider the case where we seek to find a linear separator that is sparse, meaning
with only a few nonzero elements. In this way, we perform classification and feature selec-
tion simultaneously, see for example the paper [12]. Given that we know a bound on the
sparsity level of the separator, a natural mathematical formulation of the problem would be
to incorporate an fp-norm constraint in problem (4.1):

min Lwl3 + Ce¢

sit. ||wllo < &,
Y(Xw+Je)>e—§,
§>0.

Obviously, for any parameter A € [0, 1], the last problem is the same as

min 32 |wlf + 3[|w|3 + Ce’¢
st wlo < &,
Y(Xw + fe) > e — &,
£>0.

(4.2)

Recalling the definition of s; (equation (2.1)), the last problem can be rewritten as

min 152 ||w||3 + Asi(x) + Cel€
(P) st Y(Xw+pe)>e—¢&,
£=>0.

Since the above is a nonconvex problem that is difficult to tackle, we consider a relaxation
constructed by replacing s, with its convex biconjugate S.

min 2| w||3 + ASi(x) + CeT¢
(R) st Y(Xw+pfe)>e—¢&,
§>0.
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Obviously, since Sy is an underestimator of sy, it follows that val(R) < val(P). The choice
parameter A controls the trade-off between the tightness of the relaxation and the strong
convexity parameter of the objective function w.r.t. w: large A\ means tighter relaxation
and small strong convexity parameter and small A means looser relaxation with large strong
convexity parameter. To solve problem (R), we suggest to construct the dual problem, which
much like the dual of the original SVM problem (4.1) is much easier to handle [7]. As we
will see, even though the sparse envelope function has no explicit expression, it is possible
to write the dual of (R) in terms of its Moreau envelope, which can be computed via the
proximal mapping. We begin with the construction of the Lagrangian (with o € R’ being
the dual variables vector)

L(w,3,&a) = uHW||§ + /\Sk(w) +Ce'¢ — ol [Y(XW 4+ fe) — e + €]
2
WHXTYO‘M +ela
= A [u HW - }iTY;\l +S(w)| — (' Ya)B + (Ce — a)T€
- 2
_ﬁnxwang +ela,

We recall that for a proper closed and convex function h : R" — (—o00,00], the Moreau
envelope [9] is given by M!(x) = ming {h(u> + i||x—u||§} = h(prox,,(x)) + gllx —
prox,,;,(x)[|3, and hence the dual function is given by

XTY o
1—A

in L(w,f3,§; —)\M1A
iy Lo .61 ) = T

1
o XTY 2 T
) - sy IX Yl o

in the case where e’a = 0 and a@ < Ce and —oo otherwise. The minimizer of the above

minimization problem provides the relation between the optimal primal and dual solutions:

xTYa>

W = Prox g, < ). The obtained dual problem in minimization form is given by

A
min  F(a) = -\Mg (ij&“) +aa X Yalf - ea
(DR) st eTYa = 0,
0 < a<C(Ce.

Problem (DR) can be solved using accelerated gradient-based methods such as FISTA
[3]. For that, we first notice that the objective function F' is differentiable over R and that,
using the basic properties of the Moreau envelope and the proximal mapping [1], the gradient

V F'is Lipschitz continuous with constant H ”2 and given by

XY a
VF(a):YXprOXﬁSk ( X ) —e.

In addition, the orthogonal projection onto the feasible set can be efficiently computed, see
for example [1, Theorem 6.27].
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5 A Numerical Example

To illustrate the potential effectiveness of the new regularizer, we considered the solution of
a linear inverse problem using the sparse envelope function as a regularizer. The example is
based on [13, Example 4], and is an artificial experiment in which the correct reconstruction
is a sparse vector whose nonzero components correspond to columns of the matrix forming
groups which are “almost” identical. We first note that we say that a matrix or vector were
“randomly” generated if their components were generated independently from a standard
normal distribution. Consider the linear model

b = AXiye + oW,

where Xy = (3,3,...,3,0,0,...,0)7; ¢ > 0 is a given standard deviation and w € R" is
N — N——
15 times 25 times

a randomly generated vector. The matrix A € R is constructed as follows: first, three
n-length column vectors zi, zs,z3 € R™ are randomly generated. Than A is constructed as

A = (Zy + 0.01W 1, Zs + 0.01W,, Zs + 0.01W 5, W),
where Wi, Wy, W3 € R™5 "W € R™?5 are randomly generated and
7, = (Zz‘, Z;, Zivzi7Zi> c RnX5, 1= 1, 2, 3.

