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output PSDs for the noisy input case, from top to bottom, respectively.
It can be seen that the Volterra system output is severely distorted by
impulsive noise. The PWM filter output PSD yields the desired PSD
with slight distortions. As in the time domain, the PWMy filter output
PSD gives the best spectral performance with the least distortions and
clearly defined frequency components.

B. Image Processing Application

The proposed PWMy filter structure is also utilized in an image
processing application. Quadratic Volterra (QV) filters utilized in
unsharp masking scenario [12] yield better results than conven-
tional linear techniques [12]. The QV filter output used for ex-
tracting edges and features is given by [12]: F [Ii;j ] = 3I2i;j �
0:5Ii+1;j+1Ii�1;j�1�0:5Ii+1;j�1Ii�1;j+1 � Ii+1;jIi�1;j �

Ii;j+1Ii;j�1. The filter output is scaled by � and added to the orig-
inal image, Ie(i; j) = I(i; j) + �F [I(i; j)], to obtain the edge
enhanced image, Ie. The image “Lena” and QV filter (with � = 0:002
[12]) edge enhanced image are given in Fig. 4(a) and (b), respec-
tively. Using the polynomial myriadization technique, the Quadratic
Weighted Myriad (QWMy) filter for this specific application is obtained:
F [Ii;j ] = MYRIAD K; 3 � I2i;j ;�0:5 � Ii+1;j+1Ii�1;j�1; �0:5 �
Ii+1;j�1Ii�1;j+1;�1 � Ii+1;j Ii�1;j ;�1 � Ii;j+1Ii;j�1) : The iden-
tical enhanced image isobtainedwithQWMyfiltering andK = 100000
and � = 0:012, Fig. 4(c).

Both filters are also used to enhance the image corrupted by additive
Gaussian noise (�2 = 100) [12] shown in Fig. 4(d). The enhanced im-
ages are given in Fig. 4(e) and (f) for the QV and QWMy (K = 1) filter
cases, respectively. Inspection of the images shows that the QWMy
output contains less overshoot and ringing, as well as more consistent
uniform regions. These observations are consistent with the L1 norm
error measurements, which are 21.0305 and 16.9479 for the QV and
QWMy filter cases, respectively. Thus, the QWMy filter provides a
19.41% performance gain over the QV filter.

V. CONCLUSIONS

The higher-order statistics of bell-shaped Cauchy statistics, in-
cluding probability density functions of cross and square terms, and
their tail heaviness order is analyzed. Motivated by these studies and
the optimality of the weighted myriad filter under practical impulsive
noise environments, a novel Polynomial Weighted Myriad (PWMy)
filter is proposed for impulsive noise environments. Some properties of
the proposed filter are presented. Adaptive and simple myriadization
procedures are given. The proposed filter structure is tested through
simulations and compared with the conventional Volterra and polyno-
mial weighted median filtering [6]. The simulation results show the
superiority of the proposed PWMy algorithm.

REFERENCES

[1] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Sys-
tems. New York: Wiley, 1980, .

[2] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing.
Chichester, U.K.: Wiley, 2000.

[3] I. Pitas and A. Venetsanopoulos, Nonlinear Digital Filters: Principles
and Application. Norwell, MA: Kluwer, 1990.

[4] P. Koukoulas and N. Kalouptsidis, “Second order volterra system iden-
tification,” IEEE Trans. Signal Process., vol. 48, no. 12, pp. 3574–3577,
Dec. 2000.

[5] Y. S. Cho and E. J. Powers, “Quadratic system identification using
higher order spectra of i.i.d. signals,” IEEE Trans. Signal Process., vol.
42, no. 5, pp. 1268–1271, May 1994.

[6] K. E. Barner and T. C. Aysal, “Polynomial weighted median filtering,”
IEEE Trans. Signal Process., vol. 54, no. 2, pp. 636–650, Feb. 2006.

[7] J. G. Gonzalez, D. L. Lau, and G. R. Arce, “Toward a general theory
of robust nonlinear filtering: Selection filters,” in Proc. 1997 IEEE Int.
Conf. Acoustics, Speech, Signal Process. (ICASSP), Munich, Germany,
Apr. 21–24, 1997, pp. 3837–3840.

[8] J. G. Gonzalez and G. R. Arce, “Optimality of the myriad filter in prac-
tical impulsive-noise environments,” IEEE Trans. Signal Process., vol.
49, no. 2, pp. 438–441, Feb. 2001.

