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a b s t r a c t

Weconsider a special class of quadraticmatrix optimizationproblemswhich often arise in applications. By
exploiting the special structure of these problems, we derive a new semidefinite relaxation which, under
mild assumptions, is proven to be tight for a larger number of constraints than could be achieved via a
direct approach. We show the potential usefulness of these results when applied to robust least-squares
and sphere-packing problems.
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1. Introduction

The class of nonconvex quadratically constrained quadratic
programming (QCQP) problems plays a key role in subproblems
arising in optimization algorithms such as trust region methods
(see, for example, [9,12]) and is also a bridge to the analysis of
many combinatorial optimization problems that can be formulated
as such. In principle, nonconvex QCQP problems are hard to solve,
and as a result many approximation techniques have been devised
in order to tackle them. Many of these techniques rely on so-
called semidefinite relaxation (SDR), which is a related convex
problem over the matrix space that can be solved efficiently; see,
e.g., [13,19].

A key issue in the analysis of QCQP problems is to determine
under which conditions the semidefinite relaxation is tight,
meaning that it has the same optimal value as the original QCQP
problem. In these cases, one can construct the global optimal
solution of the QCQP problem from the optimal solution of the
SDR via a rank reduction procedure. There are several classes of
QCQP problems which posses this ‘‘tight semidefinite relaxation’’
result; among them are the class of generalized trust region
subproblems [12,14], which are QCQPs with a single quadratic
constraint, problems with two constraints over the complex
number field [6], and problems arising in the context of quadratic
assignment problems [2,1].
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Another class of QCQP problems is the class of quadratic matrix
programming (QMP) problems whose general form is given by

(QMP)

min
X∈Rn×r

Tr(XTA0X) + 2Tr(B̃T
0X) + c0

s.t. Tr(XTAiX) + 2Tr(B̃T
i X) + ci ≤ αi, i ∈ I,

Tr(XTAjX) + 2Tr(B̃T
j X) + cj = αj, j ∈ E,

where n, r are positive integers, I and E are sets of indices such
that I ∩ E = ∅, Ai ∈ Sn, B̃i ∈ Rn×r , and ci, αi ∈ R. This
class of problems was introduced and studied in [5], where it was
also shown that it encompasses a broad class of problems that are
important both in theory and in applications. Themain result in [5]
is that problem (QMP) with at most r constraints has a tight SDR
property. In the homogeneous case (i.e., when B̃i = 0 for all i),
the question of the existence of a tight SDR was already studied
by Barvinok [3,4] for the problem of determining the feasibility of
this problem; Barvinok’s results were then extended by Pataki [16]
to include any homogeneous quadratic objective function. In both
cases it was shown that it is possible to use semidefinite relaxation
(SDR) to solve the original nonconvex problem when the number
of constraints is at most


r+2
2


− 1.

In this paper, we concentrate on a special type of QMP problems
defined by

(sQMP)

min
X∈Rn×r

Tr(XTA0X) + 2Tr(V TBT
0X) + c0

s.t. Tr(XTAiX) + 2Tr(V TBT
i X) + ci ≤ αi,

i ∈ I,

Tr(XTAjX) + 2Tr(V TBT
j X) + cj = αj,

j ∈ E,

(1.1)
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with Ai ∈ Sn, Bi ∈ Rn×s (i ∈ {0} ∪ I ∪ E) and 0 ≠ V ∈ Rs×r , s ≤

r . Essentially, this type of QMP problem is characterized by the
property that the matrices B̃i are of the special form B̃i = BiV ;
for the case n > r > s, this means that the range spaces of the
n × r matrices B̃i, (i ∈ {0} ∪ I ∪ E) are all contained in the same
s-dimensional subspace, which is the range space of V . Note that
when s = r and V = Ir we are back to the original QMP setting.

At first glance, it seems that this property of the matrices B̃i is
quite restrictive; however, it naturally appears in applications, as
the example below demonstrates.

