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Abstract

The focus of this thesis is on the rate of convergence analysis and efficiency of gradient
based methods for convex optimization problems (COP) and the related convex feasibility
problem (CFP). The main advantage of these methods is their simplicity. In most cases,
these methods consists only of matrix/vector multiplications at each iteration of the algo-
rithm. A main drawback of these methods is that without making strong assumptions on the
problem’s data, they suffer in general, from relatively low convergence rate. Our main objec-
tive and contribution is to derive simple algorithms with improved rate of convergence. We
analyze various classes of problems, including quadratically constrained convex problems,
conic linear systems and nonsmooth convex constrained minimization. For each of these
classes we develop and analyze specific and simple algorithms. We prove that under suitable
assumptions on the problem’s data, the resulting methods are either linearly convergent or
exhibit rates which are almost independent of the problem’s dimension. Our methodology
relies on convex analytic tools combined with the theory of error bounds within which we

develop new concepts and approaches to achieve the desired stated goals.

vil



Chapter 1

Introduction

This thesis concentrates on the rate of convergence analysis and efficiency of gradient based
methods for convex optimization problems (COP) and the related convex feasibility problem
(CFP). While each of the following four chapters of the thesis can be read independently as
being essentially self contained, there is much in common with respect to the mathematical
tools we use and to the kind of results we derive. The unified line of analysis in all of the
chapters relies on the fact that we are considering first order methods in order to solve (COP)
and (CFP). First order methods are methods that use at each iteration of the algorithm only
information on the function values and the gradients (or subgradients), at some given points,
but not the the information on the Hessian. The main advantage of these methods is their
simplicity. In most cases, these methods consists only of matrix/vector multiplications at
each iteration of the algorithm. A main drawback of first order methods is that they suffer
in general, from relatively low convergence rate and produce low accuracy optimal solutions.
This is in sharp contrast with the more sophisticated interior point methods that exhibit
very good theoretical rate of convergence, but often require heavy computational tasks, such
as matrix factorizations and solutions of linear systems at each iteration. Therefore, the
simplicity of first order methods may have an edge over the interior point based algorithms
for solving very large scale problems, where it is sometimes impossible to apply even one

iteration of an interior point method.

Most of the analysis in the thesis is devoted to the investigation of non-asymptotic rate
of convergence analysis for first order methods, that is we are interested to know the order of

magnitude on the number of iterations necessary to produce an approximate optimal solution.



In general, without strong assumptions on the problem’s data, the rate of convergence of first
order methods can in fact be very poor. The natural question which emerges is then: can
we derive better rates of convergence, under reasonable assumptions on the problem’s data?”
The answer to this question will be the main preoccupation of this thesis and is developed
along the following four chapters, for various classes of gradient-based algorithms to solve
(COP) and related projection algorithms for solving (CFP).

A larger introductory chapter was considered, but such a chapter would have included too
much repetition of context to be attractive. Indeed, each of the following chapter contains its
own detailed introduction that describes the problem, the motivation behind it, a literature
overview, and our contribution. We thus give below just a brief summary of the main results.

Here is how the rest of this thesis is organized.

e In Chapter 2, the gradient projection algorithm is considered for solving problem
(COP). We introduce an error bound called the Gradient Error Bound (GREB) which
is proven to imply linear rate of convergence of the algorithm. We then consider the
class of quadratically constrained convex programs and derive a dual formulation on
which the projected gradient method can be applied to produce a simple algorithm.
We then develop the mathematical tools necessary to prove that (GREB) is satisfied
for the resulting dual, which thus establish a provably linear convergent and simple

algorithm for solving this class of problems.

e Chapter 3 is concerned with the convex feasibility problem where we present several
projection type algorithms for its solution. We prove that the rate of convergence of the
known projection algorithms is not bounded. However, if a Local Error Bound (LEB)
is satisfied then linear rate of convergence is proven. Moreover, using elementary
convexity arguments, we show that the standard Slater condition implies LEB. A
connection between (LEB) and the error bound derived for the gradient projection

algorithm (GREB) is established and used to show further convergence rate results.

e Chapter 4 studies a specific case of the convex feasibility problem. More specifically, we
consider the problem of finding a point in the intersection of an affine set and a compact
set. The approach in this chapter is to transform the problem to a convex optimization
problem and solve it with the conditional gradient method. The rate of convergence

of the function values of the sequence generated by the conditional gradient method is



known to be sublinear. However, we prove that if the Slater condition on the original
convex feasibility is satisfied then the function values converge to an optimal point

with a linear rate.

e In Chapter 5 we analyze the Mirror Descent Algorithm, which is shown to be a gen-
eralization of the subgradient projection method and thus is also applicable to non-
differentiable optimization problems. As a consequence of the developed analysis, we
present a simple algorithm for solving convex problems over the unit simplex which
has an efficiency estimate proven to be almost independent in the dimension of the

problem.

To make the thesis completely self-contained and to separate known results from our contri-
bution, we have also included four appendices. Appendix A includes all the basic classical
results on projections. Appendix B contains some classical mathematical results that are
used throughout the thesis. At the end of Chapter 2 we added an appendix that includes
the classical results on the gradient projection algorithm. Chapter 5 is ended with an ap-
pendix that analyzes the rate of convergence of the conditional gradient method. All of the

appendices serve us throughout the thesis and can be used as a reference tool.



Chapter 2

The Gradient Error Bound

2.1 Introduction

This chapter considers the convex optimization problem:

min f(x)

z€s

where f is a continuously differentiable convex function with Lipschitz gradient with Lips-
chitz constant L and S is a closed convex set. A well known and simple algorithm to solve this
problem is the Gradient Projection Algorithm (in short, GPA). It starts with any arbitrary
point 2° € R and generates a sequence {z*} via the iteration: x*T! = Pg(zF — ¢tV f(2*)),
where t > 0 is a stepsize and Ps denotes the orthogonal projection on S. The GPA has been
studied extensively in the literature, see for example [23],[25],[17],[7],[9], [18],[28],[41].

More details and further references on the GPA can be found in the book of Bertsekas [6].
In [25] it is proven that if the step size is a positive constant less than % then the function
values converge to the minimum value with a sublinear rate. Also, it is proven that if f is
twice differentiable and strongly convex then the sequence generated by GPA converges to
an optimal point with a linear rate. Further results in that direction can be found in Dunn
[17].

The main advantage of GPA is its simplicity, provided that the orthogonal projection on
the set S and the gradient of f can be easily computed. For example, if S is an affine space
then the projection on S at each iteration of GPA involves only matrix/vector multiplications.

(Other cases where the projections can be computed analytically are given in Appendix A).



Its main drawback, as just mentioned above, is that the convergence rate of GPA is in general
only sublinear, unless some further and often restrictive assumptions on the problem’s data
are made. A natural question is thus to identify classes of problems for which: on one hand
the rate of convergence can be improved, say to linear, under weaker or/and reasonable
assumptions, while on the other, the simplicity of the algorithm of GPA will be preserved,
namely the projections and gradients can be computed efficiently /analytically. As we shall

see, these two requirements often lead to some conflicting situations.

The first part of this chapter will study general conditions under which the rate of con-
vergence of GPA can be guaranteed to be linear. More specifically, we discuss the conditions
which insure linear convergence rate of the the sequence of the distances from the optimal set
to zero and linear convergence rate of the function values to an optimal value. At this point,
we would like to emphasize that we are interested here in nonasymptotic rate of convergence,

namely we are looking for results of the type:

for some v € (0,1) and C > 0.
For that purpose, we introduce the Gradient Error Bound (in short, GREB) which reads

as follows: For every closed bounded set B C R™ there exists og > 0 such that:
Vee BNS d(x,X") < opT(z).

where X* is the optimal set, T'(z) = ||z — Ps(z —tV f(z))]|, and ¢ satisfies 0 < ¢ < . Notice
that T'(x) is an easily computable quantity and satisfies the property that it is nonnegative
and T'(z) = 0 is if and only if 2 € S. One important application of the GREB assumption is
that we can bound the distance of a point to the optimal set in terms of an easily computable
quantity. Thus, we can use this bound to define stopping rules in iterative algorithms solving
the optimization problem.

Besides the above theoretical implication, it is widely known that existence of error bounds
is a key ingredient in proving convergence rates of iterative methods. For a comprehensive

survey on Error Bounds, their applications and references we refer the reader to Pang [34].

The concept of GREB considered here is a slightly different version of an error bound
recently introduced by Luo in [26] (For convenience, this assumption will be called here
LGREB).



Assumption LGEEB(Luo,[26]): For every v > inf,cs f(x) there exists scalars v > 0,7 >
0 such that,

d(z, X*) < 7T(2)7,
for all z € S with f(z) <v and T'(z) <.

It was proven in [26] that the existence the LGREB assumption with v = 1 together
with an assumption of proper separation of isocost surfaces implies an asymptotic linear rate
of convergence of the corresponding sequences of function values generated by GPA, even
in the nonconvex case for f. The GREB assumption was not investigated in the literature.
However, because of the apparent similarity between the two assumptions, most of the known
results on LGREB can be easily transformed to results on GREB. Moreover, the form of
the GREB assumption is much more consistent to error bounds defined on convex feasibility

problems (see chapter 3).

Unfortunately, it is in general a very hard task to prove the validity of the LGREB as-
sumption. As we shall see, in most cases this requires to admit the existence of a unique
optimal solution for (P) and the constraints set S to be polyhedral. In fact, the LGREB
assumption was proven to hold for only very few instances of problem (P) which we now
review. The first case is the well known situation when f is assumed strictly convex and
S is a polyhedral set. Note that this result was recently recovered by Luo [26] as a special
case of a more general framework. In the same paper, convergence rate results are estab-
lished under the weaker assumption of 7 strict convexity for the objective f, where v > 1
(the case v = 1 corresponding to strong convexity) and S is either polyhedral or consist
of convex inequalities described by differentiable subanalytic functions ([14]) satisfying the
Slater’s condition. However, only sublinear rate of convergence is established in these cases
whenever v > 1 and thus these results are not be applicable to our declared task of proving

linear convergence of GPA.

The second case is when f is assumed quadratic (possibly nonconvex) and S is a poly-
hedral set, see Luo and Tseng [27]). The third case is the case where the constraint set S is

polyhedral and the objective is given in the composite form

f(x) = (¢, ) + g(Ex),



where E is a given m X n matrix with no zero column, ¢ € R" and g is a strongly convex
differentiable function on R™ with Vg Lipschitz continuous in ™. The later can be relaxed
at the price of further assumptions on g, see Luo and Tseng [28] for further details. Finally
the last case is for the dual functional case (see [29]) where S is a polyhedral set and f has

the following form:

J(x) = (g, x) + max{{Exz,y) — g(y)},

where Y is a polyhedral set in R™, E is an m X n matrix with no zero column, ¢ is a
vector in K", and ¢ is a strongly convex differentiable function in ™ with Vg Lipschitz

continuous in R™.

Thus, it appears that all known results in the literature on the application of LGREB (and
thus GREB) to GPA type algorithms with easy/computable projections have been restricted
to consider constrained problems only with polyhedral constraints. Not too surprisingly, the
polyhedral structure indeed plays a central role in the analysis and results developed in [26],
[27], [28].

We thus consider the question whether it is possible to extend the application of GREB
either to other and more general structures for the constraints set S or to other classes of
objective functions than the ones discussed above, when solving (P) through GPA.

The first aim of the chapter is to further investigate the GREB assumption. We will
prove that whenever the GREB assumption holds in the convex case, it implies linear rate
of convergence of the distances from the optimal set of the sequence generated by GPA. We
will also show that if f is a strongly convex function then the GREB assumption is valid.
Thus, the GREB assumption is in some sense a generalization of the more restrictive notion
of strong convexity (which as already mentioned also implies linear rate of convergence of
the sequence generated by GPA).

The second aim, and main contribution of this chapter is to prove that for the impor-
tant class of convex quadratically constrained quadratic problems (for short QCQP), one
can derive a GPA-based algorithm which involves matrix/vector multiplications and satis-
fies GREB and thus is provably linearly convergent algorithm. (QCQP) is the next nat-
ural generic class of constraints one might think of after polyhedral constrained problems.
(QCQP) is the problem of minimizing a quadratic function subject to convex quadratic

inequality constraints. Besides the theoretical interest in convex quadratically constrained



quadratic problems ((QCQP) for short), we note that the class (QCQP) can be used to
model many important Engineering problems, see for example the recent book of Ben-Tal
and Nemirovsky [5] which includes a wealth of engineering problems that can be formu-
lated as (QCQP). The class (QCQP) can also be formulated as a second order cone problem
and either be solved directly or through their conic formulations via interior point meth-
ods (see e.g. Nesterov-Nemirovsky [33], Ben-Tal-Nemirovsky [5], and [30]). These methods
are proven to be theoretically efficient, i.e., with polynomial complexity bounds. However,
there are instances of QCQP where these sophisticated methods might not be a good choice.
In particular, whenever the problems are very large scale, e.g., with the dimension of the
decision variables or the number of constraints or both is extremely large. Indeed, these
methods require heavy computations at each iteration and thus are in general impractical in
these cases, unless very special structures are identifiable in the problems under considera-
tion. This motivated us to develop a simple algorithm that involve elementary/matrix vector
multiplication at each iteration, and a natural candidate to achieve this task with a linear
rate of convergence properties is the GPA, provided that one can establish the validity of the
GREB assumption. To achieve this goal requires a novel way to adequately formulate the
QCQP and a new line of analysis for proving the validity of GREB. Interestingly, the class
QCQP enlightens well the difficulties encounter in the task of deriving simple algorithms
with linear rate of convergence. Indeed, none of the known results available in the literature
and described above are directly applicable to our problem, as we explain now.

We first note that GPA cannot be applied to (QCQP) directly since it is impossible
to calculate analytically the orthogonal projection onto an intersection of convex quadratic
constraints. Now, we suppose that the QCQP is a strongly convex problem, namely both
the objective and constraints are strongly convex functions. Then, the lack of polyhedrality
of the constraints set precludes the use of the results describe in the first case above to derive
a linear rate of convergence for the sequence of function values.

Thus, we propose to study a dual approach to (QCQP). As shown in the next section, the
standard dual problem consists of minimizing a strictly convex over nonnegative constraints.
In that case we do obtain the desired polyhedral constraints, but GREB does not hold since
the objective is only strictly convex. In fact, even if we could prove strong convexity, the
simplicity of GPA would anyway be lost, and required the inversion of all the matrices at
each iteration of the algorithm. To overcome this difficulty, our first task is to construct

a new dual problem on which the GPA can be applied, namely where the projections can



be computed explicitly and with an objective with Lipschitz continuous gradient. It turns
out that one can construct a dual problem with the desirable affine constraints, rendering
also the computation of the projections a trivial task. The dual objective function we derive
possesses an interesting structure in its own, and is proven to be continuously differentiable
with a Lipschitz continuous gradient and with a computable Lipschitz constant. However,
the dual functional does not belong to any of the class of functions alluded above for which
known results could be applicable to verify the validity of the GREB assumption. This
is the price to pay for reducing the QCQP to a problem with two of the three desirable
properties (here we get affine constraints and easy computations of the projections) but no
strong convexity (or even strict convexity of the dual objective). Thus, the second task will
be to prove that the GREB holds for the obtained dual objective. The later task required
to develop a rather involved analysis which will be one of the main preoccupation of this

chapter.

The chapter is organized as follows. Section 2.2 presents some notations and briefly
recall well known results concerning the gradient projection algorithm. In section 2.3 we
present the GREB assumption and recall that the validity of the GREB assumption implies
asymptotic linear convergence of the function values. In the convex case we prove that
the sequence generated by GPA converges to an optimal point at a linear rate. In section
2.4 we present a new dual formulation of (QCQP) which is derived through the use of a
decomposition technique. We establish explicit relations between the primal-dual optimal
solutions and study the properties of the dual objective. The following section develop the
machinery needed to prove that GREB is satisfied for the derived dual formulation. To
make the whole chapter self-contained and for references purposes, we end this chapter with
an appendix including compact proofs of the basic and well known results on the gradient

projection algorithm.



Part 1. Convergence Rate Analysis of the Gra-
dient Projection Algorithm

2.2 General Results on GPA

Consider the following general optimization problem:

(P) inf{f(z):x € S}.

Throughout the chapter we make the following three assumptions:
Assumption 1 S CR"” is a closed convez set.

Assumption 2 f : R” — R is continuously differentiable and V f is Lipschitz continuous
on S, that is,
IVf(@) = Vil < Lilz -yl Yo,y €S,

where L > 0 s the Lipschitz constant.

Assumption 3
inf{f(x):2z €S} >—o0,

We use the following notations: Pg is the orthogonal projection onto S. Ng is the normal
cone to S. X* is the set of all stationary points of (P) which we assume always to be
nonempty. A stationary point of (P) is a point z* that satisfies z* = Pg(z* — tV f(2*)) for
some ¢ > 0. This is equivalent to the condition —V f(z*) € Ng(z*). A local minimum of
(P) is necessarily a stationary point and in the case where f is convex a stationary point is
also a local minimum (thus, in the convex case X* is the optimal set). In the convex case
we denote f* = inf,cq f(2).

The GPA algorithm (GPA is a shortcut for Gradient Projection Algorithm) is defined as

follows:

GPA

10



Initial step: take 2° € S
general step: 2" = Pg(2* —tV f(2%)), t >0, k=1,2,...

Notice that GPA does not include any line search and instead uses a constant stepsize. Later
on, we will find suitable choices for ¢.

Other possible assumptions that will be made on the problem (in some sections) are:
Assumption 4 f is a convex function.
Assumption 5 [ is strongly convexr with parameter m > 0.

The convergence results for GPA are scattered throughout the literature and thus we in-
cluded an appendix at the end of this chapter which gives all the proofs of the main and
known results in a self contained manner. Here we will state the main results. The conver-

gence results will be given in the following cases:

e the general case (we assume only assumptions 1,2,3).
e f is convex (assumptions 1,2,3,4).
e f is strongly convex (assumptions 1,2,3,5).

Theorem 2.2.1 (Convergence of GPA in the non convex case) Suppose that assump-
tions 1,2,3 are fulfilled. Let {x*} be a sequence generated by GPA with constant stepsize
0<t< % Then,

1. {f(x®)} is monotone decreasing.

2. Every accumulation point of {x*} is a stationary point of (P).

Theorem 2.2.2 (Convergence of GPA in the convex case) Suppose that assumptions
1,2,8,4 are fulfilled. Let {x*} be the sequence generated by GPA with constant stepsize
0<t< % then:

1. % converges to some x* € X*.

2. f(z*) — f* <& for every k > 1 and some constant C > 0.

11



Theorem 2.2.3 (Linear Rate of Convergence Under Strong Convexity) Suppose that
assumptions 1,2,3,5 are fulfilled. Let {x*} be the sequence generated by GPA with a constant

stepsize 0 < t < sz then it converges to the unique minimum x* with a linear rate. In fact,
k41 k
[ =27 < Ol|la” — a7,

where

0 =+1—2tm+2L2 < 1.

2.3 The Gradient Error Bound

In this section we assume assumptions 1,2,3. We present the gradient error bound (shortcut
- GREB) which is closely related to the operator T

T(z) = [|Ps(x =tV f(x)) — |-

Assumption 6 (GREB) For every closed bounded set B C R™ there exists a op > 0 such
that:
Vee BNS d(z,X") <opT(z).

We have already seen that under strong convexity GPA has a linear rate of convergence
to an optimal point. We will prove that strong convexity is not necessary for deriving linear
rate of convergence. Indeed, GREB is a weaker condition which implies the linear rate of

convergence. Before proving that, we will prove that strong convexity implies GREB.

Lemma 2.3.1 Let S C R" be a closed convexr set and let f : R™ — R be strongly convex
function with a parameter m > 0. Then 3C > 0 such that,

|z — 2| < CT(x) Vz € 8S.
In particular, GREB is satisfied.

Proof: The strong convexity of f implies that X* = {2*}. Recall that by the definition of
X* the point x* satisfies:

" = Pg(z* —tV f(z7)). (2.1)

12



Also note that by Theorem 2.6.4 one has:

|Ps(z — tV f(z)) — Pg(z* — tV f(z))|| < V1 —2tm + 2L2||x — z*||. (2.2)
Now,
d(z, X*) = |z —2a7
S lo = Ps(a* — 9 (")
= ||z — Ps(x —tVf(z)) + Ps(x —tV f(z)) — Ps(z* —tV f(z"))||
< lz = Ps(z =tV f(@))|| + [|[Ps(z =tV f(x)) — Ps(z* =tV f(z"))||
(252) T(z) + V1 = 2tm + 2L2||x — z*||.
Thus,

|z —2*|] < T(x) +V1—2tm + 2L2||x — 2*||,
which is equivalent to:

1
— 1 —=2tm + 212

e - ol < - ().
. . . _ 1

To summarize, we have found that GREB is fulfilled with op = ppp ey O

In the next two subsections we will derive convergence properties of GPA under the GREB

assumption in the non-convex case and in the convex case.

2.3.1 The Non Convex Case

In this subsection we assume only assumptions 1,2,3,6.

Let {z*} be a sequence generated by GPA. As proved in the appendix (Theorem 2.6.1,
Corollary 2.6.1) every accumulation point z* of the sequence is also a stationary point and
f(@*) — f(z*). In [26] it was proven that if in addition LGREB is satisfied, {z*} is a
bounded sequence and assumption 7 (which follows) is satisfied, then f(z*) converges to f*
with an asymptotic linear rate of convergence where f* = f(z*) for some stationary point
x* of (P). From completeness reasons, the result is stated here. The proof is given in the

appendix and adapted to our definition of GREB.

13



Assumption 7 (Proper separation of isocost surfaces) There exists a scalar ¢ > 0
such that

T,y EX*,f(:U) %f(y) = ||x—y|| > €
Assumption 7 is satisfied for instance when X* is finite.

Theorem 2.3.1 (Asymptotic Linear Convergence Rate of the Function Values) Let
f be a function with Lipschitz continuous gradient with Lipschitz constant L. Let {z*} be

a sequence generated by GPA with constant stepsize 0 < t < % Suppose that {x*} is

bounded and that GREB and assumption 7 are satisfied. Then, {f(z*)} converge to f*
where f* = f(x*) for some stationary point x*. Furthermore, there is 0 < f <1 and K > 0
such that,

V> K fa*) = f < B(f(R) - 1),
where f* = f(z*).

2.3.2 The Convex Case

In this subsection we assume only assumptions 1,2,3,4,6. We prove that in the convex case
GREB implies linear rate of convergence of the sequence generated by GPA. First, we prove

a technical lemma that investigates the operator p defined by:

p(x) =z — Ps(z — tVf(z)).
Remark: In our notations, T'(x) = ||p(x)||.
Lemma 2.3.2

(p(z) — p(y),z —y) > 0llp(z) — p(y)||* Vz,y € R",

where It
f=1——.
4

Proof: Let z,y € R". By Theorem A.1.6:

(Ps(x—tV f(x))=Ps(y—tV f(y)), s=tV f(x)—y+tV f(y)) > | Ps(x—tV f(x))=Ps(y—=tV f(y))|,
(2.3)

14



By using the p notation we have that (2.3) is equivalent to:

(= p(x) —y+py),z —tVf(z) —y +tVf(y) > |z — plz) —y + p(y)|I*.

After subtracting the RHS of the equation from the LHS of the equation, the equation

becomes:

(z —p(z) =y +p(y), plx) =tV f(z) — p(y) +tV f(y)) >0,

which is equivalent to,

v

lo(x) — p()II” + H{V f(z) = V f(y), - y)
—t{p(z) — p(y), Vf(z) = V(y))
Theorem B.0.5 t
> () —p(y)||2+z||Vf(fv) —Viwl?
—t{p(x) — p(y), Vf(z) = V(y))
Cauchy Schwartz inequality "
> () —p(y)||2+z||Vf(x) - Vil
—tllp(x) = pW)| - IV f(z) = Vf(y)l].

(p(z) = ply), > —y)

Denote a = [|p(x) = p(y)l, # = [[Vf(z) = Vf(y)] then we obtain,

(pla) = p() 2 — ) = o®+ 75— taf
(=540~
> o?(1-=
R
2 (1= ) lo(@) =)l

15



Theorem 2.3.2 (Linear Rate of Convergence of d(z*, X*)) Let f be a convex function

with Lipschitz continuous gradient. Suppose that GREB is satisfied. Let {2*} be a sequence

generated by GPA with constant stepsize 0 < t < % Then there 1s 0 < n < 1 such that,

d(z" X*) < nd(a*, X).

Proof: By the second part of Lemma 2.6.3 we have that {z*} is bounded and by GREB we

obtain that there is a ¢ > 0 such that:

d(z*, X*) < o|lz" — 2",

or,
d(z*, X*) < olp(a")]].

Let 2* € X* then applying Lemma 2.3.2 with = 2, y = 2* we obtain:

(p(a"), 2% —a*) > 0]| p(=*)||*.

Now,
ka-}-l . x*“Q — ||33k _ x*||2 + 2<Ik+1 _ xk’xk _ x*> + ka-}-l _ kaz
= |l2* —2"|* = 2{p(a*), 2" — =) + [|p(a")||*
(2.5)
< 2t =27 = 20) @) + [lp(=*) )1
= la* =27 = (20 — 1)l
(2.4) 20 -1
<t P - et X
o
Therefore,
20 -1
d2(xk+1,X*) < d($k,X*) . - d(l‘k,X*)
20 -1
= <1 — > d*(z*, X*),
o
and hence,
20 -1
d(z*, X*) <41 — d(zF, X*)
o

16
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O

The linear rate of convergence of the distance of the sequence from the optimal set implies

also the linear rate of convergence of the function values of the sequence as stated in the
following theorem:

Theorem 2.3.3 (Linear rate of convergence of the function values) Let f be a con-
ver function with Lipschitz continuous gradient. Suppose that GREB is satisfied. Let {2}
be a sequence generated by GPA with constant stepsize 0 < t < % and denote the optimal
value by f*. Then there is 0 < v <1 and C' > 0 such that,

fa®) = fr < O~

Proof: Since {z*¥} C S is bounded, invoking Lemma B.0.2 one obtains,

f@h) = [ < IVF@EYld(®, X7) < ld(a*, X7),

for some [ > 0. Applying Theorem 2.3.2 the result immediately follows. O
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Part 2: A Dual-Based Gradient Projection Al-
corithm for Quadratically Constrained Convex
Problems with a Linear Rate of Convergence

2.4 A dual approach to Convex Quadratic Program-
ming

2.4.1 The Problem

In this section we consider the minimization of a strictly convex quadratic function under

strictly convex quadratic inequalities,

minimize 27 Qox + 2% x
(QCQP)
s.t. xTQix+2biTx <c¢ Yi=1,2,...,m,

where Qo, @1, ..., Q. are nxn positive definite matrices, by, b1,...,b,, € R"and ¢q,...,¢,, €
R. Throughout we assume that (QCQP) is feasible i.e. ¢; + b7'Q; 'b; > 0 Vi. Our approach
will consist of solving (QCQP) through a dual problem that can be easily solved via the gra-
dient projection algorithm. The main task of this section is to derive a new dual formulation
of (QCQP). Throught this chapter we assume that the Slater condition is satisfied and thus
strong duality is satisfied and the optimal value of (QCQP) is equal to the optimal value of

(DQCQP).

