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a b s t r a c t

We consider the problem of minimizing the sum of a strongly convex function and a term comprising
the sum of extended real-valued proper closed convex functions. We derive the primal representation of
dual-based block descentmethods and establish a relation between primal and dual rates of convergence,
allowing to compute the efficiency estimates of different methods. We illustrate the effectiveness of the
methods by numerical experiments on total variation-based denoising problems.
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1. Introduction

1.1. The basic setting

In this paper, our aim is to devise simple methods for solving
minimization problems of the form

(P) min
x∈E


f (x)+

m
i=1

ψi(x)


,

with E being a given final dimensional Euclidean space with inner
product ⟨·, ·⟩ and associated Euclidean norm ∥x∥ ≡

√
⟨x, x⟩.

The functions f and ψi satisfy the following conditions that are
summarized in one assumption.

Assumption 1. • f : E → (−∞,∞] is a closed, proper extended
valued σ -strongly convex function.

• ψi : E → (−∞,∞] (i = 1, 2, . . . ,m) is a closed, proper
extended real-valued convex function.

• ri(dom f ) ∩
m

i=1 ri(domψi)


≠ ∅.

Under the latter assumption, problem (P) has a unique mini-
mizer that we denote by x∗; the optimal value is denoted by fopt =
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f (x∗). The dual problem of (P) is given by

(D) max
y


q(y) ≡ −f ∗


−

m
j=1

yj


−

m
j=1

ψ∗

j (yj)


, (1.1)

where f ∗(·) = supx∈E⟨·, x⟩−f (x) andψ∗

i (·) = supx∈E⟨·, x⟩−ψi(x)
are the corresponding conjugate functions. The duality between (P)
and (D) is obviously a simple application of Fenchel’s (aswell as La-
grangian) duality [18]. In this specific form, it is also known as the
duality between the regularized consensus problem and the shar-
ing problem (see Section 7 of [7]).

Since Slater’s condition is satisfied, and since the primal prob-
lem is bounded below, strong duality holds, which means that the
optimal solution of the dual problem is attained and the optimal
value of the dual problem, which we denote by qopt, coincides with
the primal optimal value:

fopt = val (P) = val (D) = qopt.

Using the notation y = (y1, y2, . . . , ym), the dual problem (D) in
minimization form can be written as

min
y∈Em


H(y) ≡ F(y)+

m
i=1

Ψi(yi)


(1.2)

with

F(y) ≡ f ∗


−

m
j=1

yj


, Ψj(yj) ≡ ψ∗

j (yj). (1.3)

Under Assumption 1, Ψ1,Ψ2, . . . ,Ψm are closed, proper and
convex and, by the well-known Baillon–Haddad Lemma (see
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[19, Section 12H]), F is an L-smooth function with L =
m
σ
, meaning

that ∥∇F(y)− ∇F(w)∥ ≤ L∥y − w∥ for any y,w ∈ E. In addition,
for any i, ∇iF is Lipschitz continuous with constant 1

σ
. The optimal

solution set of the dual problem will be denoted by Y ∗.

1.2. Paper layout

The main objective of the paper is to present a convergence
analysis of dual-based decomposition methods for solving (P),
where the basic step in the dual algorithm will either consist of
a well known exact minimization [10] or a proximal gradient step
[3,9] with respect to the corresponding block of dual variables. We
begin in Section 2 by deriving a primal representation of both dual
block proximal gradient and dual alternating minimization meth-
ods. We then establish in Section 3 a relation between certain pri-
mal and dual distances to optimality that allows to automatically
translate any rate of convergence result in the dual space into a rate
of convergence result in the primal space. We then utilize known
results on rates of convergence for variables decomposition meth-
ods in order to establish new corresponding results for dual-based
decomposition methods. Finally, we demonstrate in Section 4 the
potential of the derived methods in the context of total variation-
based denoising problems.

