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Abstract Sparse principal component analysis addresses the problem of finding a lin-
ear combination of the variables in a given dataset with a sparse coefficients vector that
maximizes the variability of the data. This model enhances the ability to interpret the
principal components and is applicable in a wide variety of fields including genetics
and finance, just to name a few. We suggest a necessary coordinate-wise-based opti-
mality condition and show its superiority over the stationarity-based condition that is
commonly used in the literature, which is the basis formany of the algorithms designed
to solve the problem. We devise algorithms that are based on the new optimality con-
dition and provide numerical experiments that support our assertion that algorithms,
which are guaranteed to converge to stronger optimality conditions, perform better
than algorithms that converge to points satisfying weaker optimality conditions.

Keywords Optimality conditions · Principal component analysis ·
Sparsity constrained problems · Stationarity · Numerical methods

1 Introduction

Principal component analysis (PCA) is a well-known data-analytic technique that
linearly transforms a given set of data to some equivalent representation. This trans-
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formation is defined in such a manner that any variable in the new representation,
called a principal component (PC), expresses most of the variance in the data, which
is not expressed by the PCs that precede it. The linear combination defining each
of the PCs is given by a coefficients (also termed loadings) vector. In terms of the
covariance (or correlation) matrix of the data, the coefficients vector of the kth PC is
the eigenvector that corresponds to the kth largest eigenvalue [1]. One major draw-
back of PCA is that commonly the coefficients vectors are dense, i.e., each PC is
a linear combination of much, if not most, of the original variables, which causes
a difficulty in interpreting the obtained PCs. This disadvantage encouraged a wide
interest in the sparsity constrained version of PCA, which imposes an additional con-
straint, enforcing the coefficients vector not to exceed some predetermined sparsity
level s.

Enforcing sparsity on the coefficients vector is commonly acceptable in some
applications. For example, in the exploration of micro-array gene expression pat-
terns, PCA is employed in order to classify different tissues according to their gene
expression. It is also desirable that such discrimination can be executed by utilizing
only a small subset of the genes, thus encouraging sparse solutions [2]. The desire
to obtain interpretable coefficients vectors is not the only reason to favor the sparse
PCA model. For example, some financial applications will prefer sparse solutions
in order to reduce transaction costs [3]. Clearly, incorporating an additional sparsity
constraint will provide a PC that, generally, does not explain all of the variance which
is explained by the regular PC; nevertheless, in such applications, this sacrifice is
acceptable with respect to the obtained benefits. We refer to this formulation as the
sparsity constrained formulation, and it is merely one of several alternative formula-
tions considered in the literature. The common alternatives are the result of treating
the sparsity term, or its relaxation, by a penalty approach. The sparse PCA problem
is a difficult non-convex problem and can be optimally solved only for small scale
problems by performing exhaustive or a branch and bound search over all possible
support sets [4]. Thus, in order to handle large-scale problems, the algorithms pro-
posed in the literature are seeking to find an approximate solution. One of the first
methods, suggested by Cadima and Jolliffe [5], is to threshold the smallest, in absolute
value, elements of the dominant eigenvector. Unfortunately, this remarkably simple
approach is known to frequently provide poor results. In [4] Moghaddam et al. pro-
posed several greedy methods. An advantage of these methods is that they produce
a full path of solutions (i.e., a solution for each of the values of sparsity level up to
s), but the necessity to perform a large amount of eigenvalue computations at each
step render them quite computationally expensive. In [6], d’Aspremont et al. pro-
posed an approximate greedy approach that obviates the necessity to perform most of
the eigenvalue computations by evaluating a lower bound on the eigenvalues, which
results in a substantial reduction of computation time. Another approach presented by
d’Aspremont et al. [6], and earlier in [7], is to consider a semidefinite programming
formulation with a rank constraint for some of the relaxed and/or penalized mod-
els of PCA. These equivalent formulations are still hard non-convex problems, and
thus a relaxed model is solved and an approximate solution is derived for the origi-
nal problem. The algorithms used to solve the SDP relaxations are not applicable for
large-scale problems, rendering this approach as non-scalable. In [8], encouraged by
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the LASSO approach suggested for regression [9], Jolliffe et al. proposed the absolute
value norm constrained formulation under the name SCoTLass (simplified compo-
nent technique LASSO), which is a relaxation of the sparsity constrained problem. In
practice, the numerical study was conduced on the penalized version by implement-
ing the projected gradient algorithm. The relaxed model was further considered in
the literature. An alternating minimization scheme to solve the constrained formula-
tion was proposed in [10]. Another work that addressed the constrained formulation
was motivated by the expectation maximization algorithm for probabilistic PCA [11].
Even though the work addressed the constrained formulation, the sequence generated
by the method in [11] is guaranteed to be s-sparse. Penalized versions were also con-
sidered extensively. In [12] Zou et al. formulated the sparse PCA as a regression-type
model, where the ith principal component was approximated by the linear combi-
nation of the original variables. A LASSO and ridge penalties are imposed on the
coefficients vector forming the elastic net model that generalizes the LASSO [13]
and an alternating minimization algorithm, called SPCA, was proposed. In [14] Shen
and Huang proposed several iterative schemes to solve the penalized versions via
regularized SVD. These methods were considered further in [15], where a gradient
scheme was proposed and a convergence analysis, that was missing in [14], was also
provided.

Recently, Luss and Teboulle showed in [16] that the seemingly different methods
proposed in [10–12,14,15,17] are some particular realizations of the conditional gra-
dient algorithm with unit step size. The work [16] proposed a unified algorithmic
framework which they refer to as ConGradU (the well-known conditional gradient
with unit step size) and established convergence results, showing that the algorithm
produces a point satisfying some necessary first-order optimality criteria. Some novel
schemes are provided. One of them addresses directly the sparsity constrained formu-
lation of sparse PCA.

