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Abstract. We consider the trust region subproblem which is given by a minimization of a
quadratic, not necessarily convex, function over the Euclidean ball. Based on the well-known second-
order necessary and sufficient optimality conditions for this problem, we present two sufficient opti-
mality conditions defined solely in terms of the primal variables. Each of these conditions corresponds
to one of two possible scenarios that occur in this problem, commonly referred to in the literature
as the presence or absence of the “hard case”. We consider a family of first-order methods, which
includes the projected and conditional gradient methods. We show that any method belonging to
this family produces a sequence which is guaranteed to converge to a stationary point of the trust
region subproblem. Based on this result and the established sufficient optimality conditions, we show
that convergence to an optimal solution can be also guaranteed as long as the method is properly
initialized. In particular, if the method is initialized with the zeros vector and reinitialized with a
randomly generated feasible point, then the best of the two obtained vectors is an optimal solution
of the problem in probability 1.
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1. Introduction. The trust region subproblem (TRS) is given by

min {q(x) : x ∈ B} ,(TRS)

with

q(x) := xTAx− 2bTx and B := {x ∈ Rn : ‖x‖2 ≤ 1},

where A ∈ Rn×n is symmetric, b ∈ Rn and ‖ · ‖ stands for the Euclidean `2-norm.
Though this problem emerges in various applications, it is mostly known due to its
central role in the trust region methodology for solving optimization problems, see for
example the book [8] and references therein.

In spite of the fact that problem (TRS) is not necessarily convex, its complexity
is known to be polynomial [31]. Moreover, problem (TRS) possesses necessary and
sufficient second-order optimality conditions which have motivated much of the meth-
ods designed to solve it. Probably one of the most popular among those methods is
the one suggested in [21], where a safeguarded Newton method is used for finding the
root of a secular equation emerging from the aforementioned optimality conditions.
This method is applicable for small to medium-sized problems due to the Cholesky
factorization which is performed at each iteration.

In the last decades, schemes that maintain modest computational and storage
requirements were suggested for addressing large-scale instances of problem (TRS).
The conjugate gradient was one of the first iterative methods proposed independently
in [26] and [28] for this task. This method succeeds in retrieving the optimal solution
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only if the latter resides in the interior of the feasible set. Otherwise, the scheme
breaks down at some stage and the method returns only an approximate solution.
In order to continue the process of minimizing over the Krylov subspace from the
point in which the conjugate gradient method breaks done, in [14] the authors sug-
gested an adaptation of the Lanczos method that relies on solving at each iteration
a much easier TRS, one that involves a tridiagonal matrix in the quadratic term
and with a significantly lower dimension. Nevertheless, among other disadvantages
of this method, it cannot guarantee to produce the optimal solution either. Trying
to overcome these pitfalls, other methods were suggested in the literature such as
the sequential subspace method (SSM) [15] which was followed by a variation called
phased SSM in [9]. Though these methods can guarantee convergence to the global
optimum, to do so they require an estimate of the eigenvector that corresponds to the
minimal eigenvalue.

Some schemes for finding the optimal solution of problem (TRS) based on its
parameterized eigenvalue reformulation were suggested in the literature. In [25] the
authors proposed to examine the close relations between the minimal eigenvector char-
acterization of such a reformulation and the optimality conditions of problem (TRS).
Based on this relation, an inverse interpolation scheme for iteratively tuning the pa-
rameter is suggested where at each iteration an eigenvalue computation is performed.
Various improvements that include a better treatment for the so-called “hard case”
(see Subsection 2.3) were suggested in [18, 23]. In [22], a similar parametrized eigen-
value approach was developed using different arguments involving duality theory for
SDPs and a homogenization technique.

Under the “difference of convex functions” framework, the projected gradient al-
gorithm was proposed in [27] for solving problem (TRS). In general, there are no
guarantees that the sequence generated by the projected gradient method will con-
verge to the global optimal solution, and thus a restarting technique that produces
a point with a smaller objective value backed up with a theoretical upper bound on
the number of required restarts is suggested in order to avoid convergence to a non-
optimal stationary point. Such a restart procedure relies on the availability of an
eigenvector that corresponds to the minimal eigenvalue.

Nowadays, TRS for large scale applications is still at the focus of extensive re-
search efforts. Following [11], the work [1] showed how to solve an extension of problem
(TRS) using a generalized eigenvector computation. Additional contemporary work
include [17, 29] and [16]. The first two independently suggested using an accelerated
gradient method for solving an equivalent convex formulation, formed in terms of an
eigenvector associated with the minimal eigenvalue, of problem (TRS). In the latter
one, problem (TRS) is solved by setting a lower bound on the objective value and ad-
justing it iteratively. At each iteration a feasibility problem is solved by a semidefinite
Programming (SDP) relaxation whose solution involves an eigenvector computation.

In this paper our goal is to show that problem (TRS) can be globally solved by
simple first-order methods such as the projected and conditional gradient methods,
under proper initialization that can be trivially computed. The dominant computa-
tion at each iteration of the class of methods that we consider is multiplication of A
with a given vector, and there is no need to solve or factorize systems of equations or
to compute/approximate eigenvectors of A.

