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Fisher linear discriminant analysis is a well-known technique for dimensionality reduction and classifica-
tion. The method was first formulated in 1936 by Fisher. In this paper we concentrate on three different 
formulations of the multi-dimensional problem. We provide a mathematical explanation why two of the 
formulations are equivalent and prove that this equivalency can be extended to a broader class of objec-
tive functions. The second contribution is a rate of convergence of a fixed point method for solving the 
third model.
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1. Introduction

1.1. Fisher’s paper

The beginning of linear discriminant analysis (LDA) can be 
traced back to Ronald A. Fisher’s 1936 seminal paper [4]. Fisher 
analyzed data from the flowers of plants, each belonging to one 
of the two species Iris setosa and Iris versicolor, found growing to-
gether in the same colony. Four measurements were given for each 
of the flowers (sepal length, sepal width, petal length, petal width), 
and fifty samples were available from each of the two species. 
Fisher then raises his main research question

[4, Section II] We shall first consider the question: what linear 
function of the four measurements

X = λ1x1 + λ2x2 + λ3x3 + λ4x4

will maximize the ratio of the difference between the specific 
means to the standard deviations within species?

To describe Fisher’s criterion in precise mathematical terms, 
we will first denote the fifty samples of the Iris setosa species 
by y1, y2, . . . , y50 ∈ R4, and the fifty samples of the Iris versi-
color species by z1, z2, . . . , z50 ∈ R4. Essentially, Fisher was in-
terested in finding a direction 0 �= v ∈ R4 for which the fifty 
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scalars {yT
1 v, . . . , yT

50v} are “well separated” from the fifty scalars 
{zT

1 v, . . . , zT
50v}. The measure Fisher suggested (up to a constant) 

for quantifying the level of separation is the following ratio:

R(v) = (ȳT v − z̄T v)2∑50
i=1(yT

i v − ȳT v)2 + ∑50
i=1(zT

i v − z̄T v)2
, (1.1)

where here ȳ = 1
50

∑50
i=1 yi, ̄z = 1

50

∑50
i=1 zi are the means of each of 

the classes. In this notation, ȳT v and z̄T v are the means of the two 
projected classes. Therefore, the nominator in (1.1) is the square of 
the difference between the projected class means, and the denom-
inator is the sum of variances within each of the projected classes, 
namely the pooled variance. The optimization problem consists of 
maximizing R(v) over all the possible nonzero vectors v.

Fisher showed that the optimal solution of the above prob-
lem can be expressed as a solution to a certain linear system. 
The problem that Fisher solved was actually the two-classes one-
dimensional LDA problem where “one-dimensional” here means 
that the data is projected onto a one-dimensional space.

Despite being a classical dimensional reduction and classifica-
tion technique, the literature is surprisingly inconsistent regarding 
the identity of the “correct” multi-dimensional variant of the LDA 
problem. The next section describes three of the (probably) most 
popular formulations of the multi-dimensional case.

1.2. Three formulations of the LDA problem

We now consider the natural generalization of Fisher’s criterion 
to the multi-class and multi-dimensional case. Assume we have a 
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dataset in Rd which contains n samples from c classes labeled as 
1, 2, . . . , c. Each sample xi ∈Rd, i ∈ {1 . . .n} is associated with one 
class. We denote by C (k) the set containing all the indices of sam-
ples associated with class k. The number of samples in each class 
is nk ≡ ∣∣C (k)

∣∣, so that in particular, n = ∑c
k=1 nk . In general we wish 

to project the dataset into a lower dimensional space Rp , p ≤ d, 
where the different classes can be “easily” separated. We are look-
ing for a matrix, V ∈ Rd×p satisfying VT V = Ip , and we assume 
that the new representation of the data set in Rp is yi ≡ VT xi . 
Note that V contains in its columns an orthonormal basis of the 
p-dimensional subspace of Rd on which the data is projected. We 
denote by μ(k) the center of each class, and by μ the center of the 
entire dataset:

μ(k) = 1
nk

∑
i∈C (k) xi, μ = 1

n

∑n
i=1 xi .

Similarly, the class centers, and the entire sample center in the 
projected space Rp are denoted by

μ̃(k) = 1
nk

∑
i∈C (k) yi = VT μ(k),

μ̃ = 1

n

n∑
i=1

yi = VT μ =
c∑

i=1

ni

n
μ̃(k)

.