[9] C. Nikitas and M. Shao, Signal Processing with Alpha-Stable Distri-
butions and Applications. New York: Wiley, 1995.

[10] S. Kalluri and G. R. Arce, “Adaptive weighted myriad filter algorithms
for robust signal processing in �-stable environments,” IEEE Trans.
Signal Process., vol. 46, no. 2, pp. 322–334, Feb. 1998.

[11] G. R. Arce, Nonlinear Signal Processing: A Statistical Approach.
New York: Wiley, 2005.

[12] S. Thurnhofer and S. K. Mitra, “A general framework for quadratic
volterra filters for edge enhancement,” IEEE Trans. Image Process.,
vol. 5, no. 6, pp. 950–963, Jun 1996.

Doubly Constrained Robust Capon Beamformer
With Ellipsoidal Uncertainty Sets

Amir Beck and Yonina C. Eldar

Abstract—The doubly constrained robust (DCR) Capon beamformer
with a spherical uncertainty set was introduced and studied by Stoica
and Wang. Here, we consider the generalized DCR problem (GDCR) in
which the uncertainty set is an ellipsoid rather than a sphere. Although,
as noted previously by Stoica and Wang, this problem is nonconvex and
appears to be intractable, we show that it can be solved efficiently. In fact,
we prove that the GDCR beamformer can be obtained as a solution to a
convex optimization problem. To this end, we first derive a strong duality
result for nonconvex quadratic programs with two quadratic constraints
over the complex domain. Specializing the results to our context leads to a
semidefinite programming formulation of the GDCR beamformer.

Index Terms—Nonconvex quadratic optimization, robust Capon beam-
forming, S-lemma, strong duality.

I. INTRODUCTION

Beamforming methods for processing temporal sensor array mea-
surements are used extensively in a variety of areas such as radar, sonar
and wireless communications [3]. One of its goals is to estimate a
source signal amplitude s(t) from N array observations yyy(t), where

yyy(t) = s(t)aaa+ eee(t); 1 � t � N: (1)

Manuscript received June 14, 2005; revised April 2, 2006. The associate ed-
itor coordinating the review of this manuscript and approving it for publication
was Dr. A. Rahim Leyman. This work was supported in part by the Israel Sci-
ence Foundation and by the EU 6th framework programme, via the NEWCOM
network of excellence.

A. Beck is with the Department of Industrial Engineering and Management,
The Technion—Israel Institute of Technology, Haifa 32000, Israel (e-mail:
becka@ie.technion.ac.il).

Y. C. Eldar is with the Department Electrical Engineering, The
Technion—Israel Institute of Technology, Haifa 32000, Israel (e-mail:
yonina@ee.technion.ac.il).

Color version of Fig. 1 is available online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2006.885729

1053-587X/$25.00 © 2006 IEEE

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on November 14,2020 at 10:14:12 UTC from IEEE Xplore.  Restrictions apply. 



754 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 2, FEBRUARY 2007

Here aaa 2 n is the length-n signal steering vector, and eee(t) is a
noise vector that captures both the interference and the random noise. A
common strategy to estimating s(t) is to use a linear beamformer with
weightswww that are chosen to maximize the signal-to-interference+noise
ratio (SINR).

If the steering vector aaa and the covariance matrix RRR of the noise are
known exactly, then the weights maximizing the SINR are given by

www =
RRR�1aaa

aaa�RRR�1aaa
: (2)

In practice, the covariance RRR is typically unknown, and is instead re-
placed by an estimate, such as the sample covariance of the measure-
ments. Recently, there has also been considerable interest in robust
beamforming methods that are designed to compensate for imperfect
knowledge of the array steering vector [1], [4]–[6]. The uncertainty
in aaa can be taken into account by treating it as a random vector with
known second-order statistics [7]–[9]. Alternatively, aaa can be modeled
as a deterministic vector that lies in an ellipsoid centered at a nominal
steering vector aaa0 [1], [2], [5], [6]. The goal then is to design a robust
beamformer that yields good SINR for all possible values of aaa in the
uncertainty set.

Here, we focus on the robust Capon beamforming problem intro-
duced in [1], in which it is assumed that aaa lies in an ellipsoidal set.
In this method, the beamforming weights are chosen according to (2)
where the unknown steering vector aaa is replaced by the solution to

min
aaa2

faaa�RRR�1aaa : (aaa� aaa0)
�DDD(aaa� aaa0) � 1g (3)

where DDD is a given positive semidefinite matrix. The robust Capon
beamformer was later extended to include norm constraints on the
steering vector, leading to the doubly constrained robust (DCR) Capon
beamformer [2]:

(DCR) min
aaa2

faaa�RRR�1aaa : kaaak2 = n; kaaa� aaa0k
2 � �g: (4)

The solution of both (3) and (4) reduces to a simple root-finding
problem of a single variable monotone function.