The paper’s layout is as follows. Section 2 reviews several important mathematical
facts that will be pertinent to the analysis throughout the paper: characterizations of
stationary and optimality conditions, as well as a discussion on the so-called “easy”
and “hard” cases of problem (TRS). Section 3 introduces two sufficient optimality
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conditions, one for each case (“easy” and “hard”). These conditions, which are ex-
pressed solely in terms of the primal variables, will be instrumental for the proof of
convergence to a global optimal solution of the class of “first-order conic methods”
(FOCM) introduced in Section 4. This class of algorithms includes the projected and
conditional gradient methods as special instances. We show that the entire sequence
generated by an FOCM converges regardless of the choice of the starting point. More-
over, it is shown that in the “easy case”, an FOCM converges to the optimal solution
if initialized with the zeros vector, and in the “hard case”, it converges to the global
optimal solution as long as the objective function is non-homogenous and the starting
point is randomly generated by a continuous distribution whose support is B. A direct
consequence is that an optimal solution can be found with probability 1 (even if it is
unclear whether the “easy” or “hard” case hold) by employing an FOCM twice–each
with a different initialization.

Notation. Vectors are denoted by boldface lowercase letters, e.g., y, and matrices
by boldface uppercase letters, e.g., B. Given a matrix B ∈ Rm×n and vector y ∈ Rn,
‖B‖2 denotes the spectral norm of B, and ‖y‖ denotes the `2 norm of y. The vector
|y| stands for the element-wise absolute value of y. The matrix I is the identity matrix
whose dimension will be clear from the context. The notation B � 0 means that B
is positive semidefinite. The set N = {0, 1, 2. . . .} is the set of natural numbers.

2. Mathematical Preliminaris.

2.1. Stationarity Conditions. We begin by recalling (see for example [3, Sec-
tion 9.1]) that a point x̄ is a stationary point of problem (TRS) if it does not possess
any feasible descent directions:

∇q(x̄)T (x− x̄) ≥ 0, for any x ∈ B.

It is well-known that the above stationarity condition can be expressed in a more
explicit way in the case of problem (TRS).

Theorem 2.1 ([3, Example 9.6]). A point x̄ is a stationary point of problem
(TRS) if and only if there exists some λ(x̄) ≥ 0 such that the following conditions
hold:

(A + λ(x̄)I)x̄ = b,(2.1)

(‖x̄‖2 − 1)λ(x̄) = 0.(2.2)

A nonnegative number λ(x̄) satisfying (2.1) and (2.2) is called a Lagrange multiplier
associated with x̄. We also note that condition (2.2) is known as the “complementary
slackness” condition. The following simple lemma shows that each stationary point
has a unique Lagrange multiplier. This uniqueness result on the associated Lagrange
multiplier shows that the notation “λ(x̄)”, that will be used throughout the paper, is
well-defined.

Lemma 2.2. Any stationary point x̄ of problem (TRS) admits a unique Lagrange
multiplier λ(x̄) ≥ 0.

Proof. Assume by contradiction that x̄ admits two Lagrange multipliers λ1
(x̄) and

λ2
(x̄) such that λ1

(x̄) 6= λ2
(x̄). Then by (2.1)

λ1
(x̄)x̄ = b−Ax̄ = λ2

(x̄)x̄.
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Since λ1
(x̄) 6= λ2

(x̄) we obtain that x̄ = 0, but in this case, condition (2.2) implies that

λ1
(x̄) = λ2

(x̄) = 0, leading to a contradiction.

It is interesting to note that the converse of Lemma 2.2 does not hold true in general,
meaning that it might happen that the same Lagrange multiplier will be associated
with different stationary points. For example, if q(x) := 0 (A = 0,b = 0), then all the
feasible points are stationary points, and λ = 0 is the Lagrange multiplier associated
will all of them.

Obviously, stationarity is a necessary optimality condition [6]. Combining this
fact with Lemma 2.2 yields the following known result.

Theorem 2.3. Any optimal solution x̄ of problem (TRS) is also a stationary
point, meaning that (x̄, λ(x̄)) satisfies conditions (2.1) and (2.2).

Problem (TRS) admits necessary and sufficient second-order optimality condi-
tions which are summarized in the following theorem (see e.g., [12, 24]). The condi-
tions state that a point is optimal if and only if it is stationary and satisfies a certain
second-order optimality condition.

Theorem 2.4 ([24, Lemmas 2.4 and 2.8]). Let x̄ be a feasible point of problem
(TRS). Then x̄ is an optimal solution of problem (TRS) if and only if it is a stationary
point such that

(2.3) A + λ(x̄)I � 0.

2.2. Spectral Characterization of Optimality and Stationarity. Through-
out the analysis in the paper we will consider the stationarity and optimality condi-
tions in terms of the eigenvalues and eigenvectors of A. Let A = UDUT be a spectral
decomposition of A such that D = diag(d1, d2, . . . , dn) with d1 ≤ d2 ≤ · · · ≤ dn being
the increasingly sorted eigenvalues of A and U being an orthonormal matrix whose
columns are associated eigenvectors of A. The notations of the matrix U and
d1 ≤ d2 ≤ · · · ≤ dn will be fixed throughout the paper.
In terms of the spectral decomposition, Theorems 2.1 and 2.4 as well as Lemma 2.2
can be rewritten in the following compact form.

Theorem 2.5. (a) A point x̄ is a stationary point of problem (TRS) if and
only if there exists a unique λ(x̄) ≥ 0 such that the following conditions hold:

(di + λ(x̄))(U
T x̄)i = (UTb)i, i = 1, 2, . . . , n.(2.4)

(‖x̄‖2 − 1)λ(x̄) = 0.(2.5)

(b) A feasible point x̄ of problem (TRS) is optimal if and only if it is a stationary
point and satisfies

λ(x̄) ≥ −d1.