2.4.2 Standard Dual Formulations

First, we shall see that the standard dual formulations of (QCQP) are rather complicated and
thus cannot be used in order to construct efficient algorithms. A standard dual formulation
of (QCQP) can be easily shown to be given by:
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m T m -1 m m
maximize — (bo + Z bz)\z> (Qo + Z AzQz) (bo + Z bz)\z> - Z Aici
i=1 1=1 i=1 1=1
8.t N>0Vi=1,2,...,m,

The trouble with this formulation is that each gradient calculation of the dual objective
function consist of inverting a matrix. Thus, for very large scale problems in the design
variables n (even with small m), a gradient based algorithm would require at each iteration
the computation of inverting a huge (and in general with no structure) matrix, a task which
is practically intractable. Our goal is to find an algorithm that consists only of matrix vector
multiplication and does not involve any matrix inversion at each iteration. To achieve this
task we use the decomposition approach. Here, we duplicate the variables so that we will

obtain simpler expressions for the dual problem. The equivalent primal problem is as follows

minimize 27 Qo + 2b}
s.t. :L‘ZTQl:L‘Z + Qb?a:i <¢ Vi=1,2,...m

=z Yi=1,...,m

We can, for instance, write this problem in the following way:

1 m
minimize — Y x] Qox; + 2b4
m =
T T C_
s.t. z; Qixi +2b; v, <¢; Vi=1,2,...m
=z Yi=1,....,m
Assigning a lagrange multiplier \; € R" for each linear equality constraint we obtain the

following dual:

m
maximize Y g;(\;)

=1

S.t. Z )‘z = bg,
=1
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where g;(\i) = mingr g, o470 <c, ms Qowi + 2\ ;.

The problem here is that the functions g; do not have an explicit expression. The only
case where it is possible to find an explicit expression for g; is the case where Qy = Q.
The motivation behind the new formulation is to enforce the situation where the matrices
in the definition of g; (Qo, Q;) are the same. It turns out that this can be done by adding a

redundant constraint.

2.4.3 The New Dual Formulation

One of the key arguments in establishing the new dual formulation is to guarantee that we
can write Qy as a positive linear combination of the matrices Q; i.e., that Qy = X7 3,Q;
where (1, B2, ..., Bmi1 > 0 (Qmy1 will be constructed later). Of course, there is no guaranty
that there is such linear combination. This is the reason why we will add a “redundant”
constraint to the original problem (QCQP) which will enforce such linear combination. The
following two lemmas allow us to do that. In the sequel Ay (Q) (Amae(@)) denotes the

minimum (maximum) eigenvalue of Q.

Lemma 2.4.1 Let () be a positive definite matriz, b € R, c € R. If v satisfies the following

quadratic inequality
v"Qu + 2072 < c, (2.6)

then
Jz]|” < a,

where

2
a = (%«Q)\/C‘i‘ bTQ_lb + ||Q_1b||) .

Proof: First, since Q = 0, the inverse QQ—! exists and we can write,

27Qr + 20" = (2 + Q') Q(x + Q7'b) — bTQ'D.

Therefore, (2.6) is equivalent to:

(z+Q'D)TQ(x+Q'b) <c+b'Q ' (2.7)
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Suppose that z satisfies (2.6) then:

2]l = llz+Q 'b—Q b
< e+ Q70|+ [lQ7"b]

1
e\ Ain (@) |z + Q7[> + [|Q7 D]
1

\/ Amm(Q)
ﬁ\/w Qb+ Qb = Va,

min

IN

V(@ +Q-10)TQ(x + Q=1b) + |Q ™|

~
IN S
3

where in the second inequality above we use 27 Qz > A\, (Q)]|2||? V2. O

Lemma 2.4.2 Let Qq,...,Q,, be n X n positive definite matrices, by,...,b, € R" and

Cly...,Cm €ER. Let By,. .., Bm be m positive real numbers that satisfy the following inequality:
Z BiAmax (Qz) < )‘mm(QO) (28)
i=1

Then the following set of quadratic inequalities

2T Qr + 207 x < ¢; Vi=1,2,...m, (2.9)

imply the inequality

T
T Qi1 < Cmt1,

where
Qumit = Qo— Y 3Q;, (2.10)
=1
1 2
Cm+1 = )\max(Qm-H) .jﬂiﬂ (7 \/ C; + bTQz_lbz + ||Q7,_1bl||> .
i=1,....m )\mzn(Qz)

Proof: By Lemma 2.4.1 we have that the set of inequalities (2.9) imply that
z]|* < @ (2.11)
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where

2
1
a = min <7\/ci +07Q; b + ||Qz-1bz-||)

i=1,...,m

Let (31,..., B, be m positive real numbers such that

Z Bz')\mam (Qz) < )\mzn(QO)
=1

This inequality implies that Q11 = Qo — 212, i@ is a positive definite matrix. Thus, a

consequence of (2.11) is that

(2.11)
xTQnH»le )\maw(Qm+1)||x||2 S )\ma:L‘(Qm+1)a

An immediate consequence of Lemma 2.4.2 is that (QCQP) is equivalent to:

minimize 27 Qux + 2b] x

s.t. xTQix+2b;fpx§cz- Vi=1,2,..m+1

where (0,11, i1 are as defined in Lemma 2.4.2 and b,,,,; = 0. Note that by the construction

of Quy1 it follows that there are positive numbers (3, ..., 8,1 such that:
m—+1
Q=" 50 212)
i=1
where (1, ..., B, > 0 are chosen to satisfy (2.8) and ,,.1 = 1 (given the eigenvalues of

the matrices, finding such parameters is a trivial task). We can now use the decomposition
technique in order to find the desired dual problem. The decomposition is obtained by
duplicating the variables x € R", so that the resulting problem is equivalent to (QCQP) in
the variables (x,z;) i =1,2,...,m+ 1.

minimize 27 Qux + 2b] x
st wlQur+20 ;< ¢ Yi=1,2,..m+1 (2.13)
=z Yi=1,....m+1
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Substituting (2.12) we have that (2.13) is equivalent to:

m+1

minimize Y Bix] Qiv; + 2bf x
i—1

s.t. xiTQimi+2biTxi <¢g Vi=1,2,..m+1
=z Yi=1,....m+1

where zq,..., 2,41 are vectors in ™. We associate a Lagrange multiplier \; € R" for

every constraint x; = x and form the Lagrangian:

m+1 m+1
L(z,z,..

T, A Amet) = Y i Qi + 20 4+ Y 2M (2 — )

m+1

m—+1 T
= Z (Biz] Qizi 4+ 2\] ;) + 2 (bo Z )\> T.
i—1
Consequently, the dual problem of (QCQP) is
max{h()\l, C Am—l—l)}-
where
s, Amar) = :ETQil'i+25?fE}2£i Vi:l,...,m-HL(x’ Tl Tty ALy Am)
m—+1

m+1
— Z inf (BixT Qizi + 20T ;) + ir;f (2(b0 — Z )\Z.)Tx>

io1 T Qixi+2b] xi<c;

Notice that a direct consequence of the last expression is that h(Aq, ... App1) > —oc iff
Zgﬁl )‘z = bg. ThUS,

B Agr) = {2t el (Gt Qi £205m) L1 i=bo g
— 00 Zi:1 )‘i 7£ bO

In order to find an explicit expression for h(Aq, ..., A\yuy1) we will solve each of the mini-

mization problems in (2.14). The next lemma enables us to find the required expression
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Lemma 2.4.3 Let Q be an n X n positive definite matriz, let by € R",c € R s.t. ¢+
bT'Q~'b > 0. Then,

min (27 Qx + 2)\Tz) = yg0(2) — 2727 Q b —bTQ b

2T Qr+20Tx<c
where,
) —2'Q 1z if 2TQ 12 < 1
A =
fa —20/2TQ 2 +1 if Q12 >1
A—b
z = —

ﬁ )
v = c+b"Q b

Proof: First, we make the following change of variables:

y=z+Q'b,
and we obtain the equivalent minimization problem

(yTQuy + 2\ — b)Ty —22TQ b+ bT'Q'b)

min
yT Qy<c+bTQ~1b

Define 7, v as follows

= A—0b,
v o= c+b'Q7',

we obtain the following equivalent minimization problem

R(n) = min (y"Qy+ 2n"y). (2.15)

yTQy<y

Solving the later via KKT one has:

Qy+n+uQy = 0= (p+1)Qy=—n
1(y"Qy — )
"

AVAR
o o
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Therefore, if y7Qy < v then p = 0 and we have y = —Q !5 so we obtain R(n) =
—nT'Q'n in the case yTQy < 7.

Otherwise, y" Qy = v which implies (u + 1)? = "TQf_I" and thus p = "T%_I" — 1. Substi-

tuting this in the objective function in (2.15) we get R(n) = —2/7/n"Q~'n + 1.
Make the change of variables n = ,/7z and the lemma is proved. O

Now, we will use the separable structure of the minimization problem (2.14). We use the
following notations:

£ = by
o= BT =

N Yo

7m+17

Then,

m+1 m+1

A, Amg1) = D inf (Bixi Qs + 2X] w;) + inf (2(1)0 -y )\Z-)T:U>
i=1

i—1 w7 Qizi+2bT x;<c;

m+1 1 m+1
_ _ . T o Laroy _ T
B zzz:l Bl m?szzL%E?szCz(xz szz * 2&' Ai xl) " H%f (2(b0 ; )\Z) x)
m+1 m+1
= > (Bimiaq.(z) — 2z Q7 'bi — b; Q7 'b;) + inf (2(bo -3 Az-)T:c>
=1 i=1
_ { S (Bivigo, (zi) — 24zl Qi tbi — bI Qi b)) X (AiBizi + Bibi) = by
—00 else

Thus, a dual to problem to (QCQP) is:

m+1

maximize Y (Bivide,(2:) — 2v/7% Q7 b — b Q7 'bi)
=1
m—+1 m—+1

1=1 1=1

Denote for i =1,2,...,m+ 1,
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& = Biv,
hi = —7Q; b,
Q; = ﬁﬁu

and

m+1
=1
m+1

e = b() — Z szz
i=1

We summarize our analysis in the following

Theorem 2.4.1 (A Dual Problem for (QCQP)) A dual problem for (QCQP)is given
by (DQCQP) defined by:

m+1
mazimize Y (86;qq,(z:) + hi z) + f
i=1
(DRCQP)
m+1
S.t. Z 2 = e
i=1
where
[
—T'Q 1z Q2 <1
2) = - 2.16
%(?) { —24/2TQ 12+ 1 else (2.16)
o [1,...,Bm are m positive real numbers such that

ZﬁzAmam(Qz) < )\mzn(QO)
=1
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Qi1 = Qo—D_ BiQs,
i=1

2
Ve +07Q b + ||Q;1bz~||> :

. 1
Cm+1 = )\max(Qm-H) r{nn (v

bm-l—l = 07
Bm+1 - 17
0; = BZ(CZ—l-b?Q;lbl), 1=1,....m+1
m+1
fo= =2 bQ ",
i=1

m+1

e = by— Z Bib.
i=1

hi = —\e+b1Q; b:Q; b,
a; = \Jei+01'Q; bif;.
By following the analysis of derivation of the dual problem, we can easily obtain the

connection between the optimal solution of (QCQP) and the optimal solution of (DQCQP).

This connection is presented in the following lemma:

Lemma 2.4.4 Suppose that (21,29, ..., 2Zms1) 18 the solution of (DQCQP). Define the fol-

lowing variables for i =1,2,...,m+ 1:

D BV A A B R A
o Qi FE  b) if 2T < 1

Then, t1 = x9 = ... = Ty and their common value x is the solution to (QCQP).

We will now show that the objective function in (DQCQP) h(z1, .. ., Zmy1) = S (8iqo, (2:)+

hlIz) + f is a concave function with Lipschitz continuous gradient.

Theorem 2.4.2 The objective function of (DQCQP) satisfies the following properties:
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1. h s concave.

2. h is continuously differentiable and has a Lipschitz continuous gradient with Lipschitz

constant Lj, = maxi<j<m+1 {#Z(Qz)}
Proof:
1. A direct result of duality theory.

2. Clearly, from the separable structure of the function h, we have that it is sufficient to

show that:
T )-1 T -1
U] Q<1
= ) 2.17
9a(n) { 2/nTQ1n—1 else ( )
where () > 0 has a Lipschitz continuous gradient Vgo (Note that go = —qg). In

fact, this property follows directly from the general result on proximal regularization
on convex functions (Lemma B.0.1). Indeed, we will now show that g¢ is a proximal

regularization of the [ norm. More specifically, we will prove that:

. 1 )
ga(u) =2 inf {llvllg-s + sllo — ully- (2.18)

where [|z]|g-1 :=1/2TQ 1z, @ > 0, Lemma B.0.1 then implies that go is differentiable
and finite everywhere and has a Lipschitz gradient with Lipschitz constant 2,4 (Q").
Thus, let us prove (2.18). Let hi(v) = §llv — ul|3-1 and hy(v) = [[v]lg-1. Then,
go(u) = 2inf,cqn{h1(v) + h2(v)}. Invoking Fenchel Duality Theorem we have:

9q(u) = 2sup{=hi(z) — hy(2)}.

But the conjugates are:

1
hi(z) = §zTQz—|—zTu

A =
2 +o00 otherwise

28



Therefore, gg(u) = sup{—27Qz—22"Tu : ||z]|g < 1}. Invoking Lemma 2.4.3 (see (2.15))
it follows that (2.19) and (2.18) coincide, and a simple computation shows that Vh

has a Lipschitz constant L;, = maxi<;<m+1 {/\—‘L@}

2.5 Linear Rate Of Convergence of GPA for QCQP

In the previous section we have proven that the dual of the strictly convex quadratic program
(QCQP) is (DQCQP) which is the problem of maximizing a concave function with Lipschitz
continuous gradient subject to affine constraints. The implementation of GPA to (DQCQP)
is trivial because the orthogonal projection on an affine set is just a linear transformation.
Our main task which thus remains is to prove that GREB is fulfilled for (DQCQP) so that
by Theorem 2.3.2 the linear rate of convergence of distances of from the optimal set of the
sequence produced by GPA on (DQCQP) will follow. Furthermore, since the strong duality
holds for the pair (QCQP) and (DQCQP) then as a consequence Theorem 2.3.3 this will
prove the linear convergence of the sequence of the function values for both problems.
;From convenience reasons we will describe (DQCQP) as a minimization problem and omit
the constant f in the objective. Thus by Theorem 2.4.1 the dual is equivalent to:

m—+1
minimize Y &;90,(m) — hi mi
i=1
(DQRCQP)
m—+1
s.t. Z ;1) = €,
i=1
where,
TH—1 TH—1
e N @ n<1
= ) 2.19
gQ(T]) { 9 /,r]TQ*IT] — 1 else ( )

;From now on, the term (DQCQP) will refer to the minimization problem and not to
the maximization problem defined in the previous section. Denote,
m—+1
Fn) = > (Gigq(m:) — himi), (2:20)

=1
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where n = (n1,...,0my1) and n; € R Vi=1,...,m+ 1. f is the objective function of
(DQCQP) and it was proved in the previous section that f has Lipschitz continuous gradient.
The feasible set is denoted by S and defined by:

m+1
5’:{77: Zami:e}.
i=1

S is, of course, an affine set.
Note that S has a very special structure which enables us to find a simple and explicit

expression for the projection Pg

Lemma 2.5.1 Let y = (y1,...,Ym+1) then,

Py = (y; — aym) 7,
where,
m+1
> oy —e
_ J=t
n= m—+1 '
> o
j=1

Proof: A direct result of Theorem A.2.3.
The linear space associated with S is denoted by W':

m+1
W:{n: Zami:()}.
i=1

Terminology: a vector d € W is called a feasible direction.

The following technical lemma analyzes the relation between the projection on S and the

projection on W.
Lemma 2.5.2 There exists b € S such that

Psn=Pyn+b Vne §R(m+1)n‘
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Proof: Let s be some point in S. Let € R™+D" then,

Ps(n) = argmin||z — 7|

€S
= argmin|z —s+s—
€S

argmin [ly —n +s|| + s
yeW

argmin |ly — (n — s)|| + s
yeW

= Pw(n—s)+s

Denote b = s — Pyys € S and the lemma is proved. O
The GREB assumption is usually very hard to prove in a direct way. It is very useful to

note that the following assumption implies GREB:

Assumption 8 There is € > 0 such that for every bounded set B, there is og > 0 such that:
d(z,X*) <opT(x) V€ BNX NS,

where X ={z : d(x,X*) < €}.

The following lemma states that GREB is equivalent to assumption 8.

Lemma 2.5.3 Let f be a function with Lipschitz continuous gradient. Then, assumption 8
18 equivalent to GREB.

Proof: First, assume that GREB is fulfilled. Then, assumption 8 is true because B N X

is also a bounded set. Now, assume that assumption 8 is fulfilled. Let B be a bounded set.

Define the function h(z) = d(;,’(f)*). By assumption 8 we have a positive number o > 0 such
that:

h(z) <op Yre BN X NS.

But, h(z) is continuous on the closed bounded set cl(B — X}) N S. Thus, by Weierstrass’
theorem, h(z) is bounded over c/(B — X}) N S so that there is a 7 > 0 such that:
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h(z) <1 VzecdB-X)NS,

and hence it follows that,

h(z) < max{op,7} VYxre€ BNS.

Another possible assumption that implies assumption 8 is the following:
Assumption 9 There is a € > 0 and o > 0 such that:

Vee X:NS dz,X") <ol (z),
where X! = {z : d(z, X*) < €}.

Assumption 9 will be used in the analysis of subsection 2.5.1, while assumption 8 will be
used in the analysis of subsection 2.5.2.
Remark: If X* is bounded then GREB is equivalent to Assumption 9. This is true for
instance in the case where h; = 0 (the pure quadratic case) where the objective function is
coercive which enforces the optimal set X* to be bounded (and also to be non empty).
The proof that assumption 8 or assumption 9 is fulfilled for (DQCQP) is rather involved,
and thus will be separated into two cases: the case where X* (the set of optimal points) is
a singleton and then the general case. Furthermore, the analysis of the case X* = {n*} will

pave the way to prove the more general case.

2.5.1 The First Case: X* = {n*}.
A Sufficient Condition For GREB

In the first case we assume that (DQCQP) has a unique minimizer n*. First, for every

feasible direction d € W, we investigate the following scalar function:

ha(B) = f(n" + pd) VO<B <L,
and find a condition in terms of the function h4(5) that implies GREB. The following

technical lemma is a key argument in proving the sufficient condition for GREB.
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Lemma 2.5.4 Assumption 9 is equivalent to the following condition: There exists € > 0
and o > 0 such that,

|2V G + 8|

E V|| =edeW,Y0<B<LYE> 0.
154 to

Proof: By assumption 9 there is a o > 0 such that,

In—n* <olln—Ps(n—tVfn) VnesS|n—n<e (2.21)

Now, for every n € S,

n— Ps(n—1tVf(n)) Lemuga. 2.2 n—Pw(n—1Vf(n)—b
Py 1S a lin(ﬁr operator 0 — Pun+ tPwV (1) — b
n— Psn+b+tPyVf(n)—>b
e n—n+b+tPyVF(n) —b
= tPwV f(n).

Lemma 2.5.2

Substituting this in (2.21) we have that assumption 9 is equivalent to:

=0l <ot||[PwVfm)l YneS|n—n<e

Substituting n = n* + Bd where d € W, ||d|| = € and 0 < 3 < 1, we obtain that assumption
9 is equivalent to:

18dll < otl|[PwV f(n* + Bd)|| Vd e W [ld]| =e0<5<1.
Since the inequality is trivial for 5 = 0 we can dismiss the case = 0 and hence we have the
following equivalent inequality:
Blldll = [18d|| < ot|PwV f(n* + Bd)|| Vd e W,[|d]| =¢0<p< 1.
Dividing by 3 yields:

P *
I wVf(g + Bd)|| Z% Vd € W, ||d|| = ¢,0 < 8 < 1.
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O

It is now possible to state a condition that implies assumption 9 (and thus also implies
GREB).

Lemma 2.5.5 (A Sufficient Condition for GREB) The following condition implies GREB:
There is € > 0 and s > 0 (which possibly depends on €) such that

h/
déﬁ) >s VdeW,|d|=¢0<p<1,
Proof: Let {t1,1s,..., 1} be an orthonormal basis for W, then d € W implies that:
k
d =" (d,;)1;. (2.22)
7=1
Recall that Py is a projection on the linear space W. Thus, for all n,
k
PW77 = Z<777 %)%
j=1

So that,

k

1Pwnll? =D (n, ¢5)°.

J=1

Now, compute h/,(3) using the directional derivative formula:

hy(B) = (d, V(" + Bd))
2 D {d. ) (W, V(o + 5D)
< S )] (g, V(T + Bd)).

<
Il
—

€ 1
. . . A

By Cauchy Schwartz inequality one has for all j = 1,2,...,k, [{d,v;)| < ||d||-[|¢;]] = e

Also, from the equivalence of norms in finite dimension spaces we obtain that there is a

N > 0 such that ||z||; < NJ|z||, where || - ||; is the usual /; norm. Therefore,
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k

h’ii(ﬁ) < Z 1/’] %Vf(n +5d)>|

.

IN

|(d,
1
k
€ 2214 V7 + B

IN

ENJZ%,W(H* + Bd))?

J=1

= eN|[|PwV f(n" + Bd)]|. (2.23)
Under the hypothesis of the lemma one has:

ha(B)

J5>0, Je>0:
B

>s VdeW,|d|=e0<p<1,

and hence with (2.23) one obtains:

|PwVfr + 8D _ s

e ~ eN
Invoking Lemma 2.5.4, the latter relation is equivalent to Assumption 9 which thus implies
that GREB holds. O

V|d|| =€,deW,0< 38 <1.

A Necessary Condition For An Optimum

In this Section we find a necessary condition for an optimum of (DQCQP). This condition
on n* will be the core of the proof of the GREB assumption for (DQCQP). The uniqueness
of the optimum is a crucial part of the proof and thus there is no simple generalization of the
condition to the general case (where the optimum is not necessarily unique). The essence
of the condition is that hy(f) can not be linear on an interval containing zero because the

objective function is differentiable.

Lemma 2.5.6 Let 0 # d € W be some feasible direction and let s > 0 . Then, hy(53) is not

linear on the interval [0, s|.

Proof: Suppose, in contradiction, that there is a direction d € W and a s > 0 such that

hq(f3) is linear on [0, s]. There are two cases:

35



1. The slope of the line is zero. In this case, all the points n = n* + 3d are in the
feasible set S and are minimizers of (DQCQP). Thus, we have a contradiction to the

uniqueness of the minimizer.

2. The slope of the line is not zero. 7n* is the minimizer of (DQCQP) and hy is
a differentiable function thus A/(0) = 0 by fermat’s theorem. On the other hand,
ha(B) is linear on [0, s|] with nonzero slope which yields Ay, (0) # 0, and so we have a

contradiction to the differentiability of the function f.

We will use the following notation. For every positive definite matrix ():

Inllg = /n"Qn.

The next theorem states that a certain linear system admits only the trivial solution.

This property will be the most important argument in proving the necessary condition on

*

n.

Theorem 2.5.1 Let n* be the unique minimizer of (DQCQP). Then, the following linear
system of equalities and inequalities doesn’t have any solution other than the trivial one (i.e.
6, =0Vj=1,2,...,m+1):

(> baun; =
JEJUK
154 |
9]' D V] e K
| 0,=0 Vjel

where,

1={ilnlgn <1} o T={islnlgn >1} » K={itlnlgp =1} 2

Remark: I, J, K is a partition of the index set {1,2,...,m + 1}.

Proof: Suppose in contradiction that (LS) does have a nonzero solution. Define:
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(2.25)

O jeJUK
dj: 0 i .
jel

Then, d = (dy, ..., dpy1) is a feasible direction (i.e. 74" ajd; = 0 so d € W). Also, for

S € [0, B] where,
1 1
B=min{— |————1]} >0 (2.26)
5\ \ Tl

the following is satisfied:

I + Bdllgr = 1 VieJUK (2.27)
1+80, > 0 VjeJUK (2.28)

Thus, for any d € W as defined in (2.25) and any /5 € [0, B] one has using the definition of
go and f (c.f. (2.19),(2.20)):

ha(B) = f(n" + Bd)
_ jill((sjg% (n; + Bd;) — b (n; + Bd;))
= jg;K(@ng (nj + Bdj) — hj (nj + Bd;)) + ]ZE:I(&J'QQ]' (n;) = hjn;)
= jg&}((@gczj(ﬁ; + 89m5) — hi (n; + 80;n7)) + constant
(2:27) _E%K(%ju + 59j|\/m — ﬁejh;rn]’.‘ — h?n]’-‘) + constant
J
(2.28) ,E%K(%j(l n ng)\/m — 39]'77/?77; — h,jrn;) + constant .
J

linear in 3

To summarize, we have obtained that hy(53) is a linear function of £ on [0, B] in contra-
diction to Lemma 2.5.6. Thus, (LS) admits only the trivial solution #; =0 Vj. O
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Theorem 2.5.2 (Necessary Condition for an Optimum) Let n* be the unique mini-
mizer of (DQCQP). Then, for every € > 0 there exists £ > 0 such that the following system
of inequalities:

( . 62
262> 3 |0l =
jeEJUK
;> 0 Vi€ K ={j:nle- =1}
L 0, =0 Vjiel

implies

Z Oéjejn; > &> 0.

jEJUK

Proof: Consider the following minimization problem in the variables 6;:

minimize | Y «;6; n;
jEJUK
2
st 20> Y ez

jEJUK
;>0 Vjeck.

The feasible set of this problem is closed, bounded and nonempty. Thus, by Weierstrass
theorem the minimum is attained. By Theorem 2.5.1, the minimum can not be zero and

thus denoting the value of the minimum by £ > 0 the desired result follows. O

Proving GREB for the First Case X* = {n*}
We will need some technical lemmas before proving GREB in the first case.
Lemma 2.5.7 For any d € R define 2(a) = 2||n* + ad||g-1 — 1. Then,

P2y 2ol - @0 Ny
do?’ o+ adl-

Y

for every a such that ||n* + ad||g-1 > 0.
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Proof: First, we will show the result for ) = I and the conclusion will follow by an
elementary argument. Consider the function #,, (o) = ||lw + av||. For every « such that
|lw + av|| >0,

tuw (@) = lw + avl| = /w]]? + 2007w + a2[|v]2.

Thus,
2 T
I (a) = allv||? + v w
’ |lw + av||
So,
) = [o]l?[lw + ]| = (aflvl* + v"w)* - ey
v |w + av||?
IPlw + aw]? = (afjo]]? + v"w)?
|w + av||?
ClRlPAlw]? + 200w + o ||v)]?) = o?[Jo]|* = 2a(v"w) ||| = (v"w)?
N ||w + av||?

o[ lw]* — (v"w)?

||w + av||?

(2.29)

Since Q! is a positive definite matrix, there is a matrix A s.t. Q' = A% Then, z(a) =
2" +ad||g-1 — 1 = 2t,, () — 1 where w = An*, v = Ad. The result follows by substituting
this in (2.29) . O

Lemma 2.5.8 Let Q be a positive definite matriz and let u,v € R™. Then,

(v Qu)*

: - (S 2 — 2 \" =wv/

where the minimum s attained at

uT Qu

5 = .
0]

Proof: One has
|u — 0v]|3, = |ullg) — 2(u" Qu)d + [Jv]|5,67,
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and the result follows immediately by minimizing the resulting one dimensional quadratic
function. O

We are now ready to prove our main result.

