
J Glob Optim
DOI 10.1007/s10898-017-0521-1

A branch and bound algorithm for nonconvex quadratic
optimization with ball and linear constraints

Amir Beck1 · Dror Pan1

Received: 15 September 2016 / Accepted: 8 April 2017
© Springer Science+Business Media New York 2017

Abstract We suggest a branch and bound algorithm for solving continuous optimiza-
tion problems where a (generally nonconvex) objective function is to be minimized under
nonconvex inequality constraints which satisfy some specific solvability assumptions. The
assumptions hold for some special cases of nonconvex quadratic optimization problems. We
show how the algorithm can be applied to the problem of minimizing a nonconvex quadratic
function under ball, out-of-ball and linear constraints. The main tool we utilize is the ability
to solve in polynomial computation time the minimization of a general quadratic under one
Euclidean sphere constraint, namely the so-called trust region subproblem, including the
computation of all local minimizers of that problem. Application of the algorithm on sparse
source localization problems is presented.

Keywords Quadratically constrained quadratic problems · Nonconvex programming ·
Branch and bound · Sparse source localization · Trust region subproblem

1 Introduction

We consider a general nonlinear constrained optimization problems of the form

(P)
minx∈Rn f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m,

where the functions f0, f1, . . . , fm : R
n → R are continuous. None of the functions is

assumed to be convex. Nonconvex optimization problems are considered hard in general.
Methods seeking for stationary points exist in the literature, such as gradient, Newton-based

B Amir Beck
becka@ie.technion.ac.il

Dror Pan
dror.pan@campus.technion.ac.il

1 Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, Haifa,
Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-017-0521-1&domain=pdf

J Glob Optim

algorithms, Lagrangemultiplier basedmethods and trust regionmethod; see e.g., the classical
books of Bertsekas [6] and Nocedal and Wright [21]. However, general methods for com-
puting a global optimal solution for the general case do not exist for these problems, except
for some special classes of problems. In this paper we will develop a branch and bound
type algorithm for solving a special class of problem (P). We focus on the implementation
of the proposed method on quadratically constrained quadratic problems (QCQP). More
specifically, the examples considered in this paper are special classes QCQPs of the form

minx∈Rn q0(x) ≡ 1
2x

TQ0x − bT0 x
s.t. ‖x − wi‖2 ≤ d2i , i = 1, . . . ,m,

‖x − wi‖2 ≥ d2i , i = m + 1, . . . ,m + p,
αT
i x ≤ βi , i = m + p + 1, . . . ,m + p + l,

(1.1)

where m ≥ 1, p, l ≥ 0, Q0 ∈ S
n, b0 ∈ R

n, wi ,αi ∈ R
n, βi ∈ R, di > 0 ∀i. Such a

problem can be seen as an extension of the standard trust region subproblem (TRS), which
is the case where only one ball constraint is involved (m = 1, p, l = 0).

The main difficulty to reach a global optimal solution of a general nonconvex problem
of the described type is the large number of local minima it might harbor. Nevertheless,
simple cases are known to be tractable, such as the TRS problem, where here we refer to the
“TRS problem” as the problem consisting of minimizing a (possibly) nonconvex function
over an inequality or equality Euclidean norm constraint. Gay [13], Sorensen [22], and Moré
and Sorensen [20] showed that a TRS problem, though nonconvex, possesses necessary and
sufficient optimality conditions, and that its global solution can be found by a simple root
search procedure on a strictly monotone, strictly convex one-variable function.

Martínez showed in [18] that the local-non-globalminimizers of the TRS can also be found
utilizing a root search on a one-variable function with “good” properties. In Sect. 4 we utilize
the ability to efficiently compute all the local minimizers of a TRS to show how our general
algorithm can be applied for solving (1.1). A generalized trust region subproblem (GTRS), in
which a general quadratic constraint appears instead of the norm constraint, is also known to
be tractable. Moré formulated in [19] necessary and sufficient conditions for global minimiz-
ers of a GTRS. This result was utilized by Beck, Stoica and Li [3] in solving a squared least
squares formulation of the source localization problem, which will be discussed in Sect. 5.

Some simple extensions of the standard TRS have also been shown to be tractable. The
case of (1.1) with only one added linear constraint (m = 1, p = 0, l = 1) can be solved
in polynomial computation time though its semidefinite relaxation is not tight in general;
see Strurm and Zhang [23]. Ye and Zhang [24] also treated problem (1.1) for the case
involving one ball (m = 1, p = 0) and two linear inequalities (l = 2) which are parallel (a
two-sided linear inequality constraint), and showed a polynomial-time algorithm, based on a
convex relaxation containing second order cone (SOC) and semidefinite programming (SDP)
constraints. Burer and Anstreicher [9] improved the complexity result of [24] utilizing the
existence of extreme point solutions of the relaxation. Burer and Yang [10] generalized the
result to the setting m = 1, p = 0 and a general l, under the assumption of non-intersecting
faces: for each two distinct i and j, the face defined by

{x ∈ R
n : αT

i x = βi , αT
j x = β j }

does not intersect the feasible set. Under this assumption, they showed that the same convex
relaxation in [9] still has no gap with the original problem (1.1).

123

J Glob Optim

Problem (1.1) with m = 1, p = 0 and a general l, that is, the extended trust region
subproblem

min q0(x) ≡ 1
2x

TQ0x − bT0 x
s.t. ‖x − w‖2 ≤ d2,

αT
k x ≤ βk, k = 1, . . . , l

(1.2)

has been recently studied by Jeyakumar and Li [17]. In general, it has neither a tight SDP-
relaxation nor a strong duality property. They formulated a dimension condition (generalizing
a previous result of Beck and Eldar [2, Section 4.3] for l = 1), under which the problem
admits an exact SDP-relaxation, and thus can be solved in polynomial running time. Hsia
and Sheu [16] recently improved that dimension condition. In addition, they showed that for
a fixed number of linear constraints l, problem (1.2) can be solved in polynomial time in n.

On the other hand, they have shown that the class of all the problems (1.2) where both n and
l are arbitrary is NP-hard.

The case m = 1, p = 0 and a general l (that is, problem (1.2)) is important as it can be a
building block in a type of trust region methods for constrained minimization problems. In
such methods, a quadratic approximation is minimized at each iteration over the intersection
between the trust region (ball) and the polyhedron defined by the linear inequalities gained by
linear approximations of the constraints.An important simple casewith just bound constraints
on the variables is discussed and solved in [11, Section 5], a case to which we also refer in
our numerical experiences of this paper.

Bienstock and Michalka [7] suggested a different algorithm for solving problem (1.1).
Their algorithm enumerates candidates for the optimal solution on each face of the feasible
domain. Here a face is defined by any subset of the linear constraints restricted to hold
as equalities. They proved that their algorithm computes a global minimizer of (1.1) in
polynomial running time in n,m, p, l and in the cardinality of F∗, the pre-computed set of
all the faces of the polyhedron defined by the linear inequalities which intersect the domain
defined by the ball constraints. In their work, they also described some possible applications
of problem (1.1) for solving combinatorial optimization problems.While their paper provides
an important theoretical result concerning the polynomial complexity in special cases of the
problem, the actual size |F∗| can be very large in many practical cases.

In this paper, we suggest an algorithm that solves problem (1.1) globally, as a special
case of problem (P) which satisfies some specific properties we define. We do not assume
that the number of intersecting faces is small. Unlike the method of [7] (and [16] for the
case of problem (1.2)), our algorithm does not perform an exhaustive search of candidates
through all the intersecting faces. Instead, we apply branch and bound (BB) scheme, in which
tractable relaxations are solved to compute bounds on the optimal value. The principle of
enumeration candidates for the global solution utilizes an approach similar to [7,16], as well
as the technique of solving a subproblem. However, the local and the global solutions of the
subproblem give effective lower bounds on the optimal value of (P), which enable to fathom
some of the nodes and avoid further branching of such faces. That is, our algorithm can
enumerate much less “faces” than the aforementioned algorithms in many practical cases, as
numerical results show.

The rest of the paper is organized as follows. In Sect. 2 we describe the general model
(P), including the assumptions that should hold to ensure the ability to implement the main
algorithm we suggest. We also explain why those assumptions hold for problem (1.1). In
Sect. 3we describe the promised algorithm, based on aBB scheme, alongwith all the concepts
and the required notations. Section 4 describes the techniques to be applied for solving the
relaxation and the other subproblems appearing during the BB-based algorithm in the case

123

J Glob Optim

of problem (1.1), including a review of the main results on the trust region subproblem. In
Sect. 5 we suggest an application of our algorithm to the sparse source localization problem,
a nonsmooth and nonconvex optimization problem, by applying the algorithm on several
problems of the form of (1.1) with a simpler objective. Finally, numerical experiments are
provided in Sect. 6 that demonstrate the effectiveness of our method on problem (1.1) with
one ball constraint and several linear constraints. A numerical comparison with the algorithm
of [7] is also given for that case. In addition, we show the utilization of the algorithm for
some sparse source localization examples.

NotationsWe denote scalars in italic (e.g., a, b, c,C, L ,U, . . .), vectors in boldface lower
case (v, x, . . .) and matrices in boldface upper case (A,B, . . .). In addition, sets are written
in italic upper case (S, R). The space Sn is the subspace of Rn×n comprising all symmetric
matrices. For any two matrices A,B ∈ S

n, A
 B (A � B) means that A − B is positive
semidefinite (positive definite). e denotes the all-ones column vector, I the identity matrix,
and 0 the all-zeros vector or matrix (the dimensions are clear by the context). The notation
‖ · ‖ denotes the Euclidean l2-norm on vectors in R

p and the spectral norm on matrices in
R

p×q .

2 The model

The model we consider is the following general nonlinear optimization problem:

(P)
minx∈Rn f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m,

where the functions f0, f1, . . . , fm : Rn → R are continuous.
For any two sets E, I ⊆ {1, . . . ,m} satisfying E∩ I = ∅, we associate a problem, denoted

by (PE,I), given by

(PE,I)

min f0(x)
s.t. fi (x) ≤ 0, i ∈ I,

fi (x) = 0, i ∈ E .

In addition, in the cases where I = ∅, we use the notation (PE) rather than (PE,∅), that is,

(PE)
min f0(x)
s.t. fi (x) = 0, i ∈ E .

A constraint fi (x) ≤ 0 of problem (P) is called regularizing if for any two disjoint sets
E, I ⊆ {1, . . . ,m} satisfying i ∈ E ∪ I, the problem (PE,I) is either infeasible or solvable.
That is, any problem of the form (PE,I) with the regularizing constraint is involved either has
an empty feasible domain, or it attains its minimum at a feasible point (a global minimizer).
To assure the ability to develop our method, we further assume that the following properties
hold.

(1) There exists i0 ∈ {1, . . . ,m} such that the constraint fi0(x) ≤ 0 is regularizing.
(2) For any subset E ⊆ {1, . . . ,m} there exists an oracle* which can compute all the local

minimizers of the problem (PE).

(3) For any subset E ⊆ {1, . . . ,m} the set of all local minimizers of problem (PE) is either
path-connected with no local-non-global minimizers, or a finite set.

123

J Glob Optim

*By “oracle” we mean an algorithm that we can apply. Though we do not require that it
would be polynomial, it should be practically efficient, as it is used as a sub-routine within
the full method.

The assumptions (1), (2) and (3) restrict the discussion to specific types of problems on
which our method could be applied. For any problem satisfying properties (1), (2) and (3),
we assume without loss of generality that i0 = 1 in assumption (1).

In the next section we describe the main construction: an algorithm based on the general
approach of branch and bound (BB). During the execution of the algorithm, a tree of sub-
problems of the form (PE,I) is being built. The basic relaxation of (P), which is the root node
of the BB tree, is the unconstrained minimization of f0, namely (P∅,∅). At each branching
step one constraint is added either as an equality or as an inequality, resulting in an addi-
tion of its index to either E or I. Throughout the proof of the correctness of the proposed
algorithm in Sect. 3 we utilize assumptions (1), (2) and (3). We show that at each step of the
algorithm, a lower bound on the relevant problem (PE,I) can be computed utilizing the ability
to compute all the local minimizers of problems of the form (PE,I). Notice that assumption
(2) in particular guarantees that even if f0 does not admit a finite minimum over Rn, all its
unconstrained local minimizers are computable.

Although we suggest the algorithm for solving a general optimization problem in the
form (P) under assumptions (1), (2) and (3), we actually focus in this paper only on the
quadratic problem (1.1). The general model is provided only to show that our approach
may be generalized to other families of challenging optimization problems, and to highlight
the key properties of the class of problems that guarantee the validity of the analysis. It is
important to notice that the question whether the above three assumptions hold or not can
itself be difficult to answer for the general case of (P). However, for problem (1.1) with
general m ≥ 1, p, l ≥ 0, the assumptions are satisfied, as we show in Sect. 4.

3 The main branch and bound algorithm

In this section we devise our algorithm for globally solving problem (P) under assumptions
(1), (2) and (3). First, we assume a fixed and given order of the constraints (later on, in
Sect. 3.1, we show a better strategy for ordering the constraints). The regularizing constraint
in assumption (1) is assumed to be the first (i = 1). For any index i ∈ {1, . . . ,m} and set
E ⊆ {1, . . . , i} we associate a node [i, E].