2.3. The “Hard Case”. The characterization of an optimal solution given by
the three conditions (2.1)–(2.3) motivated the development of some efficient methods
for solving problem (TRS), see for example [21, 24] and the discussion in the intro-
duction. These methods, as well as many algorithms that appear in the literature,
provide a special treatment for the so-called “hard case” which we now describe. De-
note the eigenspace of A corresponding to the smallest eigenvalue, which we denote
as d1, by

E1 := {x ∈ Rn : Ax = d1x}.
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There are two classes of trust region subproblems that are frequently analyzed sep-
arately. The classes are determined according to whether or not the vector b is
orthogonal to the subspace E1

• “easy case” b 6⊥ E1.
• “hard case” b ⊥ E1.

We will often use the following notation for the set of indices of eigenvalues corre-
sponding to the minimal eigenvalue:

(2.6) E1 := {i ∈ {1, 2, . . . , n} : di = d1}.

With the above notation, the condition describing the “easy case” can also be written
as

(UTb)i 6= 0 for some i ∈ E1.

It is well known that in the “easy case” there exists a unique optimal solution to
problem (TRS).
The “hard case” is, in a sense, not likely to occur since, loosely speaking, for ran-
domly generated data (A and b), the probability that the “hard case” will occur is 0.
Therefore, the condition b 6⊥ E1 describing the “easy case” is considered to be mild.
However, theoretically, the “hard case” might arise, and it usually requires a more
involved and complicated analysis than the one required for the “easy case” (hence,
the name).

3. Two Sufficient Optimality Conditions. In this section we will present
two sufficient optimality conditions that will be the basis for showing how a global
optimal solution of problem (TRS) can be obtained in both the “hard” and “easy”
cases.
The sufficient conditions require that a stationary point will reside in some set. In
the “easy case” the relevant set is

(3.1) SE = {x ∈ B : sign((UTb)i)(U
Tx)i ≥ 0, i ∈ I−},

where sgn(α) denotes the sign function which returns 1 if α ≥ 0 and −1 otherwise
and

I− = {i ∈ {1, 2, . . . , n} : di ≤ 0}.

In the “hard case”, the relevant set is

(3.2) SH := {x ∈ B : x 6⊥ E1}.

We are now ready to prove a sufficient optimality condition for each of the scenarios.

Theorem 3.1 (sufficient optimality condition - “easy case”). Suppose
that the “easy case” holds. Let x̄ ∈ SE be a stationary point of problem (TRS). Then
x̄ is the optimal solution of problem (TRS).

Proof. If d1 ≥ 0, then problem (TRS) is convex, and obviously any stationary
point is optimal. Therefore, we will henceforth assume that d1 < 0. Since x̄ is a
stationary point of problem (TRS), then by Theorem 2.5(a) for any i = 1, 2, . . . , n,

(3.3) (di + λ(x̄))(U
T x̄)i = (UTb)i.

Since the “easy case” holds, it follows that there exists i1 ∈ E1 such that (UTb)i1 6= 0,
which by (3.3) implies that (UT x̄)i1 6= 0. Combining this with the fact that x̄ ∈ SE
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and d1 < 0, we obtain that (UT x̄)i1(UTb)i1 > 0. Therefore, by (3.3) with i = i1,

λ(x̄) = −di1 +
(UTb)i1
(UT x̄)i1

> −di1 = d1,

which in light of Theorem 2.5(b) implies that x̄ is an optimal solution of problem
(TRS).

Remark 3.2. The condition defining the set SE , namely “sgn ((UTb)i)(U
T x̄)i ≥

0” corresponds to a property that is known to hold for optimal solutions of problem
(TRS), and is the basis for its so-called “hidden convexity” property, see [5] as well
as [3, Lemma 8.7].

Theorem 3.3 (sufficient optimality condition - “hard case”). Suppose
that the “hard case” holds. Let x̄ ∈ SH be a stationary point of problem (TRS). Then
x̄ is an optimal solution of problem (TRS).

Proof. Since x̄ ∈ SH , it holds that x̄ 6⊥ E1, i.e., there exists i ∈ E1 such that
(UT x̄)i 6= 0. For such an i, the “hard case” assumption implies that (UTb)i = 0. By
Theorem 2.5(a), we obtain that

(λ(x̄) + di)(U
T x̄)i = 0,

which combined with the fact that (UT x̄)i 6= 0 implies that λ(x̄) = −di = −d1, and
hence, by Theorem 2.5(b), x̄ is an optimal solution of problem (TRS).

In the next section we will show how the two sufficient conditions described in
Theorems 3.1 and 3.3 form the basis for the convergence to a global optimal solution
of a class of simple first-order methods that includes, among others, the projected
gradient and conditional gradient methods. Specifically, it will be shown that in the
“easy case”, an algorithm that belongs to this class of methods, initialized at a point
in SE , converges to a stationary point in SE , which by Theorem 3.1, is also optimal.
In the “hard case”, based on Theorem 3.3, it will be shown that convergence to an
optimal solution is guaranteed as long as the initial point belongs to SH . If it is not
clear (as is the common situation) whether the hard or easy cases hold, then a global
optimal solution can be obtained by running the method twice–once with x0 ∈ SE

and the second time with x0 ∈ SH . Note that although both SE and SH are described
in terms of the spectral decomposition of A, an operation that should be avoided, we
will show that there is a simple way to choose the initial vector x0 without the need
to access any spectral information.

4. First-Order Conic Methods.

4.1. Definition and Examples. We begin with the definition of a “first-order
conic method”.

Definition 4.1 (first-order conic method). A method which generates a
sequence of points {xk}∞k=0 according to the general step

xk+1 = θk1xk + θk2
(
−∇q(xk)

)
.(4.1)

with some x0 ∈ B is called a first-order conic method (FOCM) if it satisfies the
following conditions:

(A) The method generates a feasible sequence, i.e., xk ∈ B for any k ∈ N.
(B) q(xk+1) ≤ q(xk) for all k ∈ N.
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(C) All limit points of the sequence {xk}∞k=0 are stationary points of problem
(TRS).

