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14 A. Beck, M. Teboulle

1 Introduction

Convex optimization problems play a fundamental role in the theory and practice
of continuous optimization. One major attribute associated with convex optimization
problems is that they are computationally tractable for a wide class of problems. In
particular, very efficient e.g., polynomial algorithms, are available to solve specific
classes of convex problems such as linear programming, conic quadratic, semidefinite
programming and more, see [16], and the more recent book [7].

In sharp contrast to the convex optimization setting, no efficient universal solu-
tion methods for solving nonconvex optimization problems are known, and there are
strong reasons to believe that no such methods exist. Nonetheless, there are some
classes of nonconvex problems that possess a hidden convexity property, namely, they
can be shown to have either a zero duality gap or to be equivalent to some convex
optimization reformulation, and as such are tractable. The simplest and well known
example is the trust region problem, which consists of minimizing an indefinite qua-
dratic function over a ball, and which admits an exact semidefinite reformulation, see
e.g., the work [10] and references therein. Extensions of this problem were considered
in [15] and [22], where necessary and sufficient global optimality conditions for the
problem of minimizing an indefinite quadratic function subject to a single indefinite
homogeneous quadratic constraint, or two-sided homogeneous quadratic forms con-
straints were derived, which lead them to establish a duality result with no gap, and
thus revealing the implicit convex nature of such problems. Moreover, in [8] it was
proven that this problem admits a convex equivalent formulation via a simple a trans-
formation, thus showing that it enjoys such a hidden convexity property. More recent
results identifying further interesting classes of quadratic problems whose semidefi-
nite relaxations admit no gap with the true optimal value can be found for example in
[4,6,17,23] and references therein, as well as in [1,2] in the context of problems with
quadratic matrix constraints.

In this paper we study a different class of nonconvex optimization problems which
possesses a hidden convexity property, i.e., which will be shown to be equivalent to a
convex problem and thus can be efficiently solved. More precisely, we study nonconvex
problems involving an objective function which is a ratio of two quadratic functions
and a single homogeneous quadratic constraint (a possibly degenerate ellipsoid):

(RQ) inf

{
f1(x)

f2(x)
: ‖Lx‖2 ≤ ρ, x ∈ R

n
}

,

where fi are nonconvex quadratic functions, ρ is a given positive scalar and L is a
given r × n matrix, see Sect.1 for a precise formulation. The special case f2(x) ≡ 1
shows that the class of problems (RQ) includes problems of the form

(GTRS) inf
{

f1(x) : ‖Lx‖2 ≤ ρ, x ∈ R
n
}

, (1.1)

which are generalized trust region subproblems (GTRS) (i.e., not with a simple Euclid-
ean norm constraint), see [15].
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Minimizing the ratio of quadratic functions 15

1.1 Motivation

A very interesting motivation for considering the class of Problems (RQ) is the
regularized total least squares problem which we now briefly recall . The total least
squares (TLS) [12,14] is a technique for dealing with linear system Ax ≈ b, where
both the matrix A ∈ R

m×n and the vector b ∈ R
m are contaminated by noise. The

TLS approach to this problem is to seek a perturbation matrix E ∈ R
m×n and a pertur-

bation vector r ∈ R
m that minimize ‖E‖2 + ‖r‖2 subject to the consistency equation

(A + E)x = b + r. The TLS approach was extensively used in a variety of scientific
disciplines such as signal processing, automatic control, statistics, physics, economic,
biology and medicine (see e.g., [14] and references therein). The TLS problem can be
recast as an unconstrained quadratic fractional problem: [5,12,14]:

(T L S) : inf
x∈Rn

‖Ax − b‖2

‖x‖2 + 1
.

In the case of ill-posed problems, the TLS approach might produce a solution with
poor quality and thus regularization is introduced in order to stabilize the solution.
A well-studied approach for this problem is the regularized TLS problem (RTLS)
[5,11,13,18,20] in which a quadratic constraint is added in order to bound the size of
the constraint:

(RT L S) : inf
x∈Rn

{‖Ax − b‖2

‖x‖2 + 1
: ‖Lx‖2 ≤ ρ

}
.

Currently, there exist several methods to tackle the RTLS problem [5,11,13,18,20].
Among them, the recent approach proposed in [5] appears to be the only one proven to
converge to a global minimum. The procedure devised in [5] relies on a combination
of a key observation due to [9] for fractional programs, and of the hidden convexity
result of [8] just alluded above, and involves the solution of a GTRS problem at each
iteration. As shown in [5], it leads to a practically efficient method for solving RTLS.
In [20], a different iterative scheme was proposed, which also involves the solution
of a GTRS problem. The numerical results presented in [20] indicate that the method
converges at a very fast rate and requires the solution of very few (up to 5) GTRS
problems. The numerical results reported in [20] also indicate that the method pro-
duces a global solution. This fact was also validated empirically by comparing the
two procedures in [5]. However, a proof of convergence to a global optimal solution
of the RTLS was not given in [20].

1.2 Main contributions

The aforementioned results suggest that the problem (RQ) of minimizing a quadrati-
cally constrained ratio of two quadratic functions seems to share some kind of hidden
convexity property. In this paper we show that this is indeed the case. In the next
section, we derive a simple condition in terms of the problem’s data under which the
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16 A. Beck, M. Teboulle

attainment of the minimum in problem (RQ) is warranted. This condition allows us to
derive an appropriate nonconvex reformulation of (RQ), and to apply a strong duality
result for nonconvex homogeneous quadratic problems, proven in [17]. By so doing,
we prove in Sect. 3 that problem (RQ) can be recast as a semidefinite programming
problem with no gap, and that the global optimal solution of the original problem (RQ)
can be extracted from the optimal solution of this semidefinite formulation. In Sect. 4
we then study and extend the iterative scheme suggested in [20] for the RTLS, to the
more general class of problems (RQ), and we develop a global convergence analysis.
More precisely, we prove that this algorithm is superlinearly convergent. Moreover, we
show that it produces an ε-global optimal solution to (RQ) after at most A+ B

√
ln ε−1

iterations, for some positive constants A, B. These results also provide a theoretical
justification of the successful computational results reported in the context of (RTLS)
in [20].