1.3. Literature review

Variables decomposition methods such as the alternating
minimization method were extensively studied for many years,
see e.g., [1,6,16,10]. Rate of convergence results under certain
strong convexity and/or error boundassumptionswere established
in [10,13]. The first rate of convergence result in the deterministic
setting without any strong convexity/error bounds assumption
was established in [5], where an O(1/k) rate convergence of
the block coordinate gradient projection method was shown. In
the unconstrained case, it was shown that the method can be
accelerated to a rate of O(1/k2). The work [5] also established
an O(1/k) rate of convergence for the alternating minimization
method with two blocks in the smooth unconstrained case with
a multiplicative constant that depends on the minimum of the
block Lipschitz constants. The latter was later generalized in [2]
to the case of a composite objective function with a separable
nonsmooth paper. Recently, it was shown in [11] that a sublinear
rate of convergence can also be established for the block proximal
gradient and alternating minimization methods with arbitrary
number of blocks. Randomized methods in which the blocks are
not picked by a deterministic rule, but rather by some random
distribution on the indices set are also the topic of an extensive
research [15,17,12].

The idea of solving a problem of the form (P) via a dual-based
block decompositionmethod for the casem = 2was studied in [8].

2. Dual-based block descent methods

2.1. Step types

We begin by describing the two types of minimization opera-
tions that will be employed on a given block i ∈ {1, 2, . . . ,m}.
We assume that the dual variables are given by yj = ȳj, j ∈

{1, 2, . . . ,m}, and showhow to compute the newvalue of yi, which
we denote by ynewi . We consider two options for the dual step em-
ployed on the ith block:
• dual exact minimization step.

ynewi ∈ argmin
yi


f ∗


−

m
j=1,j≠i

ȳj − yi


+ ψ∗

i (yi)


. (2.1)

Note that for this minimization step, the value of ȳi is not being
used.

• dual proximal gradient step.

ynewi = proxσψ∗
i


ȳi + σ∇f ∗


−

m
j=1

ȳj


. (2.2)

2.1.1. Primal representation of the dual exact minimization step
To derive a primal representation of (2.1), let us write it as

min
yi,w


f ∗(w)+ ψ∗

i (yi) : w + yi = −ỹi

, (2.3)

where ỹi =
m

j=1, j≠i ȳj. The dual problem of (2.3) is

max
x

min
w,yi


f ∗(w)+ ψ∗

i (yi)− ⟨x,w + yi + ỹi⟩


= max
x


min
w
(f ∗(w)− ⟨x,w⟩)


+


min
yi
(ψ∗

i (yi)− ⟨x, yi⟩)


− ⟨x, ỹi⟩


= max
x


−f (x)− ψi(x)− ⟨x, ỹi⟩


,

where in the last equality we used the fact that f = f ∗∗ and
ψi = ψ∗∗

i (since f and ψi are closed, proper and convex). We
can thus conclude that ynewi can be determined by first computing
x̄ ∈ argminx∈E


f (x)+ ψi(x)+ ⟨ỹi, x⟩


, and then choosing ynewi ∈

argmaxyi

⟨yi, x̄⟩ − ψ∗

i (yi)

, which is exactly the same as ynewi ∈

∂ψi(x̄). Therefore, step (2.1) is equivalent to
Primal representation of the dual exact minimization step:

x̄ = argmin
x∈E


f (x)+ ψi(x)+ ⟨ỹi, x⟩


,


ỹi =


j≠i

ȳj


(2.4)

ynewi ∈ ∂ψi(x̄). (2.5)

When f is also assumed to be continuously differentiable over
E, we can use the first-order optimality condition on problem (2.4)
to conclude that −∇f (x̄) − ỹi ∈ ∂ψi(x̄). Therefore, step (2.5) can
be replaced (in this setting) with ynewi = −∇f (x̄)− ỹi.

2.1.2. Primal representation of the dual proximal gradient step
To find a primal representation of (2.2), first note that

∇f ∗


−

m
j=1

ȳj


= argmax

x∈E


−

m
j=1

ȳj, x


− f (x)



= argmin
x∈E


f (x)+


m
j=1

ȳj, x


.

By denoting the above argmin/argmax by

x̄ = argmin
x∈E


f (x)+


m
j=1

ȳj, x


,

we obtain that the proximal gradient step takes the form ynewi =

proxσψ∗
i
(ȳi + σ x̄). Using the Moreau decomposition formula [14],

prox σψ∗
i
(z) = z − σproxψi/σ

(z/σ), and hence,

ynewi = ȳi + σ x̄ − σproxψi/σ


ȳi
σ

+ x̄

.
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Therefore, step (2.2) can be rewritten as
Primal representation of the dual proximal gradient step:

x̄ = argmin
x∈E


f (x)+ ⟨

m
j=1

ȳj, x⟩


,

ȳnewi = ȳi + σ x̄ − σproxψi/σ


ȳi
σ

+ x̄

.