We wish to find a projection of the d-dimensional data to Rp

which in some sense maximizes the separation between classes. 
To do so, we follow Fisher’s idea [4] and define a separation mea-
sure which is the ratio of the variance between the classes and the 
variance within the classes

R(V) = φB(V)

φW (V)
. (1.2)

Here φB is the variance of the projected class means and φW is 
the sum of variances within the projected classes (multiplicative 
constants are ignored as they do not change the optimal set of the 
maximization problem):

φB(V) ≡
c∑

k=1

nk‖μ̃(k) − μ̃‖2
2, φW (V) ≡

c∑
k=1

∑
i∈C (k)

∥∥∥yi − μ̃(k)
∥∥∥2

2
.

We can rewrite φB(V) and φW (V) more explicitly as

φW (V) =
c∑

k=1

∑
i∈C (k)

∥∥∥yi − μ̃(k)
∥∥∥2

2
=

c∑
k=1

∑
i∈C (k)

∥∥∥VT
(

xi − μ(k)
)∥∥∥2

2

=
c∑

k=1

∑
i∈C (k)

Tr

(
VT

(
xi − μ(k)

)(
xi − μ(k)

)T
V
)

= Tr(VT WV),

φB(V) =
c∑

k=1

nk‖VT μ(k) − VT μ‖2
2

= Tr

(
VT

(
c∑

k=1

nk

(
μ(k) − μ

)(
μ(k) − μ

)T
)

V

)

= Tr
(

VT BV
)

,

where B and W are the so-called “between-class” “within-class” 
scatter matrices respectively given by

W ≡
c∑

k=1

∑
i∈Ck

(
xi − μ(k)

)(
xi − μ(k)

)T
,

B ≡
c∑

nk

(
μ(k) − μ

)(
μ(k) − μ

)T
.

k=1

2

To summarize, Fisher’s LDA problem is naturally generalized to the 
maximization problem

(FLDA)
max

{
φB (V)
φW (V)

= Tr(VT BV)

Tr(VT WV)

}
s.t. VT V = Ip,V ∈Rd×p .

(1.3)

The specific formulation above is also called the trace ratio problem
and its solution will be discussed later on in Section 3. Note that 
by its definition, W is positive semidefinite, and we will assume 
throughout the paper that W � 0.

Perhaps surprisingly, while in the one-dimensional case (p =
1), the formulation (FLDA) is well agreed, different formulations 
for the multidimensional case (p > 1) exist in the literature [2,3,
5]. In fact, the trace ratio formulation is not considered to be the 
“standard” formulation since it was often thought-of as too hard to 
handle, see for example the discussion in [8]. However, it is now 
well known that the problem can be efficiently solved [8]. One of 
the popular formulations for the LDA problem (see e.g., [2,5]) is 
given by

(LDA-T)
maxV Tr((VT WV)−1(VT BV))

s.t. VT WV � 0,V ∈Rd×p .
(1.4)

Another possibility is to exchange the trace by a determinant in 
the above problem, leading to the formulation

(LDA-D)
maxV det((VT WV)−1(VT BV))

s.t. VT WV � 0,V ∈Rd×p .
(1.5)

1.3. Contributions

The natural question that arises is what are the connections 
between the optimal solutions of the three models defined above. 
It is known [5] that the two most common formulations (LDA-T) 
and (LDA-D) can be solved via a matrix whose columns consist 
of p leading W-orthogonal generalized eigenvalues of the ma-
trix pair (B, W). This solution will be referred to from now on 
as “the generalized eigenvalue solution”. The fact that the trace 
and determinant-based problems share common optimal solutions 
raises the natural question whether this phenomenon holds for a 
larger class of functions, and not just the trace and the determi-
nant. Our first contribution will be to show that this is indeed the 
case.

• Contribution 1. We will show in Section 2 that the generalized 
eigenvalue solution is an optimal solution of the problem

(LDA-G)
maxV F((VT WV)−1(VT BV))

s.t. VT WV � 0,V ∈Rd×p,

whenever F belongs to the class of symmetric spectral func-
tions, a notion that will be defined later in Section 2.