1.3 Notation

Vectors are denoted by boldface lowercase letters, e.g., y, and matrices are denoted by
boldface uppercase letters e.g., A. For any symmetric matrix A and symmetric positive
definite matrix B we denote the corresponding minimum generalized eigenvalue by
λmin(A, B); the minimum generalized eigenvalue has several equivalent formulations:

λmin(A, B) = max{λ : A − λB � 0} = min
x �=0

xT Ax
xT Bx

= λmin(B−1/2AB−1/2),

where we use the notation A � 0 (A 	 0) for a positive semidefinite (positive defi-
nite) matrix A. We also use some standard abbreviations such as SDP (semidefinite
programming) and LMI (linear matrix inequalities). We also follow the MATLAB
convention and use “;” for adjoining scalars, vectors or matrices in a column. Finally,
we will make use of some standard convex analysis notation and definition. For an
extended real-valued function f : R

n → R∪{+∞}, dom f = {x ∈ R
n | f (x) < ∞}

denotes its effective domain, and epi f = {(x, µ) ∈ R
n × R | µ ≥ f (x)} is the

epigraph of f . Recall that f is called proper whenever dom f �= ∅ and there exists
y such that f (y) > −∞, and f is lower semi-continuous (lsc) on R

n whenever
lim infx→z f (x) = f (z), for all z ∈ R

n .

2 Existence of a global minimizer

2.1 Problem formulation and basic properties

Consider the problem of minimizing the ratio of two quadratic functions subject to a
single convex homogeneous constraint:

(RQ) f ∗ = inf
x∈Rn

{
f (x) ≡ f1(x)

f2(x)
: ‖Lx‖2 ≤ ρ

}
, (2.1)
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Minimizing the ratio of quadratic functions 17

where

fi (x) = xT Ai x + 2bT
i x + ci , i = 1, 2,

with Ai a symmetric matrix, bi ∈ R
n and ci ∈ R, i = 1, 2. Moreover, L is an r × n

(r ≤ n) full row rank matrix and ρ is a positive number. Problem (RQ) is well-defined
if and only if f2 is not equal to zero over the feasible set. Therefore, the following
assumption is made throughout the paper:

Assumption 1 There exists η ≥ 0 such that

(
A2 b2

bT
2 c2

)
+ η

(
LT L 0

0 −ρ

)
	 0. (2.2)

It is easy to see that Assumption 1 implies that f2(x) > 0 for any feasible point x, (see
Proposition 1(iii)) so that problem (RQ) is well-defined. Moreover, this assumption
is satisfied for the GTRS problem when r = n (for 0 < η < 1/ρ) and for the RTLS
problem in which f2(x) = ‖x‖2 + 1.

Several useful consequences can be drawn from the LMI (2.2) which we collect in
the next result.

Proposition 1 Under Assumption 1 the following statements hold:

(i) c2 > 0.
(ii) Let F ∈ R

n×(n−r) be a matrix whose columns form an orthonormal basis for
the null space of L. Then

(
FT A2F FT b2

bT
2 F c2

)
	 0,

and in particular FT A2F 	 0.
(iii)

f2(x) ≥ δ(‖x‖2 + 1) ≥ δ > 0 for every x such that ‖Lx‖2 ≤ ρ, (2.3)

where

δ = λmin

[(
A2 b2

bT
2 c2

)
+ η

(
LT L 0

0 −ρ

)]
. (2.4)

Proof (i) Since the matrix in the LHS of (2.2) is positive definite it follows that all
of its diagonal elements are positive and in particular the (n + 1, n + 1)th entry is
positive: c2 − ηρ > 0, which implies that c2 > 0.
(ii) By multiplying the LMI (2.2) from the left by GT and from the right by G where

G =
(

F 0
0 1

)
,

we obtain (recall that if M 	 0 then GT MG 	 0 if G has full row rank)

(
FT A2F FT b2

bT
2 F c2

)
+ η

(
0 0
0 −ρ

)
	 0.
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18 A. Beck, M. Teboulle

Since ρ > 0 and η ≥ 0 we conclude that

(
FT A2F FT b2

bT
2 F c2

)
	 0,

which also implies that FT A2F 	 0.
(iii) It follows immediately from (2.2) that

(
A2 b2

bT
2 c2

)
+ η

(
LT L 0

0 −ρ

)
� δI (2.5)

with δ given in (2.4). Multiplying (2.5) by (xT , 1) from the left, and by (xT , 1)T from
the right results in

f2(x) + η(‖Lx‖2 − ρ) ≥ δ(‖x‖2 + 1),

which readily implies (2.3). ��
We now show that Assumption 1 guarantees the finiteness of the infimum in problem
(RQ) defined in (2.1).

Lemma 1 The infimum of problem (2.1) is finite.

Proof Define,

d1 = inf{ f (x) : ‖Lx‖2 ≤ ρ, f1(x) ≥ 0},
d2 = inf{ f (x) : ‖Lx‖2 ≤ ρ, f1(x) ≤ 0}.

