
Optimization Methods & Software, 2018
https://doi.org/10.1080/10556788.2018.1437159

FOM – a MATLAB toolbox of first-order methods for solving
convex optimization problems
Amir Becka∗ and Nili Guttmann-Beckb

aSchool of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel; bSchool of Computer Science,
Academic College of Tel-Aviv Yaffo, Yaffo, Israel

(Received 30 August 2017; accepted 30 January 2018)

This paper presents the FOM MATLAB toolbox for solving convex optimization problems using first-
order methods. The diverse features of the eight solvers included in the package are illustrated through a
collection of examples of different nature.

Keywords: first-order methods; convex optimization; MATLAB toolbox

MSC Subject Classifications: 65K05; 90C25

1. Introduction

This paper describes the FOM MATLAB toolbox (FOM standing for ‘first-order methods’)
comprising eight first-order methods for solving several convex programming models. The pur-
pose of the package is to provide researchers and practitioners a set of first-order methods
that are able to solve a variety of convex optimization problems. The solvers utilize compu-
tations of (sub)gradients, conjugates, proximal mappings and linear transformations as well as
their adjoints. We concentrate on first-order solvers with rigorous and non-asymptotic efficiency
estimates of the rate of converge to the optimal value.
There exist several excellent solvers such as SeDuMi [17] and SDPT3 [18] which can be

applied to solve conic convex optimization problems. CVX [13] is a Matlab-based modelling
system for convex optimization that interfaces with these solvers. TFOCS [8] is another recent
solver that solves problems that can be cast as convex cone problems using a class of first-order
algorithms.
FOM does not assume that the problem possesses any conic structure and is able to tackle

convex problems for which the corresponding required oracles are available. Some of the solvers
in FOM can also be employed on non-convex problems; see more details in Section 3.5. The
software can be downloaded from the website:

https://sites.google.com/site/fomsolver/home

The paper is organized as follows. Section 2 gives an overview of the different optimization
models and methods that are tackled by FOM along with the corresponding assumptions and

*Corresponding author. Email: becka@tauex.tau.ac.il

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2018.1437159&domain=pdf
mailto:becka@tauex.tau.ac.il

2 A. Beck and N. Guttmann-Beck

Table 1. Models and assumptions of the eight solvers.

MATLAB function Method Minimization model Assumptions Oracles

prox_subgradient proximal
subgradient f (x) + λg(x)

f − lip
g − pc, prx
λ > 0

f , f ′

g, proxαg

comd co-mirror
descent

min f (x)
s.t. gi(x) ≤ 0,

x ∈ X

f − lip
gi − lip
X−simple

f , f ′

gi, g′
i

prox_gradient proximal
gradient f (x) + λg(x)

f − sm
g − pc, prx
λ > 0

f ,∇f
g, proxαg

sfista smoothed
FISTA f (x) + λgg(Ax) + λhh(x)

f − sm
g − pc, prx
h− pc, prx
λg , λh > 0

f ,∇f
g, proxαg
h, proxαh
A,AT

adlpmm

alternating
direction
linearized
proximal
method of
multipliers

f (x) + λg(Ax)
f − pc, prx
g − pc, prx
λ > 0

f , proxαf
g, proxαg
A,AT

nested_fista Nested
FISTA ϕ(f(x)) + λg(Ax)

ϕ − lip, nd
prx

f− sm
g − pc, prx
λ > 0

ϕ, proxαϕ

f,∇f
g, proxαg
A,AT

fista FISTA f (x) + λg(x)
f − sm
g − pc, prx
λ > 0

f ,∇f
g, proxαg

fdpg
fast dual
proximal
gradient

f (x) + λg(Ax)
f − pc, sc
g − pc, prx
λ > 0

f ,∇f ∗

g, proxαg
A,AT

Notes: We note that the solvers prox_subgradient, prox_gradient, sfista, nested_fista and fista generate feasible
iterates in contrast with comd, adlpmm and fdpg.

oracles. The solvers are partitioned into three groups that define a certain hierarchy between
them. Section 3 offers a variety of examples that demonstrate the strengths and capabilities of
the different FOM functions, and provides the user some insights regarding issues such as model,
method and parameter choices.

2. Models, methods and underlying assumptions

The eight solvers that comprise the package are listed in Table 1 along with the relevant models
they tackle and the required assumptions. Sections 2.1 and 2.2 explain and elaborate on the
notation used in the table.