The second contribution of the paper relates to the solution of the 
trace ratio problem (FLDA). In Section 3 we will study the rate of 
convergence of the fixed point scheme

Vk+1 ∈ argmax
V∈Rd×p

{
Tr

(
VT

[
B − φB(Vk)

φW (Vk)
W

]
V
)

: VT V = Ip

}

The method was first introduced in [10], where convergence to the 
global optimal solution was established. An interpretation of the 
scheme as a Newton method was shown in [8]. Local quadratic 
and superlinear convergence rates of the method were established
in the works [12] and [13] respectively.
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• Contribution 2. In this paper we quantify the superlinear 
rate of convergence of the fixed point scheme. Specifically, 
we prove the following upper bound on the rate of conver-
gence ( f denotes the objective function and fopt is the optimal 
value):

fopt − f (Vn) ≤ ( fopt − f (V0))α
nβn2

,

where α > 0 and β ∈ (0, 1) are constants that will be explicitly 
given.

Notice that since there exists proof of a local quadratic conver-
gence under the same assumption we use in this paper, and hence 
the upper bound above is not tight.

1.4. Preliminaries on eigenvalues

The set of n ×n symmetric matrices is denoted by Sn , the set of 
all n ×n positive semidefinite (definite) matrices by Sn+ (Sn++), and 
the set of n ×n orthogonal matrices by On . For two integers d ≥ p, 
the Stiefel manifold is the set Sd,p = {X ∈ Rd×p : XT X = Ip}. The 
eigenvalues of a symmetric matrix A ∈ Sn are denoted by λ1(A) ≥
λ2(A) ≥ · · · ≥ λn(A). Given an integer k ∈ {1, 2, ..., n}, a set of “k
leading eigenvectors” of A is a set of eigenvectors {v1, v2, . . . , vk}
that correspond to the eigenvalues λ1(A), λ2(A), . . . , λk(A) respec-
tively. Suppose that we are given two matrices A, B ∈ Sn . Then a 
generalized eigenvalue of the matrix pair (A, B) is a nonzero vector 
v satisfying Av = λBv for some λ ∈ R. The scalar λ is referred to 
as a “generalized eigenvalue of the matrix pair (A, B)”. The concept 
of “leading generalized eigenvectors” is defined similarly. Later on, 
we will use the fact described in Remark 1.1 below that connects 
generalized eigenvectors with eigenvectors.

Remark 1.1. Let A ∈ Sn and B ∈ Sn++ . If {v1, v2, . . . , vp} is an or-
thonormal set of p leading eigenvectors of B−1/2AB−1/2, then 
{B−1/2v1, B−1/2v2, . . . , B−1/2vp} is a B-orthonormal set of p lead-
ing generalized eigenvalues of the matrix pair (A, B). We recall that 
a set {w1, w2, . . . , wp} is called B-orthonormal if wT

i Bwi = 1 for all 
i and wT

i Bw j = 0 for any i �= j.

2. Solution of (LDA-T) and (LDA-D)

We now consider the formulations (LDA-T) and (LDA-D) ((1.4)
and (1.5) respectively) in the multidimensional case.

We first note that both (LDA-T) and (LDA-D) can be written as

maxV F((VT WV)− 1
2 (VT BV)(VT WV)− 1

2 )

s.t. VT WV � 0,V ∈ Rd×p,
(2.1)

where F(·) = Tr(·) in (LDA-T) and F(·) = det(·) in (LDA-D). In the 
above presentation we also used the cyclic property of the deter-
minant and trace functions. We will show how to solve problem 
(2.1) for the class of problems in which F is an isotonic spectral 
function, whose definition is given below. This class of functions 
includes the trace and determinant functions as special cases.

Definition 2.1 (isotonic spectral function). A function F : Sp
+ →R is 

called an isotonic spectral function if there exists a continuous 
function G :Rp

+ →R such that

F(H) = G(λ1(H), . . . , λp(H)),

and G is isotonic over Rp
+ , meaning that G(x) ≥ G(y) whenever 

x ≥ y and x, y ∈Rp
+ .
3

Example 2.2. The determinant and trace functions are isotonic 
spectral functions since for any symmetric matrix H ∈ Sp

+ it holds 
that

det(H) =
p∏

i=1

λi(H),

Tr(H) =
p∑

i=1

λi(H),

and both the product and sum functions are isotonic over the non-
negative orthant. Another class of isotonic spectral functions is the 
class of Schatten norms [6]. For any m ≥ 1, the Schatten m-norm is 
the function ‖H‖Sm ≡ m

√∑p
i=1 λi(H)m (H ∈ Sp

+), and the isotonicity 
of ‖ · ‖Sm follows by the isotonicity of the �m-norm over Rp

+ .

We begin by showing that problem (2.1) can be transformed 
into a problem over the Stiefel manifold.