Using the simple relation

inf{ f (x) : x ∈ C1 ∪ C2} = min{ inf
x∈C1

f (x), inf
x∈C2

f (x)},

one has f ∗ = min{d1, d2}. By its definition, d1 is nonnegative. It remains to show that
d2 is finite. Indeed, for every x satisfying ‖Lx‖2 ≤ ρ and f1(x) ≤ 0, we have

f (x) = f1(x)

f2(x)
≥ f1(x)

δ(‖x‖2 + 1)
≥ 1

δ
λmin

(
A1 b1

bT
1 c1

)
≡ l,

where the first inequality is due to f1(x) ≤ 0 and (2.3). Therefore, d2 ≥ l, and hence
f ∗ ≥ min{0, l} is finite. ��

Note that in the RQ problem we make no assumptions on the convexity of either
the numerator function f1 or the denominator function f2 (as opposed to the RTLS
problem), and the analysis to follow does not rely on any convexity assumptions on
the terms defining the objective function of (RQ).
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Minimizing the ratio of quadratic functions 19

2.2 Attainment of the minimum

Attainment of the minimum of problem (RQ) is not always guaranteed. When the
matrix L is a non-singular square matrix (r = n), then the feasible region is a nonde-
generate ellipsoid (i.e., a compact set) and hence the minimum is attained. However,
in many interesting applications, such as in RTLS problems, one has r < n. For exam-
ple, this occurs when L represents discretization of first or second order differential
operators, see [11,20].

Example 1 Consider problem (RQ) with

A1 =
(

2 0.5
0.5 1

)
, b1 =

(−2
0

)
, c1 = 5,

A2 =
(

1 0.5
0.5 1

)
, b2 = 0, c2 = 1,

L = (
1 0

)
, ρ = 1.

In this case, problem (RQ) has the following form:

inf
x1,x2

{
f (x1, x2) = 5 − 4x1 + 2x2

1 + x2
2 + x1x2

1 + x2
1 + x2

2 + x1x2
: x2

1 ≤ 1

}
. (2.6)

To show that the minimum of problem (2.6) is not attained, note that for every x1 such
that x2

1 ≤ 1 we have

f (x1, x2) = 1 + (x1 − 2)2

1 + x2
1 + x2

2 + x1x2
> 1.

On the other hand, the infimum is equal to 1 since f (0, x2)→1 as x2 tends to ∞.
Note that the minimum of the unconstrained problem is attained; the minimum is
equal to 1 and attained at any point of the form (2, x2).

We will prove that attainment of the minimum in the case where r < n can be guar-
anteed under a certain mild sufficient condition. For that purpose we first recall some
useful preliminary results on asymptotic cones and functions, see e.g., [3] for details
and proofs.

Definition 1 Let C be a nonempty set in R
n . The asymptotic cone of the set C , denoted

by C∞, is defined by:

C∞ =
{

d ∈ R
n | ∃tk → +∞, ∃xk ∈ C with lim

k→∞
xk

tk
= d

}
.

As an immediate useful consequence, a set C ⊆ R
n is bounded if and only if C∞ = {0}.

We also need the concept of asymptotic function for an arbitrary nonconvex func-
tion. Recall that for any proper function f : R

n → R ∪ {+∞}, there exists a unique
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20 A. Beck, M. Teboulle

function f∞ : R
n → R ∪ {+∞} associated with f , called the asymptotic function,

such that epi f∞ = (epi f )∞. A fundamental analytic representation of the asymptotic
function f∞ is given by (see, [3, Theorem 2.5.1, p. 49])

f∞(d) = lim inf
d′→d

t→+∞
t−1 f (td′). (2.7)

Note that when f is assumed proper lsc and convex, the above formula simplifies to

f∞(d) = lim
t→+∞ t−1 f (td), ∀d ∈ dom f, (2.8)

and if 0 ∈ dom f , the formula holds for every d ∈ R
n .

Using the above concepts and results, we obtain,

Lemma 2 Let α, δ ∈ R and define

C := {x ∈ R
n | f1(x) − α f2(x) ≤ δ, ‖Lx‖2 ≤ ρ}.

Then,

(i) C∞ ⊆ {d ∈ R
n | dT (A1 − αA2)d ≤ 0} ∩ Ker(L).

(ii) Let F ∈ R
n×(n−r) be a matrix whose columns form an orthonormal basis for

the null space of L. If α < λmin(FT A1F, FT A2F) then C is a compact set.

Proof (i) Using the definition of f1 and f2, one has

C = {x ∈ R
n | g(x) ≤ 0, q(x) ≤ 0},

where

g(x) := xT (A1 − αA2)x + 2(b1 − αb2)
T x + c1 − αc2 − δ, q(x) = xT LT Lx − ρ.

Therefore, invoking [3, Corollary 2.5.4, p.52], one has

C∞ ⊆ {d ∈ R
n | g∞(d) ≤ 0, q∞(d) ≤ 0}.

Using (2.8) and (2.7) it can be verified that (see e.g. [3, Example 2.5.1, p. 51]):

q∞(d) = 2bT d + δ(d| Ker LT L) = 2bT d + δ(d| Ker L),

and

g∞(d) =
{−∞ if dT (A1 − αA2)d ≤ 0,

+∞ if dT (A1 − αA2)d > 0.

from which the desired inclusion (i) follows.
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Minimizing the ratio of quadratic functions 21

(ii) Recall that d ∈ Ker L if and only if d = Fv for some v ∈ R
n−r . Let d ∈ C∞

and suppose that d �= 0. Then, applying the first part of the lemma, it follows that

α ≥ λmin(FT A1F, FT A2F),

which contradicts our hypothesis α < λmin(FT A1F, FT A2F). Therefore, one must
have d = 0, and hence C∞ ⊆ {0}, from which the compactness of C follows. ��
We are now ready to state and prove the main result of this section.

Theorem 1 Consider the RQ problem (2.1) with r < n. Suppose that the following
condition is satisfied:

λmin(M1, M2) < λmin(FT A1F, FT A2F), (2.9)

where

M1 =
(

FT A1F FT b1

bT
1 F c1

)
, M2 =

(
FT A2F FT b2

bT
2 F c2

)
(2.10)

and F is an n × (n − r) matrix whose columns form an orthonormal basis for the null
space of L. Then the following statements hold

(i) Any minimum generalized eigenvector (v̄; t̄) of the matrix pair M1, M2 (v̄ ∈
R

n−r , t̄ ∈ R) satisfies t̄ �= 0 and f (Fv̄/t̄) = λmin(M1, M2).
(ii)

f ∗ ≤ λmin(M1, M2). (2.11)

(iii) The minimum of problem (RQ) is attained.