As already mentioned, none of the methods listed above can guarantee to produce
an optimal solution. In addition, the sparse PCA problem does not seem to posses a
verifiable necessary and sufficient global optimality condition, and hence, in general,
there is no efficient way to check if a given vector is the global optimal solution.1

Therefore, the comparison of the methods in the literature is based solely on numerical
experiments without providing any theoretical justification for the advantage of a
certainmethod over the others.However,most of the algorithms just listedwill produce
a solution that satisfies some necessary optimality condition. In a recent work, Beck
and Eldar [18] employed some of the aforesaid conditions in order to provide an
insight regarding the success of the corresponding algorithms. Under the framework
of minimizing a continuously differentiable function subject to a sparsity constraint,
several necessary optimality conditions were presented. The relations between the
different optimality conditions were established, showing that some of the conditions
are stronger (that is,more restrictive) than others. An extension to problems over sparse
symmetric sets was considered in [19]. In this paper, we adopt this methodology in
order to establish a hierarchy between two necessary optimality conditions for the

1 In [6] the authors suggested a sufficient optimality condition.
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sparsity constrained sparse PCA problem. The first condition that we consider is a
well-known first-order condition, which was originally presented in the context of
the sparse PCA problem in [16]. We will refer to it as the complete (co) stationarity
condition. Much of the existing algorithms in the literature are actually guaranteed to
converge to a co-stationary point. The second condition, which we call coordinate-
wise (CW) maximality, is a generalization of one of the conditions considered in [18],
and it essentially states that the function value cannot be improved by making changes
of at most two coordinates.

In the following section, we will explicitly define the conditions under considera-
tion. In Sect. 3, we will establish the relation between the conditions, showing that the
CW-maximality condition is stronger (that is, more restrictive) than co-stationarity. In
Sect. 4, wewill introduce algorithms that produce points satisfying the aforementioned
conditions and finally, in Sect. 5, we will provide a numerical study on simulated and
real-life data that supports our assertion that algorithms that correspond to stronger
conditions are more likely to provide better results.

2 Necessary Optimality Conditions

Throughout the paper, we consider the following sparsity constrained problem:

max{ f (x) : x ∈ S}, (P)

where f is a continuously differentiable convex function over R
n and

S := {x ∈ R
n : ‖x‖2 ≤ 1, ‖x‖0 ≤ s},

with ‖ · ‖0 being the so-called l0-norm defined by ‖x‖0 := | {i : xi �= 0} |.2 As a
special case, when the objective function is chosen as f (x) = xTAx, where A is a
given positive semidefinite matrix, problem (P) amounts to the l0-constrained sparse
PCA model:

max{xTAx : x ∈ S}. (SPCA)

In PCA applications, A usually stands for the covariance matrix of the data.
In this section, we will present two necessary optimality conditions for the general

model (P). Although our main motivation is to study the sparse PCA problem, we will
nonetheless consider the general model (P), since our results are also applicable in
this general setting.

Prior to presenting the optimality conditions, we will introduce in the following
subsection some notation and definitions that will be used in our analysis.

2 Note that the l0-norm is not actually a norm since it does not satisfy the absolute homogeneity property.
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2.1 Notation and Definitions

A subvector of a given vector x ∈ R
n corresponding to a set of indices T ⊆

{1, 2, . . . , n} is denoted by xT . Similarly, we will denote the subvector of the gra-
dient ∇ f (x) corresponding to the indices in T by ∇T f (x). The sign of a given α ∈ R

is denoted by sgn(α) and is equal to 1 for α ≥ 0 and −1 for α < 0. The support set of
some arbitrary vector xwill be denoted by I1(x) = {i : xi �= 0} and its complement by
I0(x) = {i : xi = 0}. For a given vector x ∈ R

n and an integer s ∈ {1, 2, . . . , n − 1},
we will define Ms(x) to be the sth largest absolute value component in x. For such x
and s, we will define the sets I>(x, s), I=(x, s) and I<(x, s) as follows:

I>(x, s) := {i : |xi | > Ms(x)},

I=(x, s) :=
{

{i : |xi | = Ms(x)}, ‖x‖0 ≥ s,

∅, ‖x‖0 < s,

I<(x, s) :=
{

{i : |xi | < Ms(x)}, ‖x‖0 ≥ s,

{i : xi = 0}, ‖x‖0 < s.

We will also define the set I≥(x, s) := I>(x, s) ∪ I=(x, s) and the set
I≤(x, s) := I<(x, s) ∪ I=(x, s). Obviously, the sets I>(x, s), I=(x, s) and I<(x, s)
form a partition of {1, 2, . . . , n}. Furthermore, when ‖x‖0 < s, we have that
I>(x, s) = I1(x), I=(x) = ∅ and I<(x, s) = I0(x).

The sets defined above posses some convenient and elementary properties which
are given in Lemma 2.1 below. Since all the properties stated in the lemma are rather
simple consequences of the definition of the sets I>(x, s), I=(x, s), I<(x, s), the proof
is omitted.

Lemma 2.1 1. If x �= 0, then I≥(x, s) �= ∅.
2. If |I≥(x, s)| < s then x j = 0 for all j ∈ I<(x, s).
3. For any i ∈ I>(x, s), j ∈ I=(x, s) and k ∈ I<(x, s), it holds that

|xi | > |x j | > |xk |.
We will frequently use the notation

Rs(x) := {
T : I>(x, s) ⊆ T ⊆ I≥(x, s), |T | = min{s, |I≥(x, s)|}}

for the set containing all the subsets of indices corresponding to the nonzero s largest in
absolute value components of a given vector x. When ‖x‖0 ≤ s, there are nomore than
s nonzero elements in x, and the above definition actually amounts to Rs(x) = {I1(x)}.
However, when ‖x‖0 > s, there might be more than one set of indices corresponding
to the s largest absolute value components of x. For example, consider the vector
x = (3, 2, 1, 1, 1, 0, 0)T and the sparsity level s = 3. Then,

R3(x) = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}} .
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On the other hand, in the following examples, the set contains a single subset:

R3((0,−5, 4,−3, 2, 0)T ) = {{2, 3, 4}}, R3((0, 0, 4,−3, 0, 0)T ) = {{3, 4}}.

The hard thresholding operator maps a vector x ∈ R
n to the set of vectors that are

generated by keeping the s largest absolute value components of x and setting all the
others to zeros. This operator, which we denote by Hs , is formally defined by

Hs(x) :=
⋃

T∈Rs (x)

{
y : yT = xT , yT̄ = 0

}
.

Thus, for example,

H3((3, 2, 1, 1, 1, 0, 0)
T )

= {(3, 2, 1, 0, 0, 0, 0)T , (3, 2, 0, 1, 0, 0, 0)T , (3, 2, 0, 0, 1, 0, 0)T }.

2.2 Complete (co)-Stationarity

The first condition that we consider was presented for the sparse PCA problem in [16].
We refer to it as the complete (co) stationarity condition.