Example 1.1 (Robust Least Squares). Consider the robust least-
squares problem which seeks to minimize ∥Ax − b∥2 when the
matrix A ∈ Rr×n is perturbed by an unknown matrix ∆ ∈ U.
This problem was defined and studied in [11,10], and was later
inspected via the QMP framework in [5]. The problem can be
formulated as

min
x

max
∆∈U

∥b − (A + ∆T )x∥2, (1.2)

where in the following we assume that the set U has the following
form:

U = {∆ ∈ Rn×r
: ∥Li∆∥

2
≤ ρi, i = 1, . . . ,m}

for some Li ∈ Rki×n, and where the norm used is the Frobenius
norm. Under these assumptions, we can rewrite the robust least-
squares problem (1.2) as follows:

(RLS)
min

x
max

∆∈Rn×r
Tr(∆T xxt∆) + 2Tr((b − Ax)xT∆)

+Tr((b − Ax)(b − Ax)T )
s.t. Tr(∆T LTi Li∆) ≤ ρi, i = 1, . . . ,m.

The inner maximization problem is an sQMPwith s = 1 since here
we can take V = (b − Ax)T , B0 = x, Bi = 0, i = 1, . . . ,m.

The main result of this paper, developed in Section 3, is that
a specially devised SDR of problem (sQMP) is tight as long as
the number of constraints does not exceed


r+2
2


−


s+1
2


− 1,

which is an improvement of the result from [5] that allows only
r constraints. To do so, we use a rank reduction argument which
can be traced back to Barvinok and Pataki (see the beginning of the
introduction). Further analysis of the robust least-squares example
along with an additional sphere-packing application is given in
Section 4.
Notation. We use the following notation. Suppose that (P) is an op-
timization problem that attains its optimal value (e.g., (P) minx∈C
f (x)). Then we denote (P)’s optimal value by val(P). We use Sn to
denote the set of n×n symmetricmatrices overR, and for twoma-
trices A, B, A ≽ B(A ≻ B) means that A − B is positive semidefinite
(positive definite). The n × m matrix of zeros is denoted by 0n×m,
Ir is the r × r identity matrix, and ei ∈ Rn, i = 1, . . . , n, stands for
the i-th canonical unit vector.

2. Preliminaries

We record here some results that will be useful in our analysis.
We begin with a fundamental result on the existence of low-
rank solutions to general SDP problems which was established by
Pataki [16].

Consider the general SDP problem:

min
X∈Sn

Tr(C0X)

s.t. Tr(CiX) ≤ bi, i ∈ I,
Tr(CiX) = bi, i ∈ E,
X ≽ 0,

(2.1)
where Ci ∈ Sn, i ∈ {0} ∪ I ∪ E . We state here a slightly different
(but equivalent) version of Pataki’s result, which was given in
[5, Theorem 3.1].

Theorem 2.1. Suppose that the SDP problem (2.1) attains its optimal
value. Then if |I|+ |E | ≤


r+2
2


−1, there exists an optimal solution

X∗
∈ Sn satisfying rank X∗

≤ r.

The next result recalls the so-called Schur complement lemma;
see e.g., [7].

Lemma 2.2. Consider a square matrix in block form:

M =


F GT

G H


,

where F is a square matrix assumed to be positive definite. Then,

M ≽ 0 (≻ 0) if and only if H − GF−1GT
≽ 0 (≻ 0).

Finally, we need the following result, which plays an important
role in the forthcoming analysis.

Lemma 2.3. Let A, B ∈ Rm×n be two matrices satisfying AAT
= BBT .

Then there exists an orthogonal matrix Q ∈ Rn×n such that A = BQ .

Proof. Since AAT
= BBT , it follows that A and B have the same

singular values. LetU be an orthogonalmatrix diagonalizing AAT
=

BBT , namely, UTAATU = UTBBTU is diagonal. The matrices A and B
have the following singular value decomposition (SVD):

A = UΣV T
1 , B = UΣV T

2 ,

where V1, V2 ∈ Rn×n are orthogonal matrices and Σ is an m × n
diagonal matrix containing the singular values of A (which are
also the singular values of B). Thus, A = BV2V T

1 , and the result is
established with Q = V2V T

1 . �

3. A tight SDR result for (sQMP)

Consider the problem (sQMP) (given in (1.1)). For i ∈ {0}∪I∪E ,
define

Mi =


Ai Bi

BT
i

ci
TrVV T

Is


∈ Sn+s,

and consider the following homogenized program:

(sQMP2)

min
Z∈Sn+s

Tr(M0Z)

s.t. Tr(MiZ) ≤ αi, i ∈ I,
Tr(MjZ) = αj, j ∈ E,
Z ≽ 0,
rank Z ≤ r,
Zn+i,n+j = (VV T )i,j, i, j = 1, . . . , s,

where the last set of constraints essentially state that the bottom
right s× s submatrix of Z is VV T . Note that these constraints can be
expressed using


s+1
2


trace constraints. As the following lemma

shows, (sQMP) and (sQMP2)are essentially the same problem.