Proof (i) Using the definition of the minimum generalized eigenvalue we have

λmin(M1, M2) = min
v∈Rn−r ,t∈R

{
vT FT A1Fv + 2bT

1 Fvt + c1t2

vT FT A2Fv + 2bT
2 Fvt + c2t2

: (v; t) �= 0

}
. (2.12)

The minimum in the latter minimization problem is attained at (v̄; t̄). In order to show
that t̄ �= 0 we assume by contradiction that the minimum in (2.12) is attained at t = 0.
In that case we would have

λmin(M1, M2) = min
v∈Rn−r ,v �=0

vT FT A1Fv
vT FT A2Fv

= λmin(FT A1F, FT A2F),

which contradicts condition (2.9). Finally,

f (Fv̄/t̄) = (v̄/t̄)T FT A1F(v̄/t̄) + 2bT
1 F(v̄/t̄) + c1

(v̄/t̄)T FT A2F(v̄/t̄) + bT
2 F(v̄/t̄) + c2

= v̄T FT A1Fv̄ + 2bT
1 Fv̄t̄ + c1 t̄2

v̄T FT A2Fv̄ + bT
2 Fv̄t̄ + c2 t̄2

= λmin(M1, M2).
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22 A. Beck, M. Teboulle

(ii) Follows from the fact that Fv̄/t̄ ∈ Ker L is a feasible point of (2.1).
(iii) Let x0 = Fv̄/t̄ be a feasible point of problem (RQ), set α = f (x0) and define:

C := {x ∈ R
n | f1(x) − α f2(x) ≤ 0, ‖Lx‖2 ≤ ρ}.

Since C is the intersection of the feasible set of problem (RQ) with a nonempty level
set of its objective function f , we conclude that problem (RQ) is equivalent to solving
min{ f (x) | x ∈ C}, and hence it remains to show that C is bounded. Since under our
assumption (2.9) one has

α = f (x0) = λmin(M1, M2) < λmin(FT A1F, FT A2F),

it follows by the second part of Lemma 2 that C is compact. ��

Remark 1 (i) Weak inequality is always satisfied in the condition (2.9) since

λmin(M1, M2) = min
(v;t) �=0

vT FT A1Fv + 2bT
1 Fvt + c1t2

vT FT A2Fv + 2bT
2 Fvt + c2t2

≤ min
v �=0

vT FT A1Fv
vT FT A2Fv

= λmin(FT A1F, FT A2F).

(ii) A direct consequence of (2.9) and (2.11) is that

f ∗ < λmin(FT A1F, FT A2F). (2.13)

(iii) For L = 0 and f2(x) = ‖x‖2 +1, problem (2.1) reduces to the classical (uncon-
strained) TLS problem. In this case we can take F = I in condition (2.9), which
then reduces to the well known condition for the attainability of the minimum
in the TLS problem:

λmin

(
AT A AT b
bT A ‖b‖2

)
< λmin(AT A). (2.14)

In that case, any minimum eigenvector (v; t) of the matrix

(
AT A AT b
bT A ‖b‖2

)
sat-

isfies t �= 0 and v/t is a solution to the TLS problem [12,14].

Example 2 (Continuation of Example 1) Since the minimum in problem (2.6) is not
attained, condition (2.9) does not hold true. To show this, note that here F can be
chosen as (0; 1) and thus

FT A1F = 1, FT A2F = 1, M1 =
(

1 0
0 5

)
, M2 =

(
1 0
0 1

)
.

Hence,

λmin(FT A1F, FT A2F) = 1, λmin(M1, M2) = 1,

which shows that condition (2.9) is not satisfied.
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Minimizing the ratio of quadratic functions 23

We have shown in this section that if the following condition is satisfied:

[SC] : Either (r = n) or (r < n and λmin(M1, M2) < λmin(FT A1F, FT A2F)),
(2.15)

then the minimum of the RQ problem (2.1) is attained. This will be considered as a
blanket hypothesis in the remaining parts of the paper.

3 Exact SDP relaxation for (RQ)

In this section we prove that under our blanket hypothesis [SC], the nonconvex problem
(RQ) admits an exact convex semidefinite formulation.

3.1 Formulation of (RQ) as a non-convex quadratic programming problem

We first show that problem (RQ) is equivalent to solving a nonconvex homogeneous
quadratic optimization problem.

Lemma 3 Suppose that condition [SC] given in (2.15) is satisfied for the (RQ) problem
(2.1). Consider the following nonconvex homogeneous minimization problem:

ϕ∗ ≡ min
z∈Rn ,s∈R

{ϕ1(z, s) : ϕ2(z, s) = 1, ϕ3(z, s) ≤ 0} , (3.1)

where

ϕi (z, s) = zT Ai z + 2bT
i zs + ci s

2, i = 1, 2,

ϕ3(z, s) = ‖Lz‖2 − ρs2.

Then ϕ∗ = f ∗. Moreover, any optimal solution (z∗, s∗) of (3.1) satisfies s∗ �= 0 and
x∗ = 1

s∗ z∗ is an optimal solution of the RQ problem.

Proof By using the change of variables x = y/t, t �= 0, the RQ problem transforms
into the following equivalent minimization problem:

f ∗ = min
y∈Rn ,t �=0

{
ϕ1(y, t)

ϕ2(y, t)
: ϕ3(y, t) ≤ 0

}
. (3.2)

Recall that by Assumption 1 it follows that ϕ2(y, t) > 0 for every y ∈ R
n, t �= 0 such

that ϕ3(y, t) ≤ 0 so that problem (3.2) is well-defined. Now, consider the following
problem:

ϕ∗ = min
z∈Rn ,s �=0

{ϕ1(z, s) : ϕ2(z, s) = 1, ϕ3(z, s) ≤ 0} . (3.3)

First, we show that the feasible set of problem (3.3) is compact, so that the minimum
is attained. For that, note that for any η ≥ 0, the following inclusion obviously holds
for the feasible set of (3.3):

{(z, s) : ϕ2(z, s) = 1, ϕ3(z, s) ≤ 0} ⊆ {(z, s) : ϕ2(z, s) + ηϕ3(z, s) ≤ 1}.
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24 A. Beck, M. Teboulle

Therefore, under Assumption 1, it follows that the set in the right-hand-side of the
latter inclusion describes a non-degenerate ellipsoid, and thus is compact, and hence
so is the feasible set of problem (3.3).