2.2. Methods

Using the primal presentations of the dual block descent steps,
we can nowwrite explicitly the dual alternating minimization and
dual block proximal gradient methods.

Dual Alternating Minimization. We begin by describing the
dual alternating minimization method.

Dual Cyclic Alternating Minimization Method (DAM-C)
Initialization. y0 = (y00, y

0
1, . . . , y

0
m) ∈ Em.

General Step (k = 0, 1, 2, 3, . . .).

• Set yk,0 = yk.
• For i = 0, 1, . . . ,m − 1, define yk,i+1 as follows:

xk,i = argmin
x∈E


f (x)+ ψi+1(x)+ ⟨

m
j=1,j≠i+1 y

k,i
j , x⟩


yk,i+1
j


∈ ∂ψi+1(xk,i) j = i + 1,
= yk,ij j ≠ i + 1.

• Set yk+1
= yk,m and xk = xk,0.

As before, if f ∈ C1, then the update rule for yk,i+1
i+1 can be

replaced by yk,i+1
i+1 = −∇f (xk,i) −

m
j=1, j≠i+1 y

k,i
j . The above

scheme uses a cyclic index selection strategy, which is obviously
a deterministic rule. Another strategy which is quite common [15]
is randomized index selection strategy in which at each iteration
an index is picked according to a uniform distribution.
Dual Block Proximal Gradient

In the dual block proximal gradient method, at each iteration
a proximal gradient step is performed in the dual space. Below we
describe the variant inwhich the index is chosen in a cyclicmanner.

Dual Cyclic Block Proximal Gradient Method (DBPG-C)
Initialization. (y00, y

0
1, . . . , y

0
m) ∈ Em.

General Step (k = 0, 1, 2, 3, . . .).

• Set yk,0 = yk.
• For i = 0, 1, . . . ,m − 1, define yk,i+1 as follows

xk,i = argmin
x∈E


f (x)+ ⟨

m
j=1 y

k,i
j , x⟩


,

yk,i+1
j =


yki+1 + σxk,i

−σproxψi+1/σ


yki+1
σ

+ xk,i


j = i + 1,

yk,ij , j ≠ i + 1.

• Set yk+1
= yk,m and xk = xk,0.

Note that in both DAM-C and DBPG-C we use a cyclic index
selection rule. In the sequel we will also refer to the randomized
versions, DBPG-R, in which at each iteration an index is picked at
random via a uniform distribution.
3. Convergence analysis

3.1. The primal–dual rate relation

Suppose that in the dual space we have an arbitrary algorithm
that produces points {yk} satisfying

qopt − q(yk) ≤ θ(k),

where θ(k) is the so-called efficiency estimate, which goes to 0 as
k tends to ∞. We would like to establish a rate of convergence
of the primal sequence, which is denoted by {xk} in each of the
described algorithms. Note that the definition of xk, given the dual
variables vector yk is not the same for the DBPG and DAMmethods.
The formula for xk in the DBPG method is

xk = argmin
x


f (x)+


m
j=1

ykj , x


, (3.1)

while the formula for xk in the DAMmethod is

xk = argmin
x


f (x)+ ψik(x)+


j≠ik

ykj , x


(3.2)

for some ik ∈ {1, 2, . . . ,m}. Note that the above holds also for the
randomized versions of the algorithms.

Theorem 3.1 (Primal–Dual Relation). Let ȳ satisfy ȳj ∈ domψ∗

j for
any j ∈ {1, 2, . . . ,m}. Let x̄ be defined by either

x̄ = argmin
x


f (x)+


m
i=j

ȳj, x


(3.3)

or

x̄ = argmin
x


f (x)+ ψi(x)+


m

j=1,j≠i

ȳj, x


(3.4)

for some i ∈ {1, 2, . . . ,m}. Then

∥x̄ − x∗
∥
2

≤
2
σ
(qopt − q(ȳ)). (3.5)

Before proving the theorem, we note that for the case where x̄
is defined by (3.3), the result was already established (although not
explicitly stated) as part of the proof of [4, Theorem 4.1]. We thus
only prove the result for the case where x̄ is defined by (3.4).