In the derivation of the DCR beamformer, it was explicitly assumed
that the uncertainty set is spherical, and not ellipsoidal as in (3). How-
ever, ellipsoids can often provide a more accurate description of the un-
certainty than spheres. One example is when the uncertainty set is con-
structed from repeated measurements of the array manifold using the
mean and covariance of the measurements; see [6] for detailed methods
that can be used to derive an appropriate uncertainty ellipsoid. A nat-
ural extension to the DCR beamformer is to include ellipsoidal sets,
which leads to a generalized version of DCR:

min
aaa2

aaa�RRR�1aaa

(GDCR) s.t. kaaak2 = n;

(aaa� aaa0)
�DDD(aaa� aaa0) � �: (5)

A key difficulty with (5) is its nonconvexity due to the nonlinear
equality constraint kaaak2 = n. Another obstacle arises from the fact
that using a Lagrange multiplier approach, the solution of (5) seems to
involve a two-dimensional search, as noted in [2]:

“However, it appears that DCR is not as easy to generalize
to the case of ellipsoidal uncertainty sets as such a generaliza-
tion would require a two-dimensional search to determine the
Lagrange multipliers….”

Here, we treat the GDCR problem (5) and show that although it is
nonconvex, strong duality holds. As a result, the value of (5) is equal to
the value of a corresponding semidefinite program (SDP) [10], which
can be solved efficiently using interior point methods. Furthermore,
we show how to extract the solution of the primal problem from the

solution of the dual problem. The special structure of the SDP allows it
to be solved in a computational effort of O(n3:5). Using these results
we can determine the GDCR beamformer efficiently without having to
employ ad hoc searches.

To develop the GDCR beamformer, we consider a more general op-
timization problem in which we seek to minimize a quadratic function
subject to a quadratic inequality constraint, and a quadratic equality
constraint. We do not assume convexity of any of the quadratic func-
tions. By adapting a recently developed methodology [11] for quadratic
problems with two inequality constraints to our context, we show that
under mild conditions, strong duality holds for this nonconvex class of
problems and relate the primal and dual solutions.

We emphasize that our purpose in this correspondence is to gener-
alize the DCR beamformer to ellipsoid uncertainty sets, which are used
in other formulations of robust beamforming. Our intention is not to en-
dorse this particular beamforming method or to claim that it is superior
to other approaches. We do, however, believe that if the DCR beam-
former is chosen in a particular application, then it may be beneficial
to include ellipsoidal uncertainty sets as well. To illustrate this point,
in Section IV, we present an example taken from [6] where the uncer-
tainty is constructed from measurements of the array manifold. In this
case, there may be an advantage to using ellipsoidal sets over spherical
ones that capture the covariance of the measurements.

The outline of the correspondence is as follows. Section II begins
with the description of the general nonconvex quadratic problem
with two quadratic constraints (Q2P). Using an extended version
of the so-called S-lemma, we show, in Section III, that under some
mild conditions, strong duality holds for (Q2P). We then present a
method for calculating the optimal solution of (Q2P) from the dual
solution. Finally, in Section IV, we show that in the GDCR problem
the conditions for strong duality are met, so that an efficient solution
can be obtained in polynomial time.

Throughout the correspondence, we use the following notation: Vec-
tors are denoted by boldface lowercase letters, and matrices by boldface
uppercase letters. For two matrices AAA and BBB, AAA � (�)BBB means that
AAA �BBB is positive (semi)definite. Instead of using an inf/sup notation,
we use a min/max notation.1 The real and imaginary part of scalars,
vectors, or matrices are denoted by <(�) and =(�), respectively. For an
optimization problem (P ) : min =maxff(xxx) : xxx 2 Cg, we denote
the value of the optimal objective function by val(P ). When (P ) is in-
feasible, we define val(P ) =1. We follow the MATLAB convention
and use “;” for adjoining scalars, vectors, or matrices in a column.