Definition 2.1 (co-stationarity) Let x be a feasible solution of (P). Then, x is called
a co-stationary point of (P) over S if and only if it satisfies:

〈∇ f (x), v − x〉 ≤ 0 ∀v ∈ S.

This is probably the most elementary first-order condition for constrained differen-
tiable optimization problems. The work [16] provided a unified framework for several
algorithms designed to solve different formulations of sparse PCA. Actually, [16] con-
sidered the co-stationarity condition over a general nonempty and compact set instead
of S, and for this general case, the following proposition, which was originally estab-
lished in [20], was recalled. This result follows from the convexity of the objective
function.

Proposition 2.1 Let f : R
n → R be a continuous differentiable and convex function

over R
n, and let C be a nonempty and compact set. If x is a global maximum of f

over C, then x is a co-stationary point over C, meaning that 〈∇ f (x), v − x〉 ≤ 0 for
any v ∈ C.

2.3 CW-Maximality

The second necessary optimality condition that we will consider is coordinate-wise
maximality. This optimality condition is in fact a type of a local optimality condition,
stating that a given point x is aminimizer over a neighborhood consisting of all feasible
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points, that are different by at most two coordinates. We will denote the corresponding
neighborhood by

S2(x) := {z : ‖z − x‖0 ≤ 2, z ∈ S}.

The formal definition of a CW-maximum point follows.

Definition 2.2 (CW-maximum point) Let x be a feasible solution of (P). Then, x is
called a coordinate-wise (CW) maximum point of (P) if and only if
f (x) ≥ f (z) for every z ∈ S2(x).

Obviously, CW-maximality, by its definition, is a necessary optimality condition.

Proposition 2.2 Let x be an optimal solution to (P). Then, x is an CW-maximum point.

Instead of considering the neighborhood S2(x) in the definition of
CW-maximality (Definition 2.2), we could have alternatively considered
larger neighborhoods consisting of vectors that differ from x by at most k coordi-
nates for some 2 ≤ k ≤ s:

Sk(x) := {z : ‖z − x‖0 ≤ k, z ∈ S}.

A similar optimality condition over such a neighborhood can be defined, and clearly
since St (x) ⊆ Sk(x) for any t ≤ k, considering neighborhoods that differ by a larger
amount of coordinates will result in stronger optimality conditions. Note that the
amount of comparisons required in order to verify that a vector x ∈ R

n with a full
support (I1(x) = s) is CW-maximal (k = 2) is O(s · n), while changing the neighbor-
hood to S3 will increase the amount of comparisons to O(s · n2). Hence, considering
such a stronger optimality condition has a substantial computational price. Keeping
in mind that we seek scalable conditions and algorithms, we restrict the discussion to
the case k = 2.

3 Optimality Conditions Hierarchy

Our main result in this section is that CW-maximality is a stronger (that is, more
restrictive) optimality condition than co-stationarity. This result also has an impact on
the performance of the corresponding algorithms in the sense that, loosely speaking,
algorithms that are only guaranteed to converge to a co-stationary point are less likely
to produce the optimal solution of the problem than algorithms that are guaranteed to
converge to a CW-maximal point. In Sect. 5, we will show that the numerical results
support this assertion.

3.1 Technical Preliminaries

We will begin by providing some auxiliary technical results that will be used in order
to establish the main result. Lemma 3.1 is a trivial result that follows directly from the
Cauchy–Schwarz inequality (see also Lemma 4.1 in [16]).
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Lemma 3.1 Suppose that 0 �= q ∈ R
d and ρ > 0. Then, the optimal solution of the

optimization problem

max
x∈Rd

{qT x : ‖x‖2 ≤ ρ}, (QCLP)

is given by x∗ = ρ
q

‖q‖2 with the optimal value of ρ‖q‖2.

The following simple lemma is an extension of Proposition 4.3 from [16].

Lemma 3.2 Assume that 0 �= p ∈ R
n. Then, the set of optimal solutions of the

optimization problem

max
x∈Rn

{pT x : ‖x‖0 ≤ s, ‖x‖2 ≤ 1}, (S-QCLP)

is given by

X∗(p, s) :=
{

x
‖x‖2 : x ∈ Hs(p)

}
,

with the optimal value of ‖pT ‖2, where T ∈ Rs(p).

Proof We can write (S-QCLP) as

max
T ⊆ {1, . . . , n}

|T | ≤ s

max
x∈Rn

{
pT x : ‖x‖2 ≤ 1, I1(x) ⊆ T

}
. (1)

According to Lemma 3.1, for each T ⊆ {1, . . . , n} satisfying |T | ≤ s, the optimal
value of the inner optimization problem is ‖pT ‖2, and if pT �= 0, then a solution x∗
to the inner optimization problem is given by

x∗
T = pT

‖pT ‖2 , x∗̄
T

= 0. (2)

The problem (1) thus reduces to

max
T ⊆ {1, . . . , n}

|T | ≤ s

‖pT ‖2. (3)

Obviously, when ‖p‖0 ≥ s, the optimal solutions of the latter problem are all the sets
containing the indices of components corresponding to the s largest absolute values
in p, and when ‖p‖0 < s, the unique optimal solution is I1(p). Thus, the set of all
optimal solutions of (3) is Rs(p). Noting that pT �= 0 for any T ∈ Rs(p), we conclude
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that the optimal solutions of (S-QCLP) are given by (2) with T being any set in Rs(p),
which are exactly the members of X∗(p, s). ��

Our final technical lemma states that, if a given vector x̃ is not an optimal solu-
tion of the problem of maximizing a linear function over the unit norm, then there
must be two indices i �= j for which the subvector x̃{i, j} is also not an optimal
solution for the problem restricted to the variables xi , x j (while fixing all the other
variables). This lemma is rather simple, but will play a key role in the proof of the main
result.

Lemma 3.3 Let q ∈ R
d and ρ > 0. Suppose that x̃ satisfies ‖x̃‖2 ≤ ρ, and that it

is not an optimal solution of (QCLP). Then, there exist indices i, j (i �= j) such that
x̃{i, j} is not the optimal solution of

max
x{i, j}∈R2

⎧⎨
⎩qT{i, j}x{i, j} : ‖x{i, j}‖2 ≤

(
ρ2 −

∑
l �=i, j

x̃2l

)1/2⎫⎬
⎭ . (2-QCLP{i, j})

Proof Since x̃ is not the optimal solution of (QCLP), we obtain that q �= 0 (since oth-
erwise, if q = 0, all feasible points are also optimal). Thus, the set I1(q) is nonempty.
We will split the analysis into two cases.