(D) θk ∈ R2
+ \ {0} and θk1 ∈ [0, 1] for any k ∈ N.

Property (D) in the definition of an FOCM above implies that

xk+1 ∈ B ∩ cone
(
{xk,−∇q(xk)}

)
,

which explains the name of the class of methods. Note that Definition 4.1 is quite
general. Following are two examples of algorithms which are FOCMs.

4.1.1. Projected Gradient. The projected gradient (PG) method is one of
the most fundamental methods for solving differentiable constrained optimization
problems [6, 19]. In the case of problem (TRS), the general step of the PG method is
given by

Projected Gradient (PG) Method

For any k = 0, 1, 2, . . . , execute the following:

xk+1 := PB(xk − tk∇q(xk)) =

{
xk − tk∇q(xk), ‖xk − tk∇q(xk)‖ ≤ 1,

xk−tk∇q(xk)
‖xk−tk∇q(xk)‖ , otherwise,

where tk ≥ 0 is a corresponding step-size and

PB(y) := argmin{‖x− y‖2 : x ∈ B} =

{
y, ‖y‖ ≤ 1,

y
‖y‖ , ‖y‖ > 1.

is the orthogonal projection operator. This method, with a constant step size,was
previously suggested for solving problem (TRS) in [27] where a restarting procedure,
that involves an eigenvector computation, was used in order to guarantee convergence
to the optimal solution.

Property (A) in the definition of an FOCM (feasibility) is surely satisfied because
of the projection step. Property (D) also holds since tk ≥ 0 and θk1 ∈ [0, 1] since
it is either equal to 1 if ‖xk − tk∇q(xk)‖ ≤ 1 and if ‖xk − tk∇q(xk)‖ > 1, then
θk1 = ‖xk − tk∇q(xk)‖−1 < 1. The validity of properties (B) and (C) can be shown
under some step-size regimes. Here we consider the following two popular step-size
strategies:

• Constant. tk = 1
L̄

, where L̄ ∈ [‖A‖2,∞).
• Backtracking. The procedure requires three parameters (s, γ, η) where
s > 0, γ ∈ (0, 1) and η > 1. The step-size is chosen as tk = 1

Lk
where Lk

is picked as follows: first, Lk is set to be equal to the initial guess s. Then,
while

q(xk)− q
(
PB

(
xk − 1

Lk
∇q(xk)

))
< γLk

∥∥∥∥xk − PB

(
xk − 1

Lk
∇q(xk)

)∥∥∥∥2

,

we set Lk := ηLk.

It is well known (see for example [4, Theorem 10.15]) that properties (B) and (C)
hold for the PG method under the constant and backtracking strategies as described
above. We can thus conclude the following.
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Theorem 4.2. The PG method with either constant or backtracking step-size
strategies is an FOCM.

4.1.2. Conditional Gradient. Another fundamental method for solving dif-
ferentiable and constrained optimization problems is the conditional gradient (CG)
method [6, 10, 19]. In the case of problem (TRS), the CG method takes the following
form.

Conditional Gradient (CG) Method
For any k = 0, 1, 2, . . ., execute the following:

(a) compute pk ∈ argmin
p∈B

〈p,∇q(xk)〉;

(b) choose tk ∈ [0, 1] and set xk+1 = xk + tk(pk − xk).

Step (a) of the method is not well-defined when ∇q(xk) = 0 since in this case we
can choose pk to be any point in B. To make the method well-defined, and in order
to avoid unnecessary pathological situations, we will set pk = 0 and tk = 0 in this
case. With this convention, we have

pk =

{
− ∇q(xk)
‖∇q(xk)‖ , ∇q(x

k) 6= 0,

0, ∇q(xk) = 0.

and thus, the general update step is given by

xk+1 =

{
(1− tk)xk − tk

‖∇q(xk)‖∇q(x
k), ∇q(xk) 6= 0,

xk, ∇q(xk) = 0.

The above representation shows that the CG method satisfies properties (A) and (D)
required from an FOCM. We will consider the following step-size strategy:

• Exact line search. tk ∈ argmin
t∈[0,1]

q(xk + t(pk − xk)).

The CG method with exact line search strategy is known to satisfy properties (B)
and (C) in the definition of an FOCM (see for example [4, Chapter 13]), and we can
thus conclude that in this setting, the CG method is an FOCM.

Theorem 4.3. The CG method with an exact line-search strategy is an FOCM.

Remark 4.4. The constant step-size selection rule suggested for the GP method,
involve an upper bound on the spectral norm of A. In some cases such an upper bound
can be easily and efficiently acquired. However, in general, since
‖A‖2 = max{|d1|, |dn|}, assessing the spectral norm requires an eigenvalue compu-
tation. This, of course, can be avoided by using the backtracking step-size selection
rule, which do not require any spectral information.

4.2. Convergence of the Sequence Generated by an FOCM. Our main
objective will be to show how to achieve the global optimal point of problem (TRS)
using any FOCM method. Before that, we will show that the sequence generated by
an FOCM converges to a stationary point. This is a stronger property than condition
(C) in the definition of an FOCM (Definition 4.1), which only warrants that limit
points of the generated sequence are stationary point. This result will also be useful
in showing later on how convergence to an optimal solution can be achieved under
proper initialization.

Theorem 4.5. Let {xk}∞k=0 be a sequence generated by an FOCM. Then {xk}∞k=0

converges to a stationary point of problem (TRS).
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Proof. Due to the monotonicity of {q(xk)}∞k=0 (property (B) in Definition 4.1)
and the fact that problem (TRS) admits an optimal solution, we can conclude that
there is some q̄ such that

(4.2) lim
k→∞

q(xk) = q̄.