Lemma 3.1. Problem (sQMP) attains its optimal value if and only if
(sQMP2) attains its optimal value. Furthermore, if either val(sQMP)
or val(sQMP2) is finite, then val(sQMP) = val(sQMP2).

Proof. We will show that any feasible point for one problem can
be transformed into a feasible point for the other problemwithout
affecting the objective value.
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Suppose that X is feasible for (sQMP). Then define

Z =


XXT XV T

VXT VV T


.

Since

Z =


X
V

 
XT V T  ,

we get that rank Z ≤ r . In addition,

Tr(MiZ) = Tr(AiXXT ) + 2Tr(BT
i XV

T ) + ci,

i ∈ {0} ∪ I ∪ E, (3.1)

which immediately implies that Z is feasible for (sQMP2)and has
the same objective function value as X for (sQMP). In the reverse
direction, suppose that Z is feasible for (sQMP2). Since the rank of
Z is at most r and Z is positive semidefinite, there exists a matrix
W ∈ R(n+s)×r such that Z = WW T . Denote the first n rows ofW by
Y ∈ Rn×r and the last s rows of W by U ∈ Rs×r (i.e., W = (Y ;U)
in Matlab notation); we can therefore write

Z =


YY T YUT

UY T UUT


.

From the constraints on Z , we obtain that UUT
= VV T , and thus

it follows from Lemma 2.3 that there exists an orthogonal matrix
Q ∈ Sr such that U = VQ . Now, define X = YQ T . Then, since
YUT

= XQQ TV T
= XV T , we get

Z =


XXT XV T

VXT VV T


and therefore, following the same argument as in the first part of
the proof, X is feasible for (sQMP) and achieves the same objective
value. �

We now omit the hard rank constraint and consider the SDP
relaxation of (sQMP2)given by

(sQMP-R)

min
Z∈Sn+s

Tr(M0Z)

s.t. Tr(MiZ) ≤ αi, i ∈ I
Tr(MjZ) = αj, j ∈ E
Z ≽ 0
Zn+i,n+j = (VV T )i,j, i, j = 1, . . . , s.

Remark 3.2. Note that when n + s ≤ r the relaxation (sQMP-R) is
exact, since the rank constraint in (sQMP2)is trivially satisfied.

We now proceed to give a condition, similar to Theorem 3.2
in [5], under which (sQMP) can be solved via (sQMP-R). Note that
the number of trace constraints in (sQMP-R) is |I| + |E | +


s+1
2


instead of |I|+|E |+


r+1
2


in the corresponding setting of Theorem

3.2 in [5]. This property of the new SDP relaxation allows us to
improve and extend the result of Theorem 3.2 in [5] as follows.

Theorem 3.3. Suppose that problem (sQMP-R) attains its optimal
value, and that either n+ s ≤ r or |I| + |E | ≤


r+2
2


−


s+1
2


− 1.

Then val(sQMP) is finite and val(sQMP) = val(sQMP-R).

Proof. Suppose that problem (sQMP-R) attains its optimal value
and that |I| + |E | ≤


r+2
2


−


s+1
2


− 1. Then the number

of constraints in (sQMP-R) is


r+2
2


− 1. Hence, by Theorem 2.1,

problem (sQMP-R) has a an optimal solution with rank at most r .
This solution is therefore feasible and optimal for (sQMP2), and, by
Lemma 3.1, val(sQMP) = val(sQMP2) = val(sQMP-R).
When n+s ≤ r , the claim follows immediately from Lemma 3.1
and Remark 3.2. �

In particular, note that when s = r the SDP relaxation is tight
when the number of constraints is at most r; thus we recover
[5, Theorem 3.2].

In the following, we need the dual of (sQMP-R), which is given
by

(sQMP-D)

max
λi,Φ∈Ss

−


i∈I∪E

λiαi − Tr(VV TΦ)

s.t. M0 +


i∈I∪E

λiMi +


0n×n 0n×s
0s×n Φ


≽ 0,

Φ ∈ Ss,
λi ≥ 0, i ∈ I.

