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Exact and Approximate Solutions of Source
Localization Problems
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Abstract—We consider least squares (LS) approaches for lo-
cating a radiating source from range measurements (which we call
R-LS) or from range-difference measurements (RD-LS) collected
using an array of passive sensors. We also consider LS approaches
based on squared range observations (SR-LS) and based on
squared range-difference measurements (SRD-LS). Despite the
fact that the resulting optimization problems are nonconvex, we
provide exact solution procedures for efficiently computing the
SR-LS and SRD-LS estimates. Numerical simulations suggest
that the exact SR-LS and SRD-LS estimates outperform existing
approximations of the SR-LS and SRD-LS solutions as well as
approximations of the R-LS and RD-LS solutions which are based
on a semidefinite relaxation.

Index Terms—Efficiently and globally optimal solution, general-
ized trust region subproblems (GTRS), least squares, nonconvex,
quadratic function minimization, range measurements, range-dif-
ference measurements, single quadratic constraint, source local-
ization, squared range observations.

I. INTRODUCTION

THE problems of locating a radiating source from range
measurements or from range-difference measurements

collected using a network (or array) of passive sensors have
received significant attention in the signal processing literature
owing to their importance to many applications including
teleconferencing, wireless communications, surveillance, navi-
gation, and geophysics [1]–[10]. In this paper, which considers
both problems, the main focus is on efficient computation of
least squares (LS) estimates of the source’s coordinate vector.
The models that we consider for the said vector are based on
the assumption that the sensor network can be used, along
with some form of preprocessing, to obtain (noisy) range or
range-difference measurements. From a practical standpoint,
this is a simplifying assumption (e.g., in nonline-of-sight sce-
narios), albeit one commonly made in [7] and [8]. Even so,
the resulting location estimation problems are nonconvex and,
therefore, rather difficult to solve globally, which explains why
only approximate solutions to them have appeared in [1], [2],
[5], and [7]. We should also mention here the family of data
fusion methods [10] in which linear least squares problems
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are constructed via subtraction of equations. However, these
methods do not provide optimal solutions since they implicitly
assume the existence of an error-free measurement.

In this paper, we first consider the problem of source localiza-
tion from range measurements. In Section II we provide a result
that explains why a recently proposed semidefinite relaxation
(SDR) [7] of the R-LS approach to this problem may yield an
accurate approximation; however, we also show that the SDR
may lead to a poor approximation. For lack of a good solution
to the R-LS problem, we then turn our attention to an SR-LS ap-
proach. Although the latter approach also leads to a nonconvex
problem, we show that this problem can be efficiently and glob-
ally solved.

Then we go on to consider the source localization problem
from range-difference measurements in Section III. Our main
results here concern an SRD-LS approach to this problem. In
particular, we show that despite the fact that the said SRD-LS
problem is also nonconvex, it can be efficiently solved, and we
provide the details of an algorithm that computes the global so-
lution of this problem. We end Section III by remarking that
an SDR approach applied to a corresponding RD-LS criterion
leads to extremely poor solutions.

Several numerical examples suggest that the exact SR-LS and
SRD-LS solutions can be more accurate by several orders of
magnitude than existing approximate SR-LS and SRD-LS es-
timates, and than SDR-based approximations of the R-LS and
RD-LS solutions.

Notation: Vectors are denoted by boldface lowercase letters,
e.g., , and matrices by boldface uppercase letters, e.g., . The
th component of a vector is written as . The identity matrix

of order is denoted by and the all-zero matrix of order
is denoted by . Given two matrices and

means that is positive definite (semidefinite). Given a
positive definite matrix and a symmetric matrix
the generalized eigenvalues of the matrix pair are given
by , where for a
given symmetric matrix denotes the th eigenvalue
of (ordered decreasingly).