Theorem 2.5.3 (GREB is Fulfilled for (DQCQP)) There exists € > 0 and v > 0 such

that,
hl
déﬁ) >y YdeW,|d|=ep€(0,1],
where
L P
€ min .1 ) _1ni
L I (o7 LR (o [k

_ 1 e\* (& !
v fea (o) (5) 1 (230

& s as defined in Theorem 2.5.2. C, D are defined by:

1
C:\l(m+1)-, max+1)\maI(Qj)-j max {\/Mj,Mj,Q—},

7j=1,...m =1,...,m+1

— “( . . . . 4 .
D=vm+1 jzlr,rl-%%(zﬂﬂ%umam(cg])} jlr,n..%(wﬂ{ M; 5

Cis

where

X _1L
B (||77j||Qj_1 + ||QJ 1||26)3

P= Vi=1,... 1. 2.31
J 26] J ) 7m+ ( )

Proof: We use the definitions of the index sets defined in (2.24).
For every feasible direction d € W, we partition K into two disjoint sets: K = K¢ U KJ

where,

Ki = {j:lnjlg =1, djQ 'nj >0}, (2.32)
Ki = {j:lnlg- =1, djQ " <0}, (2.33)
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We will show that the sufficient condition for GREB is fulfilled (Lemma 2.5.5). Assume
otherwise that there exists a d € W such that ||d|| = € and a 0 < § < 1 such that,

M) _
g
We will now prove that this is a contradiction to Theorem 2.5.2. Note that by the choice of

€ we have that

jel = |nj+Bdillg <1 V8 €o,1],
jed = |n +6dj||Q;1 >1 Vg elo,1].

By the optimality of n* we have hj(0) = 0. Now, hj(f) is a continuous function with
directional derivatives for every 5 € (0,1]. Thus, by the mean value theorem (see Theorem
B.0.3) there exists a 0 < ¢ < /3 such that,

ha(B) _ ha(B) — hy(0)
It is not known apriori if hy (c) < hg, (c) or hy (c) > hg, (c) so [hy (c), hy, (c)] is in fact the
interval [min{hg (c), hq, (c)}, max{hg_(c), hq, (c)}]-
In particular, we have that hl] (¢) < v or h” . (¢) <y (or both). Without loss of generality
we assume that hg, (c) <. Recall that

m+1

ha(c) =Y (6,90, (n; + cd;) — b (n; + cd;)).

=1

Define,

zj(c) = go,(n; +ed;)  Vee[0,1),i=1,...,m+1.
With this definition, we have hq(c) = X741 (8;2;(c) — hY (0 + ed;)). Differentiating twice

one obtains:

m+1

hy. (c) Z 0i2;,

. From the convexity of z; we have that zj+(c) >0forallj=1,2,...,m+land 0 < c < 1.

As a consequence (recall that ¢; > 0 for every j),

41



m+1
> g, ( Zéz c)>0;25, (c) Yi=12,....m+1
We divide the investigation of the inequality % >z (¢) to several cases,

e j € I. In this case recall that g, (u) = ||ul|?-: and thus for all § € [0, 1],

2(8) = lInj + Bdjlly = [Injllg+ + 28d; Q55 + Blldsll g -

Thus,

y
5> 2, (€) = 2lldjll -
e j € J. In this case recall that g, (u) = 2||u||Qj_1 —1 and thus z;(8) = 2||77;’-‘+5dj||Q]__1 —
1 VB e0,1] and thus,

2 * (|2 T Hy—1,.%\2
Yoo Lemma 2.5.7 “dj”Q;l”njH s (5 Q5 115)
Do g (o) bemmast * i (2.34)
5 o + e
J
2||773||2 I ||2 ( TQ—I *)2
1 + cd; ||3f e 1751+
(2.31) 1 ( TQ—I *)
> Iy s — T (2.35)
Moy \ 79 1515+

The last inequality is true because ||77||o-1 > 1Vj € J and
J

IN

1t

Il + el 11
* 1t

< lllg: -+ cllQs 111l
* 1t
= [llg + cllQs e

—_1i
I llg-r + 1105 1€

I + cdlg < I1nfllgr + el -+
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By Lemma 2.5.8 there is §; € R such that,

(dFQ;'nr)?

d: — 0.1 |2 _ = d:l2_, —
|| j ]nJH jl || ]H jl ||77;f||2j_1

(2.35)

< M]’}/

e j € K{ In this case ||} + cdj||Q]__1 > 1 and thus zj, (c) has the same form as in (2.34)
and so there is a 6; € R such that,

|d; — 9j77}‘||zg;1 < M.

We also have that d;FQj_ln;‘ > (0 which implies that (see Lemma 2.5.8) 0; = L= i nf > 0.

e j € KJ Here we have two possibilities:
Case 1: 2} (c) = 2||dj||2;1. Thus, (as in the case j € I) one has:

y
dil|Z-1 < —.
I <
||dj\|g__1||Tl}‘\|g__1—(djTQj_l77}‘)2
Case 2: zj, (c) = 2—— . (in particular, ||n; + cd;]| > 1). By (2.35)

s +ed;||?
lIn; ]HQj 1

we have

T H—1 %
_ (dj Qj 77j)2
151121 - 112,
J J

ldjllg- | 1 < M.

As a result, at least one of the following two inequalities must be satisfied:

||dj||é;1 < /My,

(dTQ; " nt)?
1-— J 7 ) < M.
PR
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We will show that the second inequality is impossible. Suppose otherwise that the
second inequality is valid. By the definition of v (c.f. (2.30)), one has v < =~ Vj
J

and as a result we have |/M;y < % Thus,

(d]Q;'n;)? 1
: >1— /My > = 2.36
T T 773 (239

Recall that for j € K¢, |In;llo-+ = 1 and dfQj'n; < 0, and so by substituting
J
this in (2.36) we obtain:

||d]'||Q’1 ||dj||Q’1
T \—1_ % j j
dj Qj n; < — \/ij < = 5 s

;From this we have that for all 8 € (0,1] and j € K¢ :

(2.37)

I+ Bl = Wl + 2647Q 0 + 71
(2.372]'61( 1 3||dj||Q;1 +62de“22;1
= 1+ Bldllgp (=1 + Bld;lg;)
< 14 Blldillg (=1 + Nldsllg. 1)
< L+ Blldjllg (<1 + 1195 I

< 1.

This is a contradiction to the assumption that [|n; + cd;|| > 1. Thus, in this case

we have:
2
Idillg.+ < v/ M.
We summarize all the obtained cases for the inequality v > §;27 (c) for j =1,...,m + 1:

Define a vector u € R(m+1" by

O jeJuKd
wj=4 7 L (2.38)
0 j¢ JUKY?
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Viel |d; ||2_1<25,
v] cJ 39] : ||dJ - 9]”;“2;1 S M]77
VieK{ 30;>0: |ld;— 0|5 < My,

Vj € K ldjllg-+ < /Mjr.

Figure 2.1: Summary

Now, define the following norm on vectors in R(™+H" by:

m—+1

ol = 32 lloslig-1,
j=1

and denote by |I| the cardinality of an index set I. Then,

m+1
2 2
I~ ull - S llds = usll

=1

= > ld; U;|l2—1+ > lldj— g
jEJUKY ]EIUKd !

= > ldj— mjllQ—le > lld; ||2—
jeEJUKY jeEIUKY

< Z M~ + Z max{% \/Mfy}
jeEJUKY jEIUKY

< |JU K¢ maX{Mﬂ} + |1 U K¢ max{% M]fy}

J

[JUKY|, | IUKS|<m+1

< (m+1)M]7+(m+1)max{25 \/My}
0<y<1 1
< Vitm+1), max | {vM Mi 55 }
Notice that,

ol < _max Anee(@)el2 Vo € BT

=1,...

Define,
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C = \l(m+1)- _max  Ap(Q)

7j=1,....,m+

and so with these notations we have obtained,

||d|| = € one has:

. max
7j=1,...m+1

ld—ull < C¥A.
Remember that by the definition of v (2.30) we have that C/y < {.

He
lu = d+d|| < [lu—d|| +ld]| < = [Jul|* <

{m Mj,;;j},

16

2

2

3 9
lu—d+dll = Jld| = flu—dl| > T = |lul]® > 75 >

1

As a result, since

25
¢ < 262

62

4

Thus, recalling the definition of u in (2.38), we have found real numbers {0;};c ks such
that §; > 0, Vj € K{ that satisfies,

[\

€

4

; d
JjeEJUKY]

T lemlP <20

According to Theorem 2.5.2, in order to get a contradiction to the optimality of n* it is

sufficient to prove that:

And in fact,

Y bjoyn;

i d
JEJUKY

dew

IN

Z 9]-@]-77; <€.

; d
JjeJUKY

Y bjoyn;

i d
JeEJUKY

i d
JeEJUKY

m+1

- > ayd;
7j=1

o o0 —dj) —

Y ayd;

i d
JEIUKS

Yo legllOm; —dill + Y- layllld;ll

; d
JjeEJUKY]
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IN

> | [ Amaa (Q3)[105m] — djll g + > [ Amaz (@) ld; 1
jeJUKY JETUKS

< AD,

where

1
— . ] j : V / Iy
D=vVm+1 j:ﬁ%ﬁﬂﬂaﬂ)\mw(a)g)} j:fnazizﬂ {\/ﬁ]’ \/E, \/20; } .

.....

But by the definition of v we have that /7D < £ and thus we have obtained the desired

contradiction to Theorem 2.5.2 and the theorem is proved. O

2.5.2 The Second Case: The General Case.

X* is a polyhedral set

First, we will show that the optimal solution set X* of (DQCQP) is a polyhedral set.
Theorem 2.5.4 X* is a polyhedral set.

Proof: Let n* € X* and let I,.J, K be the index sets defined by (2.24). Then, n € X* iff

the following three conditions are satisfied:
1.nes. ie,

m+1

> ajn=e. (2.39)
7j=1

2. hq(B) = f(n* + Bd) is a linear function on [0, 1]with d = n — n* .

3. The slope of the linear function hy(/3) is zero.

We will prove that the last two conditions can be written as linear inequality constraints:
Condition 2: Let us show that this condition is equivalent to the following set of linear

equalities and inequalities.
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dj=0 Viel

d; = an},a; > W -1 vjielJ | (2.40)
i
dj:ajn;f,ajZO VJEK
Let j € I. Let us suppose otherwise that d; # 0. Then, the function h4(f) is a quadratic
function of f in contradiction to the linearity of hy(f).

j € J : hg(P) is a linear function and thus Af(5) = 0 for all 5 € (0,1). Recall that
ha(B) = 251 (6i2:(8) — b (0} + Bd;)) where 2,(8) = gq,(nf + Bd;). Thus,

m+1

hy(B) =" 82! (B) =0.
i=1

From the convexity of z; we have 27, (8) > 0 and thus,

2 (B)=0 Vi<j<m+1, VBe(0,1).

J+

For j € J we have that this equality is just:

s 2||dj||§2j—1||77}f||2j—1 = (djQ; ')’
Z. =
T 1nj + Bejlg-

J

Thus,

51, 1 -1 = (@) = 0.
By the Cauchy-Schwartz inequality we have that there is a; € R such that d; = a;n;.
Denote by X7 the set of all the j-th components of the optimal set X*. X7 is a closed convex

set, and satisfies the following property:

X; CB; or X;CB; (2.41)

where,

B<={z: ||x||Q;1 <1},B” ={x: ||x||Q;1 > 1}.

Now, observe that a; > —1, because otherwise, (1 + a;)n; = n; + d; € X and thus
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1 * 1 * *

a; j

in contradiction to (2.41). Also, ||n;||o-+ > 1 and so since d; = a;n; one has,
J

and thus a; >

1
*
1l

Lo< gl

= nj +djllg;
15 + ajmjlig:
177 1lg; 111 + a]

17l (1 + ),

\

aj>—1

— 1.

For j € K we have in a similar fashion that d; = a;n; but here a; > 0 which is a necessary

condition for the inequality ||n;][o-1 > 1 to be satisfied.
J

Condition 3: In order to find an explicit equation describing the condition that the slope
of hq(B) is zero we will analyze the function hy(5) for § € [0, B] where B is defined by (2.26):

ha(B) =

f(n" + Bd)
m+1 .
> (859, (n; + Bdy) — kT (n} + Bd;))
i=1
m+1
> 0i00,(m5) + 30 8 2ln; + Beillgr — 1) = 3 (hjn; + Bhidy)
Jjel JEJUK j=1
m+1
> 0i90;(m) + >0 62U} + Bagiillg — 1) = 3o (i + Bhjdy)
Jjel JEJUK j=1
m+1
2 > 0|1+ Bag| - |Injllg-+ — B D hj d; + constant
jEJUK i =
m+1
2 > 0;(1+ Bag) - |Injllg-r — B> hld;+ constant
jeJUK J i=1

m+1
p (2 Z 5jaj||77;||Q]Tl - Z h?dj) +constant.
=1

jEJUK

J

slope Sf ha(B)
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Thus, the condition that the slope of hy(3) is zero means,

m—+1
2 > Gjallnllgm — 3 hid;=0. (2.42)
jeJUK j=1

This shows that, X* is characterized by a set of linear equalities and inequalities in the
variables {a;};esur, {n;}]h" ((2.39)-(2.42)) which yields the result. O

Some facts about the faces of a convex set

Now, we need to introduce the concept of a face and derive some basic properties of faces of

convex sets needed for our analysis.

Definition 2.5.1 Let C be a closed convex set. A closed convex set FF C C' is called a face

if there is a supporting hyperplane H of C' such that HNC = F.

Example: A set that contains one extreme point of C' is a face.

We use the notation ri(S) for the relative interior of a set S.

Lemma 2.5.9 Let C' be a closed convez set and let F' be a face of C. If v,y € ri F then,

Ne(#) = Ne(y).

Proof: It is sufficient to show that Ne(x) C Ng(y) and thus the result will follow by
symmetry. Let d € N¢(x), by the definition of the normal cone we have that

(d,s—z) <0 VseC.

Let z € C, we will prove that d” (z — y) < 0 and the theorem will be proved.
Let z € ri F' and thus there exists a (small enough) ¢ > 0 such that,

w=uz+tlxr—y) € F.

Since w € F'and 2z € F C C, for t > 0 the convex combination of the points w,z € C

defined by s := t%lw + t%lz is in C. Then using the definition of w one has:

1 ¢ ¢ ¢ ¢
0> da_ :<d7 _>:<d, - _>: —d,_ )
> (d,5—x) ittt TVt et ) T s

proving that d € N¢(y). O
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Proving GREB for the general case

First, we present a condition equivalent to assumption 8. This condition, necessarily, implies
GREB.

Lemma 2.5.10 Assumption 8 is equivalent to the following condition: For every n* € X*
and a bounded set B there ezists € > 0 and op > 0 such that V||d|| = €¢,d € WN Nx«(n*),0 <
f<1,n* €bd(X*),n*+ Bd € B one has,

1Py + D) e
&} ~ top

Proof: By assumption 8 there exists og > 0 such that,

d(n, X*) < oplln— Ps(n—tVf(n)|| VneSnB,dn X*) <e

Similarly to the proof of Lemma 2.5.4 we have that,

n—Ps(n—tVf(n))=tPwVf(n).

Thus, we have that assumption 8 is equivalent to:

d(n, X*) < opt||PwV f(n)| Vne€SNB,dn X*) <e.

Denote n* = Px«(n) and make the following change of variables:

n=mn"+pd

Notice that as a consequence of the relation n* = Pyx:(n) we have that d € Ny-(n*).
Thus, assumption 8 is equivalent to say that V||d|| = ¢,d € W N Nx-(n*),0 < 8 < 1,n* €
bd(X*),n* + fd € B one has,

18d| < ont|PwV f(n" + Bd)]|.
Dividing by [ yields the desired result. O

Now, proceeding in a similar manner as the previous subsection we find a sufficient

condition of GREB. The condition will be in terms of the following function in one variable

B:
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hany- = f(n" + Bd)

This function is defined for every n* € bd(X*) (Here, there is no unique minimizer) and
for every direction d € W N Nx«(n*).

Lemma 2.5.11 (A Sufficient Condition for GREB) The following condition implies GREB:
For every bounded set B there exists € > 0 and sg > 0 (which depends on €) such that

ii,n* (B)
B

Proof: Exactly the same as the proof of Lemma 2.5.5. O

>sp Yde WNNx«(n*),||d]| =¢0< 5 <1,n" € bd(X*),n"+ Bd € B.
We define the following sets of indices:

Je = {5 mlgp > 1) Ky = {5l =1} o = {7 g0 < 1.

Following the layout of the previous analysis in subsection 2.5.1 we prove a necessary
condition that must be satisfied by the optimum set. First, we remember that X* is a
polyhedral set and thus has only a finite number of faces. Denote the faces of X* by
F\,Fy,...,F, and let v', ..., v* be arbitrary chosen representatives of the relative interiors
of the faces, i.e.,

vt eriF, i=1,2,... k.

We can assume that every two points in the same relative interior of some face have the
same set of active constraints in the linear system defining the optimal set. Otherwise, we
might take several more representatives of the relative interior. This process does not ruin
the finiteness of the representatives set.

Definition 2.5.2 Let C be a closed convez set. A direction d is an exterior direction of C
at a point v € C if v + Bd & C for all B > 0. The set of all exterior directions of C at x is
denoted by Ec(x).

Remarks:

e For every z € bd(C) : Ne(z) C Ec(x) U {0} .
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e For every = € int(C) : Ec(z) =0, No(x) = {0} .
The following lemma is a natural generalization of Lemma 2.5.6:

Lemma 2.5.12 Let n* € X*, d € WN Ex-(n*) and let s > 0. Then, hq,~(B) is not linear
on the interval [0, s].

Proof: Exactly follows the proof of Lemma 2.5.6. O
Similarly to the analysis of subsection 2.5.1, our next result describes the appropriate non

consistent system.

Theorem 2.5.5 For every i =1,2,...,k the following system does not have a solution:
( Z Hjajvj- =0
jEJUiUKUi
(NLS)§ 9. > 0 Vj € K,
| (0;0)74" € Ex-(v;)

Proof: Fix some i and suppose that the (NLS;) does have a solution, and define:

dj=0;vf j=1,2,....m+1

Thus, d = (di,...,dn,y1) is a feasible direction (i.e. Z;”:J“ll ajdj = 0sod e W). Also,

. 1 1
one has d € Ex«(v"). Define B = min ¢ — - — 1] ¢. Proceeding as in the proof of
55\ 8 \Teillg

Theorem 2.5.1 one can verify that the function hg,:(8) = f(v' + Bd) is linear on [0, B] in
contradiction to Lemma 2.5.12. Thus, (NLS;) does not have a solution. O
Notation: B, = {z : ||z]| = €}.

Theorem 2.5.6 (Necessary Condition on the representative points of X*) Let1 <
1 < k, then for every € > 0 there exists & > 0 such that the following system of inequalities:

d((0;0))74" N (v)) N B) < §
0320 Vj € Ky (2.43)
gj:() Vi & Ji UK,
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implies

>

JEJ i UK ;i

> £

Proof: Suppose in contradiction that there are variables 6,...,60,,,1 that satisfy (2.43).
We will show that (6;0%)7"' € Ex-(v"). Denote w = (6;0)7"4". Now, d((6;v1)74", N (v') N
B,) < § and thus there is a direction d € Nx-(v") such that ||d|| = € and

ld = wll <

l\DIm

Therefore, with ||d|| = € we obtain:

£
A

1]l + lld = wi| =

lwll =[] = [ld = wl| =

l\DI(‘hl\DIC».’)

The inequality ||d—w| < § is equivalent to ||d —w]||* < %, which after some algebra together
with the bounds on ||w]| 1mpl1es.

2

[ +lwlP =5 _ 3+l de i 1,
2

> — = — . 2.44
(d,w) > 5 5 > 5€ >0 ( )

To summarize, we have that (d,w) > 0 for some d € Nx-(v'). Furthermore, w € Ex-(v")
because otherwise there would exist B > 0 such that z = v' + fw € X*. But from the

definition of the normal cone we have,

d € Nx-(v') = (2 —v',d) <0.

Substituting 7 = v + Sw we derive that

plw,d) <0,
in contradiction to (2.44).

Consider the following minimization problem:

minimize

Z a;0; U]H

JEJ i UK ;i

o4



st d((00)T, Ny (v) N B,) <

0, >0 Vje K,
9j20 Vi & Ji UK,

DO | ™

Here we minimize a continuous function on a closed bounded set. Thus, the minimum
is attained. Denoting the value of the minimum by &, one has & > 0 since otherwise the

minimizing vector is a solution for (IVLS;) which is a contradiction to Theorem 2.5.5. O

Theorem 2.5.7 (GREB is Fulfilled for (DQCQP)) For every bounded set B, there ex-
ists € > 0 and yp > 0 such that Vd € WNNx-(n*),||d|| =¢,0 < B < 1,n* € bd(X*),n*+5d €

B, one has

hl *
4.1 (B) Z VB,
B
where
(=g
€ min —— ———
Jel ||Qj1||2 ||Qj1||2

< . 1 1 ( € )4 & !
111111 e — — .
K j=l..m+1 | 7 4AN; \4C'/) "\ D

Here, & is as defined in Theorem 2.5.2 and C, D are defined by:

1
T J(’“” = A (@) 'j:%fl..%l{ij’Nrr}’

..........

— 1
— . ] j : Y ] s
D=vVm+1 jzlmazilﬂﬂayp‘max(Qﬂ)} j:lrna7}7(1+1 {\/ﬁ]’ N 20 } '

(N +¢)3

—_13
Ny = Q5 1
J

Proof: Let B be some bounded set. Suppose, in contrary that there exists a n* € bd(X™)

and a direction d such that
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h’ii,n* (5)
B

n* € bd(X*) and thus it is contained in a relative interior of a face of X*. Suppose that

<yp,d €W N Ny-(°), || = €,0 < B < 1,9* € bd(X*), 0" + Bd € B.

77* € Ti(Fp)a

for some p € [1,k]. Then, we have that v” is also a member of ri(F},). By Lemma 2.5.9 we
have that

Nx«(n") = Nx-(v"),

and thus d € Nyx«(v?). Just like in the proof of Theorem 2.5.3 we define the function
zj(B) = gq;(n; + Bd;) and obtain that there is a 0 < ¢ < 1 such that forall 1 <j<m+1:

"
zj, (¢) < vB.

For convenience reasons we denote I = I,x = Ip,J = Jpo = Jp, K = K, = Kp
and define K¢ K¢ exactly like in (2.32)-(2.33). By Theorem 2.5.3 we have that there is a
direction d such that:

Y .
dill -1 < — Vel
g < \Jox Viel

ld; = Oimjllgr < Mjy Vi€
ld; = 0mjllg-r < /Mjv,0;>0 Vi€ K,
||dj||2j—1 < /Mjy VjeKj.

By (2.40) we obtain that there are numbers {;};c; x¢ such that A; > 0 for all j € K

and satisfy,

n = A\vj Vje JUK?®

Define 9; = \;0; and obtain:

26



ldsllg <

= Glgs < Ly Ve
ldj = G2l < /My7.0,>0 Vi€ KL,
||dj||2j—1 < /Mjy VjeKS.

(Cr el E
Allis left to prove is that M; = L 55, ..,m+1.
Indeed, we have that n* + Sd € B. Since B is supposed to be bounded, 3N >0 : B C {x:
|z < N}. Then,

is bounded above forall j = 1,.

il < "Il < N,

and thus,

¥ qypd
(||77j||Q].—1 + ||Q] 1||26)3

7 26,

il s _1l
< Qi Nzlml + 1Q; Hze)?
= 26,

NQ; 'I2N +11Q; MIZ¢)?
= 20,

e (N +e)?
< -1 3(7
< Q; [? %,
= N

J

Now like in Theorem 2.5.3, we end the proof by verifying that the above estimation leads to
a contradiction to Theorem 2.5.6.
a

2.6 Appendix: Proof of the classical results on GPA

These results are known in the literature see e.g. [6],[25]. However, the proofs of all the

results below cannot be found in a single reference, and thus we provide here in a compact
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way, often with simplified proofs, all the known results on GPA.

2.6.1 The Non Convex Case

In this subsection we assume only assumptions 1,2,3.

Lemma 2.6.1 Let {2*} be a sequence generated by GPA then:

(V (%), 25+ — by < _%ka _ 2, s 0. (2.45)
Proof: By Theorem A.1.3, we have for any ¢t > 0:

(a% =tV f(2¥) — 2" x — 2P <0 Vo e S.

Substituting = ¥ we have:

||xk . $k+1||2 . t<Vf(ajk),xk o xk+1> S 0’

from which it follows,

1
(VF(h), " —af) <l =", ve > 0.
a
Lemma 2.6.2 Let {z*} be a sequence generated by GPA with constant stepsize t that satis-
fies0 <t < % Then,

L 1

FEt) = 1@t < (5 - 1) I = P, (2.46)

where L is the Lipschitz constant of V f(x).

Proof: From the descent lemma (see Theorem B.0.2) it follows that:

L
P = @) < (VAER T = ah) 4 Sl - k)
Lemma 2.6.1 1 L
S _¥||xk+1 . xchz + §||$k+1 . kaz
L 1
— (5 o E) ||:Uk+1 - xk||2‘
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The main convergence result of GPA under assumptions 1,2,3 is:

Theorem 2.6.1 Let {x*} be a sequence generated by GPA with constant stepsize 0 < t < %
and T : R™ — R be the operator defined by:

T(x) = |Ps(z =tV f(x)) — x|
Then,
1. {f(z*)} is monotone decreasing.
2. T(z%) — 0.
3. Every accumulation point of {x*} is a stationary point of (P).
Proof:

1. Obvious from Lemma 2.6.2 and the fact that we have chosen ¢ satisfying 0 < ¢ < 2.

2. Using the definition of the operator 1" one has:

) 2n: TQ(Q:’“) Lemr%a 2.6.2 ! i . Xn:(f(xk) f(xk—l—l))
k=1 t 2 k=1
N (CO Ryt
- 1 _ L
t T 2
1 *
< T
t T2

where f* is the optimal value of (P) (by assumption 3, f* # —oco). Therefore,
S0, T?(2%) is finite and so the general element of the sequence converges to zero.
ie.,

T(z%) — 0.

3. Let 2* be an accumulation point of {z*}. Let {z*}$°, be a subsequence that converges
to z*:

29



okt 2% g (2.47)

l

Note that:

M = Pg(aft — ¢tV f(2M)).
V f, Ps are continuous operators and thus:

Mt = Pg(aM — tV f(2*1)) =% Pg(z" =tV f(z")). (2.48)

[—00

But, as already proved, T'(z¥) — 0. In particular, T'(z*) == 0, that is,

[t — k2 2% 0. (2.49)
On the other hand, by (2.47)-(2.48) we have:

et — | =¥ | Py(at — ¢V f(a")) — % (2:50)

Combining equations (2.49)-(2.50) we then obtain:

IPs(z* =tV f(27)) — 2"[|* =0,

which is equivalent to:

Pg(z® =tV [f(2")) =2,
that is, * is a stationary point of (P).

O

Corollary 2.6.1 Let {z*} be a sequence generated by GPA with constant stepsize 0 < t < %

If {z*} has an accumulation point x* then:
f(@*) = f(a").
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Proof: By Theorem 2.6.1 part 1, {f(z¥)} has a limit (finite or equal to —oc0). This is the
limit of every subsequence of {f(x*)}. x* is an accumulation point so there is a subsequence
™ — z*. By the continuity of f we have f(z™) — f(z*), and thus f(z*) — f(2*).