2.1 Assumptions

An underlying assumption that is not written in Table 1 is that all the involved functions are
convex. In some special cases, non-convex problems can also be treated (see Section 3.5). In
addition, the following abbreviations are used to denote properties of functions:

Optimization Methods & Software 3

lip ‘Lipschitz’. A function f is Lipschitz if it is Lipschitz continuous over the entire space. That
is, there exists an ℓ > 0 such that

|f (x) − f (y)| ≤ ℓ|x− y| for all x, y.

pc ‘proper and closed’.
prx ‘proximable’. A function f is ‘proximable’ if for any positive α, the prox operator of αf

given by

proxαf (x) = argmin
u

{
αf (u) + 1

2
∥u− x∥2

}
,

can be computed efficiently.
sm ‘smooth’. In our context, a function f is considered to be ‘smooth’ if it is differentiable over

the entire space and there exists L>0 such that

∥∇f (x) − ∇f (y)∥ ≤ L∥x− y∥ for all x, y.

sc ‘strongly convex’. A function f is strongly convex if there exists σ > 0 such that f (x) −
(σ/2)∥x∥2 is convex.1

nd ‘non-decreasing’. A function ϕ : Rm → R is called non-decreasing if

ϕ(x) ≤ ϕ(y) for any x, y satisfying x ≤ y.

In addition, the co-mirror descent method requires the underlying set X to be ‘simple’, which
here means that it is one of the following four options:

‘simplex’ X =
{

x ∈ Rn :
n∑

i=1
xi = r, ℓi ≤ xi ≤ ui, i = 1, . . . , n

}

‘ball’ X = {x ∈ Rn : ∥x− c∥2 ≤ r}
‘box’ X = {x ∈ Rn : ℓi ≤ xi ≤ ui, i = 1, . . . , n}
‘spectahedron’ X = {X ∈ Sn : 0 ≼ X ≼ uI, Tr(X) = r}.

2.2 Oracles

The solvers require various oracles as inputs, where each oracle is a MATLAB function handle.
For a function f and a linear transformation A, the following oracle notations are used:

f – function value of f (x *→ f (x));
f ′ – a subgradient of f (x *→ f ′(x) ∈ ∂f (x));

∇f – gradient of f (x *→ ∇f (x));
∇f ∗ – gradient of the conjugate of f (x *→ argmax{⟨u, x⟩ − f (u)});

proxαf – proximal operator of a positive constant times the function ((x,α) *→ proxαf (x));
A – linear transformation A (x *→ Ax);
AT – adjoint of A (x *→ ATx).

The proximal (or ‘prox’) operator [15] can be provided by the user, but the package also
contains a large amount of implementations of proximal operators (see Table 2). It is also
worth mentioning that there are several calculus rules for prox functions (see [1,2]) that can
be used in order to generate additional prox mappings which are based on the existing library.
If f = δC (δC(x) = 0 for x ∈ C and ∞ for x /∈ C) with a non-empty closed and convex C, then
proxαf = PC which is the orthogonal projection operator on C. The orthogonal projections that
are implemented in the package are described in Table 3.

4 A. Beck and N. Guttmann-Beck

Table 2. List of prox functions implemented in the FOM package.

MATLAB function Function Assumptions

prox_quadratic convex quadratic
α(12x

TAx+ bTx) A ∈ Sn+

prox_Euclidean_norm∗ Euclidean norm
α∥x∥2

prox_l1∗ l1 − norm
α∥x∥1

prox_neg_sum_log∗ negative sum of logs
−α

∑n
i=1 log xi

prox_linf∗ l∞ − norm
α∥x∥∞

prox_max∗ maximum
αmax{x1, . . . , xn}

prox_Huber∗
Huber

αHµ(x) = α

{
1
2µ ∥x∥22 ∥x∥ ≤ µ

∥x∥ − µ
2 ∥x∥ > µ

µ > 0

prox_sum_k_largest∗
sum of k largest values

α
∑k

i=1 x[i]
k ∈ {1, 2, . . . , n}

prox_sum_k_largest_abs∗
sum of k largest absolute values

α
∑k

i=1 |x⟨i⟩|
k ∈ {1, 2, . . . , n}

prox_norm2_linear l2 norm of a linear transformation
α∥Ax∥2 A with full row rank

prox_l1_squared∗ squared l1 − norm
α∥x∥21

prox_max_eigenvalue maximum eigenvalue
αλmax(X)