We will now show that ϕ∗ = f ∗. Indeed, suppose that (y∗, t∗) with t∗ �= 0 is an
optimal solution of (3.2), then (z∗, s∗) defined by

z∗ = 1√
ϕ2(y∗, t∗)

y∗, s∗ = 1√
ϕ2(y∗, t∗)

t∗

is a feasible point of (3.3) since, by using the fact that ϕi are homogeneous functions,
we have

ϕ3(z∗, s∗) = 1

ϕ2(y∗, t∗)
ϕ3(y∗, t∗) ≤ 0,

ϕ2(z∗, s∗) = 1

ϕ2(y∗, t∗)
ϕ2(y∗, t∗) = 1

and thus

ϕ∗ ≤ ϕ1(z∗, s∗) = ϕ1(y∗, t∗)
ϕ2(y∗, t∗)

= f ∗.

On the other hand, let (z∗, s∗) be an optimal solution of (3.3). Then (z∗, s∗) is obviously
also a feasible solution of (3.2) and thus

f ∗ ≤ ϕ1(z∗, s∗)
ϕ2(z∗, s∗)

= ϕ1(z∗, s∗) = ϕ∗.

We would like to show now that the constraint s �= 0 in problem (3.3) can be omit-
ted. Suppose on the contrary that for some optimal solution (z∗, s∗) one has s∗ = 0.
Substituting s = 0 in the minimization problem (3.3) we have:

f ∗ = ϕ∗ = min
z∈Rn

{ϕ1(z, 0) : ϕ2(z, 0) = 1, ϕ3(z, 0) ≤ 0}

= min
z∈Rn

{
zT A1z : zT A2z = 1, Lz = 0

}
. (3.4)

In the case where r = n, the minimization problem is infeasible—a contradiction to
the fact that f ∗ �= ∞; in the case where r < n, we can replace the constraint Lz = 0
with the linear relation z = Fu where u ∈ R

n−r and (3.4) is transformed to

f ∗ = min
u∈Rn−r

{uT FT A1Fu : uT FT A2Fu = 1} = λmin(FT A1F, FT A2F),

which contradicts (2.11). ��
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3.2 Strong duality of the non-convex quadratic formulation

Thanks to Lemma 3 we have just shown that solving the RQ problem amounts to
solving a nonconvex homogeneous quadratic problem (3.1). However, we will show
that problem (3.1) admits an exact semidefinite reformulation by applying a strong
duality result for homogeneous nonconvex quadratic problems with two quadratic
constraints that was first proven in [17]. For more recent and related results see [23],
and references therein.

Proposition 2 ([17, Proposition 4.1]) Consider the following homogeneous
nonconvex quadratic problem:

(H) inf{yT R1y : yT R2y = a2, yT R3y ≤ a3},

where Ri are n × n symmetric matrices (i = 1, 2, 3) with n ≥ 3, a2 and a3 be real
numbers such that a2 �= 0. Suppose that the following two conditions are satisfied:

A. there exist µ2, µ3 ∈ R such that µ2R2 + µ3R3 	 0,
B. there exists ỹ ∈ R

n such that ỹT R2ỹ = a2, ỹT R3ỹ < a3.

Then val(H) = val(DH) where (DH) is the dual problem

(DH) sup
β≥0,α

{αa2 − βa3 : R1 � αR2 − βR3}.

Combining the above result, together with Lemma 3, we are now able to establish
the promised semidefinite reformulation of problem (3.1).

Theorem 2 Let n ≥ 2 and suppose that condition (2.15) is satisfied. Then val(D) =
f ∗ where (D) is given by

(D) : max
β≥0,α

{
α :

(
A1 b1

bT
1 c1

)
� α

(
A2 b2

bT
2 c2

)
− β

(
LT L 0

0 −ρ

)}
.

Proof Let

Ri =
(

Ai bi

bT
i ci

)
, R3 =

(
LT L 0
0T −ρ

)
, a2 = 1, a3 = 0 i = 1, 2.

Then the pair of problems (H) and (DH) reduce to (3.1) and its dual (D) respectively.
Conditions A and B of Proposition 2 are satisfied for µ2 = 1, µ3 = η (see LMI
(2.2)) and with a vector ỹ = (0; 1/

√
c2), where c2 > 0 by Proposition 1(i). Therefore,

val(3.1) = val(D), and by invoking Lemma 3 it follows that f ∗ = val(D). ��
From Theorem 2 it follows that we can find the optimal function value of the

nonconvex problem (RQ) by solving the convex SDP problem (D). Furthermore, it is
interesting to note that we can also recover a global optimal solution x∗ of problem
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(RQ) from an optimal solution (α∗, β∗) of the dual problem (D). Indeed, we remark
that x∗ is an optimal solution of problem (RQ) if and only if

x∗ ∈ argmin
x∈Rn

{ f2(x)( f (x) − f ∗) : ‖Lx‖2 ≤ ρ}, (3.5)

which is just a generalized trust region subproblem for which several efficient algo-
rithms exist (see the discussion below at the beginning of Sect. 4). Thus, since f ∗ = α∗,
a global optimal solution for (RQ) can be derived via the following procedure:

Procedure RQ-SDP

1. Solve the SDP problem (D) and obtain a solution (α∗, β∗).
2. Set x∗ to be an optimal solution of the problem (3.5) with f ∗ = α∗, i.e.,

min
x∈Rn

{xT (A1 − α∗A2)x + 2(b1 − α∗b2)
T x + c1 − α∗c2 : ‖Lx‖2 ≤ ρ}.