2.6.2 The Convex Case

In this section we also assume that f is a convex function. So, the assumptions that are

enforced in this subsection are 1,2,3, 4.

Lemma 2.6.3 Let {2*} be a sequence generated by GPA with constant stepsize 0 < t < %
Then,

1. ||zFt — z*|| < ||l2* — 2*|| Vz* e X
2. The sequence {x*} is bounded.

3. T(x%) — 0.

Proof: By definition of X* we have that:

z* = Pg(a* — tV f(z¥)).
Thus,

[ =Pt =19 @) — Pela® = 9P

Theorem A.1.4 . ) )
< |x® =tV f(z®) — 2" +tV f(z")]|

= % — a*|[? = 2t(z* — &%, V f(a*) = V f(27))
+ 17|V f(a") = V"

Theorem B.0.5 t
la* = &*|” = 27|V f(2*) = V(@) + 2]V f(a*) - V(|

* 2 k
=l (b= 2 ) IV - VAP
< ||xk - l'*||2,
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which proves the first part of the theorem.
The boundedness of {z*} follows directly from the first part. Let 2* be a point in X*. Then

one obtains

lo* — &[] < [l2*7" = 2] <L <l = a7 (2.51)

Thus, {2*} is contained in a ball with radius ||2° — z*|| and centered in z*, thus proving
the second part of the theorem.

The third part of the theorem was already proved in the non convex case (Theorem 2.6.1).

O

Theorem 2.6.2 (Global Convergence) The sequence {x*} generated by GPA with con-

stant stepsize 0 < t < % converges to z* € X*.

Proof: From Lemma 2.6.3 it follows that {2*} is bounded and thus has an accumulation
point . By Theorem 2.6.1, we have that x> is a stationary point, that is, T'(x*>) = 0.

All is left to prove is the uniqueness of the accumulation points. Suppose that z°°, y> are
two accumulation points of {z*}. The sequences {[|z* — 2>}, {||z* — y*°||} are bounded

and non-increasing (by Lemma 2.6.3) and thus have limits:

: k .00 —
klgg)”x el ly,
lim ||z% —y>®|| = 1.
k—o00
Now,
[a* — 2|2 — [|a* — y>)|? = —2(a*, 2% — y*) + 2> — [|y>]*.

- I I :
Take limits ¥ =% £ and 2 == y> and obtain:

f—l = —[lo> =y

H—l = [z —y=|"

Thus, x> = y*>.
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O

We can prove a sublinear rate of convergence of the function value sequence {f(z*)}

without using the convergence of the sequence {z*}.

Theorem 2.6.3 (Sublinear Rate of Convergence of the Function Values) Let {2%}
be the sequence generated by GPA with constant stepsize 0 < t < % Then for every k > 1
the following is satisfied:

= Q

fla®)—fr <

for some positive constant C.

Proof: Let 2* be an arbitrary point in X*. By the gradient inequality for convex functions

we obtain

fla*) = fa*) > (V f(z"),2" — 2*). (2.52)
By Theorem A.1.3 we that:

<£L‘k . tVf(l‘k) _ xk+1,x* . l‘k+1> < O,

which is equivalent to the following inequality:

(g% — T * — 2T <V F(2F), 2t — 2T, (2.53)
Moreover,
IV f (") = IV f(2*) = V f(2°) + V f(2°)]]”
(a-+b)> <2027 i 0\ (|2 0y (|2
< 2\Vf(2") = V(@) "+ 2|V f ()]
< 2L%||a* — 2|* + 2(|V f ()]

= 2L2||l'k—1‘*—|—$*—1‘0||2+2||Vf(l'0)||2
AL |z — 2*|]* 4+ 4L7||2° — ¥ + 2|V f (") )?

8L%|la* — || + 2|V £ () |I” (2.54)
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As a result,

(f(a*) = f)? < (Vf(z"),z" —a*)?
= ((Vf(xk), ot — P 4 (Vf(2F), 2P — xk))

2

(a+)7<2(a*+47) . k142 By okl k2
< AV f(ah),x" — ") + 2V [ (a"), 2" —2¥)
(2.53) 1
< 9 (t_2<xk _ b gt R (T (k) T - xk>2>
1
< o (Bt — R TSR P )
(251) Lok k11121 ,.% 0([2 E\)121] .k+1 k2
= 2 lle” = 2"l = TIF V@)™ — o
1 k
= A= (Gl - U+ VAN
(2.46) 2 1

Sl = 2" + IIVf(x’“)||2> (f(@*) = f(=*1)

(35 +822) o = 2" + 2V A ")) (F) — F(H)
— () - )

I
=
=
— N
8
N>
|
S~
N

2.6.3 The Strongly Convex Case

In this subsection we assume assumptions 1,2,3,5. Under strong convexity it is well known
that (P) has a unique minimum z*. In particular, X* = {z*}. Also, in the strongly convex

case, linear rate of convergence is proved:

Theorem 2.6.4 (Linear Rate of Convergence under Strong Convexity) Let f be a

strongly conver function on a closed convex set S with parameter m > 0. If {2*} is a
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sequence generated by GPA with a constant stepsize 0 < t < QTm then it converges to the

unique minimum x* with a linear rate. In fact,
2"+ — 2| < 9l|l=* — 27|,

where

0 =+1—2tm+ 212 < 1.

Proof: We follow the layout of the proof of Lemma 2.6.3. We have,

J5 — P = Pt — 0V (@h) - Pslat — 1V S )P

Theorem A.1.4 . L )
< 2" =tV f(z") — 2" +tV f(2")]]

= 2% — 2*||? = 2t(a* — 2%, V f(2¥) — V f (%))

+[VF(") = VI

Theorem B.0.6
< Ja* —z*||* = 2tmla* — 2*||* + ||V f (a*) = V f ()|

Assumption 2
< 2% — 2*||? = 2tml|2* — 2%||? + L*#?||2F — 2|2

= (1 —2tm + 2L%)||z* — 2%

Since 0 < ¢ < #* then § = /1 —2tm + ?L?> < 1. O

2.6.4 The non convex case with the GREB assumption

Theorem 2.6.5 (Asymptotic Linear Convergence Rate of the Function Values) Let
f be a function with Lipschitz continuous gradient with Lipschitz constant L. Let {z*} be
a sequence generated by GPA with constant stepsize 0 < t < % Suppose that {z*} is
bounded and that GREB and assumption 7 is satisfied. Then, {f(x*)} converge to f* where
[* = f(x*) for some stationary point x*. Furthermore, there is 0 < f < 1 and K > 0 such

that,

Vi > K f(a" ) — £ < B(f(a*) — ),
where f* = f(z*).
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Proof: {z*} bounded thus contained in some ball B = {z : ||z|| < M}. By the GREB

assumption, there exists a o such that:
d(z*, X*) < opT(2%). (2.55)
As a consequence of the second part of Theorem 2.6.1 we have,
d(z*, X*) — 0,

||31:’c — xk+1|| — 0.

Thus there is a K > 0 such that Vk > K one has,

VA
NN W

d(xk,X*)

k xk+1|| <

I

Now, for every k > K, f(Px-(z")) is constant and will be denoted by f*. The reason for
that is that if by contradiction there is a ko > K such that f(Py-(z*0)) # f(Px-(z**1))
then by assumption 7:

1Px- (%) = Px-(z"* )] > e.

On the other hand

||PX* (IL‘kO) _ Px*(l‘k0+1)|| — ||PX*(1'k0) Py ( ko-l—l) —|—"L'k0+1 +1‘k0 —$k0+1||
< || Px-(a*) — k0|| 4 || Py- (ko) — ghotL|| o ||gko — ghot |
= d(a™, X7) +d(a"" X7) + [|ato — 2P
< € N € N € 3€ -
- +-+-=— <k,
- 4 4 4 4

which is a contradiction to assumption 7. By (2.46),

Ft) = f@) 2 (7 - 5) T,

which is equivalent to
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(PR = 1) = () = 1) > (- 5) 726, (2.56)

t 2
By Theorem A.1.3 we have that:

(x% =tV f(2¥) — 2" 2P — Py (7)) > 0. (2.57)

By the mean value theorem we have that there is £&¥ € [Px- (%), 2¥*1] such that:

P = 17 = FH) = F(Pe () = (VHE), 2 = P ().
Thus,

fE) —f = (Vf(E), 2" = Py (o))
= (Vf(E") = Vf(a"), 2" — Px-(a")) + (Vf(2*), 2" — Px-(a%))

(2.57) 1
< IVAE) = VIO 127 = P (@) + (@ = 2", 2 = P (a9)

1
< (Ll =t + et =2t 24 = P (o).
Using the inequalities [|€% — z*|| < [|a* ™1 — 2F|| 4 || Px- (2*) — 2F|] and [|2* ™! — Px-(2%)]] <

||zt — 2F|| + ||2* — Px-(2*)|| we deduce that there is a constant ¢; > 0 such that:

F0) = < e[ Py (%) = a*| + [l — 2" FH])%

By the GREB assumption we have that there is a constant ¢, > 0 such that || Px-(z¥) — 2| <

Co||z% — 2*+1|| and thus there is a constant ¢ > 0 such that:

f(xk+1) _ f* < CSka _ xk+1||2. (2.58)
Combining (2.57),(2.58) we obtain:

(2.58)

f(l‘k+1) _ f* < 63||$k _ xk+1||2
(2.56) €3 k * k+1 %
< Tz ((FE) =) = fE = 1)
t 2
The result then follows with § = -5 where o = t%¢.
t 2

67



Chapter 3

The Convex Feasibility Problem

3.1 Introduction

This chapter considers the Convex Feasibility Problem (CFP) which consists of finding a

point in the intersection of closed convex sets in R".

The Convex feasibility problem : Given m closed convex sets Cy, Cs, ..., C), of R" such
that C =N, C; # 0. Find a point x € C.

The convex feasibility problem has many applications in diverse branches such as best
approximation theory, image reconstruction (both discrete and continuous models) and sub-
gradient methods (for a more detailed review of applications see [2] and references therein)
. The algorithms discussed in this chapter are projection algorithms. For any set S C R",
Ps denotes the projection operator. At each iteration of the algorithm the current point is

a convex combination of the projections of the previous point on the convex sets:

Projection Algorithm

first step: Take an arbitrary 2° € R”
general step: 7,11 = > o Pe. (x,,)

where o' > 0 Vi =1,...,m and >;"; a; = 1. Simple instances of these type of methods

are the cyclic projection algorithm (in short: CPA):
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Cyclic Projection Algorithm (CPA)

first step: Take an arbitrary 2° € R”

general step: 7,1 = PC(n mod m)+l(xn).

The maximum distance projection algorithm:

Maximum Distance Projection Algorithm (MDPA)

first step: Take an arbitrary 20 € R”
general step: 7,1 = Pg,;(7,) where j = argmax d(wz,, C;).
1<i<m

and the mean projection algorithm (in short MPA):

Mean Projection Algorithm (MPA)

first step: Take an arbitrary 2° € R”
general step: 7,41 = > o; Po.(x,,).

where aq, . .., a,, are positive constants. The cyclic projection algorithm goes back to von
Neumann [40] who considered the case of two subspaces and the mean projection algorithm
with equal weights (i.e. a; = %) was proposed by Cimmino [12] who considered the case
where each Cj; is a halfspace. In this chapter we investigate only these three schemes (MPA,
MDPA, CPA). More general schemes can be found in the literature (see for example [2] and
references therein).
The first natural question concerning these methods is the question of convergence and rate
of convergence. Proofs of global convergence of these methods can be found in [21, 2].
Auslander [?] proved the convergence of the cyclic projection method for the general case
where the sets are closed convex sets. Gubin, Polyak and Raik [21] proved that the sequence
generated by CPA and by MDPA converges to a point in C' and that if there exists a
1 < j < m such that C; Nint (N;£;C;) # 0 then the sequence converges to a point in C'
with a linear rate. Bauschke and Browein [2] introduced a property called "bounded linear
regularity” that implies linear convergence of the method and in [3] proved that the standard

Slater condition implies "bounded linear regularity”.
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The second main question concerning these methods is the question of error bounds. An
error bound is a quantity that becomes zero whenever a point is in the solution set. In
this chapter we investigate the error bound 7T'(x) = max;<;<,, d(z,C;). Indeed, in this case
T(x) = 0 if and only if € C. The error bound assumption states that the error bound is
in some sense an upper bound on the distance of the point from optimality. There are two
kind of error bounds for (CFP): Global Error Bound (GEB) and Local Error Bound (LEB)

Definition 3.1.1 (GEB) m closed convez sets C4,...,Cy, are said to satisfy GEB if there
exists @ > 0 such that:

Ve e R" d(z,C) <0 _max {d(z,C;)}.
Definition 3.1.2 (LEB) m closed convez sets C,...,Cy, are said to satisfy LEB if for
every bounded set B of R" there exists g > 0 such that:

Vee B d(z,C)<0p Z:IIIIaXm{d(iv,Cz)}

Notice that in both definitions d(z,C') is usually impossible to estimate (otherwise the
original problem is trivial). However, the error bound T'(z) can in most cases be trivially
calculated. Thus, GEB and LEB state that we can bound an unknown quantity by a
computable quantity. GEB is satisfied only in rare cases. One of the cases that satisfies
GEB is the case where all the C; are polyhedral sets. This is the celebrated Hoffmann’s
Lemma [22]. For the non-polyhedral case GEB is usually not satisfied. However LEB is
satisfied under some regularity conditions that will be discussed in this chapter. In chapter
2, we have seen that error bounds can also be defined for the convex optimization problem.

Suppose we are given the convex optimization problem:

min f(z)

z€S
where S is a closed convex set and f is a differentiable convex function. Suppose that the
optimal set X* = {z* : f(2*) = min,cs f(x)} is nonempty. Here we use the error bound
R(z) = ||x — Ps(z — aV f(x))|| Ya > 0. Obviously, R(z) = 0 if and only if z € X* so that
R(z) qualifies as an error bound. The error bound assumption here is called GREB (see

chapter 2) :
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Assumption 10 (GREB) Let o > 0. For every closed bounded set B there exists o > 0
such that:
Vee BNS d(z,X") <opllz — Ps(x — aV f(2))|,

where X* is the optimal set.

The fact that LEB implies linear rate of convergence of MDPA and CPA was proven
in [21],[2]. It is known that if LEB is satisfied then the rate of convergence of projection
algorithms depends on the initial point, however if GEB is satisfied (e.g. in the case of
polyhedral sets) then the rate of convergence is independent of the choice of the initial
starting point.

One of the important questions that arise is: when does LEB holds?. Gubin, Polyak and
Raik [21] proved that if there exists a 1 < j < m such that C; Nint (N;£;C;) # 0 then LEB is
satisfied and thus linear rate of convergence is proven. In [3] it was proven that the standard
Slater condition implies LEB (LEB is called there "bounded linear regularity”). However,
the argument leading to this result was rather long and tedious. The contribution of this

chapter is summarized as follows:

1. We prove the basic convergence results about projection algorithms using elementary
geometric facts. We give a new and simple proof based on elementary convexity argu-
ments of the fact that Slater’s condition implies LEB (and thus implies linear rate of

convergence).

2. We show that projection methods can be very slow if the Slater condition is not satis-
fied. Moreover, without the Slater condition we can not bound the rate of convergence.

For example, we give an example where the sequence {z,} generated by CPA satisfies

d(x,,C) > —— which is a very slow rate of convergence. However, we show that we
n, 1000

can bound the rate of convergence of the error bound. More precisely, that there exists

a constant D such that maxi <<, d(x,, C;) < %.

3. A relation between projection algorithms for convex feasibility problems and the gradi-
ent projection method for optimization problems is established and a relation between
the associated error bounds (i.e. GREB and LEB) is found.

4. We find that the best possible convex combination (in some sense) is the solution to a

certain convex optimization problem.
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The chapter is organized as follows. Section 3.2 recalls the basic results about projection
algorithms that will be needed in the rest of the chapter and proves the global convergence
of MPA | CPA and MDPA applied to the convex feasibility problem. In Section 3.3 we prove
the linear rate of convergence of MPA, MDPA for a finite number of sets and the linear
convergence of CPA for the case of two sets under a condition called LEB (Local Error
Bound). An example demonstrates the fact that assumptions like LEB are to be made in
order to insure the linear convergence. In section 3.4 we prove that the Slater condition
implies LEB. In section 3.5 we demonstrate that not only linear rate of convergence is
not guaranteed in projection algorithms but we can find examples of the method where
the rate of convergence is as slow as we’d like. Section 3.6 recalls the gradient projection
method. A connection between the gradient projection method and projection algorithms
is established. Also, we prove a connection between error bounds for optimization problems
and error bounds for convex feasibility problems. Section 3.7 suggests a rule for finding a
good choice of convex combinations via the solution a related convex optimization problem.
Section 3.8 presents an application of convex feasibility problems for conic optimization

problems via projection algorithms.

3.2 Convergence of Projection Algorithms

Our objective is to prove that MPA and CPA converge to a point in C'. The following

technical lemma is the first step in proving the convergence result.
Lemma 3.2.1

Vi=1,...,m d*(z,,C;) < d*(xn,C) — || Pe;(xn) — Po(zn)|. (3.1)
Proof: Recall the firm non-expensiveness of the projection operator (Theorem A.1.4):

1Psz = Psyl|* + [|(z — Psa) — (y = Psy) I < |l — ylI*. (3.2)

Let x = z,,,y = Po(z,),S = Cj then,

1Psz — Psyll* = || Pe,(wn) — P, Po(za)|I”
= ||Pc;(@n) — Pel@a)l”
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I = Psx) = (v = Psy)l* = Il(zn — Pe (20)) = (Pe(za) = P, Pelea))II

= lzn — P (an)]”

== dQ(IL'n,Cj).
Moreover, one has,
le = ylI* = llzn = Po(za)|?
= d*(z,,0C).

Substitute these expressions in (3.2) we obtain:

Vi=1,....m d*(z,, C;) < d*(z,,C) — ||ch (2n) — Po(z,) |2
O

The following theorem is the key argument in proving the convergence of the sequence
generated by MPA and CPA.

Theorem 3.2.1
Zaj (20, C;) < d*(2,,,C) — d*(z41, O). (3.3)

Proof:

d*(2,11,0) = 041 — Po(@ns)|I”
d(Zn+1,C)<|Tn+1-yl| VyeC )
< 2011 — Polwn)l]

= iaJPC (xn) — Po(z,)

7j=1

2

i (Po () — Pe(n))

—
INE

Z ajl| Pe, () — Po(a)||*.
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(%) is true by the convexity of g(x) = ||z||*. Thus,

3 1P ) = Pt 2 s, C). (3.4)

multiplying (3.1) by «; we obtain:

Vi=1,....m «a;d*(z,,C;) < ajd(xn,C)* — || Pe, (wn) — Polzy)||*.

Adding these m inequalities one thus has:

Sy (0, Cj) < (Z af) (i, C)* = 3 oyl Pe; (wn) = Po(an)|”
7=1 Jj=1 j=1

(3.4)

S d(xn, 0)2 - d2(£n+17 C)?

and thus the result follows. O
It is also very useful to notice another property of the sequence {z,}. This property is

called Fejér monotonicity.
Theorem 3.2.2 (Fejér monotonicity of the sequence with respect to C)
|nir =yl < llen —yll Vyel (3.5)

Proof:

> aiPe,(x,) — yH

||xn+1 - y“ =
i=1
S el .
= > ai(Pe,(n) — y)
i=1
triangle inequality m
< S il| Py () —
i=1
yeCCC; m
< ZOéi||Pci($n) — Poyl
i=1
Theorem(A.1.4) m
i=1
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We are now ready to prove the main convergence result of this section.

Theorem 3.2.3 (Global Convergence of MPA) Let {x,} be a sequence generated by
MPA. Then there is a point ¢ € C' such that:

T, — C.

Proof: First, from (3.5) we have that,

d(zpi1,C) <d(z,,C) ¥Yn=0,1,2,...

Since {x,} is bounded (by (3.5)), it has at least one accumulation point z*. Let {x,, }

be a subsequence of {x,} that converges to z*. By (3.3) one has :

> ajd* (g, Cj) < d*(2y,,C) — d*(Tny 41, C) < d(24,, C) — d*(2p,,,, C). (3.6)

=1

Taking k£ — oo we have by the continuity of the distance function that:

> od?(z*,Cy) < d*(a*,C) — d*(a*,C) = 0,
7j=1

and thus d(z*,C;) =0 for all 1 < j < m (because a; > 0). In other words, z* € C. All
is left to prove is the uniqueness of the accumulation points. Suppose that z°°, y> are two
accumulation points of {z¥}. The sequences {||z* — z*||}, {||z* — y*°||} are bounded and

non-increasing so they have limits:

: k .00 —
Jim [lz® — 2] I,
: k 00 —
klgg)“x ™| ls.
Now,
[a* — 2> — [|a* — y>)|? = =2(a*, 2% — ) + 2> — [|y>]*.

N I I :
Taking limits 2% == 2°° 2%t =% ¢y we obtain:
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I =1y =—llo™ =y 10 = 15 =[] — ™|
Showing that x> = y°.
a

Remark: Besides clarity, there is no real reason to limit the discussion to algorithms which
use the same convex combination of the projections of z, to each of the m convex sets

C1,0Cs, ..., C,. We can define the general step by:

m
Tntl = ZQ?PC% (n)

i=1
where Y, o =1 and of,a3,...,al, > 0. The only reservation is that Theorem (3.2.3)
is true only if we add the assumption that there are numbers fSi,..., 5, > 0 such that

a > 0B Yi=1,...,mn=0,1,2,...

Theorem 3.2.4 (Global Convergence of MDPA) Let {x,} be a sequence generated by
MDPA. Then there is a point ¢ € C' such that:

T, — C.

Proof: The proof of the convergence of the sequence generated by MDPA is the same as the
proof of the convergence of MPA except for inequality (3.6) that takes the following form:

max d(z,,C;) < d2(xnk, C)— dQ(xnkH,C’) < dQ(xnk,C’) — dQ(anl,C’).

7j=1,...,m

The proof of the convergence of the sequence generated by CPA is slightly different.

Theorem 3.2.5 (Convergence of CPA) Let {x,} be a sequence generated by CPA. Then
there is a point ¢ € C such that:
Ty — C.
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Proof: As noted in Theorem 3.2.3, {z,} is bounded and thus has at least one accumulation
point z*. We will prove that z* € C'. Without loss of generality we assume that {x,} has in-
finite number of elements from the subsequence {Zpk—1)41}e;- Let {z,,} be a subsequence

of {x,} that converges to z* such that ny mod m = 1. By (3.3) one has:

d2(xnk, C) < d2(xnk, C)— dQ(xnkH,C’) < dQ(xnk,C’) — dQ(xnk+1,C’).

Passing to the limit as £ — oo, we have by the continuity of the distance function that:

d*(z*,Cy) < d*(z*,C) — d*(z*,C) = 0,

and thus z* € C. By the definition of {z,, } we have z,,, € C,, and so z* € C; N C,.
Now, consider the sequence {z,, 11} = {Pc (2n,)}. By the continuity of the projection
operator we have that:

TECL g,

Tng+1 = PCI (xnk) — PCl (:U*)

By the definition of x,, 11 we have that z,, 1o = Pg,(2,,+1) and thus by (3.3):

dz(xnk-l-la 02) < dz(xnk-i-la C) - dQ(xnk-l-?v C) < dz(xnk-l-lv C) - dQ(xnw—H—lv C)
As k — oo we have by the continuity of the distance function that:

d*(z*,Cy) < d*(z*,C) — d*(z*,C) = 0,

and thus z* € (3. Continuing this process we obtain that z* € N,C; = C. The

uniqueness of the accumulation point is proven as in Theorem 3.2.3. O

3.3 Linear Convergence of Projection Algorithms

3.3.1 Linear Convergence of MPA and MDPA

Convergence of the algorithm was proved under the mild assumption that C' # (). In order
to prove linear convergence, an additional assumption is necessary.

The assumption on the sets C'y, Cs, ..., C), that will be discussed is the Local Error Bound
assumption (shortly written as LEB).

7



Definition 3.3.1 (LEB) m closed convez sets C,...,Cy, are said to satisfy LEB if for
every bounded set B there exists a g > 0 such that:

Vee B d(z,C)

< 0p max {d(z,C;)}.

=1,....,m

Theorem 3.3.1 (LEB implies linear rate of convergence of MPA) If LEB is satis-
fied then MPA converges with a linear rate. More specifically,

d(l’n+1, C) < fYBd("L.na C)a (37)

where,

B = \ll

jmmin {ay}
=1,.., 38

B = {z:|lz—y| < |lzo—vyll},

and y is an arbitrary point in C'.

Proof: First, we prove that x, € B for every n > 0. By (3.5) we have that for all y € C"

20 = yll <l —yll <. < lzo = yll,

and thus z,, € B. By LEB there is a g > 0 such that

Now, for all n > 0:

I,

ax {d(z,,C;)} VYn>0.

")

dZ(xn,C) < Gé.max {dQ(xn,Ci)}

i=1,...,m
< % S i (an, C)
— 71’1']_]_1]_ {aj} Pt 2 n» (3
(33) 02
d*(z,,C) — d*(zp1,C
I{lin {Oéj}( (JT, ) (iU +1, ))
j=1,...,m
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2
Define A = .975’&} and we obtain that:
LY

.....

&(2n41,C) < (1 - %) & (2, C)

proving the desired result. O

The linear convergence of MDPA under the LEB assumption is proved in a similar way:

Theorem 3.3.2 (LEB implies linear rate of convergence of MDPA) If LEB is sat-
isfied then MDPA converges with a linear rate. More specifically,

d(xpi1,C) < ypd(z,, C).

where,

1
0%

B = {z: |z =yl <llxo—yl}

B = 4/l

Proof: The proof is the same as the proof of linear convergence of MPA, but here we have

the following:

d*(z,,C) < 03 max {d*(z,,C;)}

=1,....,m

(3.3)

3.3
< 0P (20, O) — P (xns1, O)).

and the result follows. O

Remark: The speed of the convergence that we have proved is dependent on the initial point

xo (vp is dependent on xg). This dependency can be removed if a stronger assumption, called
GEB (Global Error Bound) is assumed:

Definition 3.3.2 (GEB) m closed convex sets C,...,C,, satisfy GEB if there exists a
0 > 0 such that:
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3.3.2 Linear Convergence of CPA for two sets

For two sets, it is easy using our previous results to prove that the sequence generated by
CPA converges to a point in C' with a linear rate of convergence. However for the general
problem of m sets we cannot prove a result like (3.7) for the simple reason that it is not
true. Take for example the case where we have three closed convex sets C', (s, C3 such that
Cy = Csy then obviously z,,; = z, every three times thus equation (3.7) cannot hold for
v < 1.

Theorem 3.3.3 (LEB implies linear rate of convergence of CPA for two sets) If LEB

18 satisfied then CPA converges with a linear rate. More specifically,

d(xpi1,C) < ypd(zy, C).

where,

B = {z:llz =yl <llzo—yl}

y s an arbitrary point in C.

Proof: CPA for two sets is the same as MDPA for two sets and thus the result follows. O

3.3.3 Linear Convergence of the Sequence

Until now, we have proved that under the assumption that N“; C; # 0 there is a z* € C
such that z,, — x*. We have also proved that under the LEB assumption d(x,,C) — 0
with a linear rate of convergence. Now we will prove that z,, — x* with a linear rate of

convergence.

Theorem 3.3.4 Let {x,} be a sequence generated by MPA or by MDPA. Then, there is a
x* € C such that:

[ = 2*|| < Dy,

where D = %209 < 0 and vy is defined by (3.8).