X ∈ Sn

prox_neg_log_det negative log determinant
−α log(det(X))

X ∈ Sn

prox_sum_k_largest_eigenvalues
sum of k largest eigenvalues

α
∑k

i=1 λi(X)
X ∈ Sn, k ∈ {1, 2, . . . , n}

prox_spectral spectral norm
α∥X∥2,2 = ασ1(X)

prox_nuclear
nuclear norm

α∥X∥S1 = α
∑min{m,n}

i=1 σi(X)
X ∈ Rm×n

prox_Ky_Fan
Ky Fan norm

α∥X∥⟨k⟩ = α
∑k

i=1 σi(X)
X ∈ Rm×n, 1 ≤ k ≤ min{m, n}

Notes: All functions assume that α is a positive scalar parameter. Functions marked by * operate on m× n matrices in the same way they
operate on the corresponding mn-length column vector.

2.3 Solvers overview

The eight solvers can be divided into three groups:

• Group 1. prox_subgradient, comd.
• Group 2. prox_gradient, sfista, adlpmm.
• Group 3. fista, nested_fista, fdpg.

Optimization Methods & Software 5

Table 3. List of orthogonal projection functions implemented in the FOM package.

MATLAB function Set Assumptions

proj_Euclidean_ball∗ Euclidean ball
B[c, r] = {x : ∥x− c∥ ≤ r} c ∈ Rn, r> 0

proj_box∗ box
Box[l,u] = {x : l ≤ x ≤ u} l ≤ u

proj_affine_set affine set
{x : Ax = b} A with full row rank

proj_halfspace∗
half-space

H−
a,b = {x : ⟨a, x⟩ ≤ b} a ∈ Rn\{0},b ∈ R

proj_two_halfspaces∗
intersection of two half-spaces

H−
a1,b1 ∩ H−

a2,b2
= {x : ⟨a1, x⟩ ≤ b1, ⟨a2, x⟩ ≤ b2}

{a1, a2} independent

proj_Lorentz Lorentz cone
Ln = {x ∈ Rn+1 : ∥x{1,...,n}∥ ≤ xn+1}

proj_hyperplane_box∗
intersection of a hyperplane and a box

Ha,b ∩ Box[l, u]
= {x : ⟨a, x⟩ = b, l ≤ x ≤ u}

Ha,b ∩ Box[l, u] ̸= ∅

proj_halfspace_box∗
intersection of a half-space and a box

H−
a,b ∩ Box[l, u]

= {x : ⟨a, x⟩ ≤ b, l ≤ x ≤ u}
H−
a,b ∩ Box[l, u] ̸= ∅

proj_simplex∗

r-simplex
(n(r) = {x : eTx = r, x ≥ 0}

r-full simplex
(+
n (r) = {x : eTx ≤ r, x ≥ 0}

r> 0

proj_product∗ product superlevel set
{x > 0 : πn

i=1xi ≥ r} r> 0

proj_l1_ball∗ l1 ball
{x : ∥x∥1 ≤ r} r> 0

proj_l1ball_box∗
intersection of weighted

l1 ball and a box
{x : ∥w⊙ x∥1 ≤ r, ∥x∥∞ ≤ u}

r, u ≥ 0,w ≥ 0

proj_psd cone of positive semidefinite matrices
Sn+ = {X : X ≽ 0}

proj_spectral_box_sym spectral box (in Sn)
{X ∈ Sn : ℓI ≼ X ≼ uI} ℓ ≤ u, sym. input matrix

proj_spectral_ball spectral-norm ball
B∥·∥S∞ [0, r] = {X : σ1(X) ≤ r} r> 0

proj_nuclear_ball nuclear-norm ball
B∥·∥S1 [0, r] = {X :

∑
i σi(X) ≤ r} r> 0

proj_spectahedron

r-spectahedron
ϒn(r) = {X ∈ Sn+ : Tr(X) = r}

r-full spectahedron
ϒ+
n (r) = {X ∈ Sn+ : Tr(X) ≤ r}

r > 0, sym. input matrix

Note: Functions marked by * operate on m× n matrices in the same way they operate on the corresponding mn-length column vector.