II. SOURCE LOCALIZATION FROM RANGE MEASUREMENTS

Consider an array of sensors, and let denote the
coordinates of the th sensor (in practical applications or
3). Let denote the source’s coordinate vector. Finally,
let denote a noisy observation of the range between the source
and the th sensor

(1)
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Here denotes the unknown noise vector.
We assume that the noisy measurements are positive

. The source localization problem consists of estimating
from the observed ranges . In this section, we consider an
R-LS approach and an SR-LS approach to this problem. Both
methodologies lead to nonconvex optimization problems. For
the R-LS approach, we show that a recently proposed semidef-
inite relaxation (SDR) [7] can produce inaccurate solutions to
the R-LS problem, in spite of the fact that the SDR solution is
shown to satisfy at least one of the conditions required for tight-
ness of the relaxation. The SR-LS problem—although also non-
convex—can be globally solved by transforming it into a gen-
eralized trust region subproblem [11]. We will end this section
with a numerical comparison of the R-LS and SR-LS methods.

A. The R-LS Approach

One approach for estimating the source location is via the
minimization of the least squares criterion

(2)

The solution to (2) is called the range-based least squares
(R-LS) estimate. Note that when follows a Gaussian distribu-
tion with a covariance matrix proportional to the identity matrix,
the R-LS solution is in fact a maximum likelihood estimator [7].
Problem (2) is nonconvex and, thus, finding its exact solution is
in principle a difficult task. For this reason, the approach advo-
cated in [7] is to construct a semidefinite relaxation (SDR) of
(2). This is done by first rewriting (2) as

(3)

and then making the change of variables

(4)

which transforms (3) into

(5)

where

(6)

Finally, by dropping the rank constraints in (5), we obtain the
following SDR of (2):

(7)

The SDR (7) can be solved efficiently via interior point
methods [12]. By its nature, the SDR is not guaranteed to have
the same optimal value as the original R-LS problem. The
values of both problems coincide if and only if there exists an
optimal solution of the SDR (7) for which both matrices and

have rank one. The numerical experiments reported in [7]
indicate that the SDR can provide an “accurate approxima-
tion” of the R-LS problem. A partial theoretical explanation
lending some support to this empirical observation is given in
the following result which states that at any optimal solution

of the SDR, the matrix must have rank one.
Lemma 2.1: Let be an optimal solution of (7). Then
has rank 1.

Proof: Every principal submatrix of a positive semidefinite
matrix is itself a positive semidefinite matrix. In particular, this
implies that

(8)

so that

(9)

We will prove that in fact for every
. To show this, suppose there exists for

which

(10)

Consider the rank-one matrix defined by
. Since for

it follows that is a feasible solution of (7). Moreover,
using along with (9) and (10), we obtain

so that is a feasible solution of (7) with a strictly smaller
value of the objective function than the value of the optimal
solution , which is a contradiction to the optimality of

. We thus conclude that for every
.
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Finally, we will show that . For every
, the positive semidefinitness of the principal submatrix

corresponding to rows and columns yields

(11)

By a simple property of Schur’s complements, (11) implies that

(12)

which is the same as

(13)

The latter condition is satisfied if and only if ,
which implies that is a rank-one matrix.

Note that in spite of Lemma 2.1, (7) is only a relaxation of
the R-LS problem and not an exact reformulation. The matrix

is indeed guaranteed to have rank one but the matrix might
have rank larger than one, see for instance Example 1 below in
which the SDR produces a poor solution.

Example 1: Consider an array of sensors in the
plane whose coordinates are

and .
The source’s coordinates are . The exact dis-
tances and the observed noisy distances

are given by the matrix shown at the bottom of the
page. Each noise component is a realization of a Gaussian
distributed random variable with mean zero and standard devi-
ation 0.1. We have solved the SDR using SeDuMi [13]. In this
example, the SDR is not tight: the value of the objective func-
tion of the SDR is 0.0656 while the value of the R-LS problem
is 0.10477 (the R-LS problem was solved here by a very ineffi-
cient grid search on the plane). The optimal matrix is of rank
one (as guaranteed by Lemma 2.1), while the optimal matrix
is not of rank one (it has the eigenvalues 15.13, 4.72, and 0.35).
The R-LS solution is , which is a good ap-
proximation to the true source location.

Since the matrix is not of rank one, it is not straightfor-
ward to compare the R-LS solution to the “SDR solution.” The
question of course is how to generate an approximate solution
vector from the optimal matrix . A standard approach1 is to use
a rank one approximation based on the maximum eigenvalue of

. This approach results in the solution ,
which evidently is much less accurate than the R-LS solution.