1-vB
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Proof: We have already proved that there is a z* € C such that x, — z* and that
d(zpi1,C) < ypd(x,, C) for every n > 0. Now,

E:(W}%h(xn)_'xn

=1

S i(Pe, () — )

=1

||$n+1 - JUn” =

< Zai”PCi(xn) — 2|
i=1

= Y d(z,Cy)
i=1

CCC; m

< ) ad(z,0)
i—1

= d(z,,C)

<ty

where ¢t = d(zy,C). Thus, for every N > n:

N-1 N-1 1 — Al
lox = anll € 3 llayes =l < 3, = o (1220,
j=n j=n

Taking N — oo we have:

t
o — o'l € ——.

Substituting D = —-—, we obtain the result. O

1-yB’

3.3.4 An Example

We consider two closed convex sets C, Cy such that C; N Cy # (). These sets do not satisfy
LEB and we will prove that the sequence generated by CPA does not converge with a
linear rate. Thus the we can not guarantee linear convergence in the absence of the LEB

assumption.
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Two Sets That Don’t Satisfy LEB

Define the following closed convex sets in R2:

C; = {(z,0):z € R},
Cy = {(z,y):y>a"}.
Notice that C; NCy = {(0,0)}. Now, we prove that LEB is not satisfied. Otherwise, take

the bounded sets B = {(x,0) : || < 1} and by the LEB condition we have that there is a
fp > 0 such that:

Vx € B d(l‘, Cl N 02) S 93 max{d(x, Cl), d(fL’, CQ)} (39)

Set ) = (%, 0) for k =1,2,... and obtain:

_1
=
also zx € C and thus d(zg, C1) = 0. All is left to calculate is d(zg, Cy). We know that:

d(xk,C’l ﬂCQ) (310)

Vy e Cy d(y,C) < |z, — vl

Take y;, = (%, k—g) € (5 and thus

1
d(zr, C2) < ||z — yil| = =k (3.11)
Substitute (3.10) and (3.11) in (3.9) and obtain

1

<Onz VE=12....

1
k
which is equivalent to:

Op >k Vk=1,2,...

and is clearly impossible.
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CPA Does Not Converge with a linear rate

Convergence of the sequence generated by CPA to (0,0) is guaranteed by Theorem 3.3.3.
We will now show that the CPA algorithm does not converge to (0,0) with a linear rate. The

projection on C; has an explicit and simple expression:

PCl(xhy) = (.T,O)

The projection on C5 does not have a simple expression. The following lemma finds an

implicit expression for the projection on Cl:

Lemma 3.3.1 Let xy > 0. Then,

Pe,(20,0) = ( = A) ,

1+) 2

where A > 0 satisfies the following condition:

2
xp A

1+22 2
Proof: The projection of (xg,0) on Cs is the solution to the following minimization problem:
2

minimize (1 — x9)® +y

s.t. 22—y <0

By the KKT conditions there is a A > 0 such that:

2(x — x9) +2Xz = 0.

{2<y—yo>—A=o

Thus,

o A
i Ty
(wo,y) & int(Cy) and thus (z,y) = Pc,(x0,0) € bd(Cy) which yields 22 = y. O
Define the sequence generated by CPA (we only compute the first component because the

second component is zero):
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xg > 0 arbitrary,

xn
Tp =
i L+ A,
where A, > 0 satisfies:
A
(14+A,)2 27

Lemma 3.3.2 z,, — 0 but not with a linear rate of convergence.

Proof: By Theorem 3.2.3 z,, — 0. Assume that {z,} does converge with a linear rate to 0
then, there is a 0 < a < 1 and a natural number N such that =, < ax, for every n > N.
Recall that z,1 = 15 where (14 A,)?)\, = 2z;,. As a result:

A< (1T+A)2 N, =222

Thus,

An < \J2x2,

and so for any n > N:

which implies:

Tn
L, > ———.
1+ 222
Dividing the later inequality by x, we get:
1
o> —F—
1+ 222

and as x, — 0 we thus have that o > 1 which contradicts the assumption « € (0,1). O
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3.4 The Slater Condition Implies LEB

Recall the Slater condition for the collection of closed convex sets {C;}1" ;.
The Slater Condition: Let C, ..., C,, be m closed convex sets. Suppose that Cy,...,Cy (k <
m) are polyhedral sets. Then, C1,...,C,, are said to satisfy the Slater condition if:

(r’ﬁ Oz) ﬂ( N ri(cz-)) #0

i=k+1
The aim of this section is to prove that the Slater condition implies LEB using elementary
convexity arguments and Hoffmann’s Lemma. This result was recently derived in [3] through
a quite long and rather complex machinery which thus appear to be unnecessary. We begin

with the following result which is adopted from Gubin-Polyak [21].
Lemma 3.4.1 Let Cy,Cy C R" be two closed convex sets such that Cy () int(Cy) # 0. Then
LEB 1is satisfied i.e. for every bounded set B there is a 0g > 0 such that

Ve e B d(z,CyNCy) <Opmax{d(z,C),d(x,C)}.

Proof: Let 2 € R", denote n = 2max{d(z,C}),d(x,Cs)}. For every z € C; N Cy we have:

dlz,CiNCy) < Jlz— 2|
< e = Poy (@)l + 1 Pe () — |
= d(z,C)) + || Pe, (x) — 2|
< 2+ 1Po (@) = 2|l (3.12)

d(e,Cy) is Lipschitz with constant 1 and thus,

d(y,Co) <||ly — z|| + d(z,Cs) Vz,y € R".
Set y = P¢, () and obtain:

d(Pe, (), Cy) < [[Pey(x) — 2] + d(z, Cy)
= d(z,Cy) +d(z,Cy)
n (3.13)

IN
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Let u € Cy Nint(Cy). u € int(Cy) and thus there is a € > 0 such that:

|lu—v|| <e=ve .

Let v = u + pu(Pe, (z) — Py (Pe,(x))). Then,

(3.13)
<

[v —ull = pllPe, (x) = Poy,(Pey (2))l| = pd(Pe, (), Ca) 7).

So pick p = | and therefore |lv —ul| < € = v € 5. Now, construct a specific z in

01 ﬂczi

1 I C» is convex
72=—— v +4—— Pq(Pq, (x — z € Cs.
M_i_l\eczg /,L+1 CZ( Cl( )) 2

c€Cy

Using the definition of v we also have:

1 %
= Pe, (P,
1 P
= P, — Po, (P,
0 Py () = Peu(Pey () +
1 p
= u + Pe (x
ECI GCI

PC2 (PCI ($))

Thus z € C (and as a conclusion z € C; N Cy). So now we have:

Iz = Py (2)]| = u+ —E— P, (x) —Poy (x)

Using (3.12) we have:
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d(z,0, N Cy) < g+ Du—z|| VoeRueCNCs
€

Assuming x € B we have from the boundedness of B that there is a M > 0 such that
|z|| < M and thus:

M+ |lull
~
d@,CinC) < L+ Hu—al| < T+ L(jull +l2)) < 5 + 1 W
1 M
= 2 (5 + —) max{d(x,C),d(x,Cs)}
€

= fOmax{d(z,C),d(z,Cs)}.
Whereﬁzl—i-QTM'>0. a

Corollary 3.4.1 Let Dy,...,D,, € R" be m closed convex sets. If Ny int(D;) # O then
LEB 1is satisfied i.e., for every bounded set B there is a O > 0 such that:

VeeB d (x, N DZ-> < 0p _max {d(z, D;)}.
i1 i=1,....m

Proof: Define:

Ci = S (v,z,...,x):x eR"
———
m times

Cy = Dy xDyx...x Dy

Now,

O, N int(Cy) = {(x,x,...,x) cre) int(Di)}.

i=1
By the assumption N, int(D;) # (0 we have that C; Nint(Cy) # (. Thus, by Lemma
3.4.1 there is a fp > 0 such that:

\V/y € B™ N (gﬁn)m d(y, Cl N CQ) S 93 max{d(y, Cl), d(y, CQ)}, (314)
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where B™ = B X ...x B. Let y = (z,z,...,x) then:
|y —

m times

d(y,ClﬂCQ) = md(x,ﬂDl> y
i=1
d(y, Cl) == 0,

Ay, Co) = || (D) < Vim mas {d(r, D))}

Substituting these equations in (3.14) we obtain:

m gB
VeeB d (x,lq Di> < N Z:1rr113mm{al(x, D;)}.
O

The next simple result on convex sets will allow us to pass from interiors to relative

interiors.

Lemma 3.4.2 Let C be a closed convez set in R*. Then there exists a closed convez sets C
such that C C C and the following is satisfied:

aff(C) N int(C)
af(C)NC = C.

Proof: Take C to be:

C=C+ M,

where M is the orthogonal complement to the linear subspace parallel to aff(C). First,
we prove that aff(C)NC = C. Tt is obvious that C' C aff(C'),C' C C and thus C' C aff(C)NC.
Now, we’ll prove the second direction: aff(C') N C C C. Let z € aff(C) N C. z € C so there

are g, z such that:

r=y+z2z yeC,ze M.
Thus,
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r—y=z¢€M.

Since z,y € aff(C) then x — y € M+ which yields that z = 0. As a conclusion z =y € C
which proves that aff(C') N C' = C. Now,

ri(C) = ri(aff(C) N C) = ri(aff(C)) Nri(C) = aff(C) N ri(C)

All that is left to verify is that aff(C) = R", and indeed one has:

aff(C) = aff(C' + M) = aff(C) + M = R"
a

Theorem 3.4.1 (Slater Implies LEB) Let C4, ..., Cy be polyhedral sets and let Dy, ..., Dy,

be closed conver sets. If the Slater condition is satisfied i.e.,

(ﬁ Ci) : (ﬁ ri(Di)) 7 0. (3.15)

=1

then LEB is satisfied, i.e., for every bounded set B there is a Og > 0 such that,

VeeB d (a: (é ci> N (7(:]1 Di>> <Op _ max  {d(x,C;)d(z, D)},

i=1,...,m,j=1,...,
proof: Let Dy, ..., D,, be defined as in Lemma 3.4.2 i.e.,
ri(D;) = aff(D;) Nint(D,)

Then (3.15) is equivalent to:

( - Cl> N (ﬁ aff(DJ) Nint ﬁ Dj 7é @

~~

E F
Since E Nint(F) # () we have from Lemma 3.4.1 that there is a f5 > 0 such that:
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Vee B d(z,ENF)<@gmax{d(z,E),d(z,F)}.

By Corollary 3.4.1 there is a yg > 0 such that:

Ve € B d(x,F) <~vyp max {d(r,D;)}.
J:

1,....m

On the other hand, by Hoffmann’s Lemma there is a g > 0 such that:

wen wen) = afe () n(femnn)
< 65 max .,k{dl(:v,C’j),d(x,aff(Di))}.

t=1,...,m,j=1,..

Therefore,

Ve B dxz,ENF) < Opygép. = max  {d(z,D;),d(z,C)),d(x,aff(D;))}

i=1,...m,j=1,....k

< fOpypin ., max {d(x,C}),d(z, D;)}.

..... m,j=1,....k
The last inequality is true because D; C aff(D;), D; C D, and thus,

d(z, D;), d(z, aff(D;)) < d(z, D;).

3.5 The Rate of Convergence of Projection Algorithms

We have already proven that the sequence {x,} generated by CPA converges to a point
x* € C; N Cy. We will now see that if the Slater condition is not valid then for every even p
we can find an example of closed convex sets C, Cy such that:
1 . 1
————— < |- £ —.
(An + B)z— (Cn + D)2

That is, the rate of convergence can be very slow. The two closed convex sets that we

will consider are:
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i
Cy

(x,0) : z € R},
(z,y):a? —y < 0}.

= {
= {

Notice that C; N Cy = {(0,0)} and the Slater condition is not satisfied. The sequence
generated by CPA is:

(0,90) = (1,0), (3.16)
(tp41,0) = Pe,(Pe,(y,0)). (3.17)

The following lemma states that the sequence {x,} satisfies a recursive relation:

Lemma 3.5.1 Let p be an even integer. The sequence generated by CPA {x,} satisfies the

following relation.

ZU():l

Ty = Tpp +prlt, n=0,1,... (3.18)

Proof: Denote Pc,(2,,0) = (i1, Yns1). Then, (2,41, Yni1) is the solution of the following

optimization problem:

minimize (r — z,)? + y°

s.t. ¥ —y <0
By the KKT condition we have that:
2yn+1 —A=0
2(Tpy1 — Tn) +p)\xf;11 =0

Also, (Zy41, Ynt1) € bd(Cy) and thus v, = 2} ;. To conclude, we have:

3.

ot
=~

p—1 p—1 2p—1
_prnJrl - _2pyn+1xn+1 - _2p1‘n+1 .

2(Tpy1 — )
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In the next result we bound the value of z,,; with respect to the value of z,. These

bounds will play a crucial role in the investigation of the convergence rate of the sequence.

Lemma 3.5.2 There exists 0 < v < 1 such that for every n:

VTp < Tpa1 < Tp.
Proof: =, < x, by the definition of the sequence. Also,

217*1 Tn+1<Tn 217*1

Tntl = Tn — Tpyy >z, — T,

On the other hand, by the convergence of the sequence generated by CPA we have that
x, — 0 and thus there exists a natural N such that for every n > N we have z,, < % Thus,

for every n > N,

1 2p—2 1 2p—2
Tpp1 = Tp — xi’f{ll > T, — <§> Ty = T <1 — <§> ) )

2p—2
Define 7 to be greater than max {1 — (%) Y , i—;, i—f, . xg—;l} and the lemma is proved. O
We are now ready to prove the main result of this subsection: “CPA can converge as

slow as we wish”.

Theorem 3.5.1 Let {x,} be the sequence generated by CPA as described by (3.16),(3.17).
Then there exists numbers A, B,C, D such that:

S S S
(An + B)%= (Cn + D)%

Proof: Notice that:

L ey
N
(2n xn+1)( 2”:53513’233721’:137’“)
i}
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(3.5) pry! (ZZ”:‘O‘“’ 177'317721&_13_19)

- AR

PTn41 (Zi”;(f’ 9523521:13_16)
P2

We can thus bound the expression —— — —— from above:
z P P
n

n+1
2p—3 k 2p—3—k
]- ]- pxn+1 ( k=0 xnanrl Tn+1<ZTn
=2  9p—2 — op—2 < p(2p-2),
l‘n+1 In In
and from below:
2p—3 _k 2p—3—k
1 1 PTn+1 (Ek:O LpThpt1 Tnt1>VTn op—2
2 2p-2 9—2 > p(2p—2)yP77,
.ZUn_'_l In In

Summing this inequalities we obtain:

1 1 S ( 1 ! > < (2 2)
5,5 — = 5,5 — "9, 9 pisp — 4)n,
a k=0 fvi’if 35?) 2
1 nl/oq 1 B
2p—2 L= ( 2p—2 2p2> > 721) 2]0(219 - 2)n.
In k=0 \Tkt1 Ty,
Thus,
1 1
— <z, < —.
pl2p — 2)n + 1)2r=2 P=ip2p —2) + 1)20—2
2 2 1)2»—2 v2P=2p(2 2 1)2»—2

Define A = p(2p —2),B=1,C =~+*"2?p(2p — 2), D = 1 and the theorem is proved. O

3.6 Two Points Projection Algorithms

3.6.1 Definition of TPA

In this section we consider only convex feasibility problems with two sets. We begin by
recalling the gradient projection algorithm (see chapter 2) to solve the following optimization

problem:
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(OP) min f(z),

Here we assume that S is a closed convex set and f is a differentiable function with

Lipschitz gradient with Lipschitz constant L, i.e.:
IVf(z) = Vi)l < Lljz —y|| Vz,y € S.

We assume that the optimal set of (OP) is nonempty and denote the optimal value by f*.
The Gradient Projection Algorithm (in short, GPA) is defined as follows:

Gradient Projection Algorithm (GPA)

first step: Take an arbitrary 2° € R”
general step: z,,1 = Ps(z, — aV f(x,)).

where « is a step size. One of the main results about the gradient projection algorithm
is the sublinear rate of convergence of the function values:

Theorem 3.6.1 (Sublinear Rate of Convergence of the Function Values) Let {2*}
be the sequence generated by GPA with constant step size 0 < a < % Then for every k > 1
the following is satisfied:

= Q

fla®)—fr <

for some constant C.

Proof: See [25].

There is a simple connection between the projection algorithms previously defined (CPA,MPA)
and the gradient projection algorithm. Consider the convex feasibility problem with two
closed convex sets C,Cy, then the feasibility problem is equivalent to the solution of the

following optimization problem:

1
(P) min{§||x— Yz ey e 02}.

The optimal set of (P) is (C; N Cy) x (C; N Cy) and the optimal value f* = 0.
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The gradient projection algorithm applied to (P) considers two points in each iteration
(one for each set). Thus the algorithm will be called TPA (Two Points projection Algorithm)

and has the following form:

Two Point Projection Algorithm (TPA)

initial step: Take an arbitrary xzy € C,yg € Co
general step: w,41 = Po, (1 — @)zn + ayn), Yni1 = Po, (1 — @)yn + azy)

when « is a step size and thus by Theorem 3.6.1 the convergence is guaranteed only when
a < % where L is the Lipschitz constant of the gradient of the objective function. It is easy
to see that here L = 2 and thus the algorithm will converge for every av < 1. Few important
remarks are considered below:

Remarks:

P’l CEn+P,2 Tn

convergence is already guaranteed by results already derived in this chapter but also

1. In the case a = % TPA becomes MPA with equal weights (x,,; =

from the results known about the gradient projection algorithm.

2. In the case a = 1, convergence is not guaranteed by the theorems known for the
gradient projection algorithm, but when @ = 1 TPA becomes CPA and so convergence

is guaranteed by the theorems considered in this chapter.

3.6.2 The Rate of Convergence of TPA

In the previous subsection we noted that TPA is just MPA with equal weights when o = %
Thus, TPA is also a kind of projection algorithm as already discussed in section 3.5 and can
converge as slowly as we’d like (or don’t like, as a matter of fact). However, we can bound
the rate of convergence of the error bound: max{d(x,,Cs),d(y,,C1)} (Recall that by the

definition of TPA z,, € C1,y, € Cy).

Theorem 3.6.2 Let C,C5 be two closed conver sets with nonempty intersection and let
0 < a < 1. Then the sequence {(x,,yn)}o, generated by TPA with constant step size «
converges to a point in (Cy N Cy) x (Cy N Cy) and the following is satisfied: there ezists a
constant A such that:
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max{d(zy, Cs),d(y,, C1)} <

Bl

Proof: Denote f(z,y) = ||z — y||>. Then by Theorem 3.6.1 we have that there exists C
such that:
C
||"En - yn||2 < )
n

or equivalently,

S

|20 — ynll < Nk
Since x,, € C1,y, € Cs, this implies the following two inequalities:
VT
d(xnaCQ) S ||xn - yn“ S %7 d(yna Cl) S ||xn - yn“ S
Define A = +/C and the theorem is proved. O

Bk

3.6.3 A Relation between GREB and LEB

Recall that for optimization problems one has the following error bound :
Assumption (GREB) For every closed bounded set B there exists a op > 0 such that:

Vee BNS d(z,X") <opllz — Ps(x — aV f(2))|,

where X* is the optimal set.

It is known that if GREB is satisfied then the sequence generated by GPA converges to
an optimal point with a linear rate. By writing GREB for the optimization problem (P)
(induced by the feasibility problem) we obtain a new error bound for the feasibility problem:

For every bounded set there exists op > 0 such that:

d((z,), (C1NC2) x (C1 N C)) < oll( = P, (1 = a)z + ay),y — Po, (1 — @)y + @))||.

We can use the equivalence of norms in finite dimensional spaces and obtain the following
error bound that will be called TPEB (Two Points Error Bound)
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Definition 3.6.1 (TPEB) Two sets Cy,Cy are said to satisfy TPEB with constant « if for
every bounded set B there exists og > 0 such that for every x € BN Cy,y € BN Cy:

max{d(x, C1NCs), d(y, C1NCsy)} < op max{||[x—Pc, ((1—a)z+ay)||, ||y—Pc, (1 —a)y+azx)|},

By using the results derived for the GPA algorithm we obtain that TPEB implies linear

rate of convergence of the sequence generated by TPA.

Theorem 3.6.3 (Linear Rate of Convergence of the sequence) Let Cy,Cy be two closed
convex sets with nonempty intersection. Suppose that TPEB is satisfied. Let {(x,,yn)} be a
sequence generated by TPA with o € (0,1). Then there is 0 < n < 1 such that,

d(Tp41,C1NCe) < nd(x,, C1NCy),
d(Yn+1,C1 N Cy) < nd(y,, Cr N Cy)

Proof: Follows immediately from Theorem 2.3.2. O

Both conditions: LEB, TPEB imply linear convergence of the sequence generated by
their associated algorithms (MPA TPA respectively). As already noted, TPA with « = % is
in fact MPA with equal weights. Thus, both conditions imply the linear convergence of MPA
with equal weights. The question that naturally arises is: what is the weaker condition? .
The next theorem answers this question, and it turns out that LEB implies TPEB.

Theorem 3.6.4 (LEB — TPEB) Let Cy,Cy be two closed convex sets with nonempty in-
tersection that satisfy LEB. Then, for every 0 < a < 1 the TPEB condition with constant o

18 satisfied.

Proof: Let B be a be a bounded set. Then, by LEB we have:

Ve e B d(xz,CyNCy) < Opmax{d(z,C),d(x,Cs)}.
Thus, for every x € C1N B,y € C,N B:

dz,CyNCy) < Opmax{d(z,Cy),d(z,Cs)}
HBd(ZU,Og)
< Opd(z, P, ((1 — @)z + ay).
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By taking y instead of  we obtain the inequality:

d(y,C1 N Cs) < Opd(y, Pe,((1 — @)y + ax).

Combining these two inequalities we obtain TPEB:

max{d(xz, C1NCs), d(y, C1NCs)} < 0 max{||xr—Pe, ((1—a)z+ay)||, ||y—Pe,(1—a)y+azx)||},

O

3.7 Finding The Optimal Convex Combination in Pro-
jection Algorithms

Suppose that we are given m closed convex sets Ci,Cs,...,C,, such that N™, C; # 0.
Consider the Projection algorithm given by:

m
Tpt1 = Z aiPCi (l'n),

i=1
where >, a; = 1 and a; > 0 for all ¢.
The convex combination is not necessarily the same in every step of the algorithm. The

question is :what is the best convexr combination? We have:

d(zps1,C)? jiachj (7n) — Po(ni1) 2
< ]fjlajpc (22) — Po(an) 2
- ga] Pe, () = Polra)) 2
_ i l(Pe; (20) = Pelon) | + 32 avay{Pes(on) = Polon), Pey(an) = Polan)

= Z |PC Ty) PC(xn)H2
—1
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+ Z ;0

(IIPci (2n) = Po(@n)|” + [ Pey (wn) — Pe(@n)||* — [|1Po,(xn) — Pey ()|

i 2
m Pe, (@) — Pe, (w)]?
< Y- ajd(w,, C) + 3 cajd(zn, O)? — ZO@-O@-H () 5 o, (@)l
j=1 i#j 7]
Pe(z,) — Pe (z,)|)2
= Zaiozjd(xn,C)Q—Zaiosz ) 5 6zl
iy i
= (S dlen P - ) Sl Palen) - Py a)
i=1 i
1
= d(wn, C)° = 5 2 il Pei(wn) = Poy (wa)

i#]
That is, the difference d(x,,C)* — d(z,11,C)? is greater than:

fla) =3 aioj|| Pe,(wn) — Pe, ().
i#]
This suggests that we should take the convex combination which is the solution of the

maximization program:

maximize f(«)

m
s.t. Z a; = 1
j=1

aj20

On first sight, this does not seem to be a convex programming problem because f(«)
is a quadratic function with an indefinite matrix. But, using the condition /", a; = 1 we
can find a convex representation of the problem as a convex programming problem. Indeed,
denote v; = Pg,(x,,). Then, :

fla) = > aiallv; — v
i

H’Ui*;iH:U Zaiajnvi . Uj||2
i
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= Zaz% (loill* = 207 w; + flo; %)

= ZO‘%O‘JHUZHZ - QZO‘laJU v + ZazO‘JHUJH

= Z%Z%HWHQ—?
=1 =1

> aw,
i=1

+ Z ; Z ajlv;|?
-1 j—1

m m 2
= 220&1“7)1”2 -2 ZO[Z'UZ'
=1 =1

The objective function is now a concave quadratic function because the matrix is seminegative-

definite (for every ay,...,am : — |27, aus]|> < 0).
Remark: If the set {F, (xn)} is linearly independent then the target function is strictly

concave.

3.8 Conic Programming

We introduce here potential algorithms that can be devised to solve conic optimization
problems via CFP type algorithms and give the explicit formulas for the projections (details

of computations are in appendix A).

3.8.1 The General Framework
The Conic Feasibility Problem

Let C' C R" be a closed convex cone, and let A be a m x n real matrix and b € R™ then the

following feasibility problem is called The Conic Feasibility Problem

(CFP) Az =b
rel

This problem can be solved by MPA when considering the closed convex sets C; = {z :
Ax = b}, Cy = C. Note that Pg, is just an affine transformation. The form of P, depends

on the cone C.
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Conic Programming

Let C' C R" be a closed convex cone, and let A be a m x n real matrix and b € R, a € R"

then the following optimization problem is called Conic Programming

inf o'z
(CP) st. Az =19
rzel

The dual problem is of the form: (A € R™)

sup —bl A
(DCP) st. ATA4+a=0
AeCt

where C* is the polar cone defined by:

C*={x:2"y >0 VycC}.

If strong duality is satisfied then (x, \) are optimal primal-dual solutions iff they satisfy
the following system :

Ar=1»
alz+b"A=0
reCl
AT+ aeCr

We introduce the slack variables s € R" for the purpose of obtaining a standard conic feasible

problem:

Ar =0b
alz +b"A=0
(CFP) s=A"\+a (3.19)
rel
seC”
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This is just a standard (CFP). We can see that by defining the cone C, the matrix A
and the vector b as follows:

C = CxR"xC*
A 0 0

A = al T 0
0 —-AT I,
b

b = 0
—a

Thus, the conic programming problem is equivalent to the following convex feasibility prob-

lem:
— Az =)
(CFP) ™"~
zed
x
where Z = | A [. The Projection on C is given in terms of the projection on C,C*:
s
T Po(x)
Pl )N | = A
s Po+(s)
Now, we can apply MPA on the closed convex sets
C, = {&:Az =10},
C, = C.

Theorem (3.2.3) implies that MPA converges to a feasible point of (CFP). If LEB is
satisfied then convergence is guaranteed with a linear rate. This happens in the case of
linear programming where LEB is satisfied by Hoffmann’s Lemma. In the case of other conic
programming problems like second order cone problems and semidefinite programming a

Slater type condition must be assumed in order to ensure linear convergence. For this reason
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we consider a slightly different system, instead of (CFP) we consider its € perturbation
(CFP,):

Ar=1»
alz + b7\ > ¢
rxeC
AT N+ aeCr

Introducing slack variables we obtain the following cone feasibility problem:

Ar=0b
s=ATA+a
t=a"z+b")—¢
red

seC*

t>0

(CFP,)

A solution to this system is not necessarily optimal but has an € duality gap. This system
is of course also a standard conic feasible problem. In order to ensure linear convergence we

need to assume the Slater condition:

Assumption 11 (The Slater Condition For Conic Optimization Problems) There ex-
1sts a x, \ such that:

Arx = b
z € ri(C)
AT\ +a € ri(C*)
a’z +b'N > e

3.8.2 Linear Programming

Linear Programming is the problem of minimizing a linear functional under linear constraints

and non-negativity constraints:
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inf o'z
(LP) st. Az =0
z >0

where a € 2", A € R™*", b € R™. Here the cone is the non-negative orthant: C = R’}.
C is a self dual, i.e. C* = C = R". Thus, by (CFP), the feasibility problem associated to
with (LP) is

Ar=1»
alz+b"A=0
s=AT)A+a
z,s >0

Now, we follow the general framework and define C,C5 as in (3.20). By Hoffmann’s
lemma LEB is satisfied for C',C5 because both are defined by system of linear equalities
and inequalities. Thus, we can define a projection algorithm (for example: MPA) that will
converge with a linear rate. The projection operator on each of the sets (', Cy is trivial.