Since by the definition of an FOCM (specifically, property (C) in Definition 4.1), any
limit point of the sequence is a stationary point, all we need to prove is that the
sequence converges. Assume by contradiction that the sequence does not converge.
Let then x̄, ȳ ∈ B, x̄ 6= ȳ be two different accumulation points of the sequence
{xk}∞k=0. By (4.2) and the continuity of q, we obtain that q(x̄) = q(ȳ) = q̄. In
addition, by property (C) in the definition of an FOCM (Definition 4.1), both points
are stationary points of problem (TRS). We will show that λ(x̄) = λ(ȳ). Indeed,

q(x̄)− q(ȳ) = x̄TAx̄− 2bT x̄− ȳTAȳ + 2bT ȳ

= (x̄− ȳ)TA(x̄− ȳ) + 2(Aȳ − b)T (x̄− ȳ)

= (x̄− ȳ)TA(x̄− ȳ)− 2λ(ȳ)ȳ
T (x̄− ȳ),

where in the last equality we have used (2.1) due to the stationarity of ȳ. Similarly,
we obtain that

q(ȳ)− q(x̄) = (ȳ − x̄)TA(ȳ − x̄)− 2λ(x̄)x̄
T (ȳ − x̄).

Since we already established that q(x̄) = q(ȳ), by combining the last two results we
obtain that

λ(x̄)(ȳ
T x̄− ‖x̄‖2) = λ(ȳ)(ȳ

T x̄− ‖ȳ‖2).(4.3)

If ‖x̄‖2 = ‖ȳ‖2 then due to our assumption that x̄ 6= ȳ, we obtain that1

ȳT x̄ < ‖x̄‖2 = ‖ȳ‖2 and thus λ(x̄) = λ(ȳ). Otherwise, assume without loss of gener-
ality that ‖x̄‖2 < ‖ȳ‖2 which implies by the complementary slackness condition (2.5)
that λ(x̄) = 0. Then (4.3) boils down to λ(ȳ)(ȳ

T x̄ − ‖ȳ‖2) = 0 and since x̄ 6= ȳ we
obtain that2 λ(ȳ) = 0.

To summarize, up to this point we assumed by contradiction that the sequence
{xk}∞k=0 has two different accumulation points x̄ 6= ȳ and showed that λ(x̄) = λ(ȳ).
We will denote the common Lagrange multiplier value by λ := λ(x̄) = λ(ȳ). Now,
since both x̄ and ȳ are stationary points of problem (TRS), then by Theorem 2.5(a)

(λ+ di)(U
T z)i = (UTb)i, z ∈ {x̄, ȳ}, i = 1, 2, . . . , n.(4.4)

If λ 6= −di for all i = 1, 2, . . . , n, then by (4.4)

(UT x̄)i =
(UTb)i
λ+ di

= (UT ȳ)i, i = 1, 2, . . . , n,

1Since x̄ 6= ȳ and ‖x̄‖ = ‖ȳ‖, it follows that x̄, ȳ 6= 0. To prove the strict inequality, note that
by the Cauchy-Schwarz inequality ȳT x̄ ≤ ‖ȳ‖ · ‖x̄‖ = ‖x̄‖2. Equality will hold only if ȳ = αx̄ for
some nonnegative α, but since ‖x̄‖ = ‖ȳ‖, α has to be equal to 1, leading to a contradiction to the
assumption that x̄ 6= ȳ.

2Indeed, by the Cauchy-Schwarz inequality ȳT x̄ ≤ ‖ȳ‖ · ‖x̄‖ < ‖ȳ‖2, where the strict inequality
is due to the facts that ȳ 6= 0 and ‖x̄‖ < ‖ȳ‖.
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implying that x̄ = ȳ, which is a contradiction to the assumption that x̄ 6= ȳ. We
will therefore assume from now on that there is some m ∈ {1, 2, . . . , n} for which
λ(x̄) = −dm. We denote (expanding the notation “E1”, see (2.6)),

Em = {` ∈ {1, 2, . . . , n} : d` = dm}.

For any i /∈ Em, by (4.4),

(UT x̄)i =
(UTb)i
λ+ di

= (UT ȳ)i.

We will show that (UT x̄)i = (UT ȳ)i also for any i ∈ Em. Let then i ∈ Em. Then
due to (4.4), since λ = −dm, it must hold that (UTb)i = 0, and thus, the update step
(4.1) of the FOCM method is (recalling that di = dm for i ∈ Em),

(UTxk+1)i = θk1 (UTxk)i + 2θk2
(
−di(UTxk)i

)
=
[∏k

j=0(θj1 − 2θj2dm)
]

(UTx0)i,

meaning that

(4.5) (UTxk+1)i = πk(UTx0)i,

where

πk :=

k∏
j=0

(θj1 − 2θj2dm).

Note that πk ≥ 0 for any k since −dm = λ ≥ 0 and θj1, θ
j
2 ≥ 0.

We will now consider two cases.
(a) If λ = 0, then for any i ∈ Em (4.5) is simply

(UTxk+1)i = πk(UTx0)i,

where here πk =
∏k

j=0 θ
j
1. Since θk1 ∈ [0, 1] for any k ∈ N, the sequence

{πk}∞k=0 is non-increasing and bounded from below by zero, and thus con-
verges to some β. Hence, {(UTxk)i}∞k=0 converges to β(UTx0)i. Since
(UT x̄)i and (UT ȳ)i are limit points of the convergent sequence {(UTxk)i}∞k=0

, it follows that (UT x̄)i = (UT ȳ)i.
(b) If λ 6= 0, then due to the complementary slackness condition and the fact,

previously established, that (UT x̄)i = (UT ȳ)i for any i /∈ Em, we obtain that

(4.6)
∑
i∈Em

(UT x̄)2
i =

∑
i∈Em

(UT ȳ)2
i .