For each node [i, E], we associate a problem of the form (PE,I) with I = {1, . . . , i}\E .

That is, each node [i, E] is associated with a problem of the form (PE,I) derived form (P) by
taking into account only its first i constraints, and enforcing the constraints whose indices
reside in E to be active.

For given i and E, we refer to problem (PE,I) as problem ([i, E]). At each layer i, the
nodes [i, E] for all E ⊆ {1, . . . , i} represent all the possibilities for choosing an active subset
of the inequalities {1, . . . , i}, and thus, as we see next, solving them all enables to find an
optimal solution of problem ([i,∅]). Problem ([i,∅]) can be considered as a relaxation of
problem (P), considering only the first i constraints (with E = ∅, I = {1, . . . , i}, that is, no
activeness enforcement). During the algorithm, we basically seek to solve such relaxations
and other subproblems of the form (PE,I). Upper bounds on the optimal value of problem
(P) are obtained at solutions of subproblems (PE,I) which are also feasible for (P). The full
tree containsm+1 layers, each containing 2i nodes, where node [0,∅] is associated with the
unconstrained minimization problem (P∅, ∅), induced by removing all the constraints of (P).

123

J Glob Optim

[0, ∅]
min f0(x)

layer 0

[1, {1}] [1, ∅] layer 1

[2, {2}] [2, ∅][2, {1}][2, {1, 2} 2reyal]

f1(x) = 0 f1(x) ≤ 0

f2(x) = 0 f2(x) ≤ 0f2(x) ≤ 0f2(x) = 0

Fig. 1 A tree after branching on 2 constraints

The children of each node [i, E] are the nodes [i + 1, E ∪ {i + 1}] and [i + 1, E], and they
correspond to adding the (i + 1)th constraint as fi+1(x) = 0 or fi+1(x) ≤ 0, respectively.

Figure 1 provides an illustration of a tree after branching on 2 constraints.
The algorithm we are about to construct has to solve problems of the form (PE,I). Under

assumption (1), starting from layer 1, all such problems are solvable or infeasible, since
we require that the first chosen constraint (f1(x) ≤ 0) is a regularizing constraint. We now
explain how problem (PE,I) can be solved by utilizing all the local minimizers of problems of
the form (PE). The following key result enables us to compute all the candidates for solutions
of problem (PE,I) by solving relaxed problems of the form (PE).

Lemma 3.1 Consider a general minimization problem of the form

(PX) min f (x)

s.t. x ∈ X,

hi (x) ≤ 0, i = 1, . . . , q.

where X ⊆ R
n, hi : R

n → R are continuous functions for all i = 1, . . . , q, and
f : Rn → R.

Let x∗ be a local minimizer of (PX). Denote

E = {i ∈ {1, . . . , q} : hi (x∗) = 0}
and

I = {i ∈ {1, . . . , q} : hi (x∗) < 0}.
Then x∗ is a local minimizer of the problem

(PXE) min f (x)

s.t. x ∈ X,

hi (x) = 0, ∀i ∈ E .

Proof Since x∗ is a local minimizer of (PX), it follows that there exists δ1 > 0 such that

f (x) ≥ f (x∗) for any x ∈ X satisfying ‖x − x∗‖ < δ1 and hi (x) ≤ 0 ∀i ∈ {1, . . . , q}.
(3.1)

In addition, the function g(x):=maxi∈I hi (x) is continuous as a maximum of |I | continuous
functions. Therefore, since g(x∗) < 0, there exists δ2 > 0 such that

123

J Glob Optim

g(x) < 0 for any x satisfying ‖x − x∗‖ < δ2. (3.2)

Let x ∈ X be an arbitrary vector assumed to satisfy ‖x − x∗‖ < min{δ1, δ2} along with
hi (x) = 0 for all i ∈ E . Then by (3.2), x satisfies hi (x) ≤ g(x) < 0 for all i ∈ I, and thus
by (3.1), it follows that x satisfies f (x) ≥ f (x∗). We can thus conclude that x∗ is a local
minimizer of (PXE). ��
Corollary 3.1 Any local minimizer x∗ of problem (PX) in Lemma 3.1 is necessarily a local
minimizer of a problem of the form (PXE) for some E ⊆ {1, . . . , q}.
Proof Define E to be the set of all the indices of the active constraints in x∗, and the result
immediately follows by Lemma 3.1. ��
Corollary 3.2 Consider the problem

min{ f (x) : x ∈ X, h(x) ≤ 0}, (3.3)

where X ⊆ R
n, h : Rn → R is a continuous function, and f : Rn → R. Let x∗ be a local

minimum of (3.3). Then one of the following cases occurs:

(1) x∗ is a local minimizer of

min{ f (x) : x ∈ X}
with h(x∗) < 0, or,

(2) x∗ is a local minimizer of

min{ f (x) : x ∈ X, h(x) = 0}.
Proof The result follows immediately by applying Lemma 3.1 with q = 1. Suppose that x∗
is a local minimizer of (3.3). If h(x∗) < 0, then we have E = ∅ and I = {1}, and by Lemma
3.1, case (1) occurs. If h(x∗) = 0, we have E = {1} and I = ∅, and thus, case (2) occurs. ��

In terms of problem (PE,I) corresponding to a node [i, E], Lemma 3.1 states that any local
minimizer x∗ of (PE,I) with I = {1, . . . , i}\E which satisfies fi (x∗) < 0 for all i ∈ I is a
local minimizer of the corresponding problem (PE). More generally, any local minimizer x∗
of (PE,I) which satisfies fi (x∗) < 0 for all i ∈ J for some J ⊆ I, and fi (x∗) = 0 for all
i ∈ I\J is a local minimizer of the problem (PẼ) with Ẽ = E ∪ (I\J).

As a result, suppose we computed all the local minimizers of all the problems of the form
(PẼ) for all Ẽ satisfying E ⊆ Ẽ ⊆ E ∪ I = {1, . . . , i}. Then by Corollary 3.1 all the local
minimizers of (PE,I) must reside among these minimizers. In addition, by Corollary 3.2, as a
problem ([i +1, E]) is obtained by adding one inequality (fi+1(x) ≤ 0) to problem ([i, E]),
its local minimizers must be either

• local minimizers of ([i, E]) which strictly satisfy the added inequality, or
• local minimizers of ([i + 1, E ∪ {i + 1}]).

Our algorithm utilizes the above observations whenever it has to solve a problem of the form
(PE,I) at a given node.

The algorithm basically computes lower bounds on nodes of the tree that are used to
decide which nodes can be fathomed, that is, closed for further branching. It also computes
candidates for an optimal solution for each node’s subproblem. The following notations are
required to specify the previous information needed for computing candidates and bounds
for a given node.

123

J Glob Optim

Definition 3.1 Given i and E ⊆ {1, . . . , i}, a vector x is called an ([i, E])-relaxed solution
if it is a local minimizer of problem (PE).

Denote by Ri,E the set of all ([i, E])-relaxed solutions. Note that not all the ([i, E])-relaxed
solutions are necessarily ([i, E])-feasible, as problem (PE) does not include the inequality
constraints of problem ([i, E]), which is (PE,I) with I = {1, . . . , i}\E . Under assumption
(3), the sets Ri,E are either finite or have a special property of being path-connected, with a
constant objective value over the whole set Ri,E . To this end, we assume that all such sets
are finite for the sake of simplicity of the described algorithm, and later on we will modify
the algorithm to apply the more delicate case, where some relaxed-solutions sets are infinite
(but assumption (3) still holds).

Denote by Fi,E ⊆ R
n the feasible set of problem ([i, E]). The set Fi,E is closed as an

intersection of the closed level sets of the continuous functions fi . Recall that in assumption
(1)we require that problem ([i, E]) is either solvable or infeasible for all i and E ⊆ {1, . . . , i}.
Under this assumption we can solve problem ([i, E]) using the following concept.

Definition 3.2 Let i ∈ {1, . . . ,m}, E ⊆ {1, . . . , i}. If i ∈ E, we define

Ci,E ≡
⋃

Ẽ : E⊆Ẽ⊆{1,...,i}
(Ri,Ẽ ∩ Fi,E)

and if i /∈ E, we define

Ci,E ≡ Ci,E∪{i} ∪ (
Ci−1, E ∩ Fi,E

)
.

In addition,C0,∅ is the set of all the local minimizers of the unconstrained problem associated
with node [0,∅]. For each node [i, E], E ⊆ {1, . . . , i}, the set Ci,E is called the candidates
set of node [i, E].
The following lemma is based on Lemma 3.1, and it shows that the candidate set always
contains all the local minima corresponding with the associated node.

Lemma 3.2 Let i ∈ {1, . . . ,m}.
(1) Any local minimizer x∗ problem of ([i, E]) for E ⊆ {1, . . . , i} satisfies x∗ ∈ Ci,E .

(2) For i ≥ 1 an optimal solution of problem ([i, E]) is a vector with minimal objective
value over the set Ci,E .

Proof (1) First assume that i ∈ E, and I = {1, . . . , i}\E . There exist 2|I | options where a
local solution x∗ of ([i, E]) can reside; each option is defined by a subset Ẽ ⊆ {1, . . . , i}
containing E . Applying Corollary 3.1 on ([i, E]), we conclude that x∗ is an ([i, Ẽ])-
relaxed solution for some E ⊆ Ẽ ⊆ {1, . . . , i}. It is also ([i, E])-feasible, and thus,
x∗ ∈ Ri,Ẽ ∩ Fi,E ⊆ Ci,E .

Now assume that i /∈ E . We apply induction on i = 1, . . . ,m, and show that any local
minimizer of ([i, E]) belongs to the set Ci,E as defined. If i = 1, then E = ∅, and
we should consider the set C1,∅ = C1,{1} ∪ (

C0,∅ ∩ F1,∅
)
. The set C0,∅ contains by

definition all the local minimizers of the unconstrained problem. By Corollary 3.2, any
local minimizer of ([1,∅]) is either a local minimizer of the unconstrained problem (in
node [0,∅]) that also satisfies the first constraint, and thus belongs to C0,∅ ∩ F1,∅; or a
local minimizer of ([1, {1}]), and thus, belongs to C1,{1}, by the (already proven) result
for the nodes with E containing the index i .

123

J Glob Optim

Assume now that all the local minimizers of problem ([i − 1, E]) are included in the set
Ci−1, E . Again, by Corollary 3.2, a local minimizer x∗ of ([i, E]) can either be a local
minimizer of ([i, E ∪ {i}]), and thus x∗ ∈ Ci,E∪{i} by the result for nodes where i ∈ E;
or a local minimizer of ([i − 1, E]) that also satisfies the i-th inequality, and thus, by the
induction assumption, x∗ ∈ Ci−1, E ∩ Fi,E . In both cases x∗ ∈ Ci,E .

(2) A direct result of the facts that problem ([i, E]) is solvable (if feasible) by assumption
(1), and that a global solution is also a local solution. ��

We should note that Ci,E is not necessarily the set of all local minimizers of problem
([i, E]), but it rather only guaranteed to contain all of those minimizers.

Example 3.1 Consider the case where problem (P) is given by

(P) min
x∈R2

x21 − x22

s.t. x21 + x22 ≤ 1,

x2 ≤ 0,

−x2 ≤ 0.8,

where the quadratic constraint enables assumption (1) to hold. The point x = (0, 0)T is a
local minimizer of problem ([2, {2}]), which is the problem containing the quadratic inequal-
ity (ball) and the linear equality constraint x2 = 0. Thus, by the definition of the candidates
sets, it belongs to C2,∅. However, it is not a local minimizer of problem ([2,∅]), which
is the problem containing the first two original inequalities; it is rather a saddle point of
it. However, C2,∅ also contains the candidate x̄ = (0,−1)T , which was included in C1,∅,
and has a lower objective value than x has. Thus, the lower bound on [2,∅] is correctly
computed. The optimal solution of (P) is x∗ = (0,−0.8)T , and it is obtained at node
[3, {3}].
Lemma 3.2 particularly enables to solve nodes of the form [i, {1, . . . , i}], as at such nodes
the only possible Ẽ containing E = {1, . . . , i} is the set E itself. Solving such nodes resorts
to solving problem (PE) without using any previous computed solutions. As for a general
E ⊆ {1, . . . , i}, it seems that to compute the candidates sets Ci,E where i ∈ E we need to
store all the sets Ri,Ẽ for all Ẽ ⊆ {1, . . . , i} containing E . In addition, the number of such
sets can have size exponential in |E |, and thus, each computation of Ci,E seems to require
looking at exponential number of sets.

However, Lemma 3.3 that follows gives an equivalent formula to compute the candidates
sets Ci,E where i ∈ E, which does not require knowledge of any of the sets Ri,Ẽ except
for Ri,E , that is, the relaxed solutions of the node [i, E] itself. It recursively builds the sets
Ci,E , based on adding one equality constraint to E at each recursive call. In that way, only
a linear number (in i, |E |) of sets needs to be considered at each computation. For a fixed
i ∈ {0, 1, . . . ,m} denote for all E ⊆ {1, . . . , i} containing i the set

S1i,E ≡ {Ẽ : Ẽ = E ∪ {k} for some k ∈ {1, . . . , i}\E}.