Proof. Assume that x̄ is defined by (3.4). Define the vectors z̄j as

z̄j ∈ argmin
z∈E


ψj(z)− ⟨ȳj, z⟩


, j = 1, 2, . . . ,m. (3.6)

For any k ≥ 0, we will define

h̃(x) ≡ f (x)+ ψi(x)+


m

j=1,j≠i

ȳj, x



s̃(z[i]) = s̃(z1, . . . , zi−1, zi+1, . . . , zm) ≡

m
j=1,j≠i

[ψj(zj)− ⟨ȳj, zj⟩],

where here we use the notation that given a vector v =

(v1, v2, . . . , vm) ∈ Em, then for any k ∈ {1, 2, . . . ,m}, we define
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v[k] ∈ Em−1 as v[k] = (v1, . . . , vk−1, vk+1, . . . , vm). Let us consider
the following Lagrangian function (x ∈ dom f , zj ∈ domψj):

Li(x, z; ȳ) = f (x)+ ψi(x)+


j=1,j≠i

ψj(zj)+

m
j=1,j≠i

⟨ȳj, x − zj⟩

= f (x)+ ψi(x)+


m

j=1,j≠i

ȳj, x



+

m
j=1,j≠i

[ψj(zj)− ⟨ȳj, zj⟩].

Note that the Lagrangian function Li does not depend on the input
vector yi and the Lagrangemultipliers vector ȳi. The definition of Li
readily implies that

Li(x, z; ȳ) = h̃(x)+ s̃(z[i]).

By the σ -strong convexity of h̃ and the definition of z̄j and x̄ (see
(3.6)), we have h̃(x) − h̃(x̄) ≥

σ
2 ∥x − x̄∥2 and s̃(z[i]) − s̃(z̄[i]) ≥

0. Summing the two inequalities, we obtain that for any x ∈

dom f , z ∈ domψ1 × · · · × domψm:

Li(x, z; ȳ)− Li(x̄, z̄; ȳ) ≥
σ

2
∥x − x̄∥2. (3.7)

Defining z∗

j = x∗, and using the optimality of x∗, we obtain that

Li(x∗, z∗
; ȳ) = qopt. (3.8)

In addition,

q(ȳ) = min
x,z

f (x)+

m
j=1


ψj(zj)+ ⟨ȳj, x − zj⟩


≤ min

x,z


f (x)+

m
j=1


ψj(zj)+ ⟨ȳj, x − zj⟩


: zi = x



= min
x,z[i]


f (x)+ ψi(x)+

m
j=1,j≠i


ψj(zj)+ ⟨ȳj, x − zj⟩


= Li(x̄, z̄; ȳ). (3.9)

Thus, plugging x = x∗, z = z∗ in (3.7) and using (3.8) and the
inequality (3.9), the desired inequality (3.5) follows. �

We can readily write a result on the rate of convergence of
the primal sequence, given an efficiency estimate for the dual se-
quence.

Theorem 3.2. Let {yk}k≥0 be any sequence satisfying ykj ∈

dom ψ∗

j , j = 1, 2, . . . ,m, and assume that xk is defined by ei-
ther (3.1) or by (3.2) for some i ∈ {1, 2, . . . ,m}. If

qopt − q(yk) ≤ θ(k),

where θ : N → R++ is any positive-valued function of natural num-
bers. Then

∥xk − x∗
∥
2

≤
2
σ
θ(k).

When the algorithm is not deterministic, the result is replaced by
a result with expectations.

Theorem 3.3. Let {yk}k≥0 be a sequence of random variables
satisfying ykj ∈ dom ψ∗

j for any j ∈ {1, 2, . . . ,m} and k ≥ 0,
and assume that xk is defined by either (3.1) or by (3.2) for some
ik ∈ {1, 2, . . . ,m}. Suppose that q∗

− E(q(yk)) ≤ θ(k). Then
E

∥xk − x∗

∥
2


≤
2
σ
θ(k).
3.2. Rate of convergence of variables decomposition methods

As was noted in the introduction, the rates of convergence of
various variables decomposition methods have been established
in the literature. In the table below, known efficiency estimates are
summarized in the terminology used in this paper.