Lemma 2.3. Let W ∈ Sd++ , B ∈ Sd+ , and let F : Sp
+ →R (p ≤ d) be an 

arbitrary function. Consider the following two optimization problems:

(P1)
maxV F

((
VT WV

)− 1
2 VT BV

(
VT WV

)− 1
2

)
s.t. VT WV� 0,V ∈ Rd×p,

(P2)
maxX F(XT B̃X)

s.t. XT X = Ip,X ∈Rd×p,

where B̃ = W−1/2BW−1/2 . Then if X∗ is an optimal solution of (P2), then 
V = W−1/2X∗ is an optimal solution of (P1).

Proof. We begin by showing that (P1) is equivalent to the problem

(Q1)
maxV F(VT BV)

s.t. VT WV = Ip,V ∈Rd×p

in the sense that any optimal solution of (Q1) is an optimal solu-
tion of (P1). Denote the objective functions of problems (P1) and 
(Q1) by

f P 1(V) ≡ F
((

VT WV
)− 1

2
VT BV

(
VT WV

)− 1
2
)

,

f Q 1(V) ≡ F
(

VT BV
)

respectively. Suppose that V∗ is an optimal solution of problem 
(Q1). We will show that V∗ is an optimal solution of (P1) as well. 
We first note that

val(Q 1) = f Q 1(V∗) = F((V∗)T BV∗).
Also, since (V∗)T WV∗ = I, then

f P 1(V∗) = F
((

(V∗)T WV∗)− 1
2
(V∗)T BV∗ (

(V∗)T WV∗)− 1
2
)

= F((V∗)T BV∗) = val(Q 1). (2.2)

Now, let V be any feasible solution of problem (P1), meaning that 
VT WV � 0. Then Ṽ ≡ V(VT WV)− 1

2 is a feasible solution of (Q1), 
which by the optimality of V∗ implies that

f Q 1(Ṽ) ≤ val(Q 1). (2.3)

Finally, since f Q 1(Ṽ) = F(ṼT BṼ) =
F((VT WV)− 1

2 VT BV(VT WV)− 1
2 ) = f P 1(V) and val(Q 1) = f P 1(V∗)

(see (2.2)), then (2.3) translates to
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f P 1(V) ≤ f P 1(V∗).
As the above was proven for any feasible solution V of (P1), it fol-
lows that V∗ is an optimal solution of (P1). The result now follows 
by noting that making the change of variable X = W1/2V trans-
forms problem (Q1) into problem (P2). �

Note that the equivalency result of Lemma 2.3 holds for an ar-
bitrary function F . In Theorem 2.5 below we show that when F is 
an isotonic spectral function, an optimal solution of problem (P2) 
is a matrix whose columns constitute an orthonormal set of p
leading eigenvectors of B̃. The proof of the theorem requires the 
eigenvalue interlacing theorem, which is now recalled.

Theorem 2.4 (Eigenvalue Interlacing Theorem [11, p. 269]). Let A ∈ Sd

be symmetric and partitioned as

A =
(

B C
CT D

)
,

where B ∈ Sp, D ∈ Sd-p, C ∈ Rp×(d-p) . Then λi(B) ≤ λi(A) for any 
i = 1, 2, . . . , p.

Theorem 2.5. Let C ∈Sd+ . Consider the optimization problem

maxX F(XT CX)

s.t. XT X = Ip,X ∈Rd×p (2.4)

where F : Sp
+ →R is an isotonic spectral function. Then

(a) any matrix whose columns constitute an orthonormal set of p
leading eigenvector of C is an optimal solution of (2.4);

(b) the maximal value of (2.4) is F(�) where � = diag(λ1(C),

. . . , λp(C)).

Proof. We will use the simplified notation λi = λi(C) for the ith 
eigenvalue of C. Let V ≡ (v1, . . . , vp) with v1, v2, . . . , vp being p
orthogonal leading eigenvectors of C corresponding to the eigen-
values λ1, λ2, . . . , λp respectively. Then,

VT CV = diag(λ1, . . . , λp) ≡ �. (2.5)

For any X ∈ Sd,p , we can expand X to complete an orthonormal 
basis for Rd:

X̂ = (
X X′ ) , X̂T X̂ = Id.

Then X̂T CX̂ =
[

XT CX XT CX′

X′T CX
T

X′T CX′

]
.