An important note here is that if Ẽ ∈ S1i,E , then Ẽ must contain i. In addition, for all
r ∈ {1, . . . , i − |E |} we define

123

J Glob Optim

Sri,E ≡ {Ẽ : Ẽ = E ∪ J for some J ⊆ {1, . . . , i}\E with |J | = r}.

A simple combinatorial argument shows that

⋃

Ẽ∈Sr−1
i,E

S1
i,Ẽ

= Sri,E ∀r ∈ {2, . . . , i − |E |}. (3.4)

We utilize (3.4) to prove the promised lemma.

Lemma 3.3 For a fixed i ∈ {0, 1, . . . ,m} and for all E ⊆ {1, . . . , i} such that i ∈ E, it
holds that

Ci,E =
⎛

⎜⎝
⋃

Ẽ∈S1i,E
Ci,Ẽ

⎞

⎟⎠ ∪ (Ri,E ∩ Fi,E).

In particular,

Ci,{1,...,i} = Ri,{1,...,i}.

Proof First we show that for all Ẽ ⊆ {1, . . . , i} containing E it holds that

Ri,Ẽ ∩ Fi,Ẽ = Ri,Ẽ ∩ Fi,E . (3.5)

Let us show (3.5) by showing two inclusions. The inclusion ⊆ is valid since if Ẽ ⊇ E, then
Fi,Ẽ ⊆ Fi,E . For the inclusion ⊇, assume that x ∈ Ri,Ẽ ∩ Fi,E . Then x satisfies all the

equalities in Ẽ, as an ([i, Ẽ])-relaxed solution. In addition, it satisfies all the inequalities in
Ĩ :={i, . . . , i}\Ẽ, since Ĩ ⊆ I :={1, . . . , i}\E . Thus x ∈ Ri,Ẽ ∩ Fi,Ẽ .

The equality (3.5) is in particular valid for any Ẽ ∈ Sri,E , r ∈ {1, . . . , i − |E |} as such Ẽ

satisfy E ⊆ Ẽ ⊆ {1, . . . , i}. We now show the main result of the lemma by induction on |I |.
If |I | = 0, then E = {1, . . . , i}. Therefore, as the only option for Ẽ is E itself, by definition
we get Ci,{1,...,i} = Ri,{1,...,i} ∩ Fi,{1,...,i} = Ri,{1,...,i}, where the last equality follows from
the fact that Ri,{1,...,i} ⊆ Fi,{1,...,i}. Assume that the lemma has been proven for all nodes
[i, E] satisfying |I | ≤ k−1 for some positive integer k. Then for a node [i, E] having |I | = k
we get that [i, Ẽ] has | Ĩ | = k − 1 for all Ẽ ∈ S1i,E , where Ĩ = {1, . . . , i}\Ẽ . Applying the

induction’s assumption on each set Ci,Ẽ with Ẽ ∈ S1i,E yields

⎛

⎜⎝
⋃

Ẽ∈S1i,E
Ci,Ẽ

⎞

⎟⎠ ∪ (Ri,E ∩ Fi,E) =
⋃

Ẽ∈S1i,E

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
⋃

Ẽ ′∈S1
i,Ẽ

Ci,Ẽ ′

⎞

⎟⎠ ∪ (Ri,Ẽ ∩ Fi,Ẽ)

⎫
⎪⎬

⎪⎭
∪ (Ri,E ∩ Fi,E)

=
⎛

⎜⎝
⋃

Ẽ∈S2i,E
Ci,Ẽ

⎞

⎟⎠ ∪
⎛

⎜⎝
⋃

Ẽ∈S1i,E
(Ri,Ẽ ∩ Fi,E)

⎞

⎟⎠ ∪ (Ri,E ∩ Fi,E),

where the second equality holds due to (3.4) and (3.5).

123

J Glob Optim

Applying the induction’s assumption on the elements Ci,Ẽ with Ẽ ∈ S2i,E implies that

⎛

⎜⎝
⋃

Ẽ∈S2i,E
Ci,Ẽ

⎞

⎟⎠ ∪
⎛

⎜⎝
⋃

Ẽ∈S1i,E
(Ri,Ẽ ∩ Fi,E)

⎞

⎟⎠ ∪ (Ri,E ∩ Fi,E)

=
⎛

⎜⎝
⋃

Ẽ∈S3i,E
Ci,Ẽ

⎞

⎟⎠ ∪
⎛

⎜⎝
⋃

Ẽ∈S2i,E
(Ri,Ẽ ∩ Fi,E)

⎞

⎟⎠ ∪
⎛

⎜⎝
⋃

Ẽ∈S1i,E
(Ri,Ẽ ∩ Fi,E)

⎞

⎟⎠ ∪ (Ri,E ∩ Fi,E).

Repeating the above procedure |I | − 1 times (where |I | = i − |E |) finally yields that
⎛

⎜⎝
⋃

Ẽ∈S1i,E
Ci,Ẽ

⎞

⎟⎠ ∪ (Ri,E ∩ Fi,E)

=
⎛

⎜⎝
⋃

Ẽ∈S|I |
i,E

Ci,Ẽ

⎞

⎟⎠ ∪
⎛

⎜⎝
⋃

Ẽ∈S|I |−1
i,E

(Ri,Ẽ ∩ Fi,E)

⎞

⎟⎠ ∪ · · · ∪
⎛

⎜⎝
⋃

Ẽ∈S1i,E
(Ri,Ẽ ∩ Fi,E)

⎞

⎟⎠

∪(Ri,E ∩ Fi,E).

Since S|I |
i,E = {{1, . . . , i}}, the union over all Ẽ ∈ S|I |

i,E is just Ci,{1,...,i}. In addition,

{
Ẽ : E ⊆ Ẽ ⊆ {1, . . . , i}

}
=

⎛

⎝
|I |⋃

r=1

Sri,E

⎞

⎠ ∪ {E}.

Thus, we obtain
⎛

⎜⎝
⋃

Ẽ∈S1i,E
Ci,Ẽ

⎞

⎟⎠ ∪ (Ri,E ∩ Fi,E)

= Ci,{1,...,i} ∪
⎛

⎜⎝
⋃

Ẽ∈S|I |−1
i,E

(Ri,Ẽ ∩ Fi,E)

⎞

⎟⎠ ∪ · · · ∪
⎛

⎜⎝
⋃

Ẽ∈S1i,E
(Ri,Ẽ ∩ Fi,E)

⎞

⎟⎠ ∪ (Ri,E ∩ Fi,E)

= (Ri,{1,...,i} ∩ Fi,E) ∪
⎛

⎜⎝
⋃

Ẽ∈S|I |−1
i,E

(Ri,Ẽ ∩ Fi,E)

⎞

⎟⎠ ∪ · · · ∪
⎛

⎜⎝
⋃

Ẽ∈S1i,E
(Ri,Ẽ ∩ Fi,E)

⎞

⎟⎠

∪(Ri,E ∩ Fi,E)

=
⋃

Ẽ∈
(⋃|I |

r=1 S
r
i,E

)
∪{E}

(Ri,Ẽ ∩ Fi,E) =
⋃

Ẽ : E⊆Ẽ⊆{1,...,i}
(Ri,Ẽ ∩ Fi,E) = Ci,E .

��
Lemmata 3.2 and 3.3 together enable us to solve any node [i, E] with i ∈ E, given

that all the candidates sets of the nodes [i, Ẽ] for Ẽ ∈ S1i,E are already computed. It basi-
cally states that to solve a node we have to compute the ([i, E])-relaxed solutions, that is,

123

J Glob Optim

to solve a problem of the form (PE), and to compare the values of all the relevant candi-
dates, including the ([i, E])-relaxed solutions. The importance of Lemma 3.3 is the ability
to search for the best candidate in a linear number (in m) of |S1i,E | previously solved nodes,

rather than on an exponential number (of all the sets Ẽ satisfying E ⊆ Ẽ ⊆ {1, . . . , i}),
and the sufficiency to store the candidates sets only, without storing all the relaxed solu-
tions of all nodes (only the current’s node relaxed solutions are considered when it is
solved).

However, during the running of the algorithm, some nodes in the current layer might be
unavailable due to fathoming of early layers nodes. Therefore, whenever the set S1i,E is not
fully available, our algorithmmight not necessarily solve node [i, E]. Itmight neither compute
an optimal solution of problem ([i, E]) nor its optimal value. However, the fathoming rules
of the algorithm guarantee that in such cases the best value computed among the available
candidates can still cast as a lower bound on the node in question, in the sense that no candidate
better than those already been reached can be reached at that node or at any child-node of it.
Whenever the algorithm seeks to compute a lower bound on a node [i, E] with i ∈ E, we
define

S1,openi,E :=
{
Ẽ : Ẽ ∈ S1i,E and [i, Ẽ] is available

}

(available-none of its father-nodes has been fathomed). Evidently, S1,openi,E ⊆ S1i,E . In addition,
for all nodes [i, E] where i ∈ E we define the available candidates set as

C̃i,E =
⎛

⎜⎝
⋃

Ẽ∈S1,openi,E

Ci,Ẽ

⎞

⎟⎠ ∪ (Ri,E ∩ Fi,E). (3.6)

For nodes of the form [i, E] with i /∈ E we define

C̃i,E = C̃i,E∪{i} ∪ (C̃i−1,E ∩ Fi,E). (3.7)

We describe now our main branch and bound algorithm for solving (P). In this algorithm,
U denotes the current upper bound on the optimal value, and Li,E denotes the computed
lower bound on all the subproblems obtained by adding more constraints to the subproblem
of node [i, E] (i.e., on all its “child-nodes”). Recall that i = 1 corresponds to a regularizing
constraint.

Let us represent a set E ⊆ {1, . . . , i} by an i-bit number Bi,E , where the leftmost bit
in Bi,E corresponds to the index 1 and the rightmost bit to the index i . For each index
j = 1, . . . , i we set the corresponding bit to 0 if j ∈ E, and to 1 if j /∈ E . For example,
for a node [3, E] with E = {1, 3} the corresponding bit-representation is B3,E = [0 1 0].
For a given i the above representation induces a full ascending order over the sets E - the
standard order of binary numbers. For example, for i = 3, the ascending order of sets E
is {1, 2, 3}, {1, 2}, {1, 3}, {1}, {2, 3}, {2}, {3}, ∅, because the corresponding sequence of
binary numbers is [0 0 0], [0 0 1], [0 1 0], [0 1 1], [1 0 0], [1 0 1], [1 1 0], [1 1 1].

123

J Glob Optim

Algorithm BB

(1) Initialize U ← ∞, L0,∅ ← ∞, and i ← 0. Open node [0,∅].
(2) In an ascending order of the sets E ⊆ {1, . . . , i} (induced by the order of the binary

representation of the sets), perform for each open node [i, E] the following:
• Compute the set C̃i,E containing all the available candidates for minimizers of

problem ([i, E]) by the formulae (3.6) and (3.7). Store in memory this set. Take
the minimal objective value over C̃i,E as a lower bound Li,E .

• Set U ← min{U, f0(x1), . . . , f0(xl)}, where {x1, . . . , xl} contains all the avail-
able candidates for minimizers of ([i, E]) which are also (P)-feasible (l = 0 is
possible).
If U achieves a new value, say f0(xk), then set Sol ← xk .

(3) For each E ⊆ {1, . . . , i}, in an ascending order (induced as before):
If an open node [i, E] satisfies Li,E < U, then open the child-nodes [i + 1, E ∪ {i}]
with Li+1,E∪{i} ← ∞ and [i + 1, E] with Li+1,E ← ∞.

Otherwise, fathom node [i, E].
(4) If some nodes in layer i+1were opened, clear frommemory any candidates set stored

in layer i − 1 if exists, set i ← i + 1, and return to step 3.
Otherwise (i.e., if all existing open nodes in layer i are fathomed), stop, and return
“Sol” as a solution, and U as an optimal value.

Remark We should explain why the sets C̃i,E defined by (3.6) or (3.7) are computable when
step 2 is employed. Indeed, assume the algorithm is currently solving a node [i, E] with
i ∈ E . Then for all k ∈ {1, . . . , i}\E, the node [i, Ẽ] with Ẽ = E ∪ {k} has already been
solved, as the bit representations satisfy Bi,Ẽ < Bi,E (exactly one bit in Bi,E has changed

from 1 to 0 yielding Bi,Ẽ). Thus, for any node with a set belonging to S1,openi,E the available
candidate set is already known due to the ascending order in which the nodes in layer i are
treated and thus C̃i,E can be computed via the formula (3.6). Similarly, in nodes where i /∈ E,

the set C̃i,E∪{i} is known by the ascending order in layer i, and the set C̃i−1,E is known from
the previous layer i − 1. The following lemma shows that the use of C̃i,E (rather than Ci,E)
does not have an effect on the correctness of the fathoming rules in Algorithm BB.

Lemma 3.4 Let x∗ be a vector with the minimal objective value over the set C̃i,E (rather
than over Ci,E) for i ∈ E, and plug its value into Li,E . Then either x∗ is an optimal solution
of problem ([i, E]), or it is guaranteed that node [i, E] is going to be correctly fathomed
(despite the wrong value plugged into Li,E).

Proof Denote the optimal value of problem ([i, E]) by V . Assume that Li,E is computed
as the minimal value among the candidates in C̃i,E , and that V < Li,E , assuming that the
chosen candidate, x∗, is not an optimal solution of ([i, E]), and thus, f0(x∗) = Li,E > V .