The above partition is made according to the known worst-case iteration complexity results of
the methods, where group 1 consists of the slowest methods and group 3 consists of the fastest
methods. Thus, if several methods can solve a certain problem, it is probably better to choose a
method with the highest possible group number. We stress that this division is made according

6 A. Beck and N. Guttmann-Beck

to the theoretical upper bounds, and that the practical behaviour may be different on specific
instances.
The first group consists of two non-smooth solvers: the proximal subgradient [11] and the

co-mirror descent [7] methods. Both methods share a complexity of O(1/ε2), meaning that the
number of iterations required to obtain an ε-optimal (or ε-optimal and feasible)2 solution is of
an order of 1/ε2.
The second group consists of three solvers: proximal gradient [3,4,9], smoothed FISTA [5]

and the alternating direction linearized proximal method of multipliers (ADLPMM) [12,14,16].
These three methods all share an O(1/ε) complexity, and they are therefore considered to be
faster than the methods from the first group, albeit slower than the third group’s solvers.
The third group comprises three solvers: FISTA [3,4], nested FISTA, which is a generalization

of FISTA to a non-additive composite model (see Appendix) and the fast dual proximal gradient
method (FDPG) [6] – all have an O(1/

√
ε) complexity in terms of function values of the primal

or dual problems. One disclaimer to the latter statement is that nested FISTA calls FDPG at each
iteration and the O(1/

√
ε) complexity of nested FISTA is under the assumption that the inner

problems are solved exactly.
Most of the methods used in FOM are also described and analysed in the book [2].

3. A tour of FOM

We will not go over the syntax of each of the eight solvers since this will be an extremely tedious
and unnecessary task. Detailed explanations on the input and output arguments can be found in
the FOM’s website: https://sites.google.com/site/fomsolver/home. In addition, all the functions
are equipped with detailed help notes. For example,
>> help prox_subgradient
prox_subgradient employs the proximal subgradient method
for solving the problem min{f(x) + lambda* g(x)}

Underlying assumptions:
All functions are convex
f is Lipschitz
g is proper closed and proximable
lambda is a positive scalar
==
Usage:
out = prox_subgradient(Ffun,Ffun_sgrad,Gfun,

Gfun_prox,lambda,startx,[par])
[out,fmin] = prox_subgradient(Ffun,Ffun_sgrad,Gfun,

Gfun_prox,lambda,startx,[par])
[out,fmin,parout] = prox_subgradient(Ffun,Ffun_sgrad,Gfun,

Gfun_prox,lambda,startx,[par])
==
Input:
Ffun - function handle for the function f
Ffun_sgrad - function handle for the subgradient of the

function f
Gfun - function handle for the function g
Gfun_prox - function handle for the proximal mapping of g

times a positive constant
lambda - positive scalar penalty for the function g
startx - starting vector
par - struct which contains different values required

for the operation of prox_subgradient
Fields of par:

max_iter - maximal number of iterations
[default: 1000]

https://sites.google.com/site/fomsolver/home

Optimization Methods & Software 7

eco_flag - true if economic version (without
calculating objective function values)
should run, otherwise false
[default: false]

print_flag - true if internal printing should take
place, otherwise false [default: true]

alpha - positive constant determining the stepsize
of the method (which is alpha/
sqrt(iternu+1) [default: 1]

eps - stopping criteria tolerance (the method
stops when the norm of the difference
between consecutive iterates is < eps)
[default: 1e-5]

==
Output:
out - optimal solution (up to a tolerance)
fmin - optimal value (up to a tolerance)
parout - a struct containing additional information

related to the convergence.
The fields of parout are:

iterNum - number of performed iterations
funValVec - vector of all function values generated by

the method

We will, however, embark on a tour comprising several examples that will cover most of the
features and capabilities of the package, demonstrating also important issues such as model and
method choices, as well as questions regarding the input and output parameters.