1There are of course other approaches to derive an approximation vector. For
example, another known technique is to define the vector as �� �� � .
In this paper, we consider the eigenvalue approximation which we observed
empirically to be superior to the last-column approach.

B. The SR-LS Approach

A different approach to the source localization problem is to
apply a least squares methodology to the squared range mea-
surements, see, e.g., [5] and the references therein. In this ap-
proach, we seek a vector , called the squared-range-based
least squares (SR-LS) estimate, which is a solution to

(14)

Note that the SR-LS approach is suboptimal in the maximum
likelihood sense. This is due to the fact that the covariance ma-
trix of the squared errors in the squared range domain is not
proportional to the identity matrix [9].

The SR-LS (14), like the R-LS (2), is nonconvex. However, as
opposed to the R-LS problem, we will show that a global solu-
tion of (14) can be computed efficiently. To do so, we transform
(14) into a constrained minimization problem

(15)

which can also be written as (using the substitution

(16)

where

...
...

... (17)

and

(18)

We assume that has full column rank which in particular im-
plies that is nonsingular.

Problem (16) is also nonconvex and, thus, existing methods
for solving (16) or (14) can produce only suboptimal solutions.
One approach to obtain an approximation of the solution of
(16) is to discard the quadratic constraint [14], [1], [5]. This
gives rise to the unconstrained squared-range-based LS esti-
mate (USR-LS) in which the linear LS problem

(19)

is solved. The solution of (19) is given by
and the corresponding estimate of is the vector comprised of
the first components of .

exact
noisy
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Next, we show how to compute an exact solution of the
SR-LS (16). Note that (16) belongs to the class of problems
consisting of minimizing a quadratic function subject to a
single quadratic constraint. Problems of this type are called
generalized trust region subproblems (GTRS) [11]. GTRS
problems, although usually nonconvex, possess necessary and
sufficient optimality conditions from which efficient solution
methods can be derived. In particular, by [11, Theorem 3.2],

is an optimal solution of (16) if and only if there
exists such that

(20)

(21)

(22)

It follows that the optimal solution of (16) is given by

(23)

where is the unique solution of

(24)

and the function is defined by

(25)

The interval consists of all for which is
positive definite, which immediately implies that

(26)

Moreover, it is known by ([11, Theorem 5.2]) that is
strictly decreasing over and therefore a simple bisection algo-
rithm can be used to find the optimal over the interval .

Note that we have limited the discussion to the case in which
is strictly positive definite, which is equivalent to

saying that the optimal is different from .
The case in which the optimal is equal to
is the so-called “hard case” of the GTRS problem [15], which
can also be treated by a more refined analysis. However, the
value is very unlikely to occur both
theoretically and practically (it never occurred in the tens of
thousands of simulations we have performed). Therefore, for the
sake of simplicity, we have tacitly assumed that is
positive definite.

The procedure for calculating the SR-LS estimate is summa-
rized next.

Procedure SR-LS:
a) Use a bisection algorithm to obtain a solution to (24).
b) The SR-LS estimate is given by the first components of

the vector in (23).

TABLE I
MEAN SQUARED POSITION ERROR OF THE

SDR, SR-LS, AND USR-LS METHODS

An alternative approach for computing the SR-LS estimate
is considered in [9]. The method in [9] consists of finding all
the five roots of the equation over the real line. This
is done by invoking a root finding procedure for polynomials
of degree five. In a second stage, the global optimal solution
of SR-LS is chosen as the best of the derived possible solutions.
Interestingly, in the above we proved that there is no need to find
all the roots of and that a simple bisection algorithm
is sufficient.

Example 1 (Cont’d): The SR-LS solution is
, which gives a relatively good ap-

proximation of the true source location. The USR-LS method
yields the poor quality solution .