– If ‖x̃‖2 < ρ, then take any i ∈ I1(q) and j �= i , and we can write

‖x̃{i, j}‖2 <

⎛
⎝ρ2 −

∑
l �=i, j

x̃2l

⎞
⎠

1/2

,

which togetherwithq{i, j} �= 0 (since i ∈ I1(q)) implies that x̃{i, j} is not the optimal
solution of (2-QCLP{i, j}), since we have, by Lemma 3.1, that the constraint at the
optimal solution must be active.

– If, on the other hand, ‖x̃‖2 = ρ, then assume in contradiction that for each i �= j
the vector x̃{i, j} is the optimal solution of (2-QCLP{i, j}). Take some i ∈ I1(q). For
any j ∈ I0(q), we know that x̃{i, j} is the optimal solution of (2-QCLP{i, j}) and
thus, according to Lemma 3.1 (employed on the problem (2-QCLP{i, j})), it must
in particular satisfy x̃ j = 0, that is, j ∈ I0(x̃). To summarize,

x̃ j = 0 for any j ∈ I0(q). (4)

Now, for any j ∈ I1(q), according to Lemma 3.1, x̃{i, j} must satisfy

x̃i = qi
‖(qi , q j )T ‖2 (x̃2i + x̃2j )

1/2, (5)
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where here we used the fact that ρ2 −∑
l �=i, j x̃

2
l = x̃2i + x̃2j . Squaring both sides

of (5), we obtain that it is equivalent to q2j x̃
2
i = q2i x̃

2
j , and hence

x̃2j = q2j
q2i

x̃2i for any j ∈ I1(q).

By (4), x̃ j = 0 whenever j ∈ I0(q), and we can therefore write

x̃2j = q2j
q2i

x̃2i , j = 1, 2, . . . , n.

Summing over j = 1, 2, . . . , n, and using the fact that ‖x̃‖22 = ρ2, it follows that

n∑
j=1

x̃2i
q2j
q2i

= ρ2,

implying that

x̃2i = ρ2 q2i
‖q‖22

,

which combined with the fact that that sgn(x̃i ) = sgn(qi ) (see (5) ), yields

x̃i = ρ
qi

‖q‖2 .

Since we actually proved the latter for an arbitrary i ∈ I1(q), and since x̃i = 0 for
any i ∈ I0(q) (see (4)), it follows that

x = ρ
q

‖q‖2 ,

in contradiction to the assumption that x̃ is not an optimal solution of (QCLP). ��
The following corollary is a direct consequence of Lemmas 3.2 and 3.3.

Corollary 3.1 Let x̃ ∈ S. If x̃ is not an optimal solution to (S-QCLP) and
I1(x̃) ⊆ T for some T ∈ Rs(p), then there exist indices i, j ∈ T (i �= j) such
that x̃{i, j} is not an optimal solution of (2-QCLP{i, j}).

Proof Assume that |T | = k. Since x̃ is not an optimal solution of (S-QCLP), it follows
by Lemma 3.2 that x̃T �= pT

‖pT ‖ , which implies that x̃T is not the optimal solution of
the restricted problem

min
y∈Rk

{
pTT y : ‖y‖2 ≤ ρ

}
.
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Therefore, invoking Lemma 3.3 with d = k,q = pT , it follows that there exist indices
i, j ∈ T (i �= j) such that x̃i, j is not an optimal solution of (2-QCLP{i, j}). ��

3.2 Co-Stationarity Versus CW-Maximality

The main result of this paper is given in the following theorem, which establishes the
superiority of the CW-maximality condition over the co-stationarity condition.

Theorem 3.1 Let x be aCW-maximum point of problem (P). Then, x is a co-stationary
point of (P).

Proof Let x be a CW-maximum point of (P). Assume by contradiction that x is not a
co-stationary point. This means that there exists a vector v ∈ S such that

∇ f (x)T (v − x) > 0. (6)

We will show that we can find a vector z ∈ S2(x) such that

∇ f (x)T (z − x) > 0. (7)

This will imply a contradiction to the CW-maximality of x by the following simple
argument: since f is a convex function, we have

f (z) ≥ f (x) + ∇ f (x)T (z − x),

which combined with (7) implies that

f (z) > f (x),

which is an obvious contradiction to the CW-maximality of x.
Since x satisfies (6), we obviously have∇ f (x) �= 0. Let X∗(∇ f (x), s) be the set of

optimal solutions of (S-QCLP) with p = ∇ f (x) and let
x∗ ∈ X∗(∇ f (x), s) be some particular solution. Then,

∇ f (x)T x∗ ≥ ∇ f (x)T v > ∇ f (x)T x,

and thus x /∈ X∗(∇ f (x), s).
Suppose that there exists some l for which ∇l f (x) · xl < 0 (and in particular

l ∈ I1(x)). Define z as:

j = 1, . . . , n z j :=
{−xl , j = l,
x j , otherwise.

z ∈ S2(x) and ∇ f (x)T (z − x) > 0 since

∇ f (x)T (z − x) = −2 · ∇l f (x) · xl > 0.
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We have thus shown in this case the desired contradiction. From now on , we will
therefore consider the case where ∇i f (x) · xi ≥ 0 for all i = 1, . . . , n.

Consider the following cases:

1. I1(x) � I≥(∇ f (x), s).
Obviously, there is some h ∈ I1(x) ∩ I<(∇ f (x), s).
We will consider the following subcases:
1.1 If |I≥(∇ f (x), s)| < s, then ∇h f (x) = 0 (by Lemma 2.1, part 2), and since

∇ f (x) �= 0, we conclude, using Lemma 2.1 (part 1), that there is some l ∈
I≥(∇ f (x), s). Define z as:

j = 1, . . . , n z j :=
⎧⎨
⎩
sgn (∇l f (x)) · (x2h + x2l )

1/2 j = l,
0 j = h,

x j otherwise.