By (4.5) it follows that (UT x̄)i(U
T ȳ)i ≥ 0 for any i ∈ Em and consequently,

the fact that x̄ 6= ȳ implies that |UT x̄| 6= |UT ȳ|. Combining this with (4.6),
it follows that there must be some i1, i2 ∈ Em and some ε > 0 such that

|(UT x̄)i1 | − |(UT ȳ)i1 | > 2ε and |(UT ȳ)i2 | − |(UT x̄)i2 | > 2ε.(4.7)

Since x̄ and ȳ are accumulation points of the sequence {xk}∞k=0, there are

two subsequences {xk1
t }∞t=0 and {xk2

t }∞t=0 such that xk1
t → x̄ and xk2

t → ȳ as
t→∞. Hence there exists t1 ∈ N such that
(4.8)

|(UTxk1
t )i1 − (UT x̄)i1 | < ε and |(UTxk1

t )i2 − (UT x̄)i2 | < ε for any t ≥ t1.
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Similarly, there exists t2 ∈ N such that
(4.9)

|(UTxk2
t )i1 − (UT ȳ)i1 | < ε and |(UTxk2

t )i2 − (UT ȳ)i2 | < ε for any t ≥ t2.

Assume, without the loss of generality, that k2
t2 > k1

t1 . Combining (4.7) and
(4.8), we obtain

|(UTxk1
t1 )i1 | − |(UT ȳ)i1 | > ε,(4.10)

|(UT ȳ)i2 | − |(UTxk1
t1 )i2 | > ε.(4.11)

Due to (4.5) we also have that

(4.12) (UTxk2
t2 )i1 = η(UTxk1

t1 )i1 and (UTxk2
t2 )i2 = η(UTxk1

t1 )i2 ,

where

η =

k2
t2
−1∏

j=k1
t1

(θj1 − 2θj2dm)

 .
Thus, (4.9) and (4.12) yield

|η(UTxk1
t1 )i1 − (UT ȳ)i1 | < ε,(4.13)

|η(UTxk1
t1 )i2 − (UT ȳ)i2 | < ε.(4.14)

Note that in addition, (4.5) implies that

(UTxk1
t1 )i1(UT ȳ)i1 ≥ 0,(4.15)

(UTxk1
t1 )i2(UT ȳ)i2 ≥ 0.(4.16)

Combining (4.10), (4.13) and (4.15) implies that η < 1. This is a direct
consequence of the following simple result on real numbers: if a, b ∈ R satisfy
(for some ε > 0) ab ≥ 0, |a| − |b| > ε, |ηa − b| < ε, then η < 1. Similarly,
(4.11), (4.14) and (4.16) imply that η > 1. We thus obtained a contradiction
to our assumption that x̄ 6= ȳ.

Remark 4.6. Convergence of the sequence generated by the projected gradient
method can be established using the Kurdyka- Lojasiewicz property under the condi-
tion that the step-sizes tk reside in the interval (2‖A‖2,M) for some M > 2‖A‖2, see
[2] and the precise statement in [7, Proposition 3].

4.3. Convergence to the Optimal Solution – the “Easy Case”. So far,
we have established the convergence of the sequence generated by an FOCM, but we
did not prove that it converges to the global optimal solution of problem (TRS). This
is actually not correct in general. What we can prove is that both in the easy and
hard cases, certain choices of the initial vector x0 will guarantee convergence to the
optimal solution.

Theorem 4.7 below shows that in the setting of the “easy case”, if x0 ∈ SE ,
then an FOCM will converge to the optimal solution of problem (TRS). This is done
by showing that the limit of the sequence is a stationary point in SE , which by the
sufficient condition described in Theorem 3.1, implies that the limit is an optimal
solution.
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Theorem 4.7 (convergence to the optimal solution in the “easy case”).
Let {xk}∞k=0 be a sequence generated by an FOCM. If x0 ∈ SE, then the sequence
{xk}∞k=0 converges to the optimal solution of problem (TRS).

Proof. By the definition of an FOCM, for any k ∈ N there exists θk ∈ R2
+ \ {0}

such that

xk+1 = θk1xk + θk2
(
−∇q(xk)

)
,

and xk+1 ∈ B. We will show that the whole sequence {xk}∞k=0 is in SE by induction.
By the statement of the theorem, x0 ∈ SE . Assume that xk ∈ SE . Then for any
i ∈ I−,

sgn
(
(UTb)i

) (
−UT∇q(xk)

)
i

= sgn
(
(UTb)i

) (
−2di(U

Txk)i + 2(UTb)i
)

= −2disgn
(
(UTb)i

)
(UTxk)i + 2|(UTb)i|

≥ 0.

where the inequality follows by the inclusion xk ∈ SE and the fact that di ≤ 0 for
any i ∈ I−.

We have thus shown that if xk ∈ SE , then −∇q(xk) ∈ SE . This result and the
fact that θk ∈ R2

+ \ {0} imply that for any i ∈ I−,

sgn
(
(UTb)i

)
(UTxk+1)i =

θk1 sgn
(
(UTb)i

)
(UTxk)i + θk2 sgn

(
(UTb)i

) (
−UT∇q(xk)

)
i
≥ 0.

Thus, xk+1 ∈ SE , showing that xk ∈ SE for any k ∈ N. Therefore, since {xk}∞k=0

converges to some stationary point x̄ (Theorem 4.5) and since SE is a closed set, it
follows that x̄ ∈ SE . We have thus shown that the limit point x̄ of the the sequence
is a stationary point in SE , and thus, by Theorem 3.1, it is an optimal solution of
problem (TRS).