We can now apply the interlacing eigenvalue theorem (Theo-
rem 2.4) and obtain that

λi(XT CX) ≤ λi(X̂T CX̂), i = 1, . . . , p. (2.6)

Since X̂ is orthogonal, it holds that λi(X̂T CX̂) = λi(C) = λi . Plugging 
this in (2.6), we conclude that

λi(XT CX) ≤ λi, i = 1, . . . , p. (2.7)

Since F is an isotonic spectral function, it follows that there ex-
ists a continuous and isotonic function G : Rp

+ → R such that 
F(H) ≡ G(λ1(H), . . . , λp(H)). Thus, by (2.7) and the isotonicity of 
G over Rp

+ .

F(XT CX) = G(λ1(XT CX), . . . , λp(XT CX))

≤ G(λ , . . . , λ ) = F(�)
1 p

4

The above holds for all X ∈ Sd,p , and thus, using (2.5),

max
X∈Sd,p

F(XT CX) ≤ F (�) = F(VT CV), (2.8)

implying that the optimal value of problem (2.4) is F(�), and that 
it is attained at V. �

Combining Lemma 2.3 and Theorem 2.5, we finally obtain the 
main result showing that the optimal solution of (P1) can be ex-
pressed in terms of generalized eigenvalues of the matrix pair 
(B, W) as long as F is an isotonic spectral function.

Theorem 2.6. Let B ∈ Sd+ , W ∈ Sd++ , and denote B̃ =
W−1/2BW−1/2 . Let F : Sp

+ → R (p ≤ d) be an isotonic spectral 
function. Then an optimal solution of problem (2.1) is any matrix V
whose columns constitute a set of W-orthonormal vectors that are 
p leading generalized eigenvalues of the matrix pair (B, W).

Proof. By Lemma 2.3 and Theorem 2.5, for any matrix X ∈ Sd,p
whose columns constitute an orthonormal set of p leading eigen-
vectors of B̃ ≡ W−1/2BW−1/2, the matrix V = W−1/2X is an optimal 
solution of (2.1). The result now follows by Remark 1.1. �
3. The trace ratio problem (FLDA)

In this section, we will present an algorithm for finding an opti-
mal solution of the trace ratio problem (FLDA) (see (1.3)). We begin 
by introducing the method.

3.1. The FPR method

We recall the formulation of the trace ratio problem:

fopt = max
X∈Sd,p

Tr(XT BX)

Tr(XT WX)
, (3.1)

where B ∈ Sp
+, W ∈ Sp

++ . For the sake of simplicity, denote by 
f1(X) the denominator of the ratio, by f2(X) the nominator, and 
by f (X) the ratio between f1(X) and f2(X), meaning

f1(X) ≡ Tr(XT BX), f2(X) ≡ Tr(XT WX),

f (X) ≡ f1(X)

f2(X)
.

(3.2)

Notice that (3.1) consists of maximizing a continuous function over 
a nonempty compact set, and therefore it has a maximal value, 
which we denote by fopt. To define a method for solving (3.2), 
we begin by presenting a simple optimality condition for general 
problems consisting of maximizing the ratio of two functions:

(G) max

{
g(x) ≡ g1(x)

g2(x)
: x ∈ S

}
,

where the only assumptions are that (1) g1, g2 are continuous; (2) 
S is compact and (3) g2(x) > 0 for any x ∈ S . Then it is easy to 
show the following optimality condition.

Lemma 3.1. The vector x∗ is an optimal solution of (G) if and only if the 
following relation holds:

x∗ ∈ argmax{g1(x) − g(x∗)g2(x) : x ∈ S}. (3.3)

Moreover, maxx∈S {g1(x) − g(x∗)g2(x)} = 0.
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Relation (3.3) naturally suggests the following fixed point 
method for solving (G):

(FPR) xk+1 ∈ argmax{g1(x) − g(xk)g2(x) : x ∈ S}.
We will refer to algorithm above as the FPR method as it is a Fixed 
Point method for Ratio optimization problems. The FPR method 
was suggested in [9] for solving regularized total least squares 
problems and it was generalized and further analyzed in [1] to 
problems consisting of optimizing a ratio of indefinite quadratic 
functions over a convex homogeneous quadratic constraint.

For the specific case of the trace ratio problem (3.1), the FPR 
method takes the form

Xk+1 ∈ argmax
{

f1(X) − f (Xk) f2(X) : X ∈ Sd,p
}
. (3.4)

We call the above procedure as FPR-TR, as it is the FPR method 
employed on the trace ratio problem. The procedure can also be 
written slightly more explicitly as

(FPR-TR) Xk+1 ∈ argmax
X∈Sd,p

{
Tr

(
XT (B − f (Xk)W)X

)}
. (3.5)

The type of problem in FPR-TR is known to be solved via the eigen-
vectors of the associated matrix. This is recalled in the next lemma.