3.1 Choosing the model

Consider the problem
min
x∈R4

{∥Ax− b∥1 + 2∥x∥1}, (1)

where A and b are generated by the commands
>> A = [0.6324 0.9575 0.9572 0.4218;

0.0975 0.9649 0.4854 0.9157;
0.2785 0.1576 0.8003 0.7922;
0.5469 0.9706 0.1419 0.9595];

>> b = [0.6843; 0.6706; 0.4328; 0.8038]

The proximal subgradient method (implemented in theMATLAB function prox_subgradient)
solves problems of the form (see Table 1)

min f (x) + λg(x). (2)

Obviously, problem (2) fits model (2) with

f (x) = ∥Ax− b∥1, g(x) = ∥x∥1, λ = 2. (3)

Note that all the assumptions that f and g need to satisfy according to Table 1 (f – non-smooth
convex, g proper closed convex and proximable) are met. The syntax of prox_subgradient is
[out,fmin,parout] = prox_subgradient(Ffun,Ffun_sgrad,Gfun,

Gfun_prox,lambda,startx,[par])

In the specific case of f and g chosen by (7), the input is as follows:

• Ffun is a function handle for f [@(x)norm(A*x-b,1)].
• Ffun_sgrad is a function handle for a subgradient of f [@(x)A’*sign(A*x-b)].

8 A. Beck and N. Guttmann-Beck

• Gfun is a function handle for g [@(x)norm(x,1)].
• Gfun_prox is a function handle for the prox of g times a constant
[@(x,a)prox_l1(x,a)].
In this case, the proximal mapping is one of the prox functions implemented in the pack-
age (see Table 2 for a complete list). In cases where the prox is not one of the implemented
functions, the user can provide its own implementation of the prox.

• lambda is equal to 2.
• startx is an initial vector, and we will choose it in this example as the zeros vector.

Running the solver yields the following output:
>> [out,fmin,parout] =prox_subgradient(@(x)norm(A*x-b,1),@(x)A’*sign(A*x-b),...

@(x)norm(x,1),@(x,a)prox_l1(x,a),2,zeros(4,1));

prox_subgradient

#iter fun. val.

6 2.526541
8 2.021784
10 1.869343
42 1.858085
: :

828 1.821805
901 1.820594
974 1.820261

Optimal value = 1.820261

The proximal subgradient method is not a descent method and only iterations in which an
improved (i.e. lower) value was obtained are printed. The array parout.funValVec contains
all the function values obtained during the execution of the method.
>> parout.funValVec

2.5915
6.2732
2.5915

:
1.8650
1.8485
1.8474

A plot of the function values can be generated by the command
plot(parout.funValVec)

The resulting graph (Figure 1) demonstrates that proximal subgradient is indeed not a descent
method.
The best achieved function value is stored in fmin

>> fmin
fmin =

1.8203

The choice of f and g in (7) is only one option. Another rather straightforward choice is to set

f (x) = ∥Ax− b∥1 + 2∥x∥1, g(x) ≡ 0.

The parameter λ can be chosen as any positive number; we will arbitrary set it to be one. We can
run the proximal subgradient method for the above choice of f and g (recalling that proxαg(x) =
x for all α > 0 whenever g ≡ 0).
>> [out,fmin,parout] =prox_subgradient(@(x)norm(A*x-b,1)+2*norm(x,1),...
@(x)A’*sign(A*x-b)+2*sign(x),@(x)0,@(x,a)x,1,zeros(4,1));

Optimization Methods & Software 9

Figure 1. Function values generated by the proximal subgradient method.

prox_subgradient

#iter fun. val.

73 2.587218
74 2.280796
75 1.976423
200 1.965525
201 1.937473
212 1.893150
214 1.865244
297 1.856431
510 1.844707
643 1.842849

Optimal value = 1.842849

Note that the obtained function value (1.8428) is higher than the one obtained in the previ-
ous run (1.8203). This is not surprising since the theoretical results of the proximal subgradient
method show that the rate of convergence in function values depends on the Lipschitz constant of
the function f and not of g [11]. In the second run, the Lipschitz constant of f is larger, and thus
the empirical results validate to some extent the known convergence results. Loosely speaking,
it is better to put as much as possible from the objective function into g.

3.2 Choosing the solver

It is actually possible to solve problem (1) using the solver adlpmm from group 2, which should
exhibit better performance than prox_subgradient from group 1. The solver is a MAT-
LAB implementation of the ‘alternating direction linearized proximal method of multipliers’
algorithm. As can be seen in Table 1, the minimization model that adlpmm tackles is

min
x
f (x) + λg(Ax), (4)

10 A. Beck and N. Guttmann-Beck

where both f and g are proper closed, convex, and in addition proximable. Problem (1) fits
model (4) with

f (x) = 2∥x∥1, g(y) = ∥y− b∥1, λ = 1, A(x) = Ax.