Each of the first three groups of five columns of A contains vectors which are “almost” the
same. We will compare two possible solutions for the problem of approximating X, out of
the observed vector b:

e Elastic-Net. The elastic-net estimator [13] uses a regularizer which is a combination
of the /1-norm and squared f>-norm functions:

1 A
(E-NET)  min 2| Ax = b3 + T lx[13 + A jxs.

If Ay = 0, then this is the so-called Ridge estimator, and in the case A\; = 0, the
estimator amounts to the LASSO solution [11]. The regularization parameters were
picked as (A1, A2) = (@A, (1 — @)) with a and A being chosen from the the geometric
sequences a € {0.01-1.58 : £ =1,2,...,10},A € {0.01-2°: ¢ =1,2,...,15}. The
specific choice of (A1, Ay) out of the 150 possible values was determined by the minimal
validation error, which was computed by dividing the n samples into training/validation
sets of sizes 0.7n/0.3n. The solution of (E-NET) was computed via FISTA [3] with the
implementation from [2] .

e Sparse-Envelope. Here we assume that we have an a priori upper bound k on the
number of nonzero elements in X, and we pick the tight bound £ = 15. We solve
the optimization problem

1
(SE) mxin §||Ax — b3 + A3S15(x)

via FISTA [3] with the proximal operator computed using the development in Section
3. The regularization parameter \3 was picked from the geometric sequence {0.01-2° :
¢=1,2,...,15} with the same training/validation technique described above.
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The solution of the elastic net regularized problem (E-NET) is denoted by X.,, and
the solution of the sparse envelope-regularized problem (SE) is denoted by X. For each
possible value n € {40,80,200} and o € {0.1, 1,2}, 100 realizations of the data (A,b) were
generated. The third column of Table 1 contains the number of times out of 100 where
the estimation error of X, was smaller/better than the estimation error X.,, meaning that
| Xse — Xprue || < [|Xse — Xtrue||- The fourth column of Table 2 contains the mean improvement,
in percents of the sparse envelope-based solution over the elastic net estimator. Specifically,

it is the mean of the 100 realizations of the expression (M — 1) -100. It evident from

H)A(se*xtrue ”

Table 1 that the estimator based on the sparse envelope function is significantly superior to
the one based on the elastic net — it has a better estimation error in the majority of cases
and on the average, the estimation error incurred by the elastic net estimator is larger in
hundreds of percents than the estimation error of the sparse envelope solution.

As an additional illustration, we also describe the solutions of (SE) and (E-NET) for a
specific realization with n = 40 and ¢ = 0.1 in Figure 2. Obviously, the sparse envelope
estimator is much closer to the “true” vector xi,, than the elastic net solution. This is also

clear when comparing estimation errors: ||Xen, — Xgrue|| = 1.4866 while ||Xge — Xtrue|| = 0.0882.
n | o [SEWIN[SEIMPROVE(%) |
40.0000 | 0.1000 | 96.0000 572.0354
40.0000 | 1.0000 | 96.0000 246.9063
40.0000 | 2.0000 | 91.0000 120.7844
80.0000 | 0.1000 | 98.0000 514.2297
80.0000 | 1.0000 | 95.0000 271.4156
80.0000 | 2.0000 | 95.0000 118.0473
200.0000 | 0.1000 | 97.0000 536.2906
200.0000 | 1.0000 | 92.0000 245.1019
200.0000 | 2.0000 | 97.0000 133.3172
Table 1: Comparison between the solutions based on the elastic net and sparse envelope
regularizers.
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