By part (2) of Lemma 3.2, the value V must be obtained at a vector in Ci,E . Since it is not
obtained in C̃i,E , it must be obtained at a node [i, Ẽ] with Ẽ ∈ S1i,E , which has not been
opened. The only reason for not opening this node is that one of its father-nodes gained a
lower bound, L , which satisfied L ≥ U, where U is an upper bound on the optimal value of
(P). That is, Li,E > V ≥ L ≥ U, where the middle inequality is because L is a lower bound
on all child-nodes of the node it is gained at. Therefore, although Li,E might not be a lower

123

J Glob Optim

bound on all the child-nodes of node [i, E], it is guaranteed that the node will be fathomed
by the algorithm, as Li,E > U. ��

Lemma 3.4 guarantees that even if Li,E for i ∈ E is not equal to the optimal value of
problem ([i, E]), the decision whether to fathom node [i, E] or not, would be exactly the
same as if it was. As a consequence, we can assume that at any node we can compute a valid
lower bound Li,E ensuring correct fathoming decisions. The above assumption is essential
when we seek to establish the validity of Algorithm BB; see Theorem 3.1 below.

By now we assumed that all the sets Ri,E are finite. Since |Ri,Ẽ | is finite, it follows
by Lemma 3.2 that the number of candidates at each node is also finite, and the optimal
solution can be found by simple value comparisons. The upper bound on |Ri,Ẽ | can effect
the efficiency of the algorithm, as it is highly connected with the number of candidates |Ci,Ẽ |
being considered at each node, as follows by the same lemma. An upper bound on |Ci,Ẽ | is
calculated for the classes of problems presented in Sect. 4.2. When some sets of the form
Ri,E are infinite, a slight modification is required in Algorithm BB:

Algorithm BB - a Modification:

• Whenever there exist infinitely many ([i, E])-relaxed solutions change the definition
of Ri,E such that it would be a singleton containing only one arbitrary ([i, E])-relaxed
solution (rather than an infinite set).

• Whenever the number of ([i, E])-relaxed solutions is finite, Ri,E is defined as before.
• Instead of computing all candidates of C̃i,E in step (3), use the same formulae (3.6)

and (3.7) to evaluate those sets, but use the above modified sets Ri,E (now always
finite).

From now on, we consider only the modified version as “Algorithm BB”. The next theorem
is the main result of this section, and it establishes the validity of the algorithm. Though it
might seem incorrect to ignore an infinite number of relaxed solutions (as the modified Ri,E

contains only one when there exist infinitely many) this issue is also resolved.

Theorem 3.1 Algorithm BB is finite and correct; that is, if problem (P) is feasible and
satisfies assumptions (1), (2) and (3), the algorithm computes a global optimal solution after
solving a finite number of nodes.

Proof The tree has at most m + 1 layers, where for each i ∈ {0, 1, . . . ,m}, layer i contains
at most 2i open nodes. Therefore, the maximal number of nodes in a tree is

m∑

i=0

2i = 2m+1 − 1,

and thus, it is finite.
We now prove that an optimal solution of (P) is always returned, assuming that problem

(P) is feasible. For any feasible vector x denote

E(x):={k : fk(x) = 0},
and

I (x):={1, . . . ,m}\E(x).

123

J Glob Optim

As its domain is compact, problem (P) attains its minimum by Weierstrass’s Theorem.
Similarly, any subproblem corresponding to a node is either infeasible, or has a compact
nonempty domain, and thus, attains its minimum. Let x∗ be an optimal solution of (P) with
a value U. Then, by Lemma 3.1 x∗ must be a local minimizer of (PE) for E = E(x∗). Let
i denote the maximal index in E . The choices of i and E define a specific node [i, E] in the
tree.

We shall prove that AlgorithmBB either returns x∗ as an optimal solution with the optimal
value U, or some other optimal solution of (P). Assume that the algorithm does not return
x∗. Then the two options are

(A) the algorithm does not reach node [i, E], or
(B) it does, but misses x∗ due to the arbitrary choice of a candidate.

Option (A) can occur only when an early “father-node”, [ĩ, Ẽ], ĩ < i, from which this node
stems (not necessarily directly), was fathomed. In such a case, when layer ĩ was treated, we
already had an upper bound Ũ ≥ U, attained at some feasible solution, x̃, with Lĩ, Ẽ ≥ Ũ .

Since Lĩ, Ẽ is a lower bound on all child-nodes of [ĩ, Ẽ], including [i, E], we have
U ≥ Li,E ≥ Lĩ, Ẽ ≥ Ũ ,

where the left inequality is valid since U is an upper bound, and Li,E is a lower bound on
problem ([i, E]). If a strict inequality holds at least in one of the above inequalities, it is a
contradiction to the optimality of x∗, and if only equalities hold, then x̃ is also optimal, and is
already obtained. Note that the algorithm returns only one optimal solution (in the last case
it was x̃).

According to assumption (3), option (B) can occur only if a problem (PE) of the form
(PE) with E = E(x∗) has infinitely many global minimizers forming a path-connected set
S∗. In this case, we have to show that an optimal solution of (P), possibly different than x∗,
is returned by the algorithm, even if the arbitrary candidate chosen by the algorithm at node
[i, E] is infeasible for (P). Indeed, the inequalities

fk(x∗) < 0

hold for all k ∈ I (x∗), since x∗ is a feasible solution. Denote

α(x):= max
k∈I (x∗)

{ fk(x)}.

By the feasibility of x∗ it holds that α(x∗) < 0. If for any x ∈ S∗ it holds that α(x) ≤ 0,
then the whole set S∗ is also optimal for (P), as any vector in it attains the optimal value
(the same as at x∗) and it is feasible. In this case, an arbitrary candidate on S∗ is marked
as a candidate, and finally returned by the algorithm (unless another optimal solution has
been discovered earlier). Otherwise, there exists an index k ∈ I (x∗) such that the surface
fk(x) = 0 intersects S∗ at a feasible point x̃. The last claim follows by the continuity of the
function α, and by the path-connectedness of S∗: since we are assuming that there exists an
x ∈ S∗ such that α(x) > 0, and since α(x∗) < 0, it follows that there exists a vector x̃ ∈ S∗
such that α(x̃) = 0, so x̃ is feasible, and satisfies fk(x̃) = 0 for some k ∈ I (x∗).

Therefore, x̃ is also an optimal solution of (P), with E(x̃) strictly containing E(x∗). We
can repeat the same argument on x̃, and conclude that it is either marked as a candidate of
some node with a finite number of candidates, whose equality constraints set is E(x̃), or,
again, it resides on an optimal path-connected set S̃ of that node, and has the same objective
value as some arbitrary chosen candidate of it. The same process of moving from x̃ to another
vector which is feasible and satisfies one more equality can be repeated until either we obtain

123

J Glob Optim

a finite number of solutions for the problem (PE) corresponding to the relevant set E, or
we reach the situation where E = {1, . . . ,m}. In the latter, any candidate (local minimizer)
obtained in problem (PE) is necessarily feasible for (P), as all the constraints are considered.
Thus, such an optimal solution is discovered by the algorithm when a corresponding node is
solved (unless another optimal solution has already been discovered). ��

We should note that the total number of nodes solved during the algorithm is always
finite. However, in the worst case, it can be equal to 2m+1, meaning that all the possible
nodes are opened and evaluated. Such cases are likely to occur when the number of variables
is higher than the number of constraints. In cases where n < m,we are more likely to achieve
the optimal solution after much fewer nodes evaluations, as many possibilities for choosing
a subset of equalities constraints (E) are infeasible. In addition, if the constraints that are
satisfied as equalities at optimality appear at the first i layers of the tree, the nodes number
is expected to be no more than 2i+1.

Remark The algorithm of Bienstock and Michalka [7] has similar properties, as it also
enumerates candidates attained as local solutions of subproblems defined similarly to (PE,I).
However, it does not apply a branch-and-bound approach, but rather a breadth-first search,
which finds all such feasible subproblems (only infeasible subproblems can be fathomed),
and then computes the best candidate by solving each of the feasible subproblems. While [7]
focuses on obtaining a polynomial time algorithm for a special case, we suggest Algorithm
BB as a practical algorithm. While the number of feasible subproblems might be large, our
algorithmmight solvemuch fewer such subproblems, as it applies also effective lower bounds
on currently solved nodes, obtained on former solved nodes. For the sake of comparison
with our algorithm, we provide a brief description of theirs in Sect. 6, where the numerical
performances are compared.

3.1 Heuristics

Algorithm BB can yield better results with respect to total running time and memory if the
number of nodes being opened during the procedure is small. In particular, we would like the
total number of layers to be treated to be small. Such a scenario ismost probablewhen feasible
solutions of (P) with nearly optimal objective values are attained at the earliest layers (the
constraints with the lowest i indices). The constraints which are active at optimality should
then be involved as early as possible. In fact, if those constraints appear at the earliest i
indices, all the other layers will not be involved, and the algorithm will stop after a few
layers.

An open question is how we can “predict” which and how many constraints are to be sat-
isfied as equalities, besides the obvious limitation of n constraints. We propose the following
heuristics regarding the order in which we add the constraints during Algorithm BB.

Heuristics: The i th constraint to be added is the constraint violated by the largest number
of candidates computed at all nodes of layer i − 1.

When applying this heuristics, we do not fix the order of the constraints in advance, rather
the order is built layer by layer. As this choice of ordering is just a heuristics, it does not
theoretically guarantee that the best order is taken, but as will be shown in Sect. 6, it does
make significant improvement from a practical point of view.

123

J Glob Optim

4 The inner oracle in the quadratic problem (1.1)

In this sectionwe show that the quadratic problem (1.1) satisfies the assumptions fromSect. 2,
enabling to apply Algorithm BB to solve it. The main tool we utilize is the well known trust
region subproblem.

4.1 The trust-region subproblem

In the case of problem (1.1), the subproblems (PE) may contain sphere constraints and linear
equalities. We first summarize the main result enabling to find all the local minimizers of
the simplest case where only one sphere constraint is involved. In this case (PE) contains
only one sphere constraint, and without loss of generality we can assume that the sphere
is centered at the origin (otherwise, a simple translation of the variables can transform the
problem into that form). We are therefore interested in computing all the local minimizers of
the problem

min q0(x) ≡ 1
2x

TQ0x − bT0 x

s.t. ‖x‖2 = r2.
(4.1)

In addition, in the following review (and in one numerical experiment in Sect. 6) we may
refer also to the inequality constraint (ball), namely the problem

min q0(x) ≡ 1
2x

TQ0x − bT0 x

s.t. ‖x‖2 ≤ r2.
(4.2)

The following two lemmata, proved in [22, Lemma 2.4, 2.8], give necessary and sufficient
optimality conditions for a global minimizer of problems (4.1) and (4.2).

Lemma 4.1 x∗ is a global minimizer of (4.1), if and only if ‖x∗‖ = r, and there exists
μ∗ ∈ R such that

(1) (Q0 + μ∗I)x∗ = b0,
(2) Q0 + μ∗I
 0.

Lemma 4.2 x∗ is a global minimizer of (4.2), if and only if ‖x∗‖ ≤ r, and there existsμ∗ ≥ 0
such that

(1) (Q0 + μ∗I)x∗ = b0,
(2) Q0 + μ∗I
 0,
(3) μ∗(‖x∗‖ − r) = 0.

For the computation of such an optimal solution, we may apply a one-dimensional root-
search procedure on amonotone secular function ofμ in the domainwhereQ0+μI is positive
definite. The procedure computes a multiplier μ∗ satisfying (1) and ‖x∗‖ = r. Details can be
found in [20]. By Lemmata 4.1 and 4.2, once a solutionμ∗ for whichQ0+μ∗I is non-singular
is found, an optimal solution of (4.1) or (4.2) respectively, is given by

x∗ = (Q0 + μ∗I)−1b0. (4.3)

When condition (1) in the above lemmata is satisfied only when Q0 + μ∗I is singular, we
call it a hard case. In that case, it holds that μ∗ = −λ1, where λ1 is the smallest eigenvalue
ofQ0 and b0 ∈ Range(Q0 −λ1I). Problems (4.1) and (4.2) posses in this case infinitely may
global solutions of the form

x∗ = (Q0 − λ1I)†b0 + v, (4.4)

123

J Glob Optim

with v being any eigenvector of Q0 associated with λ1. Here, for a given matrix M, the
notation M† stands for the Moore-Penrose pseudo-inverse of M. As (4.1) and (4.2) are not
convex, they might also posses local-non-global1 minimizers. The following results of [18]
characterize these solutions.

Lemma 4.3 Let λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of Q0. If either λ1 = λ2 or
bT0 v = 0 for any eigenvector v associated with λ1, then problems (4.1) and (4.2) have no
local-non-global minimizer.

Proof It is a direct result of Lemmata 3.2 and 3.3 in [18]. ��
Lemma 4.3 readily implies that in the hard case, no local-non-global points exist since

b0 ∈ Range(Q0−λ1I) = Null(Q0−λ1I)⊥. Here for a givenmatrixM the notationRange(M)

stands for the linear space spanned by the columns ofM, and Null(M) denotes the space of
all vectors v satisfying Mv = 0.

Theorem 4.1 [18, Theorem 3.1] Let ϕ(μ) ≡ ‖(Q0 + μI)−1b0‖2 − r2 defined for all μ ∈ R

such that Q0 + μI is non-singular.