4 Convergence analysis of a fixed point algorithm

Building on the hidden convexity properties we have derived in the previous sections
for problem (RQ), in this section we analyze the iterative scheme recently proposed
by Sima et al. [20]. The iterative scheme involves the solution of a GTRS problem of
the form

min{xT Ax + 2bT x : ‖Lx‖2 ≤ ρ}

at each iteration. There are several methods for solving GTRS problems. One approach
is to transform the problem into one of solving a single variable secular equation [5].
Another approach, used in [20], is to formulate the problem as a quadratic eigenvalue
problem, for which efficient algorithms are known to exist. For medium and large-
scale problems one can use a modification of Moré and Sorensen’s method [15] or
algorithms based on Krylov subspace methods such as those devised in [21]. For a
related work on parametric eigenvalue problems see [19].

It was observed in [20] that the iterative scheme is robust with respect to the initial
vector, which indicates—although not proven—that the method converges to a global
minimum. The latter claim was validated numerically in [5]. Moreover, it has been
observed that the method in [20] converges at a very fast rate; specifically, it requires
to solve no more than 5 GTRS problems, independently of the dimension of the
problem. In this section, a global convergence analysis of this iterative scheme is
developed for the more general problem (RQ) and by so doing, this also provides a
theoretical justification that supports the excellent performance of the method given
in [20].
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4.1 Fixed point iterations

The starting point is the observation already mentioned in (3.5) that x∗ is an optimal
solution of problem (RQ) given in (2.1) if and only if

x∗ ∈ argmin
y∈Rn

{ f2(y)( f (y) − f (x∗)) : ‖Ly‖2 ≤ ρ}, (4.1)

which naturally leads to consider the following fixed point iterations:

xk+1 ∈ argmin
y∈Rn

{ f2(y)( f (y) − f (xk)) : ‖Ly‖2 ≤ ρ}. (4.2)

Choice of initial vector. In the case r = n, x0 can be chosen as an arbitrary feasible
vector (for example, x0 = 0). In the case r < n the vector x0 will be chosen to be
equal to Fv/t , where (v; t) is a minimum generalized eigenvector of M1, M2, and the
matrices M1 and M2 are defined in (2.10). Recall that by the first part of Theorem
1, t �= 0. Moreover, x0 = Fv/t is a feasible point of problem (RQ) and under our
blanket hypothesis,

f (x0) = λmin(M1, M2) < λmin(FT A1F, FT A2F).

To guarantee that the sequence {xk} given by (4.2) is well-defined, we need to show
that the minimum in problem (4.2) is finite and attained. Let γ be some upper bound
on the value of problem (4.2). For any k ≥ 0 consider the set Sk defined by

Sk := {y ∈ R
n | f1(y) − f (xk) f2(y) ≤ γ, ‖Ly‖2 ≤ ρ}.

Since Sk is an intersection of a nonempty level set of the objective function in (4.2)
(recall that f2(y)( f (y) − f (xk)) = f1(y) − f (xk) f2(y)) and the feasible set of (4.2),
it follows that problem (4.2) is the same as min{ f1(y)− f (xk) f2(y) : y ∈ Sk}. There-
fore, to show that the minimum in (4.2) is finite and attained it is sufficient to show
that the set Sk is bounded. Invoking Lemma 2(ii), it follows that Sk is bounded if the
following condition holds:

f (xk) < λmin(FT A1F, FT A2F). (4.3)

Since x0 was chosen to satisfy (4.3), all that is left to prove in order to show that the
iterations (4.2) are well-defined is that the sequence is nonincreasing.

Lemma 4 Let {xk} be the sequence generated by (4.2). Then f (xk+1) ≤ f (xk) for
every k ≥ 0.

Proof Using the fact that xk+1 is a minimizer of problem (4.2) we have

f2(xk+1)( f (xk+1) − f (xk)) ≤ f2(xk)( f (xk) − f (xk)) = 0.

The monotonicity property follows from the fact that f2(xk+1) > 0. ��
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4.2 Convergence analysis

We now analyze the basic iteration scheme (4.2). The next result shows that the
sequence of function values converges to the global optimal solution with a linear
rate.

Theorem 3 Let {xk} be the sequence generated by (4.2) and x∗ be an optimal solution
of the RQ problem (2.1). Then:

(i) There exists U such that

‖xk‖ ≤ U, k = 0, 1, . . . (4.4)

(ii) The sequence of function values converge to the optimal value f (x∗) with a
linear rate of convergence: there exists γ ∈ (0, 1) such that

f (xk+1) − f (x∗) ≤ γ ( f (xk) − f (x∗)) for every k ≥ 0, (4.5)

where

γ = 1 − δ

λmax(A2)U 2 + 2‖b2‖U + c2
, (4.6)

and δ is given in (2.4).

Proof (i) If r = n then the result follows from the compactness of the feasible set.
Otherwise, if r < n, we note that the sequence { f (xk)} is monotonically decreasing
and we therefore conclude that the following inequalities hold true for every k:

f (xk) ≤ α,

‖Lxk‖2 ≤ ρ.

where α = λmin(M1, M2). Since here α = λmin(M1, M2) < λmin(FT A1F, FT A2F),
by Lemma 2(ii), it follows that the sequence {xk} is bounded, which proves (i).

(ii) By the definition of xk+1 we have

f2(xk+1)( f (xk+1) − f (xk)) ≤ f2(x∗)( f (x∗) − f (xk))

and thus

f (xk+1) − f (x∗) ≤ f2(x∗)
f2(xk+1)

( f (x∗) − f (xk)) − ( f (x∗) − f (xk))

≤
(

1 − f2(x∗)
f2(xk+1)

)
( f (xk) − f (x∗)). (4.7)

Using (4.4) it is easy to see that

f2(xk+1) ≤ λmax(A2)U
2 + 2‖b2‖U + c2 (4.8)
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and by Proposition 1 (iii) we have that f2(x∗) ≥ δ > 0 with δ is given in (2.4).
Therefore, from (4.7) the desired result (4.5) follows with γ given in (4.6). ��
Remark 2 The upper bound U can be explicitly computed in terms of the problem’s
data, see Lemma A in the Appendix.