II. PROBLEM FORMULATION AND MATHEMATICAL BACKGROUND

The GDCR beamforming problem of (5) can be viewed as a special
case of a nonconvex quadratic minimization with two quadratic con-
straints in the complex domain, as follows:

(Q2P) min
zzz2

ff3(zzz) : f1(zzz) � 0; f2(zzz) = 0g: (6)

Here, fj : n ! is given by

fj(zzz) = zzz�AAAjzzz + 2<(bbb�jzzz) + cj (7)

where AAAj are Hermitian matrices, i.e., AAAj = AAA�j , bbbj 2 n, and
cj 2 . Note that neither the constraints nor the objective function
are assumed to be convex, so that we make no assumptions on the
Hermitian matrices AAAj .

Since problem (6) is not convex, it is not clear at first sight how to
obtain efficient methods for its solution. One of the attributes of con-
vexity is that it implies that the values of the primal and dual problems

1The fact that we use this notation does not mean that we assume that the
optimum is attained and/or finite.
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are equal (strong duality) [12]. Strong duality is, in many cases, the key
ingredient in deriving efficient solution methods. Fortunately, we will
show that even though (6) is not convex, strong duality holds for this
class of problems under very mild conditions. In our derivation, we use
a recently developed methodology [11] for quadratic problems with
two inequality constraints and generalize this approach to our setting.

It is interesting to note that for quadratic problems with two quadratic
constraints in the real domain, strong duality does not hold except for
some special cases [11], [13]. On the other hand, for problems with a
single quadratic constraint, strong duality holds under mild conditions
both in the real and complex domains [14], [15].

The key ingredient in proving strong duality of (Q2P) is the extended
S-lemma.

Theorem II.1 (Extended S-Lemma [16]): Let

fj(zzz) = zzz
�
AAAjzzz + 2<(bbb�jzzz) + cj ; zzz 2 n

; j = 1; 2; 3

whereAAAj are n�nHermitian matrices, bbbj 2 n, and cj 2 . Suppose
that there exists ~zzz 2 n such that f1(~zzz) > 0, f2(~zzz) > 0 and a ~www 2 n

such that f1(~www) > 0 and f2(~www) < 0. Then, the following two claims
are equivalent:

1) f3(zzz) � 0 for every zzz 2 n such that f1(zzz) � 0 and f2(zzz) = 0;
2) there exists � � 0 and � 2 such that

AAA3 bbb3

bbb�3 c3
� �

AAA1 bbb1

bbb�1 c1
+ �

AAA2 bbb2

bbb�2 c2
:

It is important to realize that Theorem II.1 is not true in the real
domain. For example, the following implication in is obvious:

2x � 2 for every x 2 such that 2x � 0; x2 = 1:

The regularity conditions of Theorem II.1 are satisfied. However, a
simple argument shows that there are no � � 0 and � 2 such that

0 1

1 �2
� �

0 1

1 0
+ �

1 0

0 �1
: (8)

Consequently, the results we develop are valid only for problems de-
fined on the complex domain, as is the case in GDCR beamforming.

III. STRONG DUALITY AND OPTIMALITY CONDITIONS

Using standard manipulations, it can be readily shown that the
Lagrangian dual of (Q2P) is given by

(D) max
��0;�;�

�
AAA3 bbb3

bbb�3 c3��
��

AAA1 bbb1

bbb�1 c1
+�

AAA2 bbb2

bbb�2 c2
: (9)

Theorem III.1 below states that if (Q2P) is strictly feasible then
val( Q2P) = val(D) even when the value is equal to �1. Problem
(Q2P) is said to be strictly feasible if there exists ~zzz; ~www 2 n such that
f1(~zzz) > 0, f2(~zzz) > 0 and f1(~www) > 0, f2(~www) < 0.

Theorem III.1 (Strong Duality): Suppose that (Q2P) is strictly fea-
sible. Then, we have the following:

1) if val(Q2P) is finite, then the maximum of problem (D) is attained
and val(Q2P) = val(D);

2) val(Q2P) > �1 if and only if problem (D) is feasible.
Proof:

1. Suppose first that val(Q2P) is finite. Then

val(Q2P) = max
�
f� : val(Q2P) � �g: (10)

Now, the statement val(Q2P) � � holds true if and only if the
implication

f1(zzz) � 0; f2(zzz) = 0) f3(zzz) � �

is valid. By Theorem II.1, this is equivalent to the claim that there
exists � � 0 and � such that

AAA3 bbb3

bbb�3 c3 � �
� �

AAA1 bbb1

bbb�1 c1
+ �

AAA2 bbb2

bbb�2 c2
: (11)

Therefore, by replacing the constraint in the maximiza-
tion problem (10) with the LMI (11), we obtain that
val(Q2P) = val(D). The maximum of (D) is attained at
(��; ��; ��), where �� is the (finite) value val(Q2P) and �� � 0; ��
are the corresponding constants that satisfy the LMI (11) for
� = �� = val(Q2P).