The projection on (' is just an affine transformation and the projection on Cs is just:

x [2]+
Po, | N |=1] A
[s]+

3.8.3 Second Order Cone Programming

The standard representation of the second order cone programming optimization problem
(SOCP) is the following:

inf o'z

(SOCP) st. ||Aw+b||<clz+di i=1,...,m

where a,c; € R", A; € RF*" b, € R¥i. This is equivalent to the following problem:

104



inf o’z
(SOCP))  st. ||z <w; i=1,...,m
zl:Azx+bZ,wl:c,T:v+dz izl,...,m

where z; € R¥ w; € R. Here we have a standard conic optimization problem where the
associated cone is C' = R" x L, X ... X Ly, . Ly is the Lorentz Cone also called the ice cream

cone, and defined by:

Li={(z,w): [|2]| < w,z € R*,w e R}.

The projection on the Ice Cream Cone can be expressed explicitly:

(x,r), if ||z|| <
Pp (z,7) =4 (0,0), if ||z|| < —r
llz||+r
2

(ﬁ, 1) else

3.8.4 Semidefinite Programming

The semidefinite Programming problem is the problem of minimizing a linear functional

under linear constraints and positive semidefinite constraints.

inf o'z
(SDP) s.t. AX =0
X >0

Here the associated cone is S7 which is the cone of all positive semidefinite matrices.
The projection of a matrix to this cone involves finding the spectral decomposition of the

matrix.
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Chapter 4

Mirror Descent and Nonlinear
Projected Subgradient Methods for

Convex Optimization

4.1 Introduction

In this chapter we study projection based algorithms for nonsmooth constrained convex

minimization problems. Consider the following nonsmooth convex minimization problem,
(P) minimize f(z) s.t. v € X C R"

Throughout the chapter we make the following assumptions on problem (P):

Assumption A

e X is a closed convex subset in "™ with nonempty interior.

e The objective function f : X — R is a convex Lipschitz continuous function with

Lipschitz constant L; with respect to a fixed given norm || - ||, i.e.,

e The optimal set of (P) denoted X* is nonempty.

e A subgradient of f at x € X is computable. We denote by f’(z) an element of the
subdifferential 0f (x).

106



We are interested in finding an approximate solution to problem (P), within ¢ > 0, i.e.,
to find x € X such that

Fla) - £ i= f(a) — min f(2) < <.
A standard method to solve (P) is the subgradient projection algorithm, (see e.g. [6] and

references therein), which generates iteratively the sequence {z*} via
Tri1 = mx (2t =t f'(2")), (4.1)
where ¢, > 0 are some positive stepsizes and
mx(#) = argmin{[|z —y[| [ y € X}.

is the Euclidean projection onto X.

The key advantage of the subgradient algorithm is its simplicity, provided that projections
can be easily computed, which is the case when the constraints set X is described by simple
sets, e.g., hyperplanes, balls, bound constraints, etc... Its main drawback is that it has a
very slow rate of convergence. Indeed, consider the convex problem (P) with f convex and
Lipschitz continuous on X, with Lipschitz constant L;. Then, by the subgradient inequality

for the convex function f one has,
IF @)l < Lp Vo e X (4.2)

where || - ||, is the dual norm. Suppose that X is a convex compact subset of R”, and denote
by Diam(X) the diameter of X, i.e., Diam(X) := l{I@ljgg{(Hx — y|| < oo. Then, with the
stepsizes chosen as

t, = Diam(X)k V2 k=1,... (4.3)

the optimal efficiency estimate for the subgradient method is (see [32]):

f(2*) — min f(x) < O(1)L; Diam(X )k /2, (4.4)

zeX

where O(1) stands for a positive absolute constant. Thus, like all gradient based methods,
one can obtain in a very small number of iterations a low accuracy optimal value, (say
one or two digits) but then within further iterations no more progress in accuracy can
be achieved and the method is essentially jamming. However, a key feature of gradient

methods is also the fact that while their rate of convergence is very slow, the rate is almost
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independent of the dimension of the problem. In contrast to this, more efficient sophisticated
algorithms, such as for example interior point based methods, which require for example
at each iteration Newton type computations, i.e., the solution of a linear system, are often
defeated even for problems with a few thousands of variables, and a fortiori for very large scale
nonsmooth problems. Therefore, for constrained problems where low accurate solutions is
sufficient and the dimension is huge, gradient type methods appear as natural candidates for
developing potential practical algorithms. The recent paper [4] on computerized tomography
demonstrates very well this situation through an algorithm based on the Mirror Descent
Algorithm (MDA for short) introduced by [32]. It is shown there that it is possible to solve

efficiently a convex minimization problem over the unit simplex, with millions of variables.

Motivated by the recent work of [4], in this chapter we concentrate on the analysis of
the basic steps of the (MDA) which is recalled in Section 2. We show in Section 3, that the
(MDA) can be viewed as a simple nonlinear subgradient projection method, where the usual
Euclidean projection operator is replaced by a nonlinear/non-orthogonal type projection
operator based on a Bregman-like distance function, (see e.g., [8],[11],[39]) and references
therein. With this new interpretation of the (MDA), we derive in a simple and systematic
way convergence proofs and efficiency estimates, see Section 4. In Section 5 we concentrate
on optimization problems over the unit simplex and propose a new algorithm called the
Entropic Mirror Descent Algorithm (EMDA). The EMDA is proven to exhibit an efficiency
estimate which is almost independent in the dimension n of the problem and in fact shares
the same properties of an algorithm proposed in [4] for the same class of problems, but is
given explicitly by a simple formula. Finally, in the last section we outline some potential

applications and extensions for further work.

4.2 The Mirror Descent Algorithm (MDA)

The idea of the algorithm is based on dealing with the structure of the Euclidean norm rather
than with local behavior of the objective function in problem (P). Roughly speaking, the
method originated from functional analytic arguments arising within the infinite dimensional
setting, between primal and dual spaces. The mathematical objects associated with f and
x are not vectors from a vector space E, but elements of the dual vector space to E, which

consists of linear forms on E. The Euclidean structure is not the only way to identify the
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primal-dual spaces, and it is possible to identify the primal and dual spaces within a wider
family which includes as particular case, the classical Euclidean structures. This idea and
approach was introduced by Nemirovsky and Yudin [32], and the reader is refereed to their
book for a more detailed motivation and explanations. We will show below, that there is a
much simpler and easy way to motivate, explain, and construct the MDA. For now, let us

consider the basic steps involve in the original MDA.

Consider the problem (P) satisfying Assumption A. The (MDA) further assumes the
following objects, which can be freely chosen as long as they satisfy the following hypothesis:

e Fix any norm || - || in " (which will play a role in the choice of the stepsize).

e Let ¢ : X — R be a continuously differentiable and strongly convex function on X

with strong convexity parameter o > 0.
e The conjugate of ¢, defined by
¥ (y) = max{{z,y) — ¢ (z)}
is assumed to be easily computable.

The basic steps of the Mirror Descent Algorithm can be described as follows, see, [32],
and [4] (for comparison the set Y there is set to be equal to X in [4, p.84]).

The Mirror Descent Algorithm-MDA. Start with y' € dom V* and generate the

sequence {z¥} € X via the iterations

2F = vyt (yh) (4.5)
gt = VY(at) -t f' (o) (4.6)
mper = VYY) = VH (Vi) — tef'(2")), (4.7)

where £, > 0 are appropriate step sizes.

The method looks at this stage somewhat hard to understand or even to motivate (besides
the very rough explanation given above). In the next section we will give a very simple
interpretation which will explain and reveal the structure of this algorithm. In the mean
time, let us consider a basic example which clearly indicates that the MDA appears to be as

a natural generalization of the subgradient algorithm.
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Example 1. Let || - || be the usual I, norm in R" and let ¢(z) := §|[z||* for € X and
+o0o for x ¢ X. The function 1 is clearly proper, Isc and strongly convex with parameter
o =1, and continuously differentiable on X. A straightforward computation shows that the

conjugate of ¢ is given by ¢* : R* — R

1

v*(2) = AP = Iz = 7x(2)[")

with Vi¢*(z) = mx(2). Indeed, since 0¢)(x) = (I + Nx)(z), where Nx denotes the normal
cone of the closed convex set X, using the well known relations (I + Nx)™! = 7x and
(0)~t = O™, (see, [36]), one thus has

z€(r) <= x=(I+ Nx) '(2) =7x(2) = VY*(2).

Therefore, the (MDA) yields

o = 1 (yh) (4.8)
g = 2t -t f (") (4.9)
o = mx (@ — e f' (2%)), (4.10)

i.e., we have recovered the subgradient projection algorithm.

4.3 Nonlinear Projection Methods

It is well known (see e.g., [6]) that the subgradient algorithm can be viewed as linearization
of the so-called proximal algorithm [37], (or as an explicit scheme of the corresponding
subdifferential inclusion). Indeed, it is immediate to verify that the projected subgradient
iteration (4.1) can be rewritten equivalently as

1

7! € argmin {(x, (@) + —|lz — xk||2} :
reX th

In [39], it has been shown that more general proximal maps can be considered by replacing
the usual Euclidean quadratic norms with some sort of more general distance-like functions.
As explained there, the principal motivation for such kind of distances is to be able to use one
which reflects the geometry of the given constraints set X, so that in particular with such an

appropriate choice, the constraints can often be automatically eliminated. In a similar way,
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we can thus construct nonlinear projection subgradient methods, by considering iteration

schemes of the form

2! € argmin {(a:, f1(z")) + lD(:U,a:k)} : (4.11)

zeX Uk

where D(u,v) replaces 271||u — v||?, and should verify the property D(u,v) is nonnegative,
and D(u,v) = 0 if and only if u = v. We prove below, that the (MDA) is nothing else, but
the nonlinear subgradient projection method (4.11), with a particular choice of D based on
a Bregman-like distance generated by a function ¢. Note, that the hypothesis on D will be
somewhat different from the usual Bregman based distances assumed in the literature, see

e.g., [24], [39], and references therein.

Let ¢y : X — R be strongly convex and continuously differentiable on int X. The distance-
like function is defined by By : X x int(X) — R given by

By (z,y) = (x) = ¢(y) — (x —y, Vi(y)). (4.12)
The basic subgradient algorithm based on By, is as follows.

Subgradient Algorithm with Nonlinear Projections (SANP) Given By as defined
in (4.12) with ¢ as above, start with ; € int X, and generate the sequence {z*} via the

iteration

1
! — argmin {(x, £t + B¢(x,xk)} 4> 0. (4.13)
zeX k

When V1) can be continuously extended on X, (e.g., as in Example 1), then we can consider
the function By, defined on X x X. Note that in this case one needs not to start with ' €
int X and (SANP) can start with any arbitrary point z! € R". With X = R" and ¢(z) =
sllz||* one obtains By(z,y) = 1|z — y||* thus recovering the classical squared Euclidean

distance and (SANP) is just the classical subgradient algorithm.

We now turn to the question of having (SANP) a well defined algorithm. When 1 is contin-
uously differentiable on X, then the strong convexity assumption immediately implies that
the algorithm which starts with ' € R” is well defined and produces a sequence z* € X, Vk.
When 1 is only assumed to be differentiable on int X, we clearly need to guarantee that the
next iterate stays in the interior of X, so that B, can be defined on X x int X. For that, it

suffices to make the following assumption:

IV(xy)|| = 400 ast — oo, V {z;} € int X with z; — = € 0X, (4.14)
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where 0X denotes the boundary of X. Note that (4.14) is just to say that 1) is essentially
smooth, (see [36]). With this additional assumption on 1) together with the strong convexity,
it follows that the sequence {z*} is well defined i.e., z¥ € int X, Vk. An interesting choice
for 1) satisfying (4.14) will be considered in Section 5.

It is interesting to note the differences between the two classes of algorithms which then
emerged from (SANP). The first class with 1 continuously differentiable on X leads to non-
interior methods with iterates z¥ € X. This is exactly the setting of the (MDA). Typical
examples of ¢ in that case will involve power of norms on X, see Example 1 and [4]. On the
other hand, the second class, with ¢ satisfying (4.14) will be an interior type subgradient
algorithm producing sequences z* € int X. Note that the analysis we develop in the rest of
this chapter will hold for both classes of algorithms with the additional assumption (3.14)

on 1) when needed.

We first recall some useful facts regarding strongly convex functions, and their relations with

conjugates and subdifferentials. These results can be found in [38, Section 12H].

Proposition 4.3.1 Let ¢ : R — R U {+oo} be a proper conver and lsc function and let
o > 0. Consider the following statements:

(a) ¢ is strongly conver with parameter o;

(b) (u—v,x—y) > ol||lx—y||*, whenever u € dp(x),v € dp(y); i.e., the map dp is strongly
monotone.

(¢c) The inverse map (Op)~" is everywhere single valued and Lipschitz continuous with con-
stant o~ 1.

(d) ©* is finite everywhere and differentiable.

Then, (a) <= (b) = (¢) <= (d).

As written above in (4.13), the resemblance between (MDA) and (SANP) is still not
obvious. However, we first note that the main step of (SANP) can be written in a more
explicit way. Writing down formally the optimality conditions for (4.13), we obtain the
following equivalent forms for (SANP):

0 € tif'(a") + V(@) — Vi(a*) + Ny (b
(Vi + Nx)(&*1) e Vp(a®) — e f'(«")
" e (VY + Nx) YY) — tif'(2%)). (4.15)

112



Proposition 4.3.2 The sequence {2*} C X generated by (MDA) corresponds exactly to the
sequence generated by (SANP).

Proof. By definition of the conjugate function, one has ¢*(2) = max,cx{(z,2) — ¢¥(z)}.
Writing the optimality conditions for the later we obtain 0 € z—V(z) — Nx (), which is the
same as 2 € (Vi + Nx)7'(2). But, since ¢ is strongly convex on X, then using Proposition
4.3.1, ¢* is finite everywhere and differentiable and one has: Vi* = (9¢) L. Thus, the later

inclusion is just the equation
v = (V¢ + Nx)~'(2) = Vo' (2) = (9y) "

Using these relations, (SANP) can be written as follows. Let y**! := Vi (2F) — ¢, f'(2*) and
set z¥ = Vo*(y*). Then, (SANP) given by (4.15) reduces to zF*1 = V¢*(y**1), which are
exactly the iterations generated by (MDA). O

Note that when ¢ satisfies (4.14), then (SANP) reduces to: z**t = (Vi) L(Vip(a®) —
tef'(a")).

4.4 Convergence Analysis

With this interpretation of the (MDA), viewed as SANP, its convergence analysis can be
derived in a simple way. The key of the analysis, relies essentially on the following simple
identity which appears to be a natural generalization of the quadratic identity valid for the

Euclidean norm.

Lemma 4.4.1 ([13]). Let S C R™ be an open set with closure S and let ¢ : S — R be
continuously differentiable on S. Then for any three points a,b € S and ¢ € S the following
wdentity holds true

By (e, ) + By(a,b) — By(e,b) = (Vi(5) — Vib(a), c — a). (4.16)
We will need some further notations. Let

||zl = max{(z,z) | v € R", [l«]| <1}
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be the (dual) conjugate norm. The convergence results for the SANP (and hence MDA) are
given in the following theorem. We assume that the sequence x* produced by (SANP) is
well defined (see Section 3 for the appropriate condition on ).

Theorem 4.4.1 Suppose that assumption A is satisfied for the convexr optimization problem
(P). Let {x*} be the sequence generated by (SANP) with starting point x* € int(X). Then,
for every k > 1 one has

oy < Bolea) £ 20 S B

(@) min f(z*) —min f(z) < - (4.17)

1<s<k zeX

(b) In particular, the method converges, i.e., minj<,<i f(2°) — mingex f(x) — 0 provided
that

Ztszoo,tk—>0,k—>oo.
S

Proof. Let 2* be an optimal solution of (P). Optimality for (4.13) implies:
(x — 2 b f (2F) + Vip(at ) — Vip(ak)) > 0, Ve € X,
and thus in particular for r = 2* we obtain
(x* — 2" V() — V(a2 ) — . f'(2F)) > 0. (4.18)

Using the subgradient inequality for the convex function f one obtains

0 <ti(f(a") = f(z%) < ti(a® =", f'(z"))
= (" -2 Vz/)( ) = Vo) =t f'(ah)  (4.19)
+ (=M VYt — Vg (at)) (4.20)
+ (@ — 2P (2)). (4.21)
= 1+ 59+ s3, (4.22)

where s1, 9, s3 denotes the three righthand side terms (4.19)-(4.21). Now, we have

51

IN

0, [by (4.18)],
By (7%, 2%) — By (z*, 2**1) — By («F*1, 2%), [by Lemma 4.4.1]
s5 < (20) G @NIE+ 27 ol — 2P,

S92
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the later inequality following from {(a,b) < (20)7!|a||?* + 27 ¢||b||?, Va,b € R™. Therefore,
recalling that By (-, ) is o-strongly convex, i.e., — By (o*" %) + 27 o||2F — 2|12 < 0, it
follows that

to(f(2%) — F(2")) = 51+ 52+ 53 < By (2",2%) — By (2", 2") + (20) ][ f'(@")I[5. (4.23)

Summing (4.23) over k = 1,..., s one obtains,
> te(f(2%) = f(z")) < By(a*,a') = By (2", 2"") + Ztﬁllf I
k=1

Since By(+,+) > 0, it follows from the last inequality that

B * 1 2 —1 2
min f(a*) — min f(z) < w<xa$>+<0>§:1t:u||f< llF

, (4.24)

proving (a). Assuming that ¢, — 0 and Y ¢, = 0o as k — oo, it thus follows from (4.24)
that miny<;<; f(2°) — mingex f(z) = 0 as k — oo, proving (b). O

The above convergence result allows for deriving the best efficiency estimate of the method,
by choosing an appropriate step size. The best stepsize is obviously obtained by minimizing
the right-hand side of the inequality (4.24), with respect to t € R% . We need the following
technical result.

Proposition 4.4.1 Given c >0, b € §RfiH_ and D a symmetric positive definite matriz one

has
L CF (20)7'2"D2z 2¢
in = ,
2eRE bT 2 obT'D-1b
with optimal solution z* = bTQE‘IIbD*Ib.

Proof. Writing the KKT optimality conditions for the (equivalent) convex problem

20)7 121D
inf {C+(J) : Z:sz:u},

z,u>0 u

yields the desired result. U

We can now derive the efficiency estimate for (SANP).
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Theorem 4.4.2 Suppose that assumption A is satisfied for the convexr optimization problem
(P). Let {x*} be the sequence generated by (SANP) with starting point x' € int X. Then,

with the stepsizes chosen as
20By(z*,z1) 1
t = —, 4.25

one has the following efficiency estimate,

2By (z* ') 1

i (o) i o) < Ly 2P (120)
Proof. The right hand side of (4.24) is upper bounded by
* — k

i1t
Minimizing (4.27) with respect to t1,ts,...,t > 0, and invoking Proposition 4.4.1 with
¢:= By(z*,z'),b:=e=(1,1,...,1)" and D = L% - I where I is the k x k identity matrix,
one gets the desired step size and efficiency estimate. a

Clearly, in order to make this result practical, one has to be able to upper bound the quantity
By(z*,2'), which depends on the (obviously unknown) optimal solution z*, so that the step
size and the efficiency estimate can be computed. This can be done by defining for any
y € int X [y, y] := maxyex By(z,y). Thus, one can replace in the estimate (4.17), the
quantity B(z*,z') by v[, 2], provided the later quantity is finite. This is particularly true
whenever X is assumed compact. At this point it is informative to compare our results
and assumptions with the ones derived in [4] for (MDA). In the later work, the following
assumptions were used:

(a) X C R" is a compact convex set.

(b) f is a convex Lipschitz continuous function on X', with Lipschitz constant L, with respect
to a given norm || - ||.

(e) If'(@)||l« < Ly, Vo € X, where || - ||, is the dual norm.

(d) ¢ : X — R is strongly convex and continuously differentiable on X

(e) The quantity I'[¢)] := max, yex By(z,y) < 00

Note that (c) used in [4] appears to be a redundant assumption since (b) = (c), (cf. 4.2)).
When (a) and (d) holds, clearly (e) holds and the results of [4] are recovered through Theorem
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4.2. Furthermore, when in (d) we replace the differentiability assumption for ¢) on int X and
(4.14) holds, then one obtains an interior subgradient algorithm to minimize f over X, where
in (4.25) and (4.26) the quantity B(z*,z') is replaced by v[¢, z'] < oo for any z' € int X.

4.5 Application: minimization over the unit simplex

As explained before, the key elements needed to implement the MDA and analyze its effi-

ciency are

e To be able to compute the conjugate function ¢* of ¢ efficiently
e To evaluate the strong convexity constant of .

e To upperbound the quantity By (z*, z").

In this section, we begin by recalling briefly the results of [4], where the authors analyze the

problem (P) of minimizing a convex function f over the unit simplex given by

A={zeR":> z;=1, x>0},

=1
and we introduce a new method for this class of problems.

The MDA,
Let () := 27|z|[2 with
1
pi=14+—-.
Inn
The following results were derived in [4]. The number O(1) stands for some positive absolute

constant.

e The conjugate of i, over A can be computed, but not explicitly, as it requires the
solution of a one dimensional equation. The authors [4] have then considered, the
minimization of f(z) over Y := {z € R" : ||z||, < 1} D A, and in that case ¢7 is

explicitly computable, see the details there.

e The strong convexity parameter o = O(1)(Inn)~".

e ['(11) <O(1)
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Using these results, the following efficiency estimate for M DA, holds:

(Inn)'"? max; <,<x || f'(2%)] |

: . <
i, £ () = mip £(2) < 001 1 (429)
In comparison, using ¢ (z) = 27|z||3 on X = A, the best efficiency estimate is
- Sy _ oo max<s< || f'(2°)]]>
Jnin, f(27) —min f(z) < O(1) N : (4.29)
The ratio of these efficiency estimates is
Ly
R=0(1)——
Qe
where Ly := maxi<s<i ||f(2°)|loo, L2 = maxi<s<||f'(2*)|[2. Using the well known in-

equality
l2llp < [lally < n® D7jz]],, Vo e R

it follows that L; < Ly, < n®=Y/P[,. Therefore, the ratio R is always greater or equal than
1 and can be as large as 0(1)y/n. Thus, the M DA; with ¢); can outperformed the usual
gradient method (obtained with 1%, on A) by a factor of (n/Inn)2, which for large n, can
make a huge difference. This method was considered as a "nearly optimal” algorithm for the

class of problems under consideration. Further details on these results are developed in [4].

We now propose a different choice for 1) to solve the minimization problem (P) over the
unit simplex A, which shares the same efficiency estimate. The function appears to be quite

"natural” due to the simplex constraints, and is the so-called entropy function defined by:
n
Ye(z) =Y xjlnz; if €A, +oo otherwise, (4.30)
j=1

where we adopt the convention 0In0 = 0.

The entropy function defined on A possesses some remarkable properties collected below.

Proposition 4.5.1 Let ¢, : A — R be the entropy function defined in (4.30). Then,
(a) Ve is 1-strongly convex over int A with respect to the || - ||; norm, i.e.,
n

T .
(Vou(a) = Vel 2 =) = Yo =) 0 2 > |lo —ylf, Vary € int A

j=1 J
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(b) The conjugate of 1. is the function ¢ : R™ — R with ¢ € C°(R™) and is given explicitly
by the formula

bp(2) =In) e,
j=1

and [|[Vipe(z)]| = 00 as v — T € A.
(¢c) For the choice x* = n~'e, and 1) = 1, one has By(z*,2*) <lnn, Vz* € A

Proof.(a) The strong convexity of ¢, follows from a fundamental inequality in information
Theory. For completeness we give here a different and simple proof. Let ¢ : Ry, — R be
defined by

_ =1y
et)=(t—1)Int —2 P Vit > 0.

It is easy to verify that ¢(1) = ¢/(1) = 0 and that ¢"(t) > 0 V¢ > 0. Therefore ¢ is convex
on (0,00) and it follows that ¢(t) > 0, V¢t > 0. Therefore, with ¢ := %JL one has:
2

(2 — y;) ln% > 2% Vaj,y; > 0. (4.31)
J J J

Using (4.31) one then obtains Vz,y € int A:

Z(.’L’j—yj) IH—J > Z x-+y-(xj_yj)2zz J > J ;J,;<+y4]2
j=1 Yi =T =i (=%
2 2
S D Sk e B Do) I e
=1 5 =1

The inequality (*) is true because 2% € A, and from the convexity of the function h(t) = ¢

2
it follows that for every @ € A we have (2?21 ajxj) < Y ajal,

(b) Using the definition of the conjugate and simple calculus gives the desired results, see
also [36].

(c) Substituting ¢ = t.(z) = 3j_, z;Inz; in the definition of By we obtain,

€T~

By(z*,z') =Y a}ln (—{) :
j=1 Ly

Substituting zj = n~", Vj we get for all 2* € A:

n
By(z*,z') =Y aiInz +1Inn < Inn,
=1
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the last inequality being true since the entropy function is always nonpositive on A. O

Remark 5.1. If for some j one has y; = 0,z; > 0, the left hand side of the strong convexity
inequality in (a) is 400 and there is nothing to prove. Likewise, when we reverse x with y.
Thus, recalling that 0ln0 = 0, it follows that the strong convexity inequality given in (a)

remains true for all z,y € A.

Using the entropy function v, in (3.12), we thus obtain a very simple algorithm for minimiz-
ing the convex function f over A, which is given explicitly by (as opposed to the case when
using ¢ in (M DA,).

The Entropic Descent Algorithm (EDA)

Start with ' € int A and generate for k = 1, ..., the sequence {;} via:
k_—t f’. xk /
xl?Jrl: xe e t, = QIHR.L
j n kg tfj@) Ly VE

where f'(z) = (fi(z)',..., f.(x))T € Of ().

Applying Theorem 4.4.2 and Proposition 4.5.1 we immediately obtain the following efficiency
estimate for the EMDA.

Theorem 4.5.1 Let {z*} be the sequence generated by EMDA with starting point x' = n~'e.
Then, for all k > 1 one has

i, £(a*) ~ mip f(o) < Vol L)l (132)

Thus, the EMDA appears as another useful candidate algorithm for solving large scale convex
minimization problems over the unit simplex. Indeed, EMDA shares the same efficiency
estimate than the (M DA;) obtained with v, but has the advantage of being completely
explicit, as opposed to the (MDA;) which still requires the solution of one dimensional

nonlinear equation at each step of the algorithm.