From the conic duality theorem [7], if (sQMP-D) is strictly
feasible and bounded from above, then (sQMP-R) and (sQMP-D)
have the same optimal value. The next claim immediately follows.

Corollary 3.4. Suppose that (sQMP-D) is strictly feasible and bounded
from above. Then if either n+s ≤ r or |I|+|E | ≤


r+2
2


−


s+1
2


−1,

we have val(sQMP) = val(sQMP-D).

A simple condition given in [5, Lemma 3.2] that ensures the
strict feasibility and boundedness of (sQMP-D) is the following:
there exist numbers λi ∈ R, i ∈ {0} ∪ I ∪ E , for which

A0 +


i∈I∪E

λiAi ≻ 0 and λi ≥ 0 ∀i ∈ I.

4. Applications

4.1. Robust least squares

Consider the robust least-squares problem (RLS) discussed in
Example 1.1. Recall that the problem is formulated as

(RLS)
min

x
max

∆∈Rn×r
Tr(∆T xxt∆) + 2Tr((b − Ax)xT∆)

+Tr((b − Ax)(b − Ax)T )
s.t. Tr(∆T LTi Li∆) ≤ ρi, i = 1, . . . ,m.

We begin our analysis by deriving the dual of the inner
maximization problem in (RLS). Suppose that Ax = b. Then
in this case the inner maximization problem in (RLS) is a
homogeneous quadratic problem; performing the standard SDP
relaxation technique for homogeneous problems, and taking the
dual, we reach the following problem:

(RLS-D′)

min
λi,t

m
i=1

λiρi

s.t. −xxT +

m
i=1

λiLTi Li ≽ 0,

λi ≥ 0, i = 1, . . . ,m.

When Ax ≠ b, the inner maximization problem in (RLS) is of the
form of problem (sQMP) with s = 1 and

A0 = −xxT ,
B0 = −∥b − Ax∥x,
c0 = −∥b − Ax∥2,

Ai = LTi Li, i = 1, . . . ,m,

Bi = 0, i = 1, . . . ,m,

ci = 0, i = 1, . . . ,m,

αi = ρi, i = 1, . . . ,m,

V =
1

∥b − Ax∥
(b − Ax)T .
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By taking the dual form (sQMP-D), we get

(RLS-D)

min
λi,t

m
i=1

λiρi + t

s.t.

−xxT +

m
i=1

λiLTi Li −∥b − Ax∥x

−∥b − Ax∥xT −∥b − Ax∥2
+ t


≽ 0

λi ≥ 0, i = 1, . . . ,m.

Note that, if we set Ax = b in (RLS-D), the optimal value for t
becomes 0, and we are left with problem (RLS-D

′

); hence, (RLS-D)
can be used as the dual problem for both cases.

Now, if we further assume that (RLS-D) is strictly feasible and
bounded (e.g., when

m
i=1 λiLTi Li ≻ 0 for some λi ≥ 0) and

that either r ≥ n + 1 or that the number of constraints satisfies
m ≤


r+2
2


−2, then (RLS-D) and the innermaximization problem

in (RLS) have the same optimal solution for every x. Therefore, in
order to solve (RLS) it is sufficient to solve the following problem:

(RLS2)

min
x,λi,t

m
i=1

λiρi + t

s.t. A(x) =

−xxT +

m
i=1

λiLTi Li −∥b − Ax∥x

−∥b − Ax∥xT −∥b − Ax∥2
+ t


≽ 0,

λi ≥ 0, i = 1, . . . ,m.

We will now show that it is possible to rewrite (RLS2)as a
standard SDP problem.

Proposition 4.1. The point (x∗, λ∗, t∗) is an optimal solution
for (RLS2) if and only if it is an optimal solution for the following SDP
problem:

min
x,λi,t

m
i=1

λiρi + t

s.t.


1 xT (b − Ax)T

x
m
i=1

λiLTi Li 0

b − Ax 0 tIr

 ≽ 0,

λi ≥ 0, i = 1, . . . ,m.