2. Note that val(Q2P) > �1 if and only if there exists � 2 such
that val(Q2P) � �, which is equivalent to

f1(zzz) � 0; f2(zzz) = 0) f3(zzz) � �:

By Theorem II.1, the latter implication is the same as (11), which
is equivalent to feasibility of (D).

We now derive necessary and sufficient optimality conditions on the
solution to (Q2P).

Theorem III.2 (Optimality Conditions): Suppose that (Q2P) is
strictly feasible and that its minimum is attained. Let (��; ��; ��) be an
optimal solution of (D). Then �zzz is an optimal solution of (Q2P) if and
only if

(AAA3 � ��AAA1 � ��AAA2)�zzz = ��bbb1 + ��bbb2 � bbb3 (12)

f1(�zzz) � 0; f2(�zzz) = 0 (13)

��f1(�zzz) = 0: (14)

Proof: From the strong duality result (Theorem III.1) and from
saddle point optimality conditions (see, e.g., [17, Theorem 6.2.5]), it
follows that �zzz is an optimal solution of (Q2P) if and only if

�zzz 2 argminL(zzz; ��; ��)

f1(�zzz) � 0; f2(�zzz) = 0

��f1(�zzz) = 0 (15)

whereL(zzz; �; �) = f3(zzz)��f1(zzz)��f2(zzz). Note that (15) implies in
particular that minzzz L(zzz; ��; ��) > �1. We now rely on the following
lemma.

Lemma III.1: Let f : n ! be the quadratic function f(zzz) =
zzz�AAAzzz + 2<(b�zzz) + c, where AAA = AAA� 2 n�n, bbb 2 n and c 2 .
Suppose that minzzz2 f(zzz) > �1. Then, AAA is positive semidefinite
and the set of optimal solutions is given by fzzz : AAAzzz + bbb = 0g.

By Lemma III.1, condition (15) is equivalent to (12), completing the
proof.

A. Finding an Explicit Solution of (Q2P)

We now use the optimality conditions of Theorem III.2 in order to
describe a method for extracting the solution of (Q2P) from the solution
of the dual problem (D).

Suppose that (Q2P) is strictly feasible and that the minimum is finite.
From Theorem III.2, �zzz is an optimal solution if it satisfies (12)–(14).
If AAA3 � ��AAA1 � ��AAA2 � 0, then the (unique) solution to the primal
problem (Q2P) is

�zzz = �(AAA3 � ��AAA1 � ��AAA2)
�1(bbb3 � ��bbb1 � ��bbb2):

Next, suppose that AAA3 � ��AAA1 � ��AAA2 is positive semidefinite but not
positive definite. In this case, (12) can be written as �zzz = BBBwww+aaa, where
the columns of BBB form a basis for the null space of AAA3 � ��AAA1 � ��AAA2

and aaa = �(AAA3� ��AAA1� ��AAA2)
y(bbb3� ��bbb1� ��bbb2) is a solution of (12).
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TABLE I
CASES OF THE QUADRATIC FEASIBILITY PROBLEM

It follows that �zzz = BBB �www+aaa is an optimal solution to (Q2P) if and only
if conditions (13) and (14) of Theorem III.2 are satisfied, i.e.,

g1(�www) � 0; g2(�www) = 0; ��g1(�www) = 0 (16)

where gj(www) � fj(BBBwww + aaa). We are left with the problem of finding
a vector that is a solution of a system of two quadratic equalities or
inequalities as described in Table I. This problem will be called the
quadratic feasibility problem.

We summarize the above discussion in the following theorem.
Theorem III.3: Suppose that problem (Q2P) is strictly feasible and

that its minimum is attained. Let (��; ��; ��) be an optimal solution of
problem (D). Then, we have the following:

1) if AAA3 � ��AAA1 � ��AAA2 � 0, then the (unique) optimal solution of
(Q2P) is given by

�zzz = �(AAA3 � ��AAA1 � ��AAA2)
�1(bbb3 � ��bbb1 � ��bbb2);

2) ifAAA3���AAA1���AAA2 � 0 but not positive definite, then the solutions
of (Q2P) are given by zzz = BBBwww+aaa, whereBBB 2 n�d is a matrix
whose columns form a basis for the null space ofAAA3���AAA1� ��AAA2,
aaa is a solution of system (12), and www 2 d is any solution of the
quadratic feasibility problem (16), where d is the dimension of the
null space.