4.6 Concluding remarks and Further Applications

We have presented a new derivation and analysis of mirror descent type algorithms. In its

current state, the proposed approach has given rise to new insights on the properties of Mirror
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descent methods, bringing it in line of subgradient projection algorithms based on Bregman
based distance-like functions. This has led us to provide simple proofs for its convergence
analysis and to introduce the new algorithm (EMDA) for solving convex problems over the
unit simplex, with efficiency estimate mildly dependent on the problem’s dimension. Many

issues for potential extensions and further analysis include:

e Extension to the cases where f(z) = 3", fi(x) which can be derived along the analysis
of incremental subgradients techniques [31], [4] and numerical implementations for the

corresponding EMDA.

e The choice of other functions 1 can be considered in SANP, (see for example [39], [24])

to produce other interior subgradient (gradient) methods.

e Extension to semidefinite programs, in particular for problems with constraints of the
type
ZeSytr(Z)=1,7Z =0,
and which often arise in relaxations of combinatorial optimization problems. This can
be analyzed within the use of a corresponding entropic function defined over the space

of positive semidefinite symmetric matrices, see for example [15] and references therein.
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Chapter 5

On the Efficiency of the Conditional
Gradient Method for solving Convex

Linear Systems

5.1 Introduction

This chapter continues our investigation and analysis of gradient based algorithms which
can lead to simple algorithms with good convergence rates. In a recent work of Epelman
and Freund [19] where the authors proposed and analyzed the complexity of an algorithm

for solving a convex feasibility problem in conic linear form:

en{ g

where M : R" — R™ is a linear map, g € R is a given point and C'is a closed convex cone.
The main objectives of [19] were to develop and analyze an elementary algorithm which
produces reliable solutions of well posed instances of (CF), and to estimate the complexity
of this algorithm in terms of a suitable condition number depending on the problem’s data
(M, g). The heart of the proposed algorithm relies on what the authors of [19] have called
a Generalized Von Neumann Algorithm (GVNA, for short), which is devised to solve conic
linear systems in compact form, that is, a system of the form (CF) but with the added
constraint u'z = 1 where u € R" is a fixed and given point for which C N {z : vz =

1} is bounded. The resulting algorithm to solve the more general problem (CF) consists
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essentially of calling several times the algorithm GVNA to a sequence of data instances
of very similar forms. This algorithm was justly called elementary, since it requires only
few relatively simple computations at each iteration (e.g. matrix-vector multiplications)
and the solution of one conic section optimization problem per iteration of GVNA. The
complexity of the resulting algorithm is expressed in terms of a condition number C(M, g)
developed by Renegar see e.g., [35] and has iteration complexity exponential in InC(M, g).
Thus, such an algorithm is not competitive with polynomial-like interior point methods
and we can legitimately ask why one could be interested in such methods? There are in
fact a number of good reasons for studying alternative and simpler algorithms. Firstly, as
pointed out by Epelman and Freund [19], in contrast to the sophisticated interior algorithms
which usually requires very heavy computational steps, such an algorithm has the advantage
of requiring only simple operations. For very large scale problems, this can be crucial,
since the problem structure can be fully exploited; this is not the case in general within
the use interior point methods. Secondly, for large scale problems arising from practical
models, it is often preferable to obtain quickly a low accuracy solution (as often produced for
example by gradient-like methods) rather than an accurate solution requiring very slow and
heavy computational time. Thirdly, while polynomial algorithms have theoretical complexity
bounds depending on the dimension of the problem, the iteration complexity bounds of more
primitive algorithms are often independent or mildly dependent of the problem’s dimension,
which is a clear advantage for very large scale problems. The recent work of [4] which
uses also an elementary algorithm called Mirror Descent, demonstrates the later fact and
shows that very large scale problems in nuclear medicine can be solved successfully, while
interior efficient algorithms are defeated due to the size of these problems attaining millions
of variables. Finally, in most practical applications the input data is anyway known only
very roughly and thus it is unclear to what extent an accurate solution might be meaningful.

In this chapter we concentrate on the theoretical efficiency analysis of GVNA and ask if
a new algorithmic framework has been found? We answer to this and related questions on
the iteration complexity bounds of this algorithm.

We consider the convex feasibility problem

(f){Mm:g

re S

where S C R" is closed and bounded (not necessarily a cone) and its associated equivalent
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optimization formulation
(OP) min{||Mz — g||*: z € S}.

First, we show that the basic algorithm GVNA proposed by Epelman and Freund is in
fact a special case of the Conditional Gradient Method (CGM) when applied to (OP). The
conditional gradient method is a feasible direction method and is applicable only when the
feasible set S is compact. At each iteration of the algorithm, the best feasible direction
(with respect to the linear approximation of the function) is chosen and then a line search
is performed along that direction. The conditional gradient algorithm has been studied by
several researchers, see for example, Bertsekas [6], Dunn [16], Levitin and Polyak [25] and
references therein. The convergence of CGM can be established under relatively mild as-
sumptions on the problem’s data and is in fact an extension of the Frank and Wolfe algorithm
[20] originally devised to minimize a quadratic function over a polyhedron. The advantage
of the CGM is its simplicity, in particular when applied to problem of the form (OP), yet
the efficiency of CGM is far less attractive. Sublinear rate of convergence of the function
values was established by [25]. However, the improvement toward the derivation of a linear
rate of convergence of the function values has been established only under very restrictive
assumptions. Indeed, in [25] linear rate of convergence is proven under the assumptions that
the feasible set is strongly (uniformly) convex and that ||V f(z)|| is bounded below by a
positive number, which are severe and rarely met assumptions in most optimization models
of interest. Later, in [16], the conditions for deriving linear convergence are given in terms

of a function

alo) = __inf (Vf(£),y—&)

yesly=¢l>e
where £ is an optimal point of the minimization problem mingcs f(z). If a(c) > Ao? for some
A > 0 then linear rate of convergence of the function values is proven in [16]. Unfortunately,
none of these general results are even applicable to the simple problem of minimizing the
convex quadratic function over a the compact convex set S described in (OP), which is the
problem we intend to study.

The second and main contribution of this chapter is to establish the linear convergence of
CGM when applied to (OP). We prove that under the mild and standard Slater’s constraint
qualification on the system (I), the CGM converges to a solution of (I) at a linear rate.
The rate of convergence depends on the matrix M, the vector g and on the radius of the

largest ball contained in the feasible set of (I). This result is then compared with the linear
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rate of convergence result proven in [19] for the system (CF), i.e., whenever the set S is
the particular compact set described by the intersection of a cone C' and the constraint

{z : u"z = 1}. The crucial quantity measuring the rate of convergence in [19] is defined by
r(M,g) =inf{||lg—h|| : h € OH}

where H := {Mz : x € S}. The system (I) is defined to be well-posed whenever r(M, g) > 0,
while for r(M, g) = 0, the problem (I) is feasible but arbitrary small changes in the data
(M, g) can yield problems (I) with no feasible solution, and hence can naturally be called
”ill-posed”. We prove that the assumption (M, g) > 0 made in [19] is in fact equivalent to
Slater’s condition for the system (I).

The chapter is organized as follows. In Section 2 we recall the conditional gradient
method (CGM) and some other preliminary results. In Section 3, we show that the GVNA
presented by Epelman and Freund may be viewed as a special case of (CGM) when applied
to the optimization problem (OP). We then introduce the new quantity used to measure
the rate of convergence of (CGM) that depends on the Slater’s point and the matrix M
and we prove the announced linear rate of convergence result. We then compare this result
with the assumptions and results derived in [19]. In the last section, we apply the results to
conic linear systems. Our notations are mostly standard. The Euclidean space is denoted
by R" with inner product (-,-) and associated induced Il norm || - ||. For any matrix A, the
norm of A is defined by [|A|| = max{||Az|| : ||z|] < 1}. For any set S C R" we denote
by int(S), cl(S) respectively the interior and closure of S and by 9S = cl(S) \ int(S) the
boundary of S. For a cone K C R" the polar cone is K* = {z* : (x,2*) <0 Vr € K}.

5.2 The Conditional Gradient Method and Prelimi-

nary Results

In this section we recall the basic steps and convergence results on the conditional gradient
method, see e.g. [6] for details and references, as well as some other technical results that

will be needed in the rest of this chapter.

Consider the convex optimization problem:

(P) min f(z)

€S
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Unless otherwise specified, throughout this section we assume that f is a convex contin-
uously differentiable function on the closed and bounded convex set S C R", with Lipschitz
gradient Vf on S, i.e.

AL > 0 such that ||V f(z) — Vf(y)| < L||lz —y|| Vz,y € S.

Conditional Gradient Method-CGM: Start with 2° € S. Generate the sequence
{2*}, Vk = 1,2,... via the following steps:

1. Compute p*~! = argmin{(p — 21, Vf(z" 1)) : p € S}.

2. Stopping Criteria: Let S(z) := minyes(p—z, Vf(x)). IfS(z*1) = (pF1—2b" 1 Vf(zF 1)) =

0 STOP. Else, goto step 3.

3. Line search: Compute \*~' = argmin f (2" + A(p*~" — 2*71)).
A€[0,1]

Update 2% = 2#=1 + \E=1(ph=1 — gh=1).
4. Set k < k+ 1. Goto step 1.

Note on stopping Criteria: Let min,cg f(z) = f*. By the definition of f* we have that
f(a*=1) > f* for every k. On the other hand,

fr=f@*h = min(f(u) — f(2*7))

u€eSs

f is convex
min(u — 2", Vf(z" 1))
ueS

=G Y
= S(xFh).

Therefore, we conclude that:
FEEN) = 2 fa" ) + S, (5.1)

Thus one always has S(z*~!) < 0 and S(z*~!) = 0 if and only if 2*~! is an optimal solution
of problem (P).

126



The bulk of computation in the CGM are in Step 1 and Step 3. The latter requires to find
a step size A*~! by solving the following one dimensional problem. Given z,p in S find \*
solution of

min f(z+Ap = ).

This step can in fact be computed analytically by using an appropriate quadratic approx-
imation of the function f. Such approximation exists since we assumed here that Vf is
Lipschitz continuous, (see Appendix). Thus the only remaining computational step in CGM
is step 1 which in many applications might be very easy to solve. For example, whenever
S is a simplex, in which case the solution is immediate or whenever the constraints set in
a polyhedron, namely we have to solve a linear programming problem. Thus, CGM is an
attractive simple algorithm whenever step 1 can be performed efficiently. As in [19] we sup-
pose that the solution of step 1 can be achieved with low cost complexity, for otherwise,
the algorithm looses much of its potential efficiency and practical usefulness. The main
results on the conditional gradient method without any more assumptions (except for the
ones we have already assumed) are summarized in the following proposition. Since many of
these results have been scattered in several references in the literature (see e.g., [6],[16],[25]),
for convenience and the interested reader on general results for CGM, we have given in an
appendix compact proofs.

Proposition 5.2.1 Let f € CY(R") be a convex function with Lipschitz continuous gradient
and Lipschitz constant L > 0. Let {x*} be a sequence generated by the conditional gradient
method. Then,

(i) z¥ € S, the sequence {f(z*))} is monotone decreasing and every limit point of the

sequence {z*} solves mingcg f(z).

(11) lim, o f(2") = f* = minges f(x).

(i4) There exists a positive constant ¢, which depends on L and the diameter 05 := sup,, g ||z~
y|| such that f(z™) — f* < <.

Note that convexity is not needed to derive the first statement of the proposition. In that
case of course, the statement on the sequence {z*} is that every limit point is a stationary

point, i.e., it satisfies the necessary local optimality conditions for problem (P).
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The sublinear rate of convergence for function values cannot be improved, see e.g., Cannon
and Cullum [10], unless, as we already mentioned in the introduction, we make some further
stronger assumptions on the constraints set S, and this even if we assume that the objective
function is convex quadratic which is our problem of interest in this chapter. The next
section develops the required analysis to achieve a linear rate of convergence of CGM for
such class of problems. We end this section with two elementary and well known results on
the rate of convergence of nonnegative sequences of real numbers and which will be useful

to us.

Lemma 5.2.1 Let {a;}7, be a nonnegative sequence of real numbers.
(i) Sublinear rate: If {ay} is such that a1 — a, > ~vai_, for some v > 0 and for any

k=1,...,m, then
ap

P —

m = 1+ mﬂag

(ii) Linear Rate: If {ay} is such that ax 1 — ap > Yga_1 for some vy, >0, Vk=1,...,m,
then

< (ym)™.

m
U < Qg€ 2k T,

5.3 Linear rate of convergence analysis of CGM

We consider the problem of finding a point satisfying:

(I){Mx:g

reSs
where S is a closed convex and bounded set. For ease of comparison with the results
derived by Epelman and Freund, [19], we tried to keep as close as possible the notations
used in that paper.

To solve this problem we consider the equivalent optimization problem:

* . : ]' 2
(OP) v i=mig 3| Mz ~ g

Clearly, if (I) is feasible the optimal function value of (OP) is v* = 0, otherwise one has
v* > 0.
We will apply the conditional gradient method CGM to (OP). The line search applied

to the case of a convex quadratic objective is simple as it has an analytic expression (as it
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obviously does not require the use of a quadratic approximation of the objective). Indeed,
with f(z) = 1||[Mz — g||* one has Vf(z) = MT(Mz — g) and we immediately obtain the

following identity: for any x,p € R" and any A € R:

1
9\ = fle+ Mz —p)) = (@) + Mp = 2, Vf(2)) + S\ M (@ = )|, (5.2)
In order to simplify the expressions we use the following notations:

V-1 — G — Mxk_la
w1 = g— Mp"h.

k=1 p = p*~1 and denoting by g;()\) the resulting

Using the identity (5.2) at the points z = z
function, the step size computation in the line search of Step 3 of CGM, consists of finding

A* = argmin g (). This is a simple one dimensional convex quadratic minimization problem
A€[0,1]

over the interval [0,1]. One has g, (\) = 0 if and only if:
(pFt —aF LV f(ah )
| M (ph=t — ak=1)[]2
B <pk71 _ ‘,L.kfl, MTM‘,L.kfl _ MTg>
| M (ph=t — ak=1)[]2
(M(pF' —a" 1), g — Ma*1)
| M (ph=t — ah=1) |2
(g — Maz*') — (g — Mp*'), g — Ma*")
(g — Ma*=1) — (g — Mp*=1)||?
(kahkal - wk71>
k-1 — wi—1||?

A= —

Thus,

A = argmin f(z" + A(PFTH - 2T) (5.3)
A€[0,1]

{ (Ve—1,V%_1—Wk_1) if (Vp—1,Vp—1—Wr_1) <1

llvg—1 —wp—1]|? [[vg—1—wp—1]?
1 if (”k—l:vk—lfwkgﬂ >1
lvk—1—wi—1|*> =

(5.4)

Now, the main computational step of the conditional gradient method given in CGM-Step

1is p* ' = argmin{(p — 2*~, V£(2*7"))}. Substituting the expression of the gradient of f:
peS
Vf(z) = MT(Mz — g) we have:
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pFl = argmin(p — zFt, MT(Ml'k_l - 9q))
peS

= argmin(v,_;, M (2" — p))

pES
= argmin(vg_1,9 — Mp) + (vg_1, MzF—! — g)
peS ~ ~ -
—[vg—1]?
= argmin(vg_1,9 — Mp). (5.5)
pES

To summarize, the basic steps of the conditional gradient method for the quadratic

problem (OP) has the following form:

The conditional gradient method applied to (OP): CGM-OP

Initialization step: Start with an arbitrary 2° € S

1

General step: Solve: p* ! = argmin(vy_,, g — Mp) k=1,2,...
pES

(Ok—10k—1=wk—1)  p Oko10k—1=We—1)

_ 2 — P]

and compute: \F~! = k-1 —wi 1] [0k -1 —wi—1]]
1 if (k=101 =Wk—1) ~ 1

lop—1—wr_1l]> =

Update: zF = zF=1 4 \F=1(ph=1 — gh=1)
The stopping function S(-) defined in step 2 of CGM can be expressed as follows:

S = L VA Y)
= (g— Ma"" Ma*' — g+ g — Mp*™1) = (vp_r, we_1) — ||or—s|*-

Furthermore, using the right hand side of the inequality (5.1), since here f* = v* = 0 and

f(@F=1) = Ljvg_1]]* we obtain

1
(Vk—1, V-1 — Wg—1) > §||ka1||2- (5.6)

The algorithm CGM-OP will produce an optimal solution at iteration k£ whenever (vg 1, wy_1) =
log_1||? Tf vp_1 # 0, ice., (Vp_1,wg_1) > 0, then CGM-OP will stop with an infeasible solu-
tion of (OP) (which means that the original problem (I) is infeasible).
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Applying CGM-OP to the special case when S = {z € C : ulz = 1}, where C is closed
convex cone and .S is bounded, the above development shows that we have precisely recovered
the algorithm GVNA proposed in [19, p.461-462].

As a byproduct of this equivalence between CGM and GVNA we can thus derive as an
immediate consequence of Proposition 5.2.1 that {||vi||*} converges to 0 at a sublinear rate.
i.e, In > 0: [[ug]| < J%. Note that in the quadratic case we don’t need to use the quadratic
approximation in the line search (see Appendix) and thus we can write i explicitly in terms
of (M, g,u). This provides an alternative simple proof to the results derived in Epelman and
Freund [19, Lemma 1 and 3].

We are now going to prove our main result concerning the efficiency of CGM-OP. Our
approach is patterned after the key proposition derived in [19, Proposition 6] for establishing
linear convergence of GVNA, but introduces a new idea that leads to a different way of
measuring the rate.

We denote the distance from a point b € R" to the boundary 05 of a closed convex set
of R” by

d(b,0S) :=inf{||z — b|| : 2 € OS}.
One thus have
min{||z —b||: z€ S} fbgS
max{r: B(b,r) C S} ifbeS
where B(b,r) is the ball centered at b with radius r.

We assume that the row vectors of the matrix M are linearly independent. This implies

d(b,0S) = {

that the Gram matrix M M7 is positive definite and thus has an inverse. Note that this
assumption is without loss of generality since it simply means that there are no redundant

equations in the system Mz = g.

Proposition 5.3.1 Let {2*} be the sequence generated by CGM-OP, let p* be the direction
computed in the general step at iteration k+1 and let v, = g — Mx*. Suppose that the Slater

condition for the convex linear system (I) is satisfied, i.e.,
A& € int(S) such that Mz = g.

Then,
(vk, g — Mp") + Rs (&, M)||vi]| <0, (5.7)

where
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d(z,08)
I(MMT)-1]]

Rs(z, M) =
Proof: First, note that one has:

vp =g — MaF = Mz — Ma* = Mz — 2%) := Md.

Thus, the system Md = v has at least one solution. Among all possible solutions, we
pick the one with minimum norm, that is we are interested in finding d*, which solves the

following optimization problem:

d* = min ||d||*.
Md=vy,

It is easy to see that the optimum of this minimization problem is attained at d* =
MT(MMT") 'y, and ||d*[|? = v} (MM?")" v As a consequence,

"] JWMMU%W

VIQIMT) -

VM ME) =] - o] (5:8)
Define s := d(,05S). Since we assumed & € int(S) one has s > 0. From the definition of s
it follows that: o = & + s% € S, and hence,

IN

IId [
d* Md*
My = M|+ s—— > T+ s——
( ||l |||
Vg
= + s .
|||

Thus, one has g — Mz = —spgty and therefore using (5.8) it follows that,

(5.5) s||vk||2
(vk, g — Mp*y < (vp,g— M) = —Z-"- < — 1Al
||| ||(MMT) 1|

proving the desired result. O
Remark 3.1 Proposition 5.3.1 can be easily extended to sets of the form S = TN {z :

Ax = b} where T is a closed convex set. Under the slater condition (i.e., there exists
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% € int(7T) such that M% = g and AZ = b) (5.7) is satisfied but here Rg(Z, M) is defined by

: _ M
Rg(#, M) = —=2299) _ \here M = :
I(A181T) =1 A

Proposition 5.3.1 can now be used to prove the following linear convergence rate for the

conditional gradient method.

Proposition 5.3.2 Suppose that the slater condition is satisfied at the point & for the system
(I) and let ps be the radius of a ball containing the compact set S. Then, the conditional

gradient method has a linear rate of convergence:

1
Jorll < (1= ¢z floe]| VE=1,2,....

Rs(%,M)

Tl oA Equivalently, this means that

where ¢ =

ka

[|ok|] < [[volle™, VE=1,...

Proof: First recall that from the CGM-OP one has wy_; = ¢ — Mp*" vy = g — MaF™!

and 2F = 2%~ + \*(pF~! — 2%~1) where \* = min {W, 1}. Then,

o> = llg = Ma"|?
— ||g_M(fL'k_1 +>\*(pk—1 _l,k—l))HZ
= (1= X)(g = Ma" 1) + X*(g — Mp* )|?
= [[(1=2A7)
= vk + X (wr — ve) ||
= (N)?llve — wil® + 22" (vg, wi — vg) + [|ug]® (5.9)

U + )\"‘wkH2

By (5.7) we have that (vg_1, wg_1) < 0. Therefore,

<ka1, V-1 — wk71> = ||'Uk71||2 - <'Uk717 wkq)
(Ve—1,wp—1)<0 9 9
< ||ka1|| - <'Uk717 wkq) + (“wkfl” - <Uk717 wk71>)

= ||Ulc—1 - wk—1||2,

and hence (%=LU=17Wk-1) < 1 which implies that \* = (k=101 =0k} Substituting this
[log—1—wg—1]] [log—1—wg—1]]

value of A* in (5.9) yields:

o Nkt llwe—1|)* — (ur—1, wr—1)?
|v||* = — :
|vg—1 — wi_1]|

(5.10)
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Now, since S is a bounded set, it is contained in some ball B(0,ps) and thus one has
lwi-1ll = llg = Mp* M| < l[g]l + [|M]|ps. Moreover, note that [[ve—1 — wi—1[|* = [[vp—1]]* —
2(vg_1, wp_1) + ||lwe_1||*> > [Jwp_1||*>. Therefore we obtain from (5.10) (we set here R :=
Rs(z, M)):

ve 1[I lwra]]? = (ve1, wp1)?
k-1 — wi—1 ]|

(5.7) lve 1 I” (w1 |]* = R?)

|vk—1 — wr—1[]?

||vk—1*wlcfl<“22“wk—1”2 ||Uk—1||2(||wk—1||2 — R2)

N [wi—1[?

RZ
- @‘ww;mJ“W*W

R 2
< 1) | ol
( (MW+%MN>> 1

proving the first statement of the Proposition. From the last inequality it follows that

(A =

IN

lloe_1|I> = [|vel|* > WRSHMH“U’CAHQ' Invoking Lemma B.0.4(ii) to the nonnegative sequence

ar := ||vk|| the equivalent part of the Proposition is obtained.

We can apply the above result to find an approximate solution of (I) with fixed accuracy.

Given £ > 0, an e-solution of (I), namely a point € S such that ||[Mz — g|| < &, is obtained

loll + ps M, (llg = Mz
Rs(&, M) €

in no more that

k=12

iterations of CGM.

It is interesting to compare the key quantity Rs(%, M) involved in the linear rate of conver-
gence result derived in Proposition 3.1 with the one derived in [19]. The linear convergence

rate derived there was obtained in terms of the quantity (M, g) defined by:
r(M,g) = inf{|lg — Al : h € OH}, (5.11)
where,
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H={Mz:zeS}=DM(S).
Recall, that the authors [19] have studied the algorithm GVNA only for the case S =

CnN{x:u"r =1} where C is a closed convex cone with nonempty interior, and is pointed,
i.e., contains no lines.
The sufficient condition to derive linear convergence for a feasible problem (I) in terms of

the analysis derived in [19] is:

r(M,g) > 0. (5.12)

It is not an easy task to compare the values of the quantities r(M,g) and Rg(%, M).
The former depends on the data (M, g) and the set S, and requires to find the solution of
the optimization problem (5.11). The latter depends on the choice of a Slater point &, the
matrix M and the radius of the largest ball contained in S. Yet, and interestingly enough,
it turns out that the condition (5.12) imposed in the analysis of [19] is in fact equivalent to

the Slater condition.

Proposition 5.3.3 Suppose that the convex feasibility problem (1) is feasible. Thenr(M, g) >
0 if and only if there exists T € int(S) such that Mz = g.

Proof: Under the given feasibility assumption, problem (I) has a solution and thus we have
that ¢ € H. Now, r(M,g) > 0 is equivalent to ¢ ¢ OH and thus g € int H. Using relative
interior calculus ([36, Proposition 6.6, p.48]) and the fact that the relative interior and the
interior are the same in this case one has int(H) = int M(S) = M(int(S)). Therefore,
g € int H translates to: there exists & € int(S) such that ¢ = Mz.O

5.4 Application to a Class of Conic Problems

In this section we consider the conic feasibility problem: find x such that

Az =10
zeC

where C' is a closed convex cone. We assume that C is pointed (i.e. has no lines) and

(CFP)

that 7= {x : Ax = b,z € C} is bounded. Since here C' is obviously not compact (unless
C = {0}), a direct application of CGM-OP is not possible.
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We show below that (CFP) can be rewritten in such a way that our results can be applied.
For another line of analysis with more detailed and precise results to resolve a general conic
linear system, see Epelman-Freund [19, Sections 4-5]).

First, notice that the fact that T is bounded implies that the following system

Axr =0

5.13
zeC ( )

does not have a nonzero solution. We add a variable # and consider the following conic

feasibility problem:

Az —0b=0
(CFP) zeC
0>0

Clearly, any non zero solution of (CFP) satisfies @ > 0 because (5.13) does not have a
nonzero solution. Since C' is a cone, any solution ( ‘Z ) of (CFP) induces a solution to

(CFP) via the substitution 0~ 'y.
Now since C' is a closed convex pointed cone, its polar C* has a nonempty interior, i.e.,
int(C*) # (). Take u € —int(C*) and consider the following feasibility problem:

Az —0b=0
(Fp) “S¢

0>0

u'z+60=1.

Denoting:

é:Cx%ﬂﬂ:(?),fz(z),AhﬂA—w

we then obtain the following formulation for (CFP):

Mz =0
(CFP) ieC
aTi =1
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Notice that (CFP) is a nonempty set if and only if (C F'P) is a nonempty set. C'is a closed
convex pointed cone and @ € int(C*). The next lemma states that S = {7 : 7 € C, a7z =1}

is bounded.

Lemma 5.4.1 Let C be a closed convex pointed cone and let u € — int(C*). Then the set
S={i:5eC,i"% =1} is closed and bounded.

Proof: In order to prove the boundedness of S it is necessary and sufficient to prove that
{d:de C,utd =0} ={0} (ie., the recession cone of S is the Singleton {0}). Suppose on
the contrary that there exists d # 0 such that d € C,u"d = 0. Since u € —int(C*) then
there exists € > 0 such that u — ed € —C*. But then (u — ed)"d = u"d — ||d||> = —||d||* < 0

and as a consequence d ¢ C' which is a contradiction. O

As a result of Lemma 4.1, problem (CFP) can be solve by applying the conditional gradient
method CGM-OP for the optimization problem:

min || M2
zeSs

5.5 Appendix: Proofs of Basic Convergence Results
for CGM

We outline here the results needed to prove Proposition 5.2.1 when minimizing a convex
continuously differentiable function with Lipschitz gradient over a compact convex set S. In

what follows z* € S is the sequence produced by CGM as outlined in Section 2.