(1) If x∗ is a local-non-global minimizer of (4.1) or (4.2), then the equation

(Q0 + μ∗I)x∗ = b0 (4.5)

holds for someμ∗ ∈ (−λ2,−λ1),with ϕ′(μ∗) ≥ 0. If x∗ is a local-non-global minimizer
of (4.2), then μ∗ ≥ 0.

(2) There exists at most one local-non-global minimizer of (4.1) or (4.2).
(3) If ‖x∗‖ = r, and equation (4.5) holds true for some μ∗ ∈ (−λ2,−λ1) with ϕ′(μ∗) > 0,

then x∗ is a strict local-non-global minimizer of (4.1). If, in addition, μ∗ > 0, then x∗ is
also a strict local minimizer of (4.2).

To compute the (unique) local-non-global solution, amore complicated root search algorithm
can be applied on a similar one-variable equation in the domain (−λ2,−λ1) (see [18, Algo-
rithm 4.1]). It either computes a numberμ∗

L ∈ (−λ1,−λ2) such that the necessary conditions
in part (1) of Theorem 4.1 are satisfied, or detects that such a number does not exist. Once such
μ∗
L is computed, a local-non-global minimizer of (4.1) is given by x∗ = (Q0 + μ∗

LI)
−1b0.

If μ∗
L > 0, then x∗ is also a local-non-global minimizer of (4.2).
In particular, the above results imply that in the hard case no local-non-global minimizers

exist, and the global minimizers comprise a complete sphere whose dimension is the multi-
plicity of λ1 as an eigenvalue of Q0. If that multiplicity is 1, there exist exactly two global
minimizers. In any non-hard case, there exists at most one local-non-global minimizer and
exactly one global minimizer.

4.2 Solving relaxed subproblems

The subproblems (PE,I) where E ⊆ {1, . . . , i} and I = {1, . . . , i}\E to be solved during
Algorithm BB contain some of the inequality constraints of (1.1), along with some equality
constraints (spheres and hyperplanes). Their relaxations of the form (PE) contain only spheres
and hyperplanes, and by repeatedly reducing the dimension, they can be reformulated as TRS
problems of the form (4.1).

1 That is, vectors which minimize the objective over a small neighborhood of the feasible domain, but are not
global minimizers of (4.1) or (4.2).

123

J Glob Optim

The reduction procedure utilizes the fact that the intersection of two given spheres can be
represented as an intersection of a sphere and a hyperplane (see [23, Section 6]). Thus, all
the spheres except for one can be replaced by hyperplanes, and finally, a standard dimension
reduction can be performed based on a null space representation of the solutions of the
linear system, and a trust region problem in a lower dimension is obtained. As described
in the previous subsection, all the local minimizers of (4.1) can be efficiently computed.
Thus, assumption (2) is satisfied. In addition, the change of variables from (PE) into a lower
dimensional problem of the form (4.1) is affine and non-singular, and thus, the set of all
local minimizers of the two problems are homeomorphic. In particular, they have the same
cardinality and the same topological properties, such as path-connectedness. The set of all
the local minimizers of a problem of the form (PE) contains either one global minimizer,
two local minimizers (at least one of which is global) or a complete sphere in dimension 2
or higher. Thus, the sets Ri,E for i ∈ E either contain 1 or 2 elements, or comprise a sphere
which is path-connected, and property (3) holds too.

Note that assumption (1) from Sect. 2 also holds true in problems of the form (PE,I)
assuming that m ≥ 1, that is, there exists at least one ball constraint, say ‖x − w‖2 ≤ d2.
This constraint is indeed a regularizing constraint. Any subproblem of the form (PE,I) for
which 1 ∈ E ∪ I is guaranteed to have a compact feasible set, given by an intersection of
a ball (if 1 ∈ I) or a sphere (if 1 ∈ E) and other closed sets (all the constraints are given
by equalities of weak inequalities of continuous functions). By Weierstrass Theorem any
continuous function attains a global minimum over a nonempty compact set. Thus, unless
infeasible, a subproblem of the form (PE,I) with 1 ∈ E∪ I attains its minimum, and the latter
are exactly the problems (PE,I) in assumption (1). In our BB algorithm, the first branching
step restricts the feasible domain to reside within that ball. Thus, all the feasible subproblems
which stem from the root node are guaranteed to admit a finite minimum obtained at an
optimal solution.

Since each candidate has to be checked for feasibility and for the comparison of objective
values, the exact number of such candidates (which is |C̃i,E | by Lemma 3.2) has an effect
on the efficiency of the algorithm. In addition, the algorithm can treat only finite specific
candidates at each node, so the case where infinitely many candidates exist has to be treated
according to the new definition of Ri,E for i ∈ E, provided in the modification of Algorithm
BB. That is, if Ri,E is infinite, we take an arbitrary vector from it, and the new set is defined
as the corresponding singleton. Thus, in the new definition |Ri,E | ≤ 2 always holds.

5 Application to sparse source localization problem

In this section we will show how Algorithm BB can be used to solve a class of nonsmooth
and nonconvex source localization problems. In a source localization problem (see [3]), the
decision variable x ∈ R

n (n usually being 2 or 3) denotes the unknown location of a radiating
source. In addition, m sensors in locations a1, a2, . . . , am ∈ R

n are given, and each of them
reports a noisy distance di > 0 to the source:

‖x − ai‖ ≈ di , i = 1, . . . ,m.

Two known optimization models of this problem are the least squares (LS) and the squared
least squares (SLS) formulations. The LS formulation is given by

(LS) min
x∈Rn

m∑

i=1

(‖x − ai‖ − di)
2. (5.1)

123

J Glob Optim

As a mean squared error approximation, the optimal solution of (LS) is in fact a maximum
likelihood estimator for the true location x whenever the noise values of the measurements
are independent and each has a Gaussian distribution with the same standard deviation; see
[12], as well as [5] for solution methodologies. However, the model (LS) has a nonsmooth
and nonconvex objective, and it is thus considered as a hard problem, where most known
algorithms are only guaranteed to generate a subsequence converging to a stationary point
(see [5]), or to find a semidefinite relaxation-based approximation [12].
Another approach is to consider the model (SLS) given by

(SLS) min
x∈Rn

m∑

i=1

(‖x − ai‖2 − d2i)2. (5.2)

The SLS formulation, suggested in [3] has a smooth (but still nonconvex) objective, and can
be globally solved efficiently by rewriting it as a GTRS.

A common situation is when outliers in the measurements are present, meaning that some
measurements are extremely noisy, and inconsistent with the others. The SLS formulation
is sensitive to exceptional measurements, and it therefore might lead to poor results. The
formulation we suggest in this paper is designed to handle such situations. Inspired by the
compressed sensing/sparsity literature (see for example the review [8] and references therein),
we will consider an l1-based model in which the sum of absolute values of the errors is
minimized:

(SSL) min
x∈Rn

m∑

i=1

∣∣‖x − ai‖2 − d2i
∣∣ . (5.3)

The acronym SSL stands for “sparse source localization”, and the word “sparse” comes to
emphasize that we assume that most of the errors measurements are close to zero, while
only a few have a substantial magnitude. Problem (5.3) can be divided into 2m cases in the
following way. For each vector σ ∈ {−1, 1}m, we can solve the following subproblem:

min −
m∑

i=1

σi
(‖x − ai‖2 − d2i

)

s.t. σi
(‖x − ai‖2 − d2i

) ≤ 0, i = 1, . . . ,m.

(5.4)

To solve problem (5.3), one can solve each of the problems (5.4) – one problem for each
option for the choice of the signs vector σ , and finally, take the solution having the best
objective value among all the solutions. Each case of problem (5.4) is in fact a special case
of problem (1.1), whose objective function has the parameters

Q0 = −2

(
m∑

i=1

σi

)
I, b0 = −2

(
m∑

i=1

σiai

)
,

with a constant C0 = −∑m
i=1 σi

(‖ai‖2 − d2i
)
added. As shown in Sect. 4, problem (1.1),

having the form of problem (P), can be treated by Algorithm BB, provided that assumptions
(1)–(3) are satisfied, which is the case for any option of σ . Indeed, if σ �= −e, then problem
(5.4) contains at least one ball constraint, and the feasible domain is compact. Thus an optimal
solution exists for each subproblem of the form (PE,I) (unless infeasible). If σ = −e, then
the objective function becomes a strictly convex quadratic (hence coercive) over the closed
nonempty feasible domain, and thus each subproblem also has a global minimizer. That
establishes the validity of assumption (1). In addition, each subproblem of the form (PE)
consists of minimizing a quadratic function over several sphere constraints. As described in

123

J Glob Optim

Sect. 4, if feasible, problem (PE) can be converted into a lower dimension problem of the
form (4.1).

In this particular case, the equivalent TRS problem is even simpler than in the general
case. The objective can also be made linear by subtracting the equality constraint (sphere)
from it. That is, problem (PE) is equivalent to a problem of the form

min
y∈Rk

q̃0(y) ≡ gT0 y + E0

s.t. ‖y − y0‖2 = r2.
(5.5)

The global optimal solution is given by

y∗ = y0 − r

‖g0‖g0
for g0 �= 0. Otherwise, any point on the sphere is optimal. If k = 1, the sphere contains only
two points y0 + r, y0 − r, both are local minimizers by definition. Assume now k ≥ 2. Since
Q̃0 = ∇2q̃0 = 0, in particular λ1(Q̃0) = λ2(Q̃0) = 0. Thus, by Lemma 4.3 it follows that
problem (5.5) has no local-non-global minimizer. In addition, when g0 �= 0, (5.5) has exactly
one local minimizer (the global). When g0 = 0, it has a path-connected global optimal set –
the whole sphere – and no local-non-global minimizers.

The above description basically explains how problem (5.3) can be solved based on Algo-
rithmBB. However, this approach results in an algorithm that requires to solve 2m nonconvex
optimization problems, which seems to be too computationally expensive. Therefore, we sug-
gest a preprocess procedure to reduce the number of problems of the form (5.4) that need to be
solved. The procedure consists of two phases, where in each one we seek to rule out as many
options as possible for the signs vector σ . For each σ ∈ {−1, 1}m we define Jσ ⊆ {1, . . . ,m}
to be the set of all indices j for which σ j = 1. In phase 1 the procedure performs a feasibility
test on the set of inequalities

‖x − ai‖2 − d2i ≤ 0, i ∈ J (5.6)

with J = Jσ for some σ ∈ {−1, 1}m, and rule out problems detected as infeasible. In phase 2
the procedure proceeds with a similar feasibility test on the nonconvex system of inequalities

‖x − ai‖2 − d2i ≤ 0, i ∈ J,
‖x − ai‖2 − d2i ≥ 0, i ∈ {1, . . . ,m}\J, (5.7)

for all the subsets J = Jσ that were not ruled out in phase 1. In any case, the systems of
inequalities that we consider are of the form

δi (‖x − ai‖2 − d2i) ≤ 0, i ∈ {1, 2, . . . ,m}, (5.8)

where δ ∈ {−1, 1}m . The system (5.6) corresponds to the choice δi = σi+1
2 , while the system

(5.7) corresponds to δ = σ . The screening in both phases is based on the following lemma
that provides a sufficient condition for infeasibility of the system (5.8). The argument relies
on the weak duality theorem.

Lemma 5.1 (sufficient condition for infeasibility of (5.6)). Consider the system (5.8) for a
given δ ∈ {−1, 1}m. Assume that there exists λ̃ ∈ R

m+ for which
∑m

i=1 δi λ̃i = 1, (5.9)

−‖ ∑m
i=1 δi λ̃iai‖2 + ∑m

i=1 δi λ̃i
(‖ai‖2 − d2i

)
> 0. (5.10)

Then the system (5.8) is infeasible.

123

J Glob Optim

Proof Suppose that there exists λ̃ ∈ R
m+ satisfying (5.9) and (5.10). Assume in contradiction

that there exists x̃ ∈ R
n satisfying the system (5.8). Consider the problem

min 0
s.t. δi (‖x − ai‖2 − d2i) ≤ 0, i ∈ {1, 2, . . . ,m}. (5.11)

For any λ ∈ R
m+, a Lagrangian of problem (5.11) is

L(x;λ) =
m∑

i=1

δiλi
(‖x − ai‖2 − d2i

)
, λ ∈ R

m+,

and a dual of problem (5.11) is given by

max{q(λ) : λ ∈ R
m+},

where q(λ) ≡ minx∈Rn L(x;λ). Since the primal problem is assumed (by contradiction) to
be feasible, it follows by the weak duality theorem that

q(λ) ≤ 0 for any λ ∈ R
m+. (5.12)

We will show that the above does not hold for the choice λ = λ̃. Using the fact that∑m
i=1 δi λ̃i = 1, it follows that the minimizer of L(x; λ̃) is

xλ̃ =
m∑

i=1

δi λ̃iai . (5.13)

Plugging this expression back into the Lagrangian, we obtain that

q(λ̃) = L(xλ̃; λ̃) = −‖ ∑m
i=1 δi λ̃iai‖2 + ∑m

i=1 δi λ̃i
(‖ai‖2 − d2i

)
> 0,

which is a contradiction to (5.12). ��
Checking the sufficient condition of Lemma 5.1 is a tractable task since it can be validated
by solving the convex problem

maxλ −‖ ∑m
i=1 δiλiai‖2 + ∑m

i=1 δiλi
(‖ai‖2 − d2i

)

s.t.
∑m

i=1 δiλi = 1,
λ ≥ 0.