Lemma 3.2 ([8, p. 549]). Let C ∈Sd. Then

max{Tr(XT CX) : X ∈ Sd,p} = ∑p
i=1 λi(C),

and the optimal value is attained at a matrix whose columns form an 
orthonormal set of p leading eigenvectors of C. Consequently, for any 
X ∈Sd,p ,∑p

i=1 λd−i+1(C) ≤ Tr(XT CX) ≤ ∑p
i=1 λi(C).

Using Lemma 3.2, we can conclude that an optimal solution 
of (3.5) is a matrix whose columns form an orthogonal set of p
leading eigenvectors of B − f (Xk)W. Thus, the FPR-TR method for 
solving the trace ratio problem (1.3) reiterates the following step:

FPR-TR. Xk+1 is a d × p matrix whose columns form an orthonor-
mal set of p leading eigenvectors of B − f (Xk)W.

The FPR-TR method was first introduced in [10], where con-
vergence to the global optimal solution was established. The work 
[12] was able to show a linear rate of convergence of the sequence 
of function values of the sequence generated by the method as 
well as a local quadratic convergence with [12], and a superlinear 
rate of convergence was discussed in [13]. An interpretation of the 
scheme as a Newton method was discussed in [8] In our analy-
sis we will exploit the linear convergence rate result of the FPR-TR 
method that was established in [12].

Theorem 3.3 ([12, Theorem 5.1]). Let {Xk}k≥0 be the sequence generated 
by (3.4) and X∗ be an optimal solution of problem (3.1). Then

f
(
X∗) − f

(
Xk+1

) ≤
(

1 − 1

κ(W)

)(
f
(
X∗) − f (Xk)

)
, (3.6)

where κ(W) ≡
∑p

i=1 λi(W)∑p
i=1 λd−i+1(W)

.

3.2. A quadratic growth inequality

We will first prove a quadratic growth inequality, which we will 
use in the next section in order to prove an O ((1 − κ(W)−1)k2

)

5

convergence rate of the algorithm given in (3.4). Suppose that C ∈
Sd . Consider the problem

gopt = max
X∈Sd,p

{g(X) ≡ Tr(XT CX)}. (3.7)

The optimal value of the problem (see Lemma 3.2) is gopt ≡∑p
i=1 λi(C). Let � be the set of all optimal solutions of problem 

(3.7). Our objective is to show that there exists a positive constant 
α such that for all X ∈ Sd,p ,

gopt − g(X) ≥ α · min
X∗∈�

‖X − X∗‖2
F . (3.8)

The above inequality is often referred to as “a quadratic growth 
condition”, and it is well known to hold for convex problems with 
a strongly convex objective. A study of this property, as well as 
other related properties can be found in [7]. Although our problem 
is not convex and the objective function is not strongly convex, 
we will show that we can still prove it under the mild condition 
λp(C) > λp+1(C). This is done in Theorem 3.5. The inequality will 
be key in establishing the O (qk2

) of the FPR-TR method for the 
choice of q = 1 − κ(W)−1. We first require to establish the follow-
ing technical lemma.

Lemma 3.4. For any H ∈Rp×p , it holds that

max{Tr(RT H) : R ∈Op} = ∑p
i=1 σi(H). (3.9)

Proof. Let the singular value decomposition of H be given by 
H = USVT where U, S, V ∈ Rp×p are such that U, V ∈ Op and 
S = diag(σ1(H), . . . , σp(H)). Then for any R ∈Op ,

Tr(RT H) = Tr
(

RT USVT
)

= Tr
(
(RT US

1
2 )(VS

1
2 )T

)
≤ ‖RT US

1
2 ‖F ‖VS

1
2 ‖F

= ‖S
1
2 ‖F ‖S

1
2 ‖F = ∑p

i=1 σi(H), (3.10)

where we used Cauchy-Schwarz inequality and the fact that the 
Frobenius norm is invariant under orthogonal transformations. Fi-
nally, R = R̃ ≡ UVT ∈ Op attains the upper bound (3.10) as it 
satisfies

Tr(R̃T H) = Tr
(

R̃T USVT
)

= Tr
(

VT R̃T US
)

= Tr
(

VT VUT US
)

= Tr (S) = ∑p
i=1 σi(H). �

Theorem 3.5 (quadratic growth). Let C ∈Sp and denote its eigenvectors 
by λi = λi(C), i = 1, 2, ..., p. Let � be the optimal set of problem (3.7). 
Then,

p∑
i=1

λi − g(X) ≥ λp − λp+1

2
· min

X∗∈�
‖X − X∗‖2

F . (3.11)

Proof. Let {vi}d
i=1 ⊆ Rd be an orthonormal basis of Rd such that 

vi is an eigenvector of C corresponding to λi , and define the ma-
trices

V1 = (v1, . . . ,vp),V = (v1, . . . ,vd).