Lemma 5.5.1

Fa*) = f(a)

S N B |
— -ming —, ———F— ¢ .
) R P 7

Proof. The proof follows by applying the descent Lemma [6, Proposition A.24] which gives
VA €10,1],
L
FEED = AT =2 ) 2 AT =L V) = S = (5.14)

The later inequality is in particular true for
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. 1, 1 if1<2
A :argmax{)\a——ﬁ)\ }: CE
0<A<1 2 % 1>%

where,

a= (@ =pLVfEY)  B=l T =P

Thus, the step size in Step 3 of CGM can be taken as \* = min {1, <xk;‘|;’,:ii’§cf_(ﬁr;)>} .
If A* = 1,then in this case,

A U ()

1< LT = =12 (5.15)
and therefore one obtains:
_ _ _ _ L, ,_ _
fE*h) = f(2b) > (2Pt = PP V() - gllx’“ -t
(5.15) 1 k—1 k—1 k—1
aT 2
aTbZizH-lbl)bH 1 (k1 — ptl V(2R 1))
- 2 [[xk=t — pH=H [V f(ak=1) ]
B 1 SZ(zF 1) (5.16)
a 2 [|ak=t = pE=t |- |V f (k=D '
In a similar way, in the other case \* = <mk;|;£f1_i})vkiﬁlzjl)> one has,
k-1 k-1 k-1
L= TP
and we obtain
f(xkfl) . f(:b‘k) > <xk71 — pk—17 vf(xkil»2 . £ <xk71 — pk—17 vf(xkil»2
= L|ak=1 = pk=1[2 9 L2[|zh=1 — ph-1||2
1 <xk71 _ kL Vf(xkq»z
T2 L P
1 S?(zk1) (5.18)
B ek |
O
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Lemma 5.5.2 For any f : R" — R which is continuously differentiable with Lipschitzian
gradient and Lipschitz constant L over S C R" closed, bounded and convexr one has:

(1) sup,es [|Vf(2)|| < ¢o for some constant c;.

(ii)Vx € S ||p(x) — || < ¢1 for some ¢, > 0 where

p(x) := argmin(p — x,V f(x)).
peS
Proof.(i) Since the gradient of f is Lipschitz, we obtain for any z,y € S : ||V f(z)| =
IVF(@)=V[(y)+ VI < Lz =yl + VW)l < Los+[[Vf(y)ll, where, 5 = sup, e [l -
y|| and (i) is proved with ¢y := L5 + ||V f(y)]|-
(i) Since S is compact and for all x € S we have that p(z) € S thus there is a constant
¢1 > 0 such that ||p(z) —z|| < ¢, VreS.

a
Applying the results of the previous lemma to lemma 5.5.1 we obtain:
Proposition 5.5.1
f@*N = f(2®) > 0S* (2", VE=1,... (5.19)
with, C' = min {2;62, 2137 } > 0.
Proof: By lemma 5.5.1 we have that:
R e ALt e
lemma 5.5.2
{20102 2Lc? } SZ(xkil)
O

Before proving Proposition 5.2.1, the next result shows that every limit point of CGM is a

stationary point of minges f(z) . No convexity assumption is needed.
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Proposition 5.5.2 Let f: R" — R be a continuously differentiable function with Lipschitz
gradient and Lipschitz constant L > 0 over the compact set S. Let {z*} be the sequence
generated by CGM then,

(i) 2% € S and {f(x*)} is a monotone decreasing sequence.

(i4)S(x*F) — 0 as k — oo.

(iii) Every limit point x* of {x*} is a stationary point. i.e., it satisfies the necessary condi-

tions for local minimum:

(Vf(x*),x —x*) > .0

Proof. (i) follows immediately from (5.19), while (ii) is a consequence of
n (5.19)
> S < TN - f@™) £ CTHf(°) - f(a")) < o0
k=1

which implies that S(z¥) — 0 as k¥ — oco. To show (iii), suppose first that there is a k such
that S(z¥=") = 0. Then (Vf(z*~'),p — 2¥~1) > 0 Vp € S thus zF~! is a stationary point by
definition and the proposition is proved. Otherwise, one has f(z*) < f(z*7') Vk =1,,....
Let 2* be a limit point of {#*}. Then there exists a subsequence {z™} that converges to z*

and we have:

{ (pe, V f(z")) < (p, Vf(z")) Vpe S
(g™ — e, V(@) = 0

{p™} C S and thus it is a bounded sequence and consequently has a limit point p. Also,
V f is continuous and we have:

(0, Vf(z*) < (p,Vf(z*)) VpeS
(z* —p,Vf(z")) =0
Therefore (z*, V f(2*)) < (p, Vf(z*)) Vp € S, which proves that z* is a stationary point.

O

Proof of Proposition 5.2.1 For convex functions the optimal points are exactly the sta-
tionary points and thus (i) has already been proven. By (5.1) we have that:

SN < —f@"H <0 Vk=1,2,..., (5.20)
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and since S(zF71) — 0 we obtain that lim, ., f(2") = f* which proves (ii). It remains to

prove the sublinear rate in function values (iii). From (5.19) we have
(f@*) = ) = (f@a") = 1) = CS*(a"7),

but from (5.20) we have S?(zF71) > (f(2*71) — f*)2. Defining aj, = f(z" ') — f*, v:=C,
5o

the result follows from Lemma B.0.4(i).
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Appendix A

Projection on Convex Sets

A.1 Definition and Properties

In this section we will define the concept of Projection on a closed convex set. The definition

can be made possible due to the following theorem:

Theorem A.1.1 (Existence and Uniqueness of the Projection) Let C' C R" be a closed
convex set and let || - || be the Euclidean norm. For every x € R"™ there exists a unique vector

z* € C that minimizes ||z — z|| over all z € C. i.e.,
2* = argmin||z — z||.
zeC
Proof: Let w be some element in C' then,

Iz = |-

The closed set C N {z : ||z — z|| < ||[w — z||} is compact and thus by the Weiestrass’

theorem we have that a minimizer exists. The uniqueness of the minimizer follows from the

min ||z — z|| = min
2€C 2€0,[|z—z||<|lw—z||

strict convexity of the function g(z) = ||z — z||*. O
The previous theorem enable us to define the concept of projection of a point on a convex

set:

Definition A.1.1 Let C C R" be a closed convex set and let x € R". The Projection of z
on C' is denoted by Pc(x) and defined to be:
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Po(x) = argmin||z — || (A.1)
2eC

Figure A.1: The Projection of a point on a convex set

We first notice the following geometrical properties which are quite obvious from figure
Al

Theorem A.1.2 Let C' C R" be a closed conver set. Then,
1. x € Ciff Po(z) = x.
2. if x ¢ C then Po(z) € bd(C).

Proof:
1. Follows directly from the definition of projection.

2. Assume otherwise that Po(z) ¢ bd(C). Pc(x) belongs to C' and thus Po(z) must be
in int(C). Thus, there is € > 0 such that every point with distance less then e from

Pc(z) also belongs to C. The point y = Po(z) + %% satisfies the following:

[Po(z) =yl < €
[z =yl < [l = Po(z)]]

from the first inequality we obtain that y € C and so y is a point in C' closer to
x than Pg(z) which is a contradiction to the definition of projection (A.1). Thus,
Po(x) € bd(C). O
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Figure A.2: (x — Po(z),y — Po(x)) <0

The definition of projection on a closed convex set induces the following definition of the

distance between a point to a closed convex set.

Definition A.1.2 Let C' C R" be a closed conver set and let x € R™ then the distance of x
from C' is denoted by d(x,C) and defined by:

d(x,C) = ||z — Pc(x)]]-
One of the most important properties of the projection operator is the following:

Theorem A.1.3 Let C' C R” be a closed conver set and let v € R". a vector z* is equal to

(y—z2"0—2")<0 VyeC. (A.2)
Proof: Recall that Po(x) = argmin ||z — z||. As a result Po(z) is equal to argmin ||z — 2|?.
z€C zeC

g(z) = ||z — z||? is a differentiable convex function and thus z* = argerging(z) iff:
z

(Vg(2"),y—2") >0 VyeC.

Substituting Vg(z*) = 2(2* — z) we have that:

(x—2"y—2")<0 VyedC,

and the result follows. O
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Theorem A.1.4 (Non-expensiveness of the projection) Let C C R" be a closed con-
vex set. Then,

1. Firm non-expensiveness:

|Po(x) = Pe)|I* + Iz = Pe(2)) = (y = Pe@)* < llo = y[I* Va,y € R™. (A.3)
2. Non-expensiveness:
[Po(z) = Po)ll < llz —yll v,y e R

Proof: 1. First, recall that by (A.2) we have that for every z,y € R":

(Po(z) — z, Pe(z) — Po(y))
(y — Pc(y), Po(x) — Po(y))

IN

0
0

IN

Now, for every z,y € R" we have:

lz=yll* = l@—Pe(@)) = (y = Po(y)) + Pe(z) — Pe(y)]*
= @ = Pe(@)) = (y = Pe@)I* + |1Pe(z) = Pe(y)|®

+2((z — Po(z)) = (y = Poly)), Po(z) — Po(y))
= @~ Pe(@)) = (y = Pe)I* + |1Pe(z) = Pe(y)|®

+ 2(x — Po(x), Po(z) — Pely)) — 2(y — Pc(y), Pe(x) — Po(y))
Y@ = Po(@) = (= Pe) 2 + [ Pole) — Po(w)

2. A direct result from firm non-expensiveness. O
The firm non expensiveness of the projection mapping applies the nonexpensivness of the

distance function:

Theorem A.1.5 (Non Expensiveness of the distance function) Let C' C R" be a closed

convex set. Then,
A2, C) — d(y,C)| < |z —y| Va,y e R
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Proof: By (A.3) we have that:

Iz = Po(x) = (y = Pe))l| < [le —yll Yo,y € R, (A.6)

and thus for every z,y € R™ we have:

d(z,C) = |lz = Pe(a)]]
= @ —=Folz)) = (y = Poly)) + (v — Po(y))]]
[z = Po(z)) = (y = Pe()ll + lly = Pe(y)ll

lz —yll + lly — Pe(y)|l
|z —yll +d(y, C).

<
(A.6)
<

The following property demonstrates that the projection operator has monotonicity fea-

tures:

Theorem A.1.6 Let C' C R" be a closed convex set. Then for every z,y € R":

(Po(z) = Pe(y), = —y) = [|[Po(z) — Pe(y)]*

Proof: Adding equations (A.4) and (A.5) we have that:

(Pe(z) — Po(y) —x +y, Po(v) — Po(y)) <0.
Thus,

| Po(x) — Pe(y)|I? — (x — y, Po(x) — Pe(y)) <0,

and the result follows. O

The following theorem has a nice geometrical illustration demonstrated by figure A.1.

Theorem A.1.7 Let C C R"™ be a closed convex set. Then,

P;'(x) = 2+ Ng(x) Vz e R™
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Proof: y € x + N¢(z) iff y —x € Ne(x). By the definition of N¢(x), this is equivalent to
the following:

(y—z,z2—2x) <0 VzeC. (A.7)

By theorem A.1.3 we conclude that (A.7) is equivalent to Po(y) = , in other words,
y € Po'(z). O

Figure A.3: P,'(z) = 2 + N¢(z)

Finding an explicit expression for Pg(-) is not an easy task and there are only few ex-
amples of convex sets for which we find an analytical expression for the projection (see the
next section). Thus, the importance of the following theorem which enable us to calculate

the projection for complicated sets.

Theorem A.1.8 Let C7 C R",Cy C R™ be closed convex sets. Define C' = C; x Cy =
{(z,y) :x € Cy,y € Cy}. Then,

Po(z,y) = (Po,(x), Po,(y)) V(x,y) € R* x R™.

Proof: Let (z,y) € " x R™ then,
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Po(z,y) = argmin ||[(z,y) — (21, 2) ||’
(21,22)€C1 xC>
= argmin  ||(z — 21,y — 22)]?
(21,22)€C1 X C>
= argmin ||z —2[* + ly — 2)|?
(21,22)€C1 xC>

21€C 22€C2

= (PCI (x)v PCz(y))

= (argmin |z — z1||2, argmin ||y — 22)||2>

O

A simple generalization of the previous example is when we consider the intersection of
C7 N Csy with an hyperspace.

Theorem A.1.9 Let C) C R",Cy C R™ be closed convex sets and let « € R", 5 € R,y €
R. Define C = (Cy x Cy) N{(z,w) : (o, 2) + (B, w) = ~v}. Then,

PC(xay) = (PC’1(‘T - Ma)7PC2(y - /LB)) Vi € %n,y € §Rm7

where i 1s the solution to the following equation:

(a, Pe,(z — pa)) + (B, Pe,(y — uB)) =~

Proof: The optimization problem associated with the projection problem is:

min 2 = 2l + - I
ZGCI,’WGC%(a:Z)—i—(ﬂ:w):’Y

By attaching a lagrange multiplier to the linear constraint («, z) + (5, w) = v we obtain the

following dual function:

h(p) = _min_ |z =zl + [Jw = yl|* + 2u({a, 2) + (B, w) =)
2€C1,weCy
= _min s = (o= pa)|P + o (g — pB) |+ 2u((x, 0) + {5,9) — w2l ~ )

= |Pe,(z — pe) = (z — pa)|l” + [Py (y — pB) — (y — wB)I* + 2u((z, @) + (B,y) — *[lel]* = 7)
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Thus, there exists p € R such that:

Pc(l’,y) = (PCI (LU - Ma)7pcz(y - ,U/B))
Since (Pg,(x — pa), Po,(y — pf)) € C' it has to satisfy the linear equation («, Pg, (x —

pa)) + (B, Pe,(y — pB)) = . O
Example: Consider the case where Cy, Cy are affine spaces. C; = {z : Ax = a},Cy = {z:

Bz = b}. From the discussion in the next section we have that:

Po(x —po) = o — po— AT (AAT) Az — pe) — a),
Pe,(y —puB) = y—pB—B"(BB") " (B(y — up) —b).

(@, Per(z — pa)) + (B, Pey(y — pB)) =

By substituting the expressions for the projections we have:

p(llal]* — o AT(AAT) Ao+ |1B])> — 6" BT(BBT) 'Bj) =
= (a,z— AT(AAT) YAz — a)) + (B,y — B (BB")""(By — b)) — 7,

and thus we have the following expression for p:

. (a,PCl($)>+<B,PC2(y)>—fy
= J[al? = aTAT(AAT)TAa + |B]? — BTBT(BBT) ' BS

A.2 Examples of Projections

A.2.1 Hyperplanes

A hyperplane is a convex set defined by H = {x € " : (a,z) = b} where 0 # a € R" and
beR.

Theorem A.2.1 (Projection on Hyperplanes) Let H = {x € R" : (a,z) = b} be a
hyperplane where 0 # a € R" and b € R. Then,
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<a,x>=b

Figure A.4: Projection on Hyperplanes

Pa(a) = o — 20 =b,
laf}?

proof: Recall that Py (r) = argmin ||z — z||>. Denote 2* = Py(z). By the KKT conditions

(a,2)=b

we have that there is a A € R such that:
Z¥—xz4+Xda = 0
(a,z") = b
From the first equation we have that

2 =1 — Aa. (A.8)

Substituting this in the second equation we have:

b = (a,z%)
(1) (a,r — \a)
= (a,x> - )‘||a||27

and thus A = %22 which yields:
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A.2.2 Halfspaces

A halfspace is a convex set defined by C' = {x € R" : (a,z) < b} where 0 # a € R" and
b € R. By Similar arguments to those in the case of hyperplanes we have the following

theorem which describes the projection on halfspaces:

Theorem A.2.2 (Projection on Halfspaces) Let H = {x € R" : (a,x) < b} be a hyper-
space where 0 # a € R™ and b € R. Then,

lla

x — <a’m|>|;ba (a,z) >b

T else

A.2.3 Affine Spaces

Let C = {x € R" : Ax = b} be an affine space where A € R™*" b € R™. Notice that Every
hyperplane is also an affine space.We assume that m < n and that A is full rank (otherwise,

we can delete redundant equations). With this assumption we have the following theorem:

Theorem A.2.3 (Projection on an Affine Space) Let C = {x € R" : Ax = b} be an
affine space with A € R™*" b € R™. Then,

Po(z) =z — AT(AAT) L (Az — b)

Proof: As in the case of hyperplanes we consider the optimization problem Pg(z) =

argmin ||z — z[[%>. Denote z* = Pg(z). The KKT conditions for the minimization prob-
A

yA—
lem imply that there exists A € R™ such that:

ZF—ax+ATA = 0, (A.9)
Az" = b (A.10)
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(A.9) implies that,

2 =x— AT\

Substituting this in (A.10) we obtain:

Az — ATX) = b,

which implies that A = (AAT) }(Az — b) and as a result we have that,

r=x— AT\ =2 - AT(AAT) 1 (Az —b).

A24 R

Theorem A.2.4 (Projection on the non-negative orthant) LetR" = {(z1,22,...,2,):
x; >0 Vi=1,2,...,n} be the non-negative orthant of R™. Then,

Pﬁﬁ(x) =T+,

0 x,<0

where (z4); = {

Proof: Notice that the optimization problem related to the projection problem has a sepa-

rable structure:

n n
. . 2 _ . 2 . 2
min [le — ] thg}}gnzoglzz zi| zgglg[ﬂzz ;[
for every 1 < i < n, if x; > 0 then the scalar function ¢(z;) = |z — z;|* attains its

minimum at z; = z; (the minimum value in this case is 0). If z; < 0 then the scalar function
g(z;) is monotone increasing for every z; > 0 and thus attains its minimum at z; = 0, and

the proof is completed. O
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A.2.5 Polyhedral Sets

We consider the convex set P = {z € R" : Az < b} where A € R b € R™. In general,
there isn’t any known analytic expression for the projection on a polyhedral set. Nevertheless,
it is worth mentioning that there is a dual problem to the optimization problem related to
the projection problem which is in general easier to solve. The optimization problem in this

case is:

min ||z — z||°.
Az<b

First, construct the Lagrangian:

A>0 L(z,A) = ||z — 2| + 22T (Az — b).
We obtain the dual problem by minimizing the Lagrangian with respect to z:

(D) sup —A"AATN + 20T (Az —b).

A>0

Notice that (D) is a very simple problem in the sense that the feasible reason has a very
simple structure (the non-negative orthant). Although, as already mentioned, there isn’t any
explicit expression for the solution of (D) iterative methods can be applied to this problem,

for example, The gradient projection algorithm:

A = Prm (AF — t(—AATAY + Ax)),

where the step size, t, is chosen appropriately.

A.2.6 Simplex

The simplex X = {x:2>0,>7",z; = 1} is one of the most simple nontrivial polyhedral
sets. From the optimality conditions of the related optimization problem we have the fol-

lowing theorem:

Theorem A.2.5 Let X = {z:2> 0,1, x; = 1} and denote z* is equal to Px(x) iff there
erists A € R such that:
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ozo=1

Denote g(A) = > ;(z; + A);. Then, the problem of finding Px(z) is equivalent to the
problem of finding A* such that g(A\*) = 1. ¢g(\) is a nondecreasing piecewise linear function

and thus finding \* is a simple task.

A.2.7 Second Order Cone

Let £ = {(z,t) € R"" : ||z]| < t,z € R",t € R} be the Lorenz Cone (or the ice cream
cone). This cone is used frequently in second order cone optimization problems. Explicit

expression for the projection on the Lorenz cone is given in the following theorem:

Theorem A.2.6 Let L™ C R™*! be the Lorenz cone. Then for every x € R",t € R:

. - (z,1) ]l <t
>0 Ppe(z,t) = W(L,l) else

PR (X Jall < —¢
< (1) = [lz]|+¢ (i,l) clse :

Proof: If ||z|| <t then it is obvious that Ppn(x,t) = (x,t). If ||z|| > ¢ then the minimization
problem related to the problem is:

. 2 2
min ||z — z||* + (w — t)°.
HZIISw“ || ( )

Since (r,t) € L™ we have that Ppr(x,t) € bd(L") (theorem A.1.2). Thus, the minimiza-

tion problem is reduced to

H1rr|1|in lz —z||” + (w — t)°.
z

=w
We will perform the minimization in two steps: first we take w to be constant and
minimize with respect to z and then we will minimize with respect to w. By minimizing

with respect z we obtain:
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min (|2 —z|* + (w—1)*) = min (|2]]* = 2(z,2) + [|l=]|* + (w — 1))

ll2l|=w ll2l|=w

= min (w? — 2(z,z) + [|z|]* + (w — t)?).

ll2l|=w

By the Cauchy-Schwartz inequality we have that the minimum is obtained at z* = ”%Hw

and the minimal value is w? — 2||z||w + ||z||* + (w — ¢)? which is equal to 2w? — 2(||z|| + t)w +

||z||* 4+ ¢2. The optimal value of w denoted by w* satisfies:

. 0 x| < —t
w* = argmin(2w? — 2(|[z]] + t)w + [|z]|? + £2) :{ D e Nl
w20 = else

A.2.8 S - The Cone of Positive Semidefinite Matrices

We consider the cone of positive semidefinite matrices S = {X € R**" : X > 0}. S7 is

a closed convex cone. The matrix norm we consider here is the frobenius norm defined by
|A||lp = \/tr(ATA) = /3, ; aZ;, which is a kind of a I, norm for matrices.

Theorem A.2.7 Let S7 = {X € R™V™ : X > 0} be the cone of positive semidefinite
matrices. Let A € R™" be a symmetric matriz. Suppose that A has the following orthogonal
diagonalization A = UT DU where D = diag(\i, Na, ..., \n) and U is an orthogonal matriz.
then:

Psn (A) =UTD,T,

where D, = diag((A1) 4, (A2)s -, (An)y)-

Proof: The minimization problem related to the projection problem is:

: - 2
min [|X — Alfp

Using the properties of the trace operator we have:
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. 2 _ . - T -
min [ X —Alr = mintr((X - 4)"(X - 4))
=  mintr(UT(X — A)T(X — A)U)

X=0

= min tr(U"(X — A)"UUT (X — A)U)

g
g

S
l

= min tr(UY XU — D)X (UTXU — D))
= min||[UTXU - D|j%
X>0

Denote Y = UT XU and all that is left is to solve is the following minimization problem:

: o 2
min [¥" — DIf} (A.11)

We will prove that Y = D, is the solution to (A.11). First,
. _DIZ < _ 2
min [[Y" — D[y < [|D — Dyl
On the other hand, {Y : Y = 0} C {Y : Y > 0} where Y > 0 denotes the fact that every
component of Y is non-negative. As a result, we have:
. - 2 > . - 2
min [[¥" — Dy > min [[¥" — Difi
The problem miny~||Y — D||% is exactly like the problem of projection of D on R
(where m = n?) with the Euclidean norm. Thus, by our previous results we obtain that
argmin |Y — D||%2 = D,. And so,
Y>0
min [V = DIfi: > |D = D+ [l

Finally, we have obtained that Y = D, is the solution to (A.11) and thus the solution
to the projection problem is U D, U. O

A.3 Application of Projections to Optimality condi-

tions
We consider the following minimization problem:
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(OP)  min f(z),

where C' is a closed convex set and f is a differentiable function. The following definition is

important for the study of local minima of function.

Definition A.3.1 Let C be a closed convex set and let f be a differentiable function over C

then x* 1s called a stationary point if the following condition s satisfied:

(Vf(z"),x—2%) >0 Ve eC.
Remarks:

1. if z* is a local minimum of (OP) then it is also a stationary point of (OP).

2. For convex functions a point is a stationary point iff it is an optimal point.

Another way of defining stationary point is by using the projection operator. This is

described in the following theorem:

Theorem A.3.1 Consider the optimization problem (OP) where C is a closed convex set
and f is a differentiable function. Then for every t > 0, x* is a stationary point iff the

following condition is satisfied:

" = Po(x* —tV f(x")).

Proof: By the definition of inverse operators we have that x* = Pg(z* — tV f(z*)) iff :

vt —tVf(2*) € Pl (a"%).

By theorem A.1.7 we have that the last equation is equivalent to:

z* —tVf(z") € 2" + No(z¥).

We can substract z* from both sides and obtain:
—tVf(IL'*) S Nc(!L'*)
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Ne(z*) is a cone and thus we have the following equivalent equation:

-V f(z*) € No(z¥)

By the definition of the normal cone we have that this is equivalent to the following:

(=Vf(a"),x —a") <0,

which proves the theorem. O
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Appendix B

Mathematical Background

This appendix contains a list of definitions and useful mathematical results that are used
throughout the thesis.

Theorem B.0.2 (Descent Lemma) Under Assumptions 1 € 2 the following is satisfied:

Flo ) < Fa) + 97V () + 2l

Theorem B.0.3 Let z : R — R be a continuous function over a closed interval [a,b] with

directional derivatives in (a,b). Then, there is a ¢ € (a,b) such that:

Z(b) _ Z(a) / /
T bh_—a € [2L(¢), 2} (c)].

Theorem B.0.4 Let z : R — R be a continuously differentiable convex function. If z has

directional derivatives in a point x € R then, 2" (z), 2/ (z) > 0.

Theorem B.0.5 Let S be a closed convex set and let f be a conver function with V f which

15 Lipschitz continuous on S with constant L. then,

(V@) = Vi), (e =) > V(@) ~ V)

Definition B.0.2 f is a strongly convex function on a closed convex set S if there exists a
m > 0 such that:

F@) = F0) 2 (o= ) V() + gmlle — gl oy €S
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Theorem B.0.6 Let f be a strongly convex function on a closed conver set S with a pa-

rameter m > 0. then,

(V@) = V), (x—y) = mlz—yl* Vo,yeSs

Definition B.0.3 Let C' be a closed convex set then the normal cone of C' at a point T € C
is denoted by N¢(Z) and defined by:

Ne(z) ={d:d"(x —z) <0 Vz € C}

Lemma B.0.1 Let f: R" — RU {+o0} be convex and let Q) > 0. Define:

folw) = it { y) + 3l — 0" Qy — )} . (B.1)
Then,
(i) fo is convex differentiable and finite everywhere.
(1)) V fo(z) = Q(x — Ty(x)). where Ty is the unique minimizer of (B.1).
(ii2) [|V fo(x1) = Vfq(x2)|| € Amac(Q)l|71 — z2| Va1, 2.

Lemma B.0.2 Let f: R" — R U {400} be a proper, lsc and convex function with X* # ().
Then, for any x € R", one has

fla) — inf f(@) < pd(e, X°)
where p = d(0,0f(x)), and Of denotes the subdifferential of f.
Proof. See [38, Proposition 10.59, p. 469]. O.

Lemma B.0.3 (Hoffman’s Lemma) Let S = {Az = b,Cx < d} C R",where A is an
m X n matriz, C' is a k X n matriz, b is an m X 1 vector and d is a k X 1 vector. Suppose

that S # (0. Then, there exists T > such that for all z € R™ one has,

d(z,S) < 7([[Az = bl[ + [[(Cx — d) 1 [}).
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Lemma B.0.4 Let {a;}{", be a nonnegative sequence of real numbers.
(i) Sublinear rate: If {ay} is such that ax_y — a, > ~vai_, for some v > 0 and for any

k=1,...,m, then
ap

ay < — 0

— 14 mﬂag
(ii) Linear Rate: If {ay} is such that ax_1 — ap > Ygar_1 for some v, >0, Vk=1,...,m,
then

< (ym) %

m
Um < Qo€ 2k T,

Proof: (i)
2
i _ 1 _ Gmo1 — Om S Ya,,_;
A, Ap—1 A Am—1 o A Am—1
Amp—1
= 7 >
m

Thus, and i > % +ym = H‘;% and the result then follows.

(ii) ar < (1 — yg)ak—1. Using the inequality 1 — v, < e~ we obtain,

m
am < ag [J(1 =) < age” 2,
i=1
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