Inequality (4.5) implies that the following inequality holds true:

f (xk) − f (x∗) ≤ γ k( f (x0) − f (x∗)). (4.9)

The next result will provide a convergence rate result for the sequence {xk}. For that
purpose we first recall the well known optimality conditions for the GTRS problem,
(see [15]): x∗ is an optimal solution of the problem min{q(x) : ‖Lx‖2 ≤ ρ}, where
q : R

n → R is a quadratic function if and only if there exists λ∗ ≥ 0 such that

∇q(x∗) + λ∗LT Lx∗ = 0,

∇2q(x∗) + λ∗LT L � 0, (4.10)

‖Lx∗‖2 ≤ ρ,

λ∗(‖Lx∗‖2 − ρ) = 0.

Furthermore, if (4.10) is replaced with

∇2q(x∗) + λ∗LT L 	 0, (4.11)

then the optimal solution is unique.

Theorem 4 Let {xk} be the sequence generated by (4.2) and x∗ be an optimal solution
of the RQ problem (2.1). Suppose that condition (4.11) is satisfied for problem (4.1).
Then

‖xk − x∗‖2 ≤ C( f (xk) − f (x∗)) for every k ≥ 0, (4.12)

where

C = 2
λmax(A2)U 2 + 2‖b2‖U + c2

λmin(2A1 − 2 f (x∗)A2 + λ∗LT L)
(4.13)

In particular, the sequence {xk} converges at a linear rate to a unique optimal solution
x∗ of problem (RQ).

Proof Define
g(x) = f1(x) − f (x∗) f2(x). (4.14)

Then problem (4.1) is the same as

min
x∈Rn

{g(x) : ‖Lx‖2 ≤ ρ}. (4.15)

Let λ∗ ≥ 0 be the corresponding optimal Lagrange multiplier for problem (4.15).
Since

g(xk) − g(x∗) = (xk − x∗)T ∇g(x∗) + 1

2
(xk − x∗)T ∇2g(x∗)(xk − x∗),

123



30 A. Beck, M. Teboulle

then using (4.10) we obtain

g(xk) − g(x∗) = (xk − x∗)T (∇g(x∗) + λ∗LT Lx∗︸ ︷︷ ︸
0

)

+1

2
(xk − x∗)T (∇2g(x∗) + λ∗LT L)(xk − x∗)

−λ∗
(

(xk − x∗)T LT Lx∗ + 1

2
(xk − x∗)LT L(xk − x∗)

)

= 1

2
(xk −x∗)T (∇2g(x∗)+λ∗LT L)(xk −x∗)+ λ∗

2

(
‖Lx∗‖2−‖Lxk‖2

)

≥ 1

2
(xk − x∗)T (∇2g(x∗) + λ∗LT L)(xk − x∗) + λ∗

2

(
‖Lx∗‖2 − ρ

)

= 1

2
(xk − x∗)T (∇2g(x∗) + λ∗LT L)(xk − x∗)

≥ 1

2
λmin(∇2g(x∗) + λ∗LT L)‖xk − x∗‖2

= 1

2
λmin(2A1 − 2 f (x∗)A2 + λ∗LT L)‖xk − x∗‖2. (4.16)

Using (4.14) one has the relation

f (xk) − f (x∗) = 1

f2(xk)
(g(xk) − g(x∗)),

which, together with (4.8) and (4.16), implies that (4.12) is satisfied with C given in
(4.13). Finally,

‖xk − x∗‖ (4.12)≤ √
C( f (xk) − f (x∗))

(4.9)≤ √
C( f (x0) − f (x∗))γ k/2, (4.17)

where γ is given in (4.6), which proves the last claim. ��

Our last result shows that

(i) the linear convergence rate result for function values established in Theorem 3
can be improved to superlinear, and

(ii) the dependency of the number of iterations on the optimality tolerance ε grows
as O(

√
ln(1/ε)).

Theorem 5 Let {xk} be the sequence generated by (4.2) and x∗ be an optimal solution
of the RQ problem (2.1). Suppose that condition (4.11) is satisfied for problem (4.1).
Then the corresponding sequence of function values { f (xk)} converges at least super-
linearly. Moreover, an ε-global optimal solution, i.e., satisfying f (xn) − f (x∗) ≤ ε,
is reached after at most A + B

√
ln(1/ε) iterations, for some positive constants A, B.
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Proof Note that by the mean value theorem we have

| f2(xk) − f2(x∗)| = |∇ f2(ωxk + (1 − ω)x∗)T (xk − x∗)|
≤ 2‖A2(ωxk + (1 − ω)x∗) + b2‖‖xk − x∗‖
≤ 2(‖A2‖U + ‖b2‖)‖xk − x∗‖,

where the last equation follows from Theorem 3(i).
Now,

f (xk+1) − f (x∗)
f (xk) − f (x∗)

(4.7)≤ f2(xk+1) − f2(x∗)
f2(xk+1)

≤ 2(‖A2‖U + ‖b2‖)
δ

‖xk+1 − x∗‖
(4.16)≤ 2(‖A2‖U + ‖b2‖)

δ

√
C( f (x0) − f (x∗))γ k/2,

where γ ∈ (0, 1) is given in (4.6). Thus, with

D = 2(‖A2‖U + ‖b2‖)
δ

√
C( f (x0) − f (x∗)),

we have proven that
f (xk+1) − f (x∗)
f (xk) − f (x∗)

≤ Dγ k/2. (4.18)

Since Dγ k/2 → 0, the superlinear convergence rate of function values follows. To
derive the second claim of the theorem, we proceed as follows. Using (4.18), we have,

f (xn) − f (x∗)
f (x0) − f (x∗)

=
n−1∏
k=0

f (xk+1) − f (x∗)
f (xk) − f (x∗)

≤
n−1∏
k=0

Dγ k/2 = Dnγ (n2−n)/4,

and hence,

f (xn) − f (x∗) ≤ ( f (x0) − f (x∗))Dnγ (n2−n)/4 = γ n2/4+α1n+α2 ,

where α1 = −1/4 + lnγ D, α2 = lnγ ( f (x0) − f (x∗)). Now, the inequality

γ n2/4+α1n+α2 ≤ ε

holds true if and only if

n2/4 + α1n + α2 ≥ − lnγ (1/ε).