Method Complexity result Remarks Source
BPG-C qopt − q(yk) ≤

C1
k+1 Ψ ∗

i indicators, generalm [5]

BPG-C qopt − q(yk) ≤
C2
k+1 General Ψi andm [11]

BPG-R qopt − E(q(yk)) ≤
mC3
m+k General Ψi andm [12]

AM-C qopt − q(yk) ≤
C4
k m = 2 [2]

AM-C qopt − q(yk) ≤
C5
k+1 General Ψi andm [11]

The constants that appear in the efficiency estimates are:

C1 =
3m [(2m + 1)R + σM]2

σ
,

C2 = 2σmG2
maxR

2 max


2
σmG2

maxR2
− 2, qopt − q(y0), 2


,

C3 =
1
2σ

min
y∗∈Y∗

∥y0 − y∗
∥
2
+ qopt − q(y0),

C4 = 3max

qopt − q(y0),

1
σ
R2

,

C5 =

2m2R2 max


2σ
m2R2

− 2, qopt − q(y0), 2


σ

with M = maxy∗∈Y∗ ∥∇F(y∗)∥ and R = maxy∈Em,y∗∈Y∗{∥y −

y∗
∥ : q(y) ≥ q(y0)}. The constant Gmax is an upper bound on the

maximumof several Lipschitz constants of the gradient of an upper
bounding function of q (more details can be found in [11]).

3.3. Rates of convergence of dual-based variables decomposition
methods

Based on the primal–dual relation (Theorem 3.1), we can now
convert the dual rates of convergence presented in the table of
Section 3.2 to rates of convergence of the primal sequence. The new
efficiency estimates for the primal sequence are given in the table
below.

Method Complexity result Remarks
DBPG-C ∥xk − x∗

∥
2

≤
2C1

σ(k+1) Ψ ∗

i indicators, generalm

DBPG-C ∥xk − x∗
∥
2

≤
2C2

σ(k+1) General Ψi andm

DBPG-R E(∥xk − x∗
∥
2) ≤

2mC3
σ(m+k) General Ψi andm

DAM-C ∥xk − x∗
∥
2

≤
2C4
σk m = 2

DAM-C ∥xk − x∗
∥
2

≤
2C5

σ(k+1) General Ψi andm

4. Numerical study

In this section we will illustrate the effectiveness and efficiency
of the proposed algorithms for solving the total variation (TV)
image denoising problem. The MATLAB code together with
additional information regarding the implementation and the
experiments could be found in the Dual Block Coordinate-
Total Variation (DBC-TV) package that is available in the link
http://tx.technion.ac.il/~yakovv/packages/DBC-TVpackage.zip.

http://tx.technion.ac.il/%7Eyakovv/packages/DBC-TVpackage.zip
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(a) TVI : ψ1 . (b) TVI : ψ2 . (c) TVI : ψ3 .

Fig. 1. The decomposition of 16× 12 pixels Mario image according to the isotropic TV into three separable functions. The images are partitioned into blocks of three pixels
positioned in an r-shaped structure. Each block encompasses the three pixels that form the term


(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2 . Summing over all the terms represented

by the blocks of any of the above images yields the appropriate separable function.
4.1. Total variation

The discrete TV ROF model for image denoising is given by the
optimization problem

min
x∈Rm×n

0.5∥x − b∥
2
F + θ · TVI(x), (TV)

where ∥ · ∥F stands for the Frobenius norm, b is the observed noisy
image, x is the ‘‘true’’ image to be recovered and θ > 0 is the
regularization parameter that defines the trade-off between the
data fidelity and regularity terms. The last component of themodel
is the semi-norm TVI(·) that stands for the discrete isotropic TV.

x ∈ Rm×nTVI(x) =

m−1
i=1

n−1
j=1


(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

+

m−1
i=1

|xi,n − xi+1,n| +

n−1
j=1

|xm,j − xm,j+1|. (4.1)

4.2. The decomposition

The expression (4.1) that defines the isotropic TV can be
decomposed into separable functions. Under such decomposition,
themodel givenby (TV) canbe equivalently presented as themodel
(P). To describe the decomposition, we introduce the following
notation. Let Dk denote the set of indices that correspond to the
elements of the kth diagonal, where D0 represents the indices set
of the main diagonal, and Dk for k > 0 and k < 0 stands for
the diagonals above and below the main diagonal, respectively. In
addition, consider the partition of the diagonal indices set, {−(m−

1), . . . , n − 1}, into three sets

Ki ≡

k ∈ {−(m − 1), . . . , n − 1} : (k + 1 − i) mod 3 = 0


i = 1, 2, 3.