Obviously z ∈ S2(x), and in addition ∇ f (x)T (z − x) > 0 since

∇ f (x)T (z − x) =
∇l f (x) · sgn (∇l f (x)) · (x2h + x2l )

1/2 − ∇l f (x) · xl
= ∣∣∇l f (x)

∣∣ · (x2h + x2l )
1/2 − ∇l f (x) · xl

= ∣∣∇l f (x)
∣∣ · (x2h + x2l )

1/2 − ∣∣∇l f (x)
∣∣ · |xl | (∇l f (x) · xl ≥ 0)

= ∣∣∇l f (x)
∣∣ · ((x2h + x2l )1/2 − |xl |

)
> 0 (∇l f (x) �= 0, xh �= 0) .

1.2 If |I≥(∇ f (x), s)| ≥ s, then there is some l ∈ I≥(∇ f (x), s) such that l /∈
I1(x). Otherwise I≥(∇ f (x), s) ⊆ I1(x), and since |I≥(∇ f (x), s)| ≥ s and
|I1(x)| ≤ s, we have that I≥(∇ f (x), s) = I1(x), contradicting our assumption
that I1(x) � I≥(∇ f (x), s). We will define z as:

j = 1, . . . , n z j :=
⎧⎨
⎩
sgn (∇l f (x)) · |xh | j = l,

0 j = h,

x j otherwise.

Clearly, z ∈ S2(x). In addition, ∇ f (x)T (z − x) > 0 since:

∇ f (x)T (z − x) = ∇l f (x) · sgn (∇l f (x)) · |xh |
−∇h f (x) · xh

= ∣∣∇l f (x)
∣∣ · |xh | − ∣∣∇h f (x)

∣∣ · |xh | (∇h f (x) · xh ≥ 0)
= (∣∣∇l f (x)

∣∣− ∣∣∇h f (x)
∣∣) · |xh | > 0,

where the last inequality holds since xh �= 0 and the indices l and h are such
that l ∈ I≥(∇ f (x), s) and h ∈ I<(∇ f (x), s), thus according to Lemma 2.1
(part 3)

∣∣∇l f (x)
∣∣ >

∣∣∇h f (x)
∣∣.

2. I1(x) ⊆ I≥(∇ f (x), s)
Now we will consider the following subcases:
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2.1 If I1(x) ⊆ T for some T ∈ Rs(∇ f (x)), then since x /∈ X∗(∇ f (x), s), it
follows that according to Corollary 3.1, there exist indices h, l ∈ T such that

x̂ := argmaxy∈R2

⎧⎨
⎩∇{h,l} f (x)T y : ‖y‖2 ≤ 1 −

∑
i �=h,l

x2i

⎫⎬
⎭

satisfies

∇{h,l} f (x)T x̂ > ∇{h,l} f (x)T x{h,l}. (8)

Since |T | ≤ s and ‖x̂‖22 ≤ 1 −∑
i �=h,l x

2
i , the vector

j = 1, . . . , n z j :=
⎧⎨
⎩
x̂1, j = h,

x̂2, j = l,
x j , otherwise,

is in S2(x), and satisfies by (8) that ∇ f (x)T (z − x) > 0.
2.2 If I1(x) � T for all T ∈ Rs(∇ f (x)), then:

– Take h ∈ I1(x) such that h /∈ T for some T ∈ Rs(∇ f (x)). Since
I1(x) ⊆ I≥(∇ f (x), s), it follows that h ∈ I≥(∇ f (x), s). Moreover, since
I>(∇ f (x), s) ⊆ T and h /∈ T , we have that h /∈ I>(∇ f (x), s), implying
that h ∈ I=(∇ f (x), s). Thus, h ∈ I=(∇ f (x), s) ∩ I1(x).

– I>(∇ f (x), s) � I1(x). To show this, note that otherwise,
I>(∇ f (x), s) ⊆ I1(x), and since I1(x) ⊆ I≥(∇ f (x), s) and
|I1(x)| ≤ s, we obtain that |I1(x)| ≤ min

{
s, |I≥(∇ f (x), s)|}, imply-

ing that I1(x) ⊆ T for some T ∈ Rs(∇ f (x)), in contradiction to our
assumption. Thus, there exists some l ∈ I>(∇ f (x), s) such that l /∈ I1(x).

Define z as:

j = 1, . . . , n z j :=
⎧⎨
⎩
sgn (∇l f (x)) · |xh |, j = l,

0, j = h,

x j , otherwise.

Clearly, z ∈ S2(x). Furthermore, ∇ f (x)T (z − x) > 0 since

∇ f (x)T (z − x) = ∇l f (x) · sgn (∇l f (x)) · |xh |
−∇h f (x) · xh

= ∣∣∇l f (x)
∣∣ · |xh | − ∣∣∇h f (x)

∣∣ · |xh | (∇h f (x) · xh ≥ 0)
= (∣∣∇l f (x)

∣∣− ∣∣∇h f (x)
∣∣) · |xh | > 0,

where the last inequality holds since xh �= 0 and the indices l and h are such
that l ∈ I>(∇ f (x), s) and h ∈ I=(∇ f (x), s), and thus according to Lemma
2.1 (part 3)

∣∣∇l f (x)
∣∣ >

∣∣∇h f (x)
∣∣.

We have thus arrived at a contradiction, and the desired implication is established. ��
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In order to show that the reverse implication is not valid, that is, that co-stationary
points are not necessarily CW-maximal points, we present an example of a problem
instance and a co-stationary point, that is not a CW-maximal point.

Example 3.1 For any n > s > 0, we consider problem (SPCA)with a diagonal matrix
A, whose entries on the main diagonal are given by the vector a defined by

a :=
(
2 · 1n−s

0.5 · 1s
)

,

where for a given positive integer m, 1m and 0m are the vectors of size m with all
entries equal to ones or zeros, respectively. We also define

x :=
(
0n−s

s−0.5 · 1s
)

and x̃ :=

⎛
⎜⎜⎝

0n−s−1

s−0.5

0
s−0.5 · 1s−1

⎞
⎟⎟⎠ .

It easy to see that x, x̃ ∈ S and that A � 0, since it is a diagonal matrix with positive
diagonal elements. The gradient of f is given by:

∇ f (x) = 2Ax =
(

0n−s

s−0.5 · 1s
)

.