Note that V is an orthogonal matrix, and in particular,∑d
i=1 vivT

i = VVT = I. (3.12)

Now, for any X ∈Sd,p ,
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p∑
i=1

λi − Tr(XT CX) =
p∑

i=1

λi − Tr

(
XT

[
d∑

i=1

λiviv
T
i

]
X

)

=
p∑

i=1

λi −
d∑

i=1

λi‖XT vi‖2
2

=
p∑

i=1

λi(1 − ‖XT vi‖2
2) −

d∑
i=p+1

λi‖XT vi‖2
2

λ1≥λ2≥···≥λd≥ λp

(
p −

p∑
i=1

‖XT vi‖2
2

)
− λp+1

⎛
⎝ d∑

i=p+1

‖XT vi‖2
2

⎞
⎠

= (λp − λp+1)

(
p −

p∑
i=1

‖XT vi‖2
2

)
, (3.13)

where the last equality follows from the following argument:

d∑
i=1

‖XT vi‖2
2 =

d∑
i=1

Tr(XT viv
T
i X)

= Tr

(
XT

[
d∑

i=1

viv
T
i

]
X

)
(3.12)= Tr(XT X)

= Tr(Ip) = p.

On the other hand, note that {V1R : R ∈Op} ⊆ �, and thus,

min
X∗ {‖X − X∗‖2

2 : X∗ ∈ �} ≤ min
R∈Op

{‖X − V1R‖2
F }

= min
R∈Op

{‖X‖2
F + ‖V1R‖2

F − 2 Tr(RT VT
1 X)}

= min
R∈Op

{2p − 2 Tr(RT VT
1 X)}

= 2p − 2 max
R∈Op

{Tr(RT VT
1 X)} [X,V1R ∈ Sd,p]

= 2p − 2
p∑

i=1

σi(VT
1 X) [Lemma 3.4]

≤ 2p − 2
p∑

i=1

σ 2
i (VT

1 X), (3.14)

where the last inequality follows by the fact that ‖VT
1 X‖2 ≤

‖V1‖2‖X‖2 = 1, and therefore σi(VT
1 X) ≤ 1 for any i. Note that ∑p

i=1 σ 2
i (VT

1 X) = ‖VT
1 X‖2

F = ∑p
i=1 ‖XT vi‖2

2, which together with 
(3.14), implies the inequality

min
X∗ {‖X − X∗‖2

2 : X∗ ∈ �} ≤ 2p − 2
∑p

i=1 ‖XT vi‖2
2. (3.15)

Finally, combining (3.13) and (3.15), the desired result (3.11) read-
ily follows. �
3.3. O (qk2

) convergence rate

We will use the quadratic growth condition obtained in The-
orem 3.5 to show an O (qk2

) convergence rate of the sequence 
generated by (3.5).
6

Theorem 3.6. Suppose that B ∈ Sd+, W ∈ Sd++ . Let {Xk}k≥0 be 
the sequence generated by The FPR-TR method (3.5) for solving 
problem (3.1). Let λ̃1 ≥ · · · ≥ λ̃d be the eigenvalues of the matrix 
B − foptW. Then under the assumption that λ̃p > λ̃p+1 , it holds 
that

fopt − f (Xn) ≤ (
fopt − f (X0)

)
Dn

(
1 − 1

κ(W)

) n2
4

, (3.16)

where

D = √
p

λmax(W)∑p
i=1 λd−i+1(W)

√
8
∑p

i=1 λi(W)

λ̃p − λ̃p+1

· 4

√
1 − 1

κ(W)

√
fopt − f (X0)

and κ(W) ≡
∑p

i=1 λi(W)∑p
i=1 λd−i+1(W)

.

Proof. Denote g(X) ≡ f2(X)( f (X) − fopt) = Tr(XT (B − foptW)X), 
and let

� = argmax{g(X) : X ∈ Sd,p}.
Then using Lemma 3.1, 

∑p
i=1 λ̃i = 0. By Theorem 3.5, for all X ∈

Sd,p ,

λ̃p − λ̃p+1

2
min
X∗∈�

‖X − X∗‖2
F ≤ ∑p

i=1 λ̃i − g(X)

= −g(X) = f2(X)( fopt − f (X)).