The set SE as defined in (3.1) is given in terms of the spectral decomposition of A.
Thus, the task of finding a point x0 ∈ SE seems to require some spectral knowledge;
however, such knowledge is not really needed by the trivial observation that 0 ∈ SE .
Consequently, Theorem 4.7 ensures that in the “easy case”, if an FOCM is initialized
with x0 = 0, then it is guaranteed to converge to the optimal solution.

Corollary 4.8. Suppose that the “easy case” holds and let {xk}∞k=0 be a se-
quence generated by an FOCM initialized with x0 = 0. Then the sequence converges
to an optimal solution of problem (TRS).

4.4. Convergence to an Optimal Solution – the “Hard Case”. In the
“hard case”, we will obtain a result that resembles a well-known result (see for example
[13, Section 8.2.1]) for problem (TRS) with b = 0, which shows that the so-called
“power iteration method” converges to the dominant eigenvector of the matrix A
under the condition that the dominant eigenvalue is unique3 and the mild condition
that the initial point x0 satisfies

(4.17) x0 6⊥ E1.

The above condition is the same as the relation x0 ∈ SH . We note that the power
iteration method is known to be equivalent to the conditional gradient method (see

3This condition can be relaxed to some extent [30, Chapter 9].
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[20]), and as such, it is an FOCM. Theorem 4.9 below shows that if the “hard case”
holds and b 6= 0, then under the same mild condition on the initial vector (4.17),
convergence of any FOCM to the optimal solution of problem (TRS) is warranted.
The proof is based on the sufficient optimality condition given in Theorem 3.3.

Theorem 4.9 (convergence to an optimal solution in the “hard case”).
Suppose that the “hard case” holds and that b 6= 0. Let {xk}∞k=0 be a sequence

generated by an FOCM with x0 ∈ SH . Then the sequence {xk}∞k=0 converges to an
optimal solution of problem (TRS).

Proof. By Theorem 4.5 {xk}∞k=0 converges, and we will denote its limit by x̄.
By the definition of an FOCM, x̄ is a stationary point of problem (TRS). As usual,
the associated Lagrange multiplier of x̄ will be denoted by λ(x̄). By Theorem 2.5(a),
(x̄, λ(x̄)) satisfies the equations

(4.18) (λ(x̄) + di)(U
T x̄)i = (UTb)i, i = 1, 2, . . . , n.

We will prove that x̄ is an optimal solution of (TRS). If d1 ≥ 0, then problem (TRS) is
convex, and hence x̄ must be an optimal solution, and we are done. We will henceforth
consider the case where d1 < 0.

Assume by contradiction that x̄ is not an optimal solution of problem (TRS).
By Theorem 3.3, this entails that x̄ /∈ SH , which by the definition of SH (see (3.2))
implies that (UT x̄)i = 0 for any i ∈ E1, and in particular that

(4.19) (UT x̄)1 = 0.

Another consequence of the fact that x̄ is a non-optimal stationary point of problem
(TRS) and Theorem 2.5(b) is that

(4.20) λ(x̄) < −d1.

Since x0 ∈ SH , it follows that there exists i ∈ E1 for which (UTx0)i 6= 0 and we
assume w.l.o.g. that (UTx0)1 6= 0.

Since (UTb)1 = 0, the update formula of the method (4.1) can be written as

(UTxk+1)1 = θk1 (UTxk)1 + 2θk2 (−d1(UTxk)1) = [θk1 − 2θk2d1](UTxk)1,

meaning that

(4.21) (UTxk+1)1 = αk(UTxk)1,

where αk = θk1 − 2θk2d1. Note that αk > 0 since d1 < 0 and θk ∈ R2
+ \ {0} for all k.

Combining the fact that (UTx0)1 6= 0 and the validity of (4.21) with αk > 0, we can
conclude that

(4.22) (UTxk)1 6= 0 for any k ∈ N.

Since b 6= 0, there exists i ∈ {1, 2, . . . , n} such that (UTb)i 6= 0, which by (4.18)
implies that λ(x̄) 6= −di and

(4.23) (UT x̄)i 6= 0.

Since (UTxk)i → (UT x̄)i as k →∞, it follows by (4.18) and (4.23) that there exists
K1 ∈ N such that

(4.24) (UTxk)i[(λ(x̄) + di)(U
Tb)i] > 0 for all k ≥ K1.
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The last equation implies further that

(4.25) (UTxk)i(U
Txk+1)i > 0 for all k ≥ K1.

For any k ≥ K1, we can write

(UTxk+1)i = θk1 (UTxk)i + 2θk2
(
−di(UTxk)i + (UTb)i

)
,

meaning that

(4.26) (UTxk+1)i = ηk(UTxk)i,

where

ηk = θk1 + 2θk2

(
−di +

(UTb)i
(UTxk)i

)
.

Combining (4.25) and (4.26) we can also conclude that ηk > 0 for all k ≥ K1.
We now consider two cases:
(i) λ(x̄) < −di. In this case, by (4.24), it follows that (UT b)i

(UT xk)i
< 0 for all

k ≥ K1. We can therefore conclude that for any k ≥ K1

0 ≤ ηk = θk1 +2θk2

(
−di +

(UTb)i
(UTxk)i

)
≤ θk1 +2θk2 (−di) ≤ θk1 +2θk2 (−d1) = αk.