Proof. The matrix inequality in (RLS2)is given by

A(x) ≽ 0,

which is equivalent to
A(x) 0n×(r−1)

0(r−1)×n Ir−1


≽ 0.

The latter inequality can be rewritten as−xxT +

m
i=1

λiLTi Li −∥b − Ax∥xeT1

−∥b − Ax∥e1xT −∥b − Ax∥2e1eT1 + tIr

 ≽ 0. (4.1)

Now, let Q ∈ Sr be an orthogonal matrix such that Qe1 =
b−Ax

∥b−Ax∥
(when Ax = b, one can choose Q = Im). Then
In 0
0 Q

−xxT +

m
i=1

λiLTi Li −xeT1∥b − Ax∥

−∥b − Ax∥e1xT −∥b − Ax∥2e1eT1 + tIr


×


In 0
0 Q T



=

−xxT +

m
i=1

λiLTi Li −x(b − Ax)T

−(b − Ax)xT −(b − Ax)(b − Ax)T + tIr

 .

Hence, (4.1) is equivalent to−xxT +

m
i=1

λiLTi Li −x(b − Ax)T

−(b − Ax)xT −(b − Ax)(b − Ax)T + tIr

 ≽ 0. (4.2)

Finally, writing the last constraint in the form m
i=1

λiLTi Li 0

0 tIr

−


x

b − Ax


x

b − Ax

T

≽ 0,

and applying the Schur complement lemma (see Lemma 2.2), we
obtain the desired equivalent SDP formulation. �

Note that the dimension of the matrix constraint is n + r + 1
instead of nr+r+1 in the standard formulation [5]. Thus, assuming
strong duality holds, this new formulation can handle much more
complex sets of uncertainty, with


r+2
2


− 2 constraints if r ≤ n

and an arbitrary number of quadratic constraints if r ≥ n + 1.

4.2. The sphere-packing problem

In the sphere-packing problem, we are interested in determining
a feasible configuration of non-overlapping spheres bounded
within a given shape. This problem has been extensively studied
in various settings over the years. See, for example, [8,15,17,18]
amongst others.

Consider the problem of finding a packing of n spheres with
given radii within the intersection of k balls with known centers
and radii in Rd (k ≤ d + 1). This problem can be formulated as
determining whether the following set of constraints is feasible:

∥XT ei − cj∥ ≤ Rj − ri, i = 1, . . . , n, j = 1, . . . , k,

∥XT ei − XT ej∥ ≥ ri + rj, i, j = 1, . . . , n,

X ∈ Rn×d,

where c1, . . . , ck ∈ Rd are the centers of the containing balls,
R1, . . . , Rk > 0 are the respective radii, and r1, . . . , rn > 0 are
the radii of the inner spheres. The radii are assumed to satisfy the
relation minj=1,...,k Rj ≥ maxi=1,...,n ri, which is necessary in order
to make the problem feasible. The rows of the decision variables
matrix X represent the centers of the spheres to be determined.

Since we can assume without loss of generality that c1 = 0, by
choosing

V =

cT2
...

cTk

 =

k
j=2

ej−1cTj ,

and for the first kn constraints taking

Bi,1 = 0d×k−1, i = 1, . . . , n

Bi,j = ei
∈Rd×1

eTj−1
∈R1×(k−1)

, i = 1, . . . , n, j = 2, . . . , k,

it can be readily seen that this problem is of the form (sQMP)
discussed abovewith s = k−1 and kn+

 n
2


constraints. According

to Theorem 3.3, the SDP relaxation is tight when kn +
 n
2


≤
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
d+2
2


−


k
2


− 1 or when d ≥ n + k − 1. The first condition

is equivalent to

n ≤ −k +
1
2

+


d2 + 3d +

1
4
,

and since

d − k + 1 = −k +
1
2

+


d2 + d +

1
4

< −k +
1
2

+


d2 + 3d +

1
4
,

it follows that the validity of the second condition implies the
validity of the first condition. Thus we have proved the following.

Proposition 4.2. The problem of finding the feasibility of packing n
spheres in the intersection of k balls in d dimensions can be solved by
an SDP problem when n ≤ d − k + 1.

Note that the standard homogenization scheme can be applied
when kn+

 n
2


≤ d. Hence for a fixed k only O(

√
d) spheres can be

handled this way, and thus the technique presented in this paper
provides a major improvement.
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