(3.17)

Using Lemma 3.2, for all X ∈ Sd,p it holds that f2(X) =
Tr(XT WX) ≤ ∑p

i=1 λi(W), and under the assumption that λ̃p >

λ̃p+1, (3.17) becomes

min
X∗∈�

‖X − X∗‖2
F ≤ 2

∑p
i=1 λi(W)

λ̃p − λ̃p+1
( fopt − f (X)). (3.18)

Plugging X = Xk in the above and invoking (3.6), we obtain

min
X∗∈�

‖Xk − X∗‖2
F ≤

(
2
∑p

i=1 λi(W)

λ̃p − λ̃p+1

)
( fopt − f (Xk))

≤
(

2
∑p

i=1 λi(W)

λ̃p − λ̃p+1

)
( fopt − f (X0))

(
1 − 1

κ(W)

)k

. (3.19)

Let X∗ ∈ �. Using the mean value theorem, there exists ω ∈ [0, 1]
such that,∣∣ f2

(
X∗) − f2 (Xk)

∣∣ = ∣∣〈∇ f2
(
ωXk + (1 − ω)X∗) ,Xk − X∗〉∣∣

≤ 2
∥∥W

(
ωXk + (1 − ω)X∗)∥∥

F

∥∥Xk − X∗∥∥
F

≤ 2‖W‖2
(‖ωXk‖F + ‖(1 − ω)X∗‖F

)‖Xk − X∗‖F

= 2λmax(W)
(‖ωXk‖F + ‖(1 − ω)X∗‖F

)‖Xk − X∗‖F

≤ 2
√

pλmax(W)‖Xk − X∗‖F , (3.20)

where the first inequality is due to the Cauchy-Schwarz inequality, 
the second is a result of the triangle inequality and the inequality 
‖AB‖F ≤ ‖A‖2‖B‖F , and the last inequality follows by the fact that 
Xk, X∗ ∈ Sd,p .

By the definition of Xk+1 as the maximizer of (3.4),
f2

(
Xk+1

) (
f
(
Xk+1

) − f (Xk)
) ≥ f2 (X∗) ( f (X∗) − f (Xk)). Dividing 

this inequality by − f2(Xk+1) leads to
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f
(
X∗) − f

(
Xk+1

) ≤
≤ f2 (X∗)

f2
(
Xk+1

) (
f (Xk) − f

(
X∗)) + f

(
X∗) − f (Xk)

=
(

f2(Xk+1) − f2 (X∗)
f2

(
Xk+1

)
)(

f
(
X∗) − f (Xk)

)
. (3.21)

Consequently,

f (X∗) − f
(
Xk+1

)
f (X∗) − f (Xk)

(3.21)≤ f2
(
Xk+1

) − f2 (X∗)
f2

(
Xk+1

)
(3.20),Lemma 3.2≤ 2

√
pλmax(W)‖Xk+1 − X∗‖F∑p

i=1 λd−i+1(W)

= 2
√

p
λmax(W)∑p

i=1 λd−i+1(W)
‖Xk+1 − X∗‖F .

Since the above holds for any X∗ ∈ � and for any such X∗ , f (X∗) =
fopt, we conclude that

fopt − f
(
Xk+1

)
fopt − f (Xk)

≤ 2
√

p
λmax(W)∑p

i=1 λd−i+1(W)
min
X∗∈�

‖Xk+1 − X∗‖F .

Combining the above with (3.19), and by denoting

γ ≡ 1 − 1/κ(W)

and

D1 ≡ 2
√

p
λmax(W)∑p

i=1 λd−i+1(W)

√
2
∑p

i=1 λi(W)

λ̃p − λ̃p+1

√
fopt − f (X0),

we obtain that

fopt − f
(
Xk+1

)
fopt − f (Xk)

≤ D1

(
1 − 1

κ(W)

) k+1
2 = D1γ

k+1
2 .

Then for any n ≥ 1,

fopt − f (Xn)

fopt − f (X0)
=

n−1∏
k=0

fopt − f
(
Xk+1

)
fopt − f (Xk)

≤
n−1∏
k=0

D1γ
k+1

2 = Dn
1γ

n2+n
4 ,

from which the desired result (3.16) follows. �
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