Now we are ready to write the definition of TVI as

TVI(x) =

m
i=1

n
j=1


(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

=


k∈K1


(i,j)∈Dk


(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

+


k∈K2


(i,j)∈Dk


(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2
+


k∈K3


(i,j)∈Dk


(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

= ψ1(x)+ ψ2(x)+ ψ3(x).

This particular partition of the diagonals is the one with the
smallest amount of sets such that for any a, b ∈ Ki we have
|a − b| > 2. The latter property guarantees that the functions
gi are separable. See the illustration in Fig. 1. We note that the
decomposition considered here is verymuch different than the one
considered in [8], where anisotropic or approximate-isotropic TV
functions were considered.

Under the latter decomposition the optimization problems that
need to be solved in the DAM and DBPG methods are separable
and consequently easy to solve. Indeed, each such problem can be
solved by solving simultaneously several 3-dimensional problems
that can be solved by Newton’s method employed on the dual
problem.

4.3. Numerical results

We consider the isotropic TV denoising associated with the
512 × 512 ‘‘boat’’ image, available from the USC-SIPI Image
Database—http://sipi.usc.edu/database/, thatwas contaminated by
additive Gaussian noise with zero mean and standard deviation
of 0.05. The numerical study was conducted on a PC with a
3.40 GHz processor with 8 GB RAM. It is easy to see that since
f is a translation and scaling of the squared Euclidean function,
DAM and DBPG are identical for the TV denoising problem.
Thus, we will consider only DAM-C in our numerical study.
The alternative algorithms that we consider are the alternating
directionsmethod ofmultipliers (ADMM) (see the reviewpaper [7]
and reference therein) and the dual FISTA method as proposed
in [4]. Table 1 presents the number of iterations required by each
algorithm in order to obtain an approximate optimality gap within
a specified tolerance. Due to the fact that an optimal solution is not
available, in order to compute an optimality gap, we considered an
approximate solution, which we obtained by running dual FISTA
for 10,000 iterations.

We can see that with respect to the convergence rate, DAM-C
outperforms ADMM for the regularization parameter values under
consideration except for large tolerance parameters with θ = 0.5.
In addition, DAM-C outperforms dual FISTA for small values of θ ,
but as the regularization parameter is increased, DAM-C is superior
to dual FISTA in the first iterations but eventually, dual FISTA
obtained better results. The per iteration complexity of ADMM is
scalable to the one of DAM-C; hence, it is reasonable to compare

http://sipi.usc.edu/database/
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Table 1
Number of iterations required to obtain a solution with a specified optimality gap.

Tolerance θ = 0.05 θ = 0.1 θ = 0.5
DAM-C ADMM FISTA DAM-C ADMM FISTA DAM-C ADMM FISTA

15 · 10−2 2 4 3 3 5 6 25 23 40
5 · 10−2 3 7 7 7 10 16 93 87 103
5 · 10−3 15 27 28 50 81 67 725 896 336
1 · 10−3 37 >1000 58 122 >1000 133 >1000 >1000 610
Table 2
Number of iterations and time required for DAM-C and dual FISTA to obtain similar primal objective
value (θ = 0.1). The left table corresponds to exact minimization while the right table corresponds to
an approximation via a single step of Newton’s method.

Exact minimization Approximate minimization
DAM-C FISTA DAM-C FISTA
Iterations Time (s) Iterations Time (s) Iterations Time (s) Iterations Time (s)

5 0.665 10 0.683 5 0.450 10 0.683
6 0.844 12 0.820 20 2.209 38 2.604

20 3.608 36 2.466 40 4.665 40 4.321
50 9.961 66 4.527 60 7.149 93 6.386

100 20.741 112 7.693 80 9.637 136 9.344
230 49.070 829 57.030 100 12.122 726 49.939
233 49.734 >10,000 >650 101 12.247 >10,000 >650
these algorithms based on the convergence rates of the primal
objective function. However, to make a fair comparison between
DAM-C and dual FISTA, we will compare in Table 2 the time that is
required by the methods to obtain the same optimality gap.

We can see that, with respect to the running time, DAM-C
outperforms dual FISTA in the first few iterations. In addition, after
some point dual FISTA does not seem to significantly improve
the primal objective value—a complication that does not occur
for DAM-C. Inexact minimization of the dual of the problem
that is solved at each iteration of DAM-C further enhances the
aforementioned advantages of DAM-C, not onlywith respect to the
execution time, but also with respect to the empirical convergence
rate.
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