For any v ∈ S:

〈∇ f (x), v − x〉 =
n∑

i=n−s+1

s−0.5(vi − s−0.5)

= s−0.5

(
n∑

i=n−s+1

vi − s0.5
)

≤ s−0.5
(
‖v‖1 − s0.5

)
≤ 0,

where the last inequality holds since ‖v‖1 ≤ √‖v‖0‖v‖2 ≤ √
s. Hence, x is co-

stationary. The vector x̃ satisfies x̃ ∈ S2(x) and since:

f (x̃) = x̃TAx̃ = (s − 1) · (2s)−1 + 2s−1 = (s + 3) · (2s)−1

> s · (2s)−1 = xTAx = f (x),

it follows that x is not a CW-maximum point.

3.3 Support Optimality

Theorem 3.1 establishes the relationship between the two stationarity conditions
considered up to this point: co-stationarity and CW-maximality. A third condition,
proposed in [4], that we will refer to as support optimality (SO), is given in the fol-
lowing definition.
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Table 1 The supports of the co-stationary points for the pit-prop data

# Support CW-maximum Value # Support CW-maximum Value

1 {1,2,9,10} * 2.937 15 {5,6,7,10} 2.337
2 {1,2,7,10} 2.883 16 {7,8,10,12} 2.314
3 {1,2,7,9} 2.859 17 {7,8,10,13} 2.302
4 {1,2,8,9} 2.797 18 {5,6,7,13} 2.28
5 {1,2,8,10} 2.759 19 {3,4,6,7} 2.209
6 {1,2,6,7} 2.697 20 {4,5,6,7} 2.196
7 {2,7,9,10} 2.696 21 {7,10,12,13} 2.136
8 {2,6,7,10} 2.592 22 {3,4,8,12} 1.995
9 {1,6,7,10} 2.587 23 {3,4,10,12} 1.992
10 {1,2,3,4} * 2.563 24 {3,10,11,12} 1.609
11 {7,8,9,10} 2.549 25 {3,5,12,13} 1.516
12 {6,7,9,10} 2.522 26 {1,5,12,13} 1.414
13 {6,7,10,13} 2.459 27 {2,5,12,13} 1.408
14 {6,7,8,10} 2.444 28 {3,5,11,13} 1.382

Definition 3.1 (Support Optimality)A vector x∗ ∈ S is called a support optimal (SO)
point of (P) with respect to an index set T ⊆ {1, 2, . . . , n} if and only if it is an optimal
solution of the optimization problem

max
x∈Rn

{ f (x) : ‖x‖2 ≤ 1, I1(x) ⊆ T }. (SO)

It is clear that, if x ∈ S is an optimal solution of problem (P), then it must be an SO
point of (P) with respect to any index set T satisfying |T | ≤ s and I1(x) ⊆ T . In that
respect, support optimality is a necessary optimality condition for problem (P). It is
a remarkably weak condition and cannot be used exclusively to derive a reasonable
algorithm. Nevertheless, it is not totally futile. In order to enhance the performance,
the CW-based algorithms that will be presented in Sect. 4 will produce a sequence
of SO points, and in Sect. 5, we will adopt the variational re-normalization strategy
suggested in [4], stating that for each sparse solution obtained by any technique, it
is reasonable to replace this solution with the SO point that correspond to the same
support.

We will conclude this section with an example that demonstrates the potential
benefit of employing algorithms that produce a point that satisfies stronger neces-
sary optimality conditions. Consider the pit-prop data, which consists of 13 variables
measuring various physical properties of 180 pitprops. This dataset was suggested
originally in [21], and since then was extensively used as a benchmark example
for sparse PCA; see, for example, [4,8,15]. The problem has 13 variables and we
consider a sparsity level of s = 4. Note that we can list all the

(13
4

) = 715 SO
points that correspond to index sets with exactly 4 indices, and the optimal solu-
tion must be one of these 715 points. Out of this set of points, 28 satisfy the
co-stationarity condition and only 2 satisfy the CW-maximality condition. Table 1
presents the support sets of each of the co-stationarity points along with their function
values.
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Since the number of CW-maximum points is significantly smaller than the number
of co-stationary points, it ismuchmore probable that the optimal solutionwill be found
by an algorithm that produces CW-maximum points than an algorithm that produces
co-stationary points.

4 Algorithms

In this section, we will present two CW-based algorithms—GCW and PCW – that are
guaranteed to converge after a finite amount of iterations to a CW-maxima. Later on,
in Sect. 5, we will demonstrate the superiority of these algorithm over methods which
are based on the co-stationarity optimality condition such as the conditional gradient
algorithm with unit step size (ConGradU), that was suggested in [16], where it was
also proven that limit points of the sequence generated by ConGradU are co-stationary
point.

In [18] several algorithms that produce a CW-minimum point were considered.
These block coordinate descent type algorithms perform at each iteration an opti-
mization step with respect to one or two variables, while keeping the rest fixed. The
coordinates that need to be altered are chosen to be the ones that produce the maximal
decrease among all possible alternatives, or by applying an index selection strategy
based on a local first-order information. We adopt this approach and present similar
algorithms for the sparse PCA problem.

At each iteration of a CW-based algorithm applied to (P), at most two variables will
be updated. We can categorize each of the iterations according to whether the support
is altered or not. Block coordinate algorithms suffer from a major drawback – a slow
convergence rate. In order to reduce the effect of this displeasing characteristic, we
will replace the point obtained at each step with an SO point that corresponds to the
same support. This modification allows us to bypass the large amount of iterations
that should have been devoted for optimizing the variables with respect to a fixed
support.

Below we present the Greedy CW (GCW) algorithm. We denote by O(T ) an ora-
cle that produce an SO point with respect to a given support T by solving problem
(SO). We will refer to this oracle as an SO oracle. In the specific case of the PCA
problem, the SO oracle amounts to finding a normalized principal eigenvector of
a submatrix of the covariance matrix. However, finding the maximum of a general
convex function f over a unit ball is in principle a difficult task. We will assume
that the solution produced by the oracle is uniquely defined by T . In addition, note
that the oracle outputs an optimal solution of a problem consisting of maximizing a
convex function over a compact and convex feasible set, and hence by [20, Corol-
lary 32.3.2], there exists an optimal solution of the problem which is an extreme
point. In particular, this means that we can assume without any loss of general-
ity that the oracle outputs a vector with norm 1. This assumption will made from
now on.
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The Greedy CW (GCW) Algorithm
Input: f : R

n → R – convex function; O(·) – SO oracle; s – sparsity level.
Output: x - a CW-maximum point of (SPCA).
Initialization: Take T ∈ {1, 2, . . . , n} such that 1 ≤ |T | ≤ s and set x0 = O(T )

and k = 0.
General step:

1. While ‖xk‖0 < s, compute

jk ∈ argmax j∈I0(xk)
{
f (z) : z = O(I1(xk) ∪ { j})

}
,

If f (O(I1(xk) ∪ { jk})) > f (xk), then set

xk+1 = O(I1(xk) ∪ { jk}),
k = k + 1,

and return to 1; otherwise, go to 2.
2. For every i ∈ I1(xk) and j ∈ I0(xk) compute

fi, j = max
σ∈{−1,1}

{
f
(
xk − xki ei + σ |xki |e j

)}
.