(ii) λ(x̄) > −di. In this case, by (4.18), it follows that

|(UT x̄)i| =
|(UTb)i|
λ(x̄) + di

>
|(UTb)i|
−d1 + di

,

where the inequality is due to (4.20). The above inequality can be also rewrit-
ten as

−d1 > −di +
|(UTb)i|
|(UT x̄)i|

= −di +
(UTb)i
(UT x̄)i

,

where the equality is due to (4.18). Since (UTxk)i → (UT x̄)i as k → ∞ we
obtain that there is some K2 such that

−d1 > −di +
(UTb)i
(UTxk)i

for all k ≥ K2.

We can thus conclude that in this case, for any k ≥ max{K1,K2}, it holds
that

0 ≤ ηk = θk1 + 2θk2

(
−di +

(UTb)i
(UTxk)i

)
≤ θk1 + 2θk2 (−d1) = αk.

In both cases, we showed that there exists K ∈ N (K = K1 in the first case and
K = max{K1,K2} in the second case) such that for all k ≥ K it holds that 0 ≤ ηk ≤ αk.
We can now conclude that for any k ≥ K,

|(UTxk+1)i| =
∏k

j=K ηj |(UTxK)i| [(4.26)]

≤
∏k

j=K αj |(UTxK)i| [0 ≤ ηk ≤ αk]

=
∏k

j=K αj |(UTxK)1| |(U
T xK)i|

|(UT xK)1| [(4.22)]

= |(UTxk)1| |(U
T xK)i|

|(UT xK)1| [(4.21)].
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Since lim
k→∞

(UTxk)1 = (UT x̄)1 = 0 (equation (4.19)), it follows by taking k → ∞
in the above inequality that (UT x̄)i = 0, which is a contradiction to (4.23), thus
establishing the desired result that x̄ is an optimal solution of problem (TRS).

Remark 4.10 (finding a point satisfying x ∈ SH). The condition x0 ∈ SH ,
which is also the same as condition (4.17), can be more explicitly written as

(UTx0)i 6= 0 for some i ∈ E1.

This is an extremely mild condition in the sense that if x0 is randomly generated via
a continuous distribution with support B (for example, uniform distribution over B),
then the probability that it will be satisfied is 1, and in this case, an FOCM will surely
converge to the optimal solution of problem (TRS), as guaranteed by Theorem 4.9.

4.5. A Double-Start FOCM Method. Verifying whether the “easy” or “hard”
cases hold requires spectral information which we do not assume to posses, and thus
in this common case of uncertainty, we can employ an FOCM twice with two starting
points: x0 = 0 and x0 which is randomly generated via a continuous distribution
whose support is B. The best of the two resulting points (in terms of the objective
function q) will be an optimal solution of problem (TRS) in probability 1.

Double-Start FOCM

Given an FOCM, execute the following:
(a) Employ the FOCM with initial point x0 = 0 and obtain an output x̄.
(b) Employ the FOCM with initial point x0 chosen via a continuous distri-

bution function over B and obtain an output x̃.
(c) The output of the method is x∗ ∈ argmin

z
{q(z) : z ∈ {x̄, x̃}}.

4.6. A Numerical Example. The GP and CG methods, belonging to the
FOCM class, are attractive candidates for solving problem (TRS). Besides their ex-
treme ease of implementation, they exhibit a low computational cost per iteration,
which amounts to the matrix-vector product involved in the gradient calculation.
Thus, both methods are applicable for solving large scale instances of problem (TRS),
especially when the matrix A is sparse. In order to further motivate the benefits of
solving problem (TRS) by an FOCM, we illustrate in the following example the po-
tential efficiency of the GP and CG methods.

We considered 30 realizations of the model data (A,b) with dimension n = 1000
generated as follows. Each entry of the vectors x∗,u,∈ Rn was first sampled uni-
formly in the interval [−0.5, 0.5] and then both vectors were normalized to have unit
length. The entries of the vector d ∈ Rn were first sampled uniformly in the interval
[−5, 5]; then, d was sorted in a non-decreasing order and its first element was set to
−5. We then formed the matrix A according to A = UDUT where D = diag(d)
and U = I − 2uuT . Finally, we sampled λ(x∗) uniformly in the interval [5, 10] and
set b = U(D + λ(x∗)I)UTx∗. This way, by Theorem 2.5, x∗ is guaranteed to be the
optimal solution. We made sure that each model satisfies the “easy case” assumption.
Similar settings were previously considered in [23, 27].

Each method was initialized with the zeros vector and terminated after 1000 iter-
ations. We used L̄ = ‖A‖∞ for the constant step-size selection rule of the GP method
(obviously, L̄ ≥ ‖A‖2). For GP with a backtracking step-size strategy we used the
parameters γ = η−1 = 0.4 and s = ‖A‖∞. This numerical illustration was conducted
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on a PC with a 3.60GHz processor and 16GB RAM.
Table 1 shows the overall average running time in seconds and the average number of
iterations needed in order to obtain a solution with objective value within tolerance
τ ∈ {10−6, 10−10, 10−14} of the optimal value q∗ = q(x∗). Figure 1 exhibits the av-
erage relative optimality gap, which is defined as (q(xk) − q∗)/|q∗|, for the first 30
iterations.

CG
(exact)

GP
(backtracking)

GP
(constant)

time (sec.) 0.321 0.331 0.315
τ = 10−6 49 63 135
τ = 10−10 149 154 423
τ = 10−14 254 247 726

Table 1: Average running time and number of iter-
ations required in order to obtain a solution xk such
that q(xk)− q∗ ≤ τ .
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q
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q
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CG (exact)
GP (backtracking)
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Fig. 1: Average relative optimality gap
for the first 30 iterations.

It is evident that the sequences generated by the GP (constant), GP (backtrack-
ing) and CG (exact) exhibit a rapid convergence of the objective values where the
first slightly lags behind the latter two.
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