The computational effort required for the solution of (Q2P) is dom-
inated by the amount of operations involved in solving the SDP (D).
The fact that (D) has only three variables implies that solving it re-
quires O(n3:5) computer operations (see [18, p. 423] for details).

B. Solving the Quadratic Feasibility Problem

We now develop a method for solving the two instances of the
quadratic feasibility problem described in Table I, under the condition
that f2 is a strongly concave quadratic function,2 i.e., AAA2 � 0. Note
that this condition is naturally satisfied for the GDCR problem (5).
The strong concavity of g2(www) = f2(BBBwww + aaa) follows immediately.
All of these feasibility problems have at least one solution, a fact that
follows from their construction. By applying an appropriate linear
transformation on g2, we can assume without loss of generality that
g2(www) = 
 � kwwwk2 (
 � 0).

Our approach for solving the quadratic feasibility problem will be to
use the solution of optimization problems of the following type:

min
zzz2

fzzz�Qzzz + 2<(fff�zzz) : kzzzk2 = 
g (17)

where Q = Q� 2 n and fff 2 n. Problem (17) is closely related
to the trust region subproblem (the only difference is that there is an
equality constraint and not an inequality constraint).3 A complete de-
scription of the solution to (17) can be found in, e.g., [19, p. 825].

We split our analysis according to the two different cases.

2Thus, the corresponding constraint is strongly convex.
3More details on the trust region subproblem can be found, e.g., in [14], and

[15].

1) Case I: Here, we need to solve the quadratic feasibility problem

g1(www) � 0; kwwwk2 = 
: (18)

Since (18) has at least one solution, it follows that the value of the
optimization problem

maxfg1(www) : kwwwk2 = 
g (19)

is nonnegative and therefore any solution of (19) is a solution to (18).
2) Case II: The feasibility problem now is

g1(www) = 0; kwwwk2 = 
: (20)

To find a solution to (20), we first consider the following optimization
problems:

minfg1(www) : kwwwk2 = 
g; maxfg1(www) : kwwwk2 = 
g: (21)

Let www0 and www1 be solutions to the minimization and maximization
problems of (21) respectively. Then kwww0k2 = kwww1k2 = 
. Since
(20) must have at least one solution, we conclude that g1(www0) � 0 �
g1(www

1). The analysis now depends on the relation betweenwww0 andwww1:
[1.] www0 and www1 are linearly dependent. Since www0 and www1

have the same norm, we conclude that www1 = ei� www0. Let
G(�) � g1(e

i�www0) (� 2 [0; �0]). Then, G is a continuous func-
tion over the interval [0; �0] that satisfies G(0) = g1(www

0) � 0,
G(�0) = g1(e

i� www0) = g1(www
1) � 0. Therefore, there exists

�� 2 [0; �0] such that G(��) = 0. The vector �www = ei
��www0 is a solution

to (20).
[2.] www0 and www1 are linearly independent. Here, we can define

uuu(�) = www
0 + �(www1 �www

0); www(�) =
p



uuu(�)

kuuu(�)k ; � 2 [0; 1]:

By the definition of www(�), we have that kwww(�)k2 = 
 for every � 2
[0; 1] and g1(www(0)) � 0 � g1(www(1)). All that is left is to find a root to
the scalar equation g1(www(�)) = 0; � 2 [0; 1], which can be written as



uuu(�)�AAA2uuu(�)

kuuu(�)k2 +
2
p



kuuu(�)k<(bbb
�
2uuu(�)) + c2 = 0; � 2 [0; 1]: (22)

It is elementary to see that all the solutions of (22) also satisfy the
following quartic scalar equation:


uuu(�)�AAA2uuu(�) + c2kuuu(�)k2 2

= 4
kuuu(�)k2(<(bbb�2uuu(�)))2: (23)

The solution of the quadratic feasibility problem is given by w(�),
where � is one of the solutions to (23). Notice that (23) has at most
four solutions, which have explicit algebraic expressions.

IV. GENERALIZED DCR BEAMFORMER

The GDCR beamformer of (5) is a special case of (Q2P), and there-
fore can be solved by using the techniques of the previous section.