Let (ik, jk) = argmax
{
fi, j : i ∈ I1(xk), j ∈ I0(xk)

}
. If fik , jk > f (xk), then

set
xk+1 = O

((
I1(xk) \ {ik}

)
∪ { jk}

)
,

k = k + 1,

and return to 1.
Otherwise, STOP and set x ← xk+1.

Step 1 of the GCW algorithm is in fact the greedy forward selection method pro-
posed in [4]. Hence, in some sense, the GCWmethod is a generalization of this method
that does not terminate at the moment that a solution with a full support is obtained.
However, from a more practical point of view, this resemblance is irrelevant due to
the fact that, if the initial support satisfies |T | = s, then the condition ‖xk‖0 < s will
probably be false for all k in any reasonable practical scenario.

The following theorem summarizes the key properties of the GCW algorithm.

Theorem 4.1 Let {xk} be the sequence generated by the GCW algorithm. Then, the
following statements hold.

(i) The sequence of function values { f (xk)} is monotonically increasing.
(ii) The algorithm terminates after a finite amount of iterations.
(iii) At termination, the algorithm produces a CW-maximum point.
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Proof Part (i) follows immediately from the description of the GCW algorithm. Part
(i i) is a consequence of the monotonicity of the algorithm (part (i)) and the fact that
it only passes through SO points, from which there is only a finite number under the
standing assumption that the solution produced by the oracleO(T ) is uniquely defined
by T .

To prove (i i i), consider the following partition of S2(x):

S2(x) = {z : ‖z − x‖0 ≤ 2, z ∈ S}
= S02 (x) ∪ S12(x) ∪ S22 (x),

where

S02 (x) = {z ∈ S : ‖z − x‖0 ≤ 2, I1(z) ⊆ I1(x)}
S12(x) = {z ∈ S : ‖z − x‖0 ≤ 2, I1(z) = I1(x) ∪ { j}, j ∈ I0(x)}
S22 (x) =

{z ∈ S : ‖z − x‖0 ≤ 2, I1(z) = (I1(x) \ {i}) ∪ { j}, i ∈ I1(x), j ∈ I0(x)},

and assume that the algorithm produced the point x̄. Since x̄ is an SO point and
S02 (x̄) ⊆ {x : ‖x‖2 ≤ 1, I1(x) ⊆ I1(x̄)}, it follows that f (x̄) ≥ f (x) for any
x ∈ S02 (x̄). Now, note that the algorithm terminates only if after performing Step 2 we
obtain that for any i ∈ I1(x̄) and j ∈ I0(x̄)

fi, j = max
σ∈{−1,1}

{
f
(
x̄ − x̄iei + σ |x̄i |e j

)}
= max

α

{
f
(
x̄ − x̄iei + αe j

) : α ∈ [−|x̄i |, |x̄i |]
}

≤ f (x̄),

where the first equality is due to the fact that the maximum of a convex function over
a compact and convex set is attained at an extreme point, see [20, Corolalry32.3.2].
Thus, f (x̄) ≥ f (x) for any x ∈ S22 (x̄). This is enough for proving that x̄ is CW-
maximal in the case when ‖x̄‖0 = s since in this case S12(x̄) = ∅. If ‖x̄‖0 < s, then
prior to entering Step 2, Step 1 must be performed. This step is terminated only if
f (x̄) ≥ f (x) for any

x ∈ {z ∈ S : I1(z) = I1(x̄) ∪ { j}, j ∈ I0(x̄)},

and since S12(x̄) ⊆ {z ∈ S : I1(z) = I1(x̄) ∪ { j}, j ∈ I0(x̄)}, it implies that f (x̄) ≥
f (x) for any x ∈ S12(x̄), concluding that f (x̄) ≥ f (x) for any x ∈ S2(x̄). ��
Practically, if the initial support T satisfies |T | = s, then most of the computation

time in the GCWmethod is consumed in computing fi, j for each possible swap. This
observation encourages us to consider the following variation of GCW, which we
name the Partial CW (PCW) algorithm.
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The Partial CW (PCW) Algorithm
Input: f : R

n → R – convex function; O(·) – SO oracle; s – sparsity level.
Output: x - a CW-maximum point of (SPCA).
Initialization: Take T ∈ {1, 2, . . . , n} such that 1 ≤ |T | ≤ s and set x0 = O(T )

and k = 0.
General step:

1. While ‖xk‖0 < s, compute

jk ∈ argmax j∈I0(xk)
{
f (z) : z = O(I1(xk) ∪ { j})

}
,

If f (O(I1(xk) ∪ { jk})) > f (xk), then set

xk+1 = O(I1(xk) ∪ { jk}),
k = k + 1,

and return to 1; otherwise, go to 2.
2. Set R = I1(xk).

While |R| > 0
Set ik ∈ argmin

{|xki | : i ∈ R
}
and for each j ∈ I0(xk) compute

fik , j = max
σ∈{−1,1}

{
f
(
xk − xkik eik + σ |xkik |e j

)}
.

Let jk ∈ argmax
{
fik , j : j ∈ I0(xk)

}
.

If fik , jk > f (xk), then set

xk+1 = O
((

I1(xk) \ {ik}
)

∪ { jk}
)

,

k = k + 1,

and return to 1.
Otherwise, set R = R \ {ik}.

STOP and set x ← xk+1.