(5.14)

The sufficient condition is satisfied if and only if the optimal value of the convex problem
(5.14) is positive. Having established a simple criterion for ruling out infeasible problems, we
are now ready to describe the overall two-phase procedure of ruling out infeasible problems.

Phase 1 Wefirst apply a breadth-first-search (BFS) algorithm to checkwhich of the problems
of the form (5.6) for J ⊆ {1, . . . ,m} are infeasible. The problems detected as infeasible are
ruled out, and the remaining are considered as “admissible”. For each J we utilize Lemma
5.1 to rule out infeasible cases of (5.6). As problem (5.14) is convex, we can apply a fast
gradient projection (FGP) method which can be seen as a special (smooth) case of the fast
proximal gradient method, also referred as fast iterative shrinkage-thresholding algorithm
(FISTA); see [4] and references therein.

FGP-test: Run the FGP method till either: I. a vector with a positive objective value is
reached, or, II. an optimality criterion is reached at a solution with a non-positive objective
value. A subproblem is called admissible if applying the FGP-test on it yields option II.

123

J Glob Optim

Lemma 5.1 implies that if the FGP-test on a subproblem yields option I, it is infeasible
and should be ruled out, and otherwise, we call that subproblem “admissible”, as it may be
feasible.

The BFS runs over a graph whose nodes are all the subsets J ⊆ {1, . . . ,m}, with edges
between any two nodes J, J ′ with J ′ = J ∪ { j} for some j ∈ {1, . . . ,m}\J. The output is
a list of all the admissible subsets – the sets J for which the corresponding problem (5.6)
could not be ruled out by Lemma 5.1. The algorithm reads as follows.

A BFS algorithm for eliminating infeasible cases of problem (5.6)

(1) Initialization: Set L = {∅}, Blacklist = ∅; Mark node J = ∅.

(2) Pick a node J ∈ L , with minimal |J |; delete it from L;
Apply the FGP-test on J ∪ { j} for all j /∈ J such that J ∪ { j} /∈ L ∪ Blacklist;
If J ∪ { j} is admissible, mark it, and add it to L;
If not, add J ∪ { j} and all its immediate child-nodes to Blacklist.

(3) Return to step (5) unless L = ∅;
If the latter occurs, return the set of all marked nodes as “admissible”.

No node is being checked more than once, as L cannot contain nodes of more than two
successive numbers of constraints |J | and |J | + 1. In addition, the black list ensures that no
immediate child-node of a node detected as infeasible is being checked. It avoids rechecking
any face already deleted from L that was infeasible.

Phase 2 For each subset J ⊆ {1, . . . ,m} with the corresponding problem (5.6) detected as
admissible after phase 1, we now consider the feasibility issue of the corresponding problem
(5.7). That is, we check whether the addition of the constraints of being outside an Euclidean
ball yields an infeasible problem, or still an admissible one. At this phase, we go over
each admissible subset J without any special search algorithm such as BFS. Again, each
feasibility test is performed by the FGP-test based on Lemma 5.1. There might be cases in
which admissible cases of problem (5.7) are in fact infeasible. This is even more likely than
in phase 1, as problem (5.7) is not convex. Note that problem (5.14) can be solved by the
FGP method, except for the case σ = δ = −e, in which (5.14) is infeasible. However, in
the latter case, (5.7) is certainly feasible, so it can be automatically marked as “admissible”
without any test.

Applying Algorithm BB. The cases which remained in the status “admissible” after the
above two phases should be solved by Algorithm BB. Their number was usually significantly
smaller than 2m in our numerical experiments. In general, all the remaining cases are con-
sidered as admissible, and in order to obtain an optimal solution of problem (5.3), each of
those cases should be considered. However, as described in phase 2, our feasibility test might
not rule out all the infeasible cases. Algorithm BB solves each of the admissible cases and
returns the solution with the minimal objective value among them. Infeasible cases do not
affect the results, as the algorithm can detect them as well, and they achieve the value ∞.

6 Numerical experiments

In this section we present the performances of Algorithm BB on a variety of instances of
problem (1.1). All implementations were coded in MATLAB R2014a, and run on a PC with
processor ∼3.4 GHz and 16.0 GB RAM.

123

J Glob Optim

6.1 Minimizing a general quadratic over the intersection of a ball and affine
half-spaces

We started by solving a special setting of problem (1.1) with p = 0 and m = 1, including
one Euclidean ball constraint and l linear inequalities.

min q0(x) ≡ 1
2x

TQ0x − bT0 x

s.t. ‖x − w‖2 ≤ d2,
αT
k x ≤ βk, k = 1, . . . , l.

(6.1)

On this setting we applied the algorithm with a slight improvement: the first constraint (the
Euclidean ball) was included in our root-node problem. That is, in node [0, 0] we already
solved and found all the local minimizers of the inequality constrained version of the TRS
problem (4.2). When starting the algorithm directly from problem (4.2) rather than from the
unconstrained minimization, we avoid one layer in the branch and bound tree and expect to
reduce the number of nodes by a factor of about 2. The subproblems to be solved (for local
and global minimizers) at each node [i, E] with i ∈ E is equivalent to a problem having the
form of (4.2) as well (in a lower dimension).

The analysis of the candidates sets is the same as in problem (4.1), except for the require-
ment μ∗

L ≥ 0 for the local-non-global solution if exists, and the treatment of the case where
the objective function is also convex (Q0
 0). As its feasible set is a ball, problem (4.2) can
posses a full ball as an optimal set in some degenerate cases (e.g., if the objective is constant).
However, such a set is also path-connected as required by assumption (3). In this setting, for
any node [i, E] the set Fi,E is a closed convex set as an intersection of a closed ball, |E |
hyperplanes, and |I | = i − |E | half-spaces. The problems defining the candidates sets and
the relaxed solutions are similar to (PE,I) and (PE) with the change that each contains the
inequality constraint ‖x − w‖2 ≤ d2 and the subsets E and I are subsets of the index set
of the linear constraints only. In this subsection the name Algorithm BB refers to the above
improvement.

We compare our computational effort results of Algorithm BB with those of the method
of Bienstock andMichalka [7]. While the method of [7] is applied to the more general model
(1.1), we only briefly describe our modified implementation of it on the special case (6.1).
The method of [7] first computes all the intersecting faces; that is, all the elements in the set

F∗ ≡
{
FE : FE ∩ B[w, d] �= ∅, E ⊆ {1, . . . , l}

}
,

where for any E ⊆ {1, . . . , l} the corresponding face is defined by
FE ≡

{
x ∈ R

n : αT
i x ≤ βi ∀i ∈ {1, . . . , l}, αT

i x = βi ∀i ∈ E
}

.

Once F∗ is computed, the method processes its elements one after the other. For each FE ∈
F∗ the algorithm considers the problem of minimizing the original objective of (6.1) over
the nonempty intersection FE ∩ B[w, d], computes all the local minimizers of the relaxed
problem

min q0(x) ≡ 1
2x

TQ0x − bT0 x
s.t. ‖x − w‖2 ≤ d2,

αT
k x = βk, k ∈ E,

(6.2)

and stores as a candidate any local minimizer x∗ satisfying αT
i x

∗ ≤ βi ∀i ∈ {1, . . . , l}, that
is, x∗ ∈ FE . The computation of such minimizers is performed by the techniques described

123

J Glob Optim

in Sect. 4. As proved in [7], it is guaranteed that the minimal objective candidates among
all the intersecting faces FE ∈ F∗ is an optimal solution of (6.1). A very similar approach
for solving problem (6.1) appears in [16], where a sequence of problems reduced to TRS
problems are solved. The number of such TRS problems required to be solved is in fact
identical to the number of intersecting faces |F∗|.

Unlike AlgorithmBB, themethod of [7] must process all the intersecting faces, and it does
not apply fathoming rules implied by lower or upper bounds on the optimal value. In addition,
as opposed to Algorithm BB, the method of [7] requires feasibility checks of the intersection
of a system of linear equalities and inequalities with a ball. On the other hand, by utilizing
proper data structures, the general method described in [7] was proved to have polynomial
running time in |F∗| and in the inputs of (1.1). Thus, it may be superior over Algorithm BB
if |F∗| is not too large. In practice, however, as we see next, the set F∗ could be much larger
than the number of nodes required in Algorithm BB. In addition, the computation of that set
should be done in advance, and rarely can one preestimate its size. The set F∗ is computed
by a breadth-first search (BFS) algorithm.

A BFS algorithm for computing F∗ for problem (6.1)

(1) Initialization: Set L = {F∅}, Blacklist = ∅. Mark the face F∅.
(2) Pick FE ∈ L , with minimal |E |; delete it from L;

For all E ∪ { j} such that j /∈ E and FE∪{ j} /∈ L ∪ Blacklist :
check if FE∪{ j} ∩ B[w, d] �= ∅. (*)
If (*) holds - mark FE∪{ j}, and add it to L;
If not - put FE∪{ j} and all its immediate “child-nodes” in Blacklist.

(3) Return to step (6.1) unless L = ∅;
If the latter occurs, terminate, and return the set of all marked faces as the output F∗.

We first solved some simple cases (Table 1) by Algorithm BB, where the number
of variables n was small. We created these cases manually, and the input parame-
ters are provided as MATLAB files in the library in https://drive.google.com/file/d/
0B9PeyTrETyApSDY2bllLNUY2cUE/view?usp=sharing. For each, we provide the number
of nodes evaluated and the run times, where the heuristics of choosing the order of constraints
with respect to number of violations is applied (under H) as described in Sect. 3.1, or not
applied (bracketed under (nH)). Recall that in Algorithm BB, only about half of the evalu-
ated nodes (H/2) require solving an optimization problem (equivalent to a TRS problem),
while in the others only values comparisons are involved. The last two columns in Table 1
refer to the number of intersecting faces |F∗| involved in each case, and the total number of
faces (“Tot”) for which the BFS procedure went over and checked if they were in F∗. Recall
that for each element in “Tot”, a convex feasibility problem was solved, and in addition, for
each element in F∗ a problem equivalent to a TRS was solved. In addition, for the sake of
comparison, we provided run times of solving the same instances by the mature solver SCIP
(see [1] and references therein) using the input format ‘.pip’ and the default parameters.

As one could see, the value H/2 is in most cases was much smaller than Tot, and in some
cases smaller than |F∗| as well. We do not provide CPU times for Bienstock and Michalka’s
algorithm, as its implementation was affected by the way we implemented the intersecting
test of each face (we just solve a convex feasibility problem utilizing CVX—a package for
specifying and solving convex programs; see [14,15]), which is probably different from their
implementation. It should be mentioned that while SCIP could find the optimal solution in

123

https://drive.google.com/file/d/0B9PeyTrETyApSDY2bllLNUY2cUE/view?usp=sharing
https://drive.google.com/file/d/0B9PeyTrETyApSDY2bllLNUY2cUE/view?usp=sharing

J Glob Optim

Table 1 Examples of (6.1) with n variables and l linear constraints-BB (H—with heuristics, nH—without)
compared with the sizes involved in [7] and with run times of SCIP, where ‘InSol’ denotes cases where SCIP
could not compute a (reasonable) approximate upper bound

Case name n l Nodes evaluated Time (s) Time (s) |F∗| Tot
H (nH) H (nH) SCIP

Data_lin 6 4 15 (31) 0.026 (0.05) 63.38 16 16

Data_lin_5_10 5 10 3 (47) 0.01 (0.05) 0.33 18 69

Data_lin_10_11 10 11 155 (831) 0.238 (1.31) >3600 2016 2032

Data_lin_5 5 15 613 (2429) 0.50 (1.62) 0.22 201 901

Data_lin_5_extended 5 25 641 (2831) 0.50 (1.93) 0.17 93 938

Data_lin_5_20 5 20 533 (3351) 0.34 (1.97) 0.08 537 3245

Data_lin_5_20_c01 5 20 31 (81) 0.023 (0.055) 0.70 16 144

Data_lin_5_20_c001 5 20 31 (81) 0.024 (0.057) 0.68 16 144

Data_lin_5_20_c100 5 20 1513 (3759) 0.91 (2.17) 0.08 537 3245

Data_lin_5_30 5 30 1931 (6459) 1.50 (6.26) 0.05 483 5367

Data_lin_8_20 8 20 3471 (17,507) 3.56 (18.78) 0.17 13,750 46,740

Data_lin_20_8 20 8 7 (43) 0.03 (0.063) >3600 256 256

Data3_100_10 100 10 93 (877) 0.29 (2.73) InSol 1024 1024

Data3_100_15 100 15 6439 (14,357) 21.11 (48.87) >3600 32,768 32,768

Data_200_10 200 10 255 (1023) 0.96 (3.99) >3600 1024 1024

Data_200_15 200 15 2047 (18,063) 7.93 (83.6) >3600 32,768 32, 768

Data3_300_10 300 10 287 (1067) 3.75 (13.69) >3600 1024 1024

Data_300_15 300 15 8959 (9887) 128.03 (136.82) >3600 32,768 32,768

all the small n value instances above, in some cases it needed a considerably long times
to close the gap between upper and lower bound, and in the larger cases it did not stop in
reasonable times (less than 1h.). The results in Table 1may suggest that AlgorithmBB should
be preferred over the method introduced in [7]. The above conclusion is strengthened in the
next set of results.