The first step to obtaining a solution is formulating the dual problem.
This can be easily obtained by substituting AAA1 �DDD, AAA2 = III , AAA3 =
RRR�1, bbb1 = DDDaaa0, bbb2 = bbb3 = 0, c1 = �� aaa�0DDDaaa0, c2 = �n, c3 = 0 in
problem (D), resulting in

max
��0;�;�

�
RRR�1 0

0 �� ��
�DDD+ �III DDDaaa0

aaa�0DDD ��aaa�0DDDaaa0��n :

(24)
The GDCR beamformer can then be derived by the following steps.

1. Find an optimal solution (��; ��; ��) of the SDP (24).
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2. If

RRR
�1 + ��DDD � ��III � 0 (25)

then the solution of the GDCR problem (5) is

�aaa = ��(RRR�1 + ��DDD � ��III)�1DDDaaa0:

3. Otherwise, �aaa is any solution of the feasibility problem

(RRR�1 + ��DDD � ��III)�aaa = ��DDDaaa0; (26)

(�aaa� aaa0)
�
DDD(�aaa� aaa0)

� � �; k�aaak2 = n (27)

which can be obtained by using the techniques of Section III-B.
The validity of the above procedure relies on the assumption that the

regularity conditions of Theorem III.3 hold true. We now prove that in
fact these conditions are automatically met for the GDCR problem.

Proposition IV.1: The GDCR problem (5) is strictly feasible and
attains its minimum.

Proof: The minimum of the GDCR problem is attained since its
feasible set is compact due to the equality constraint. To prove strict
feasibility, we need to show that there exist bbb; ccc 2 n such that

kbbbk2 <n; (bbb� aaa0)
�
DDD(bbb� aaa0) < � (28)

kccck2 >n; (ccc� aaa0)
�
DDD(ccc� aaa0) < �: (29)

Using the fact that kaaa0k2 = n, it follows by a simple substitution that
bbb = 
1aaa0 and ccc = 
2aaa0 with 
1 and 
2 defined by


1 =

1

2
; aaa�0DDDaaa0 = 0

1� 1

2

�

aaa DDDaaa
; aaa�0DDDaaa0 6= 0


2 =
2; aaa�0DDDaaa0 = 0

1 + 1

2

�

aaa DDDaaa
; aaa�0DDDaaa0 6= 0

satisfy (28) and (29).

A. Numerical Examples

We now present three numerical examples of the GDCR beam-
former. The first two are ”toy” examples which illustrate how to
extract the solution to the GDCR problem from the dual solution when
condition (25) is satisfied and when it is not. The third example, in
which (25) is satisfied, represents a more typical array processing
scenario and is taken from [6]; here, the uncertainty set is constructed
from measurements of the array manifold. We compare the GDCR
and DCR methods and show that there may be an advantage to using
ellipsoidal sets that capture the covariance of the measurements. All
the SDPs in this section were solved using SeDuMi [20].

1) Example 1: Consider the GDCR problem with n = 2 and the
following data:

RRR
�1 =

3 1 + i

1� i 4
;DDD =

2 1 + i

1� i 4
;

aaa0 =
1

�1 ; � = 2:

The solution of the dual problem of (5) is

�� = 4:0343; �� = 0:152; �� = 2:0082:

Note that �� = 4:0343 is the optimal value and the fact that �� is pos-
itive implies that the first constraint is active (the second constraint is

Fig. 1. Comparison of the GDCR and DCR beamformers.

inherently active). In this example, we haveRRR�1+ ��DDD� ��III � 0, and
thus the optimal solution is

�aaa = ��(RRR�1 + ��DDD � ��III)�1
DDDaaa0 =

1:0430 + 0:4271i

�0:8268 + 0:2144i
:

2) Example 2: Consider the GDCR problem (5) with

RRR=
2 �0:5

�0:5 0:25
;DDD=

1 1

1 1
; aaa0=

1

1
; n = 2; �= 1:

In this case, the dual solution is

�� = 0:9377; �� = 0; �� = �0:4689:

The eigenvalues of the matrixRRR�1+ ��DDD� ��III are 0 and 8.0623. Thus,
RRR�1 + ��DDD � ��III is singular and in order to find an optimal solution
we will transform the problem into a quadratic feasibility problem.
The null space of RRR�1 + ��DDD � ��III is spanned by the vector uuu =
(�0:9665; 0:2567). Since in this example �� = 0, it follows that the
set of solutions to (26) is given by faaa = wuuu : w 2 g. From (27), w
must satisfy

�jwj2 + 2 = 0 and � 0:5038jwj2 � 2:8392<(w)� 2 � 0:

A solution to the latter feasibility problem is the optimal solution of

max
w2

f�0:5038jwj2 � 2:8392<(w)� 2 : jwj2 = 2g

which is given by w = �p2. Thus, the GDCR solution is aaa = wuuu =
(1:3688;�0:363).