Before termination, PCW will perform the computation of all possible fi, j , thus
assuring the convergence to a CW-maximum point, given that the output is of a full
support. For the general step, the amount of computation will significantly decrease
on the expense of finding the indices that provide the maximal increase in the function
value. Nevertheless, the empirical study suggests that PCW provides similar results
as GCW with respect to function values in a fraction of the time, as demonstrated in
Sect. 5.
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5 Numerical Results

We will illustrate the effectiveness of the algorithms proposed in the previous sec-
tion on simulated and a gene expression datasets. We compared the results with the
following alternative algorithms: the novel l0-constrained version of ConGradU [16],
the expectation maximization [11], approximate greedy [6] and thresholding [5]. The
MATLAB implementation of ConGradU was kindly provided by the authors, for all
the other alternative algorithms we used a MATLAB implementation available on the
authors’ web-pages. For the thresholding algorithm and the algorithms proposed in
this paper, we used a MATLAB implementation, which is available in the following
URL: https://web.iem.technion.ac.il/images/user-files/becka/papers/CW_PCA.zip.

Whenever an initialization is required, we set the initial point to be the solution
of the thresholding method. Regarding the output, we adopt the variational renormal-
ization strategy suggested in [4]. Hence, for each of the algorithms, we extracted the
sparsity pattern (the set of indices of the nonzero elements). The actual output vector
is determined to be equal to O(T ), where T is the generated sparsity pattern. The
experiments were conduced on a PC with a 3.40GHz processor with 16GB RAM.

5.1 Random Data

The covariance matrix A is given by A = DTD, where D is the so-called “data
matrix”. Each entry in the data matrix D ∈ R

m×n was randomly generated according
to the Gaussian distribution with zero mean and variance 1/m (Di, j ∼ N (0, 1/m)).
We considered data matrices with n = 2000, 5000, 10, 000 and 50, 000 variables.
The number of observations is set to m = 150 for all matrices. The sparsity levels
considered are s = 5, 10, . . . , 250, and for each sparsity level we generated 100
realizations. We will measure the effectiveness of the algorithms according to the
average proportion of variability explained by the algorithm with respect to the largest
eigenvalue of the data covariance matrix (i.e., xTAx/λ1(A), where x is the solution
and λ1(A) is the largest eigenvalue of A).

5.1.1 GCW Versus PCW

First, we would like to compare the effectiveness and performance of the CW-based
algorithms proposed in the previous section: GCW and PCW.We conducted the com-
parison based on data matrices with 2, 000 variables and the results are given in Fig. 1.

We can clearly see that both methods achieve similar results with respect to the
function values, while PCW achieves these results in a fraction of the time. Thus,
in the remaining numerical study, we will omit GCW. Although the partial version
remarkably reduces the computation time, it is still not competitive for very large-scale
problems when a full path of solutions is required. Thus, for such cases, we will also
examine the effect of initializing PCW with the solution of the previous run (with the
smaller sparsity level), and we will refer to such a continuation scheme as PCWcont .
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Fig. 1 GCW versus PCW—the proportion of explained variability is given in the left figure and the
computation time is given in the right one. The plot in both figures are given as a function of the sparsity
level
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Fig. 2 PCW versus others—the proportion of explained variability as a function of the sparsity level for
n = 5000, 10, 000 and 50, 000 are given in the upper left, upper right and bottom figures, respectively

5.1.2 PCW Versus Alternative Methods

We will now compare the effectiveness and performance of PCW with respect to the
alternative algorithms mentioned earlier. The setting for this set of experiments is
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Fig. 3 PCW versus alternative methods—the cumulative computation times as a function of the sparsity
level for n = 5, 000, 10, 000 and 50, 000 are given in the upper left, upper right and bottom, respectively.
The SVD time is the time required for computing the principal eigenvector of the covariance matrix that
corresponds to the generated data, which is used in order to find the thresholding solution, and in order to
initialize the CW and ConGradU algorithms

the same as the one described in the previous example, but with problems with n =
5, 000, 10, 000 and 50, 000 variables. Figure 2 provides the proportion of explained
variability as a function of the sparsity level.

For small sparsity levels (< 50), most of the algorithms provide similar results,
but as the sparsity level is increased, the CW algorithms becomes superior to all the
other methods. This advantage is not achieved without a price. In Fig. 3 we provide
the cumulative computation time of the algorithms (the cumulative time is considered
since the approximate greedy algorithm provides a full set of solutions).

Even though PCW has greatly decreased the computation time with respect to
GCW, it still requires a notably higher amount of computation time with respect to the
alternative algorithms. The scheme we referred as PCWcont achieves similar results
to PCW with respect to the function value. Regarding the running time, this scheme
is competitive to the EM algorithm and requires somewhat more computational effort
than the ConGradU and approximate greedy algorithms, thus providing a reasonable
approach when a full set of solutions is required.
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Fig. 4 Leukemia gene expression data—the proportion of explained variability is given in the left figure
and the cumulative computation time is given in the right one. The plot in both figures are given as a function
of the sparsity level
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Fig. 5 Gene expression data—the left figure illustrates for each sparsity level the proportion of the number
of datasets for which each algorithm obtained the best solution. The right figure illustrates for each sparsity
level the mean error with respect to the best solution (the approximate greedy and thresholding algorithms
were disregarded since both of them provide relative poor results)

5.2 Gene Expression Dataset

Sparse PCA is extensively utilized in the identification of the genes that reflect the
changes in the gene expression patterns during different biological states, thus con-
tributing to the diagnosis and research of certain diseases such as cancer. Figure 4
illustrates the proportion of explained variability and the cumulative running time for
a Leukemia dataset [22]. This dataset is composed from gene expression profiles of
72 patients with 12582 genes. The dataset is normalized such that it has zero mean
and unit variance.

Most of the algorithms under consideration provide similar results with respect to
the explained variability, which might indicate that this problem is, in a sense, rather
easy to solve. We conducted similar experiments for additional 20 gene expression
datasets from the GeneChip oncology database [23] that is publicly available in: http://
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compbio.dfci.harvard.edu/compbio/tools/gcod while commonly, all the algorithms
provided similar results, we can still see in Fig. 5 that PCW yields the best solution
(with respect to the function value) more times than the alternative algorithms, and
consequently it obtains the smallest mean error with respect to the best solution.

6 Conclusions

In this paper, we considered the problem of maximizing a continuously differentiable
convex function over the intersection of an l2 unit ball and a sparsity constraint. We
have shown that coordinate-wise maximality is a more restrictive condition than co-
stationarity, which is the basis of many well-known methods for solving the sparse
PCA problem. We introduced two algorithms (GCW and PCW) that are guaranteed to
produce a CW-maximal solution and demonstrated empirically the potential benefit
of using this algorithms over some common algorithms proposed for this problem.
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