Let ∆ = α2
1 − α2 − lnγ (1/ε). Then the last inequality is obviously satisfied for any

n whenever ∆ < 0 and for n > 2(−α1 + √
∆) if ∆ ≥ 0. It readily follows that if
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n > 2|α1| + 2
√|∆| then f (xn) − f (x∗) ≤ ε. Therefore, since

|α1|+
√|∆| ≤ |α1|+

√
|α2

1 |+|α2| − lnγ (1/ε) ≤ 2|α1| + √|α2| +
√

− 1

ln γ

√
ln(1/ε),

the desired result follows, with

A = |4 lnγ D − 1| + 2
√

| lnγ ( f (x0) − f (x∗))|; B =
√

− 4

ln(γ )
.

��
Finally, as a consequence of Theorem 5 and (4.12) we obtain,

Corollary 1 Under the assumptions of Theorem 4.3, the number of iterations required
to reach a point xk such that ‖xk − x∗‖ ≤ ε grows as O(

√
ln(1/ε)).
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A Appendix

We show that the upper bound U given in Theorem 3(i) can be computed in terms of
the problem’s data.

Lemma A Let {xk} be the sequence generated by (4.2) and let F ∈ R
n×(n−r) be

a matrix whose columns form an orthonormal basis for the null space of L. Then
‖xk‖ ≤ U for all k = 0, . . . , where U is determined as follows:

U =

⎧⎪⎪⎨
⎪⎪⎩

√
ρ

λmin(LT L)
if r = n

2
√

U 2
1

λmin(Ã)
2 + U2

λmin(Ã)
+ ‖L‖

√
ρ

λmin(LLT )
if r < n

where

U1 = ‖A1 − αA2‖‖L‖√ρ

λmin(LLT )
+ ‖b1 − αb2‖, (A.1)

U2 = ‖L(A1 − αA2)LT ‖ρ
λmin(LLT )2 + 2

‖b1 − αb2‖‖L‖√ρ

λmin(LLT )
+ |c1 − αc2|, (A.2)

Ã = FT (A1 − αA2)F.

Proof If r = n then the feasibility constraint ‖Lxk‖2 ≤ ρ implies that ‖xk‖2 ≤
ρ/λmin(LT L). Otherwise, when r < n, we can consider the following decomposition:

xk = Fvk + LT wk, (A.3)
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Plugging (A.3) into the feasibility constraint we obtain:

‖LLT wk‖2 ≤ ρ,

which yields:
‖wk‖2 ≤ ρ/λmin(LLT )2. (A.4)

We continue with bounding vk . In order to so, we recall that the sequence xk satisfies

f (xk) ≤ α, (A.5)

where α = λmin(M1, M2) < λmin(FT A1F, FT A2F). This also implies that FT (A1 −
αA2)F 	 0. Now, plugging the decomposition (A.3) into (A.5) results in

(Fvk + LT wk)
T (A1 − αA2)(Fvk + LT wk)

+2(b1 − αb2)
T (Fvk + LT wk) + c1 − αc2 ≤ 0,

which can also be written as

vT
k Ãvk + 2b̃T vk + c̃ ≤ 0, (A.6)

where

Ã = FT (A1 − αA2)F,

b̃ = FT (A1 − αA2)LT wk + FT (b1 − αb2),

c̃ = wT
k L(A1 − αA2)LT wk + 2(b1 − αb2)

T LT wk + c1 − αc2.

A direct computation shows that (A.6) is equivalent to

‖vk + Ã−1b‖2 ≤ b̃T Ã−1b̃ − c̃

λmin(Ã)
,

which implies:

‖vk‖ ≤
√

b̃T Ã−1b̃ − c̃

λmin(Ã)
+ ‖Ã−1b̃‖

≤
√

‖b̃‖2

λmin(Ã)2
+ |c̃|

λmin(Ã)
+ ‖b̃‖

λmin(Ã)

≤ 2

√
‖b̃‖2

λmin(Ã)2
+ |c̃|

λmin(Ã)
.
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We now compute upper bounds on ‖b̃‖ and |c̃|:

‖b̃‖ ≤ ‖A1 − αA2‖‖L‖‖wk‖ + ‖b1 − αb2‖, (A.7)

|c̃| ≤ ‖L(A1 − αA2)LT ‖‖wk‖2 + 2‖b1 − αb2‖‖L‖‖wk‖ + |c1 − αc2|, (A.8)

where for a given matrix M, ‖M‖ denotes the spectral norm ‖M‖ = √
λmax(MT M).

Using (A.4) along with (A.7) and (A.8) we have ‖b̃‖ ≤ U1 and |c̃| ≤ U2. Therefore,

‖vk‖ ≤ 2

√
U 2

1

λmin(Ã)2
+ U2

λmin(Ã)
, (A.9)

and hence,

‖xk‖ (A.3)= ‖Fvk + LT wk‖ ≤ ‖Fvk‖ + ‖LT wk‖ ≤ ‖vk‖ + ‖L‖‖wk‖
(A.4),(A.9)≤ 2

√
U 2

1

λmin(Ã)2
+ U2

λmin(Ã)
+ ‖L‖

√
ρ

λmin(LLT )
.

��
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