In the next experiments, we considered some larger size instanceswith a specified structure
(Table 2). The instances with names starting with “spar” were also treated by Chen and Burer
[11, Section 5]; all were taken from the libraries boxqp and trbox towhich their paper referred.
Each instance contains n = 20 to n = 40 variables, the ball center isw = 0, and all its linear
constraints are given by

li ≤ xi ≤ ui , i = 1, . . . , n, (6.3)

where we assume li < 0 < ui for all i = 1, . . . , n. Indexing the upper bound inequalities in
i = 1, . . . , n and the lower bound inequalities in i = n + 1, . . . , 2n, we overall have l = 2n
linear inequalities. In all instances of problem (6.1) we took d = 1. In addition, we generated
two more instances (also included in the link we provided for Table 1) with larger values of
n, where only a portion of the variables are restricted by the two-sided bound constraints.

To compare the performances of Algorithm BB with the method of [7] we first estimated
the values of |F∗| for the specific setting (6.3) of the linear constraints in problem (6.1). We
note that to ensure that FE �= ∅, the following must hold: if i ≤ n satisfies i ∈ E, then
i + n /∈ E, and if i ≥ n + 1 satisfies i ∈ E, then i − n /∈ E . Otherwise the constraints
defining the face FE include both xi = li and xi = ui , which is impossible. In this case,

123

J Glob Optim

there exists an analytic criterion for checking whether for a given set E ⊆ {1, . . . , 2n} the
intersection FE ∩ B[0, 1] is empty or not, formulated as follows.

Lemma 6.1 Consider problem (6.1) with the linear constraints (6.3). Define b =
(u1, . . . , un, l1, . . . , ln)T . Then for a subset E ⊆ {1, . . . , 2n} for which the face FE is
not empty, it holds that FE ∩ B[0, 1] = ∅ if and only if

∑
i∈E b2i > 1.

Proof “If”: Assume
∑

i∈E b2i > 1. Then for all x ∈ FE , as E can contain only one index of
each couple {i, i + n} for i = 1, . . . , n, it follows that

‖x‖2 =
n∑

i=1

x2i ≥
∑

i∈E∩{1,...,n}
x2i +

∑

i∈E∩{n+1,...,2n}
x2i−n

=
∑

i∈E∩{1,...,n}
u2i +

∑

i∈E∩{n+1,...,2n}
l2i−n =

∑

i∈E
b2i > 1,

and thus, FE does not intersect B[0, 1].
“Only if”: Assume

∑
i∈E b2i ≤ 1. Define a vector x̃ as follows:

x̃i =
⎧
⎨

⎩

0 i, i + n /∈ E,

ui i ∈ E,

li i + n ∈ E .

Then x̃ is well defined as E contains at most one index of each couple {i, i + n}, and it
satisfies

‖x̃‖2 =
n∑

i=1

x̃2i =
∑

i∈E∩{1,...,n}
x̃2i +

∑

i∈E∩{n+1,...,2n}
x̃2i−n + 0

=
∑

i∈E∩{1,...,n}
u2i +

∑

i∈E∩{n+1,...,2n}
l2i−n =

∑

i∈E
b2i ≤ 1,

and x̃ ∈ FE , as we assumed li < 0 < ui , so x̃ ∈ FE ∩ B[0, 1]. ��
The implementation of the BFS on the instances described in Table 2 was done with

no “black list”. Though the black list had been intended to avoid some tests on immediate
child-nodes of nodes (faces) already detected as infeasible, the test whether a face was in the
black list practically required significant computational effort when the total numbers of faces
checked became large. Thus, the results achieved without applying a black list were superior
when the method was applied on the instances in Table 2.Whenever in step 2 of the algorithm
we reached a face not in L , that face was checked to decide whether it intersected the ball.
The simple criterion formulated in Lemma 6.1 was applied at each intersection check. It was
run till a time limitation of 12 hours was reached. In some cases (where n = 20) the exact
size of F∗ was reached after running time of 6 minutes or less.

In the experiments described in Table 2, AlgorithmBB found the optimum after evaluating
only few nodes, sometimes even after just one node. The solver SCIP was not able to stop in
reasonable running times for any of those instances, though in all the instances with the prefix
“spar” it did compute the correct optimal solution (that is, the best upper bound till the run
was interrupted manually indeed contained the optimal value, and the best feasible solution
obtained by then was indeed optimal). Nevertheless, in the last two instances in Table 2
SCIP was unable to correctly detect feasibility of those problems. The results achieved by
Algorithm BB clearly demonstrate the superiority of Algorithm BB over the method in [7], at

123

J Glob Optim

Table 2 Instances from [11], with d = 1 and all the constraints are of the form li ≤ xi ≤ ui

Case name n l U Nodes Time (s) |F∗| or
H (nH) H (nH) a lower bound

spar020-100-1.mat 20 40 −180.74 3 (191) 0.01 (0.48) |F∗| = 16,259

spar020-100-2.mat 20 40 −152.32 3 (59) 0.02 (0.125) |F∗| = 12,284

spar020-100-3.mat 20 40 −181.28 1 (1) 0.016 (0.004) |F∗| = 20,663

spar030-060-1.mat 30 60 −143.14 1 (1) 0.02 (0.004) |F∗| ≥ 171,679

spar030-070-1.mat 30 60 −159.18 3 (1875) 0.01 (4.22) |F∗| ≥147,079

spar030-070-3.mat 30 60 −182.87 15 (421) 0.029 (1.04) |F∗| ≥ 132,278

spar030-100-1.mat 30 60 −182.51 7 (3839) 0.03 (10.25) |F∗| ≥ 183,020

spar040-080-1.mat 40 80 −224.67 3 (21) 0.02 (0.055) |F∗| ≥ 152,750

spar040-100-1.mat 40 80 −234.81 3 (109) 0.02 (0.24) |F∗| ≥ 164,138

spar040-100-3.mat 40 80 −264.96 1 (1) 0.02 (0.004) |F∗| ≥ 130,880

Data_30of90_ers.mat 90 60 −195.485 3 (1081) 0.034 (2.51) |F∗| ≥ 148, 011

Data_40of100_ers.mat 100 80 −281.98 15 (3757*) 0.056 (10.38*) |F∗| ≥ 270, 948

The last two instances include two-sided bound constraints only on the first 30 or 40 variables, respectively.
* The non-heuristic BB yielded an approximate solution with U = −280.62

least for problem (6.1) with the bound constraints (6.3). We chose the setting (6.3), as it was
tested and solved by Chen and Burer [11] and thus, it could be a good comparison between
our algorithm and theirs. The paper [11] focuses on a different branch and bound method
they developed for solving the problem

min q0(x) ≡ 1
2x

TQ0x − bT0 x
s.t. Ax ≤ b.

(6.4)

The method for solving (6.1) presented in [11, Section 5] is an extension for the main branch
and boundmethod presented at the same paper. The extended method for solving (6.1) solves
problems of the form (6.4) by a branch and bound algorithm, and utilizes their optimal values
to evaluate the function

L(λ) ≡ min
x

{
1

2
xTQ0x − bT0 x + λ(xT x − 1) : li ≤ xi ≤ ui ∀i

}

for any given λ ≥ 0. They dual problem

max
λ≥0

L(λ) (6.5)

is solved by a bisection procedure, which is possible as L is a concave function. Each
evaluation of L requires solving a problem of the form (6.4). For each λ, a corresponding
primal solution x is computed as well, as an optimal solution of the problem (6.4) for the
relevant λ. Finally, when the maximizer of (6.5) λ∗ is obtained, if a primal-dual solution
(λ∗, x∗) satisfies λ∗(1 − (x∗)T x∗) = 0, then x∗ is an optimal solution of (6.1). Otherwise,
λ∗(1−(x∗)T x∗) is the associated duality gap. The bounds li and ui were randomly generated,
independently, with distributions li ∼ U (−1, 0) and ui ∼ U (0, 1). The ball’s radius was
taken as d = 1 in all instances. However, it is important to note that the method is not
guaranteed to reach an optimal solution, as the problem (6.1) is not convex. Even in the
simple case where only one linear constraint appears, there exist examples in which the
duality gap is nonzero; see e.g., [17, Example 3.3].

123

J Glob Optim

For the sake of comparison of our results with the reported results in [11, Section 5]
regarding the application of Chen and Burer’s method on the above instances of (6.1) we
cite their findings. Only 2 cases out of 33 were not solved within one hour by their method.
They found an average running time of 233 seconds for their method applied to all other 31
instances including the 10 from Table 2. The average duality gap on those runs was 0.026%.

The performances of Algorithm BB on the example cases of [11] was superior to both
methods described in [11] and [7]. It solved only few nodes and required 0.03 seconds or less,
in contrast to few minutes reported in [11], and very large values of |F∗| in Table 2. Even
in the general case of problem (6.1) the numbers of nodes being evaluated were superior to
|F∗| in some cases, and to the total number of intersection checks performed by the BFS of
[7]. As for the CPU times, it should be noted that the heuristics that chooses the order of the
constraints to be involved requires an additional computation effort to compute the number
of violations for a given candidate, but as it reduces (sometimes by an order of magnitude)
the total number of nodes to evaluate, it indeed improves the times except for cases where
only few nodes are evaluated anyway.

6.2 Sparse source localization example

In this subsection we describe results of experiments testing our approach applied to the SSL
problem (5.3). Our experiments considered different settings of problem (5.3) with n = 2, 3
variables and m = 6 to m = 13 sensors. For each setting (m, n) and for each value of
σ ∈ {0, 0.1, 1, 5}, we generated 100 random realizations of the data with the following
properties:

• The sensors were located at m independent random vectors generated by

ai ∼ U ([−49, 51]n), i = 1, . . . ,m.

• The “true” source location was set at xtrue = −50e ∈ R
n, and the distances were noisy

measurements given by

di = ‖xtrue − ai‖ + εi , i = 1, . . . ,m,

with random noise comprised of independent normally distributed components

εi ∼ N (0, σ), i = 1, . . . ,m.

• To ensure positivity and reasonable values (not extremely small) of di , we actually took
max{di , 1} instead of di .

• One measurement, d1 was at first generated as the others d01 = ‖xtrue − a1‖ + ε1, but
then we added another independent noise component δ ∼ N (0, 300), and took the value
d1 = max{d01 + δ, 1}.

For the small noise values (σ = 0 and σ = 0.1) we only took instances withm = 6,whereas
for the large noise values (σ = 1 andσ = 5)we also generated some caseswithm = 8, 10, 13
sensors. In addition, for the large noise values we also considered instances in which d1 was
not extremely noisy, and its distribution was the same as the other di components.

ImplementationFor each realizationwe solved the SLSproblem (5.2) and the SSLproblem
(5.3). The solution of (SLS) was computed by applying the solution of [3] utilizing the GTRS
formulation. As described in Sect. 5, the procedure for solving (SSL) comprises phases 1
and 2 for predetermining for each option of the signs vectors σ ∈ {−1, 1}m, whether the
subproblem (5.4) is “admissible” or infeasible. In each realization of (SSL) we applied the
BFS algorithm describe in phase 1, and then, on the subproblems detected as admissible, we