Example 2: In this example, the SR-LS estimate is compared
with the USR-LS estimate as well as the SDR solution using an
array of five sensors in the plane. We performed Monte Carlo
runs where in each run the sensor locations and the source lo-
cation were randomly generated from a uniform distribution
over the square . The observed distances

are given by (1) with being generated from a normal distri-
bution with mean zero and standard deviation . In our experi-
ments takes on four different values: , and
(for these values of , the observed distances were always
positive). The numbers in the three right columns of Table I are
the average of the squared position error over 1000
realizations, where is the SDR solution, the SR-LS solution,
or the USR-LS solution. For every , the number denotes
the number of runs out of the 1000 in which the SDR was “tight
enough;” the term “tight enough” describes a run in which the
sum of the absolute values of the eigenvalues of excluding
the maximum eigenvalue is less than . The best result for
each possible value of is marked by boldface. Note that the
SR-LS estimate outperforms the SDR and USR-LS solutions
for and , while the SDR is slightly better
for . Also, there is a considerable amount of runs in which
the SDR problem was not tight. In order to understand the effect
of this nontightness on the performance of the SDR solution, we
screened out all the runs that were not “tight enough” and mea-
sured the averaged squared position error of the three methods
only over the “tight enough” runs (see Table II).

It is evident that the SDR solution now outperforms the
SR-LS and USR-LS estimates for all values of . This is due
to the fact that for “tight enough” runs the SDR solution is an
excellent approximation of the R-LS solution, which is also a
maximum likelihood estimator.
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TABLE II
MEAN SQUARED POSITION ERROR AVERAGED

OVER THE “TIGHT ENOUGH” RUNS

To summarize this example, we note that the R-LS solution
appears to perform better than the SR-LS and USR-LS estima-
tors. However, no exact method is known that can be used to ef-
ficiently calculate the R-LS solution, and the approximate SDR
solution can be less accurate than the SR-LS solution.

We end this section by noting that the GTRS methodology can
be used to devise an algorithm for solving a weighted version of
the SR-LS problem

where are positive constants. The corresponding
GTRS problem is given by

where .

III. SOURCE LOCALIZATION FROM RANGE-DIFFERENCE

MEASUREMENTS

Suppose that there exists an additional sensor (sensor 0) lo-
cated at the origin and that the range-difference measurements
between sensor and sensor 0 are given by

(27)

which yield the following equations in the vector :

(28)

The latter equations hold only approximately due to measure-
ment errors and sensor calibration errors. Consequently, a rea-
sonable way to estimate based on (28) is via the minimization
of the following LS criterion:

(29)

where . The solution of this problem will
be called the squared-range-difference-based least squares
(SRD-LS) estimate. Similarly to the SR-LS solution, the
SRD-LS estimate is not optimal in the maximum-likelihood
sense [16]–[18].

Problem (29) was considered in several works [1], [3], [14].
However, an exact solution of this problem was never derived.

In order to solve this problem, we use a similar approach to
the one advocated in Section II-B and reformulate (29) as a con-
strained LS problem (with

(30)

where

...
...

(31)

The matrix is assumed to have full column rank. We note
that the constraint was overlooked in previous works
[3], [14] and as a result the solution obtained in these works
is incorrect in some cases. Similarly to Section II-B, the uncon-
strained SRD-LS (USRD-LS) approximate solution of the above
problem is the vector comprised of the first components of

, which is the minimizer of (30) after discarding
the two constraints. It was shown in [14] that the USRD-LS es-
timate coincides with the spherical interpolation method of [1],
[5] and the subspace minimization solution of [5].

Mathematically, the key difference between (30) and (16) is
that (30) has two quadratic constraints (recall that a linear con-
straint is a special case of a general quadratic constraint), while
(16) involves only a single quadratic constraint. As opposed
to GTRS problems, there are no known necessary and suffi-
cient optimality conditions for nonconvex quadratic optimiza-
tion problems with two quadratic constraints. In fact, it is still
an open question whether or not nonconvex quadratic problems
with two constraints can be solved efficiently [19], [20].

In this section we will show, based on the special structure of
(30), that an efficient algorithm can be devised to find the global
solution of this problem. We begin by introducing sufficient op-
timality conditions for (30) that are similar to the necessary and
sufficient optimality conditions (20), (21), and (22) for (16).