3) Example 3: We now present a more realistic array processing
problem taken from [6]. In this example, we consider a ten-element
uniform linear array in which the spacing between the elements is half
a wavelength. The noise vector eee(t) in (1) is comprised of two uncor-
related interfering signals with angles of arrival (AOA) equal to 30�

and 75�. The signal-to-noise ratios (SNRs) of the signals are 40 and 20
dB, respectively. The noise is spatially and temporally white with an
SNR of 20 dB. The actual array response is unknown; instead, we are
given N = 64 random measurements of the array manifold where the
AOAs of the desired user are drawn at random between 40� and 50�.
The true steering vector is then estimated by using the GDCR method
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where aaa0 is chosen as the sample mean andDDD is the inverse sample co-
variance matrix. The covariance matrix is given by [6, eq. (48)] (with
�
2

n = 0:01). The value of � is chosen so that all the data points aaa(�i)
will be inside the ellipsoid. For comparison, we also implement the
DCR beamformer where in this case aaa0 is as before, and � is chosen so
that all aaa(�i) are inside faaa : kaaa � aaa0k

2 � �g.
In Fig. 1, we plot the array response using the GDCR and DCR beam-

formers. As can be seen from the figure, the GDCR method has close
to unity gain for all AOAs covered by the uncertainty ellipsoid. On the
other hand, the gain of the DCR approach deteriorates for AOAs larger
than 45�.

The point of this example is to illustrate the potential advantage in
including ellipsoidal sets into the robust Capon formulation. Since the
contribution of this correspondence is in the mathematical derivation of
the GDCR method, a detailed application is beyond the scope. How-
ever, Fig. 1 demonstrates that at least in some cases it may be advanta-
geous to include ellipsoidal sets.
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Subspace Direction Finding With an Auxiliary-Vector Basis
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Abstract—We develop a new subspace direction-of-arrival (DOA) esti-
mation procedure that utilizes a noneigenvector basis. Computation of the
basis is carried out by a modified version of the orthogonal auxiliary-vector
(AV) filtering algorithm. The procedure starts with the linear transforma-
tion of the array response scanning vector by the input autocorrelation ma-
trix. Then, successive orthogonal maximum cross-correlation auxiliary vec-
tors are calculated to form a basis for the scanner-extended signal subspace.
As a performance evaluation example, our studies for uncorrelated sources
demonstrate a gain in the order of 15 dB over MUSIC, 7 dB over ESPRIT,
and 3 dB over the grid-search maximum likelihood DOA estimator at prob-
ability of resolution 0.9 with a ten-element array and reasonably small ob-
servation data records. Results for correlated sources are reported as well.

Index Terms—Adaptive filtering, angle-of-arrival (AOA) estimation,
auxiliary-vector (AV) algorithm, direction-of-arrival (DOA) estimation,
small sample support, source localization.

I. INTRODUCTION

Solutions for the classical direction-of-arrival (DOA) estimation
problem can be broadly categorized into maximum-likelihood (ML)-
type algorithms [1], which are based on techniques for the maxi-
mization of the probability density function of the received signal,
and subspace algorithms, which are based on the decomposition of
the autocovariance matrix of the received signal. Among the most
successful and popular subspace algorithms are the MUSIC [2] and
ESPRIT [3] procedures. In general, ML-type algorithms have superior
performance compared to subspace-based techniques when the signal-
to-noise ratio (SNR) is small or the number of snapshots is small. Also,
the performance of subspace-based estimators degrades substantially
in the case of correlated signal sources as compared to ML schemes.

In this correspondence, we attempt to exploit the structure of the
received data autocovariance matrix in a new way. When K distinct
signals in space impinge on M antenna elements (K < M ), the input
autocovariance matrix consists of a rank K signal subspace and a rank
M �K noise subspace. Using the concept of maximum cross-corre-
lation auxiliary vectors (AVs) [4], we create a new extended noneigen-
vector signal subspace basis of rank K + 1 (eigendecomposition is
not carried out at all). The extended signal subspace encompasses the
true signal subspace of rank K and the scanning vector dimension it-
self. Then, the proposed DOA estimation algorithm simply looks for
the collapse of the rank of the extended signal subspace from K + 1
to K when the scanning vector falls in the signal subspace. Extensive
simulation studies demonstrate that significant resolution performance
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