123

J Glob Optim

Table 3 Averages, min and max over 100 runs of each setting. ext/reg refer to whether d1 contains extreme
noise (ext) or not (reg)

ext/reg n m σ Admissible NodesTot Time phases 1 + 2 (s) Time BB
Ave./min/max Ave./min/max Ave./min/max Ave./min/max

ext 2 6 0 18.3/17/29 271.1/139/838 1.2/0.5/16.9 0.1/0.1/0.4

ext 2 6 0.1 22.5/16/34 525.0/209/1019 1.4/0.5/12.7 0.3/0.11/0.5

ext 2 6 1 21.7/14/33 503.4/177/970 1.2/0.4/8.9 0.3/0.1/0.5

ext 2 8 1 47.1/30/78 1821.1/769/3641 5.0/1.3/28.8 1.0/0.4/2.1

ext 2 10 1 86.5/49/125 4678.5/1767/7863 14.4/4.1/42.9 2.4/0.9/3.9

ext 2 13 1 183.9/136/272 14147.5/6577/27,847 96.5/24.7/272.3 7.3/3.4/14.5

ext 2 6 5 20.3/12/33 456.8/122/998 0.9/0.4/3.4 0.2/0.1/0.5

ext 2 8 5 42.5/16/68 1575.1/280/3604 3.5/0.9/22.3 0.77/0.1/1.8

ext 2 13 5 160.8/103/232 12094.9/5443/25,455 78.8/16.1/193.7 6.4/2.9/13.3

reg 2 6 1 29.4/18/41 700.7/286/1208 1.6/0.6/8.9 0.3/0.1/0.6

reg 2 8 1 59.8/37/85 2143.9/968/3463 5.7/1.8/28.8 1.0/0.5/1.7

reg 2 10 1 107.7/64/156 5282.3/2506/9214 20.0/5.4/330.7 2.8/1.4/4.8

reg 2 13 1 217.9/114/292 15178.5/4394/23,928 72.0/26.9/204.7 7.9/2.3/12.2

reg 2 6 5 26.8/15/40 618.0/183/1330 1.2/0.5/8.1 0.3/0.1/0.6

reg 2 8 5 53.1/19/84 1875.7 /335/3554 3.7/1.0/22.7 0.9/0.2/1.8

reg 2 13 5 188.9/101/278 13,051.7/3775/22,084 41.9/18.3/162.3 6.5/1.9/10.8

ext 3 6 0 29.4/27/51 791.1/471/2219 1.6/0.8/18.3 0.5/0.3/1.4

ext 3 6 0.1 30.4/21/52 1030.6/509/2448 1.5/0.7/9.7 0.6/0.3/1.5

ext 3 6 1 29.3/18/51 972.9/392/2448 1.2/0.6/2.8 0.6/0.2/1.5

ext 3 8 1 81.8/57/145 5599.5/2399/12,101 6.2/2.4/18.5 3.8/1.7/7.81

ext 3 10 1 182.6/102/242 19,355.6/5993/36,055 22.3/6.5/136.6 12.0/3.7/22.5

ext 3 13 1 519.1/346/720 91205.5/38,771/157,457 130.4/44.4/321.8 58.1/24.8/100.3

ext 3 6 5 26.8/15/47 827.7/267/2585 1.1/0.5/1.9 0.5/0.2/1.5

ext 3 8 5 71.7/37/135 4585.5/1371/11,202 4.2/1.7/9.6 2.8/0.8/6.8

reg 3 6 1 46.0/31/57 1778.7/790/2935 2.1/1.1/6.4 1.2/0.5/1.9

reg 3 8 1 119.3/80/159 8174.2/3704/14,499 8.6/3.7/61.5 5.0/2.3/8.8

reg 3 10 1 253.9/152/368 27527.0/9590/46,432 29.9/11.2/145.2 15.9/5.9/28.3

reg 3 13 1 663.6/471/893 108897.5/42,897/190,969 136.5/60.6/368.0 69.3/27.5/121.2

reg 3 6 5 40.1/21/57 1443.0/377/2971 1.5/0.8/2.8 0.9/0.2/1.8

reg 3 8 5 100.1/56/156 6386.7/2286/14,806 5.3/2.0/13.2 3.9/1.4/9.0

applied phase 2. In both phaseswe applied theFGP-test as explained inSect. 5. Theorthogonal
projection on the feasible set of (5.14) was computed at each iteration of the FGP method
by applying a one-dimensional bisection procedure on a monotonically decreasing function.
Eachof the remaining admissible subproblems after phase 2was solvedbyAlgorithmBB.The
heuristics of ordering the constraints with respect to the number of violations by candidates
was implemented in all the experiments. Finally, we took the solution with the best (minimal)
objective value among all the solutions of admissible subproblems.

The results Table 3 presents the numbers of subproblems that remained “admissible” after
phases 1+2, the total number of nodes required for solving these subproblems by Algorithm

123

J Glob Optim

Table 4 Average, max and min error values ‖x − xtrue‖ for the same 100 realizations of Table 3

ext/reg n m σ SLS SLS SLS SSL SSL SSL
Ave. min max Ave. min max

ext 2 6 0 74.11 0.01 338.9 5.11 0 190.49

ext 2 6 0.1 74.11 0.12 339.0 5.3 0.02 190.40

ext 2 6 1 74.15 0.30 339.56 7.7 0.19 189.61

ext 2 8 1 66.35 0.67 274.63 1.45 0.09 7.10

ext 2 10 1 64.66 0.36 226.05 1.17 0.05 7.97

ext 2 13 1 46.35 0.24 249.13 0.97 0.16 3.25

ext 2 6 5 76.13 1.22 342.03 15.6 0.96 186.04

ext 2 8 5 67.27 1.17 275.88 9.69 0.44 170.18

ext 2 13 5 46.75 0.72 249.88 4.79 0.81 16.03

reg 2 6 1 1.04 0.13 3.70 1.33 0.10 5.73

reg 2 8 1 0.99 0.08 3.21 1.15 0.09 4.96

reg 2 10 1 0.82 0.04 3.29 0.99 0.12 2.73

reg 2 13 1 0.76 0.05 2.93 0.95 0.06 2.88

reg 2 6 5 5.16 0.69 18.29 6.25 0.51 28.06

reg 2 8 5 4.88 0.39 17.13 5.51 0.44 13.07

reg 2 13 5 3.76 0.14 13.55 4.63 0.29 14.82

ext 3 6 0 93.20 1.82 321.45 20.35 0.00 206.79

ext 3 6 0.1 93.22 1.74 321.48 20.62 0.03 206.73

ext 3 6 1 93.44 1.54 321.73 23.24 0.26 206.23

ext 3 8 1 82.25 2.07 282.98 5.66 0.27 156.49

ext 3 10 1 81.43 1.02 237.89 2.31 0.43 11.21

ext 3 13 1 61.22 0.93 311.93 2.03 0.47 8.69

ext 3 6 5 98.35 4.27 322.85 39.14 1.29 203.34

ext 3 8 5 82.93 5.71 284.45 18.58 1.35 182.66

reg 3 6 1 2.33 0.38 10.4 2.72 0.26 15.57

reg 3 8 1 1.91 0.35 6.84 2.25 0.40 6.82

reg 3 10 1 1.55 0.26 4.10 1.8 0.27 3.94

reg 3 13 1 1.46 0.28 4.84 1.66 0.31 4.76

reg 3 6 5 14.97 1.92 178.91 15.73 1.29 177.78

reg 3 8 5 9.57 1.76 34.19 10.97 2.00 28.29

BB, and CPU times of phases 1+2 and of Algorithm BB. Table 4 presents the error values
‖x − xtrue‖ where x is the obtained solution of (SLS) or (SSL). In both tables, the given
values are average, minimal and maximal values over the 100 realizations. Instances with no
extreme noise in d1 are marked by “reg” in Tables 3 and 4; the cases with an extremely noisy
d1 are marked by “ext”. In addition, Fig. 2 includes 4 diagrams, corresponding to noise levels
σ = 0, 0.1, 1, 5. It describes the error values ‖x − xtrue‖ of the solution of (SSL) compared
with the same error in (SLS) for each of the 100 realizations of the data parameters with
n = 2, m = 6, and an extreme noise (“ext”) in d1.

As one could observe in Table 4, when most of the measurements contained only a small
noise (or no noise), but one measurement (d1) was extremely noisy (the case “ext”), the

123

J Glob Optim

0 20 40 60 80 100
0

100

200

300

400

Realization number

||x
−x

tru
e||

σ=0

0 20 40 60 80 100
0

100

200

300

400

Realization number

||x
−x

tru
e||

σ=5

0 20 40 60 80 100
0

100

200

300

400
σ=1

Realization number

||x
−x

tru
e||

0 20 40 60 80 100
0

100

200

300

400

Realization number

||x
−x

tru
e||

σ=0.1

SLS
SSL

SLS
SSL

SLS
SSL

SLS
SSL

Fig. 2 Error values ‖x − xtrue‖ of the solutions of problems (SLS) and (SSL) computed for 100 individual
realizations of the “ext” setting, n = 2 and m = 6

solution of (SSL) obtained much better (smaller) average error value than the solution of
(SLS). In Fig. 2, the same observation can be seen for most of the individual realizations
even more significantly than in average. Further notice in Fig. 2 could reveal that when
most of the measurements were exact (σ = 0) we even got x = xtrue in many instances
(although one measurement was extremely noisy), unlike the case of problem (SLS), whose
solution was a very poor approximation in many cases. By the results in Table 4 it also
follows that when the noise level of all the measurements was larger (σ = 1 or 5), the
error of the solution of (SSL) was much lower in some cases, but much higher in others.
When no extremely noisy measurement was involved (“reg”), the solution to (SSL) had no
advantage (in average) over the solution to (SLS) with respect to error. The SSL formulation
is therefore worthwhile only when most of the measurements are exact or very accurate, and
some exceptional measurements are involved.

Table 3 provides information on the efficiency of Algorithm BB in solving subproblems
of the form (5.4), including the ordering heuristics. The running times of Algorithm BB
were usually a few seconds for totally solving all the “admissible” subproblems when the
number of sensors was 13 with 2 or 3 variables. However, it is important to notice that
the pre-process phases 1 + 2 should also be implemented efficiently, as they require much
longer times than the total run of Algorithm BB on the remaining subproblems. The results
described in Table 3 also reveal that the times of the implementation of Algorithm BB over
all the admissible subproblems are quite stable, while the CPU times of the implementa-
tion of phases 1 + 2 admits extreme variations and large values in general. Nevertheless,
phases 1 + 2 significantly reduce the number of subproblems to be solved by Algorithm
BB.

123

J Glob Optim

It is also worthwhile to mention that in practice, at phase 1, it is very rare that a problem
detected as admissible is in fact infeasible. In our simulations, such a case never occurred.
That fact was checked out by a comparison with the solutions of the feasibility problem
(5.6) using a standard convex optimization solver - CVX. In addition, the primal solution
x∗ obtained by the primal-dual relation (5.13) with respect to the optimal λ was feasible for
(5.6) in all our simulations with non-positive dual optimal value. In phase 2, however, it is
not unlikely that the remaining admissible subproblems contain some infeasible ones. Such
cases indeed occurred in our experiments.

Concluding remarks For the lower dimensions n = 2, 3 usually involved in the SSL
problem, with no more than m = 13 sensors, the method could be used to obtain a global
optimal solution within about 10-15 minutes. For a non-smooth nonconvex problem like
(SSL), it may be sufficient from a practical point of view. When one distance measurement
is extremely noisy, the solution of (SSL) admits a low and stable error value ‖x − xtrue‖,
unlike the solution of (SLS).

Acknowledgements The research of Amir Beck is partially supported by the Israel Science Foundation (ISF)
Grant No. 1821/16.

References

1. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to
integrate cp and mip. ZIB-Report 08-01 (2008)

2. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints.
SIAM J. Optim. 17(3), 844–860 (2006)

3. Beck, A., Stoica, P., Li, J.: Exact and approximate solutions of source localiztaion problems. IEEE Trans.
Signal Process. 56(5), 1770–1778 (2008)

4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear invers problems.
SIAM J. Imaging Sci. 2(1), 183–202 (2009)

5. Beck, A., Teboulle, M., Chikishev, Z.: Exact and approximate solutions of source localiztaion problems.
IEEE Trans. Signal Process. 56(5), 1770–1778 (2008)

6. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
7. Bienstock, D.,Michalka, A.: Polynomial solvability of variants of the trust-region subproblem. In: SODA,

pp. 380–390 (2014)
8. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse

modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)
9. Burer, S., Anstreicher, K.: Second-order cone constraints for extended trust-region subproblems.

Manuscript, Department of Management Sciences, University of Iowa, Iowa City, IA 52242, (2011)
10. Burer, S., Yang, B.: The Trust Region Subproblemwith Non-intersecting Linear Constraints, Manuscript.

University of Iowa, Iowa City (2013)
11. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive

programming. Math. Program. Comput. 4, 33–52 (2012). doi:10.1007/s12532-011-0033-9
12. Cheung, K.W.,Ma,W.K., So, H.C.: Accurate approximation algorithm for toa-basedmaximum likelihood

mobile location using semidefinite programming. In: Proceedings of ICASSP, vol. 2, pp. 145–148 (2004)
13. Gay, D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2(2), 186–197

(1981)
14. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S.,

Kimura, H. (eds.) Recent Advances in Learning and Control. Lecture Notes in Control and Information
Sciences, pp. 95–110. Springer, Berlin (2008). http://stanford.edu/~boyd/graph_dcp.html

15. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1, (March
2014) http://cvxr.com/cvx

16. Hsia, Y., Sheu, R.L.: Trust region subproblem with a fixed number of additional linear inequality con-
straints has polynomial complexity (2013). arXiv:1312.1398

17. Jeyakumar, V., Li, G.Y.: Trust-region problems with linear inequality constraints: exact sdp relaxation,
global optimality and robust optimization. Math. Program. Ser. A 147, 171–206 (2014)

123

http://dx.doi.org/10.1007/s12532-011-0033-9
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx
http://arxiv.org/abs/1312.1398

J Glob Optim

18. Martínez, J.M.: Local minimizers of quadratic functions on euclidean balls and spheres. SIAM J. Optim.
4(1), 159–176 (1994)

19. Moré, J.J.: Generalizations of the trust region subproblem. Optim. Methods Softw. 2, 189–209 (1993)
20. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572

(1983)
21. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2000)
22. Sorensen, D.C.: Newton’s method with a model trust region modification. SIAM J. Numer. Anal. 19(2),

409–426 (1982)
23. Sturm, J., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 288, 246–267 (2003)
24. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1), 245–267 (2003)

123

	A branch and bound algorithm for nonconvex quadratic optimization with ball and linear constraints
	Abstract
	1 Introduction
	2 The model
	3 The main branch and bound algorithm
	3.1 Heuristics

	4 The inner oracle in the quadratic problem (1.1)
	4.1 The trust-region subproblem
	4.2 Solving relaxed subproblems

	5 Application to sparse source localization problem
	6 Numerical experiments
	6.1 Minimizing a general quadratic over the intersection of a ball and affine half-spaces
	6.2 Sparse source localization example

	Acknowledgements
	References