Lemma 3.1 (Sufficient Optimality Conditions): Let
. If there exists such that

(32)

(33)

(34)

then is an optimal solution of (30).
Proof: It follows from (32) and (33) that is an optimal

solution of

(35)

Therefore, for every feasible solution of (30) we have

(36)

(37)

(38)
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where the first and last equalities are valid due to the feasibility
of and , respectively, and the inequality follows from the fact
that is an optimal solution of (35).

Motivated by the sufficient conditions of Lemma 3.1, we can
now define a solution procedure similar to procedure SR-LS
defined in Section II-B.

Procedure Prototype:
a) Find the solution to

(39)

where

(40)

b) Set .
The function is strictly decreasing over
so that a simple bisection algorithm can be invoked in step

(a).
By Lemma 3.1 it follows that if satisfies , then is

a global optimal solution of (30). However, there is no guarantee
that will indeed be nonnegative as the following example
demonstrates.

Example 3: Consider an array of sensors
in the plane whose coordinates are given by

and . The source’s coor-
dinates are . The exact range-differences

and their noisy observations are given by

exact
noisy

The observed range-differences were obtained by
adding a white Gaussian noise with standard devia-
tion 0.2 to the exact range-differences. The solution to
(39) is which, when used in (40), gives

. The last
component of this solution is negative, which implies that this
solution is meaningless.

Later on, we will demonstrate by numerical simulations (see
Example 4) that procedure Prototype usually fails for problems
with “high” noise levels. In order to derive a solution for (30)
for every possible instance, we will use necessary optimality
conditions, as devised in the following theorem.

Theorem 3.1 (Necessary Optimality Conditions): The op-
timal solution to (30) is either or has the form

(41)

where is such that

(42)

and has at most one negative eigenvalue.
Proof: Problem (30) can be rewritten as

(43)

where and
.

Let be a nonzero optimal solution of (43). Since it
follows that the second constraint is not active, i.e., ,
and that , which implies that is a regular vector2.
Thus, by the first order optimality conditions [21], it follows that
there exist and such that

(44)

(45)

(46)

Furthermore, by the second-order optimality conditions [21]

(47)

for all such that . Combining the fact that
with (46) implies , which, together with (44)

yields

Finally, by the Courant-Fischer min-max theorem ([22, p. 116])
along with (47), we conclude that the second smallest eigen-
value of satisfies

Therefore, has at most one negative eigenvalue.
Before proceeding, we introduce the following essential no-

tation:

(48)

(49)

Since is positive definite and has one negative eigen-
value and strictly positive eigenvalues, it follows that is
positive while for are negative:

(50)

We will also make use of the intervals

The following simple Lemma, which will be used later on in
the analysis, characterizes the number of positive and negative
eigenvalues of over the intervals , and .

Lemma 3.2: (i). is the set of all for which is
positive definite. (ii). The union of intervals is the set of
all for which has exactly one negative eigenvalue
and positive eigenvalues.

2Given an optimization problem, a feasible point is regular if the gradients of
the active constraints are linearly independent [21].
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Proof: First note that

(51)

Therefore, the numbers of positive, negative and zero
eigenvalues of are the same as the num-
bers of positive, negative, and zero eigenvalues of

, respectively. The eigenvalues
of the latter matrix are given by

, which, by using the notation of (48), can be
written as . We now proceed to prove
the two parts of the lemma by investigating the signs of the
numbers .

i) if and only if the set of inequalities
, holds true. By (50), the

latter set of inequalities is equivalent to .
ii) In order to prove this part of the lemma, we split our

analysis into two cases. If then for
every . Therefore, in this case there is only
one negative eigenvalue if and only if , that
is . If then and we also have
the following:

Therefore, for the case , the matrix has one
negative eigenvalue and positive eigenvalues if and only if

which is equivalent to .
Using the Theorem 3.1, we can now define a procedure that

is guaranteed to find the global optimal solution of (29):
Procedure SRD-LS:
a) Apply procedure Prototype and obtain a vector .

• If then STOP. The output of the procedure is
the vector made of the first components of .

• If , then perform steps (b), (c), and (d).
b) Find all roots of

(52)

for which the th component of is nonnega-
tive.

c) Let be the vector with the smallest objective function
among the vectors .

d) The output of the procedure is the vector made of the first
components of .

Example 3 (Cont’d): The relevant intervals are given by

We have already observed that procedure Prototype fails
here. Therefore, by Theorem 3.1, the optimal solution is
either the all-zero vector or is of the form where is

a solution to (52). In this example, (52) has only one root,
which happens to lie in the interval , and that is equal to

. The corresponding global solution of (30) is
. A simple calculation shows

that this solution has a smaller objective value than the all-zero
vector and thus that is the global optimal
solution of (29).

The only remaining implementation issue is how to find all
the roots of (52). Note that since is positive definite it
follows that and can be simultaneously diagonalized,
i.e., there exists a nonsingular matrix for
which

Therefore, (52) reads

where . Multiplying this equation by the product
of all the denominators transforms it into a
polynomial equation of order

For this is a polynomial equation of order 4 and, thus,
explicit algebraic expressions for its roots exist. For this
is a polynomial equation of order 6: the roots of this polynomial
equation can be found by standard root finding routines. For
example, an efficient and stable procedure for finding all the
roots is by calculating the eigenvalues of the companion matrix
associated with the polynomial in question (this technique is
implemented for example in the MATLAB function roots).

Example 4: In this example, we consider an array with
11 sensors (including sensor 0). In each run, the coordinates
of the 10 sensors that are not located at the origin were ran-
domly generated from a uniform distribution over the square

and the coordinates of the source
were randomly generated from a uniform distribution over the
square . The observed range-difference
measurements were obtained by adding a normal random
variable with mean zero and variance to the exact range-dif-
ferences. Table III describes the results for five values of .
For each value of , 10 000 runs were performed. The first two
columns give the location of the optimal (if it exists): the
column shows the number of runs for which the optimal

belonged to . The column zero describes the number
of runs in which the optimal solution was the all-zero vector .
Finally, the two last columns show the mean squared position
error of the SRD-LS and USRD-LS solutions (averaged over
10 000 realizations).

Note that for high noise levels, the optimal had a good
chance to reside in (in which case, procedure Prototype fails).
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TABLE III
COMPARISON BETWEEN THE SRD-LS AND USRD-LS ESTIMATES IN THE

RANGE-DIFFERENCE SETTING

For some unknown reason, the optimal never belonged to
in our experiments. Furthermore, for high noise levels, there is
also a chance that the optimal solution is the all-zero vector.

Evidently, the SRD-LS estimate outperforms the USRD-LS
estimate by several orders of magnitude. The reason for the ex-
tremely poor performance of the USRD-LS estimate is that for
some realizations of the positions of the sensors, source and
errors, the matrix was ill-conditioned. In these cases, the
USRD-LS solution is unstable and can have a huge norm, which
causes the average to be very large. In that respect, the SRD-LS
solution might be viewed as a regularization of the USRD-LS
estimate.

As a final remark we note that an alternative approach to
the source localization problem from range-difference measure-
ments is to use a least squares criterion similar to the one used
in Section II-A. More precisely, the estimate can be chosen to
be the solution of

(53)

An SDR of this nonconvex problem can be devised by following
a construction similar to the one described in Section II-A. How-
ever, we have observed through numerical experiments that the
so obtained SDR estimate is an extremely poor approximation
of the true source location (far worse than the SRD-LS and
USRD-LS estimates) and that it usually provides a meaningless
solution.

IV. CONCLUSION

The results of this paper suggest that the problems of source
localization from range measurements or from range-difference
measurements should be approached using the SR-LS and
SRD-LS methods, for which we have provided computation-
ally efficient algorithms. The exact SRD-LS estimate of the
source’s coordinate vector can be more accurate by several or-
ders of magnitude than the approximate least squares solutions
proposed in the previous literature (see the numerical examples
in the paper), a fact that appears to offset completely the slight
computational advantage of the latter estimates. We have also
shown that the SR-LS approach outperforms an SDR-based

approximation of the R-LS solution, which is a maximum like-
lihood estimator under the Gaussian white noise assumption
(in the cases when the R-LS solution can be found exactly,
it usually provides more accurate solutions). We are thus led
to the conclusion that the ability to find an exact solution of
the SR-LS problem is the source of the attractiveness of this
method. It is an open question whether exact solutions of the
R-LS problem can be computed efficiently.
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