Note that both f and g are proximable. Indeed, denoting the prox of α times the l1-norm function
by Tα (a.k.a. the ‘soft thresholding operator’ [10]):

Tα(x) ≡ [|x| − αe]+ ⊙ sgn (x),

the proximal mappings of αf and αg (for α > 0) can be written explicitly as

proxαf (x) = T2α(x), proxαg(x) = Tα(x− b) + b.

The syntax of adlpmm is

[out,fmin,parout] = adlpmm(Ffun,Ffun_prox,Gfun,Gfun_prox,Afun,Atfun,lambda,
startx,[L],[par])

Note that an optional input parameter is the positive constant L. In fact, L should be chosen
as an upper bound on ∥A∥2. In case where Ax ≡ Ax for some matrix A, ∥A∥ = ∥A∥2 is the
spectral norm of A. It is highly recommended that user will insert a value of L, since otherwise
the solver will find ∥A∥ by an inefficient method. It is also important to realize that in general,
the function g in the model (8) can be extended real-valued and adlpmm is not guaranteed to
generate a vector in dom(g). This is the reason why by default the method also computes the
feasibility violation of the generated sequence of vectors. It is highly advisable, in cases where
g is real-valued, as is the case in this example, to ‘notify’ the solver that g is real-valued by
setting par.real_valued_flag to true. In this setting, the function values calculated by
the solver are f (xk) + λg(Axk), where xk denotes the kth iterate vector.

>> clear par;
>> par.real_valued_flag=true;
>> [out,fmin,parout] =adlpmm(@(x)2*norm(x,1),@(x,a)prox_l1(x,2*a),...

@(x)norm(x-b,1),@(x,a)prox_l1(x-b,a)+b,@(x)A*x,@(x)A’*x,...
1,zeros(4,1),norm(A)^2,par);

adlpmm

#iter fun. val.

2 1.873908
11 1.870255
35 1.818719
: :

575 1.814974
674 1.814974
793 1.814974

Stopping because the norm of the difference between consecutive
iterates is too small

Optimal value = 1.814974

Note that in iteration 35 the method already obtained a better function value than the one
obtained by the proximal subgradient method after almost 1000 iterations. This is not a surprising
outcome since, as was already noted, adlpmm belongs to the second group of solvers whereas
prox_subgradient belongs to the first group.

Optimization Methods & Software 11

3.3 Choice of solver in the same group

Consider the problem

min
{
max

i=1,2,...,80
{aTi x} : x ∈ (50

}
, (5)

where aT1 , aT2 , . . . , aT80 are the rows of an 80× 50 matrix generated by the commands
>> randn(’seed’,315);
>> A=randn(80,50);

One way to solve the problem is to use prox_subgradient by setting in its model (f (x) +
λg(x)):

f (x) = max
i=1,2,...,80

{aTi x}, g(x) = δ(50(x), λ = 1.

The proximal operator of g is the orthogonal projection onto the unit-simplex, which is imple-
mented in the MATLAB function proj_simplex (see Table 3). To solve the problem using
prox_subgradient, we require a function that computes a subgradient of f. A subgradi-
ent of f at x is given by ai(x), where i(x) is any member of argmini=1,2,...,80{aTi x}. Following is a
MATLAB function implementing a computation of a subgradient of f that should be saved as an
m-file called f_sgrad.m.

function out=f_sgrad(x,A)
[~,i]=max(A*x);
out=A(i,:)’;

Running the solver with 10,000 iterations (the default is 1000) and starting point
(150 ,

1
50 , . . . ,

1
50)

T yields the following output.
>> clear par
>> par.max_iter=10000;
>> [out,fmin,parout] =prox_subgradient(@(x)max(A*x),@(x)f_sgrad(x,A),...

@(x)0,@(x,a)proj_simplex(x),1,1/50*ones(50,1),par);

prox_subgradient

#iter fun. val.

344 0.340105
469 0.304347
773 0.295849
: :

5857 0.183907
6592 0.169232
7047 0.158440

Optimal value = 0.158440

It is possible to change some basic parameters of the method that might accelerate (or slow
down) the speed of convergence. For example, the stepsize of the proximal subgradient method
is given by α/

√
k + 1 with k being the iteration index. The default value of α is 1. Changing

this value to 0.2 (by setting the value of par.alpha to 0.2) yields faster convergence, and
consequently a lower function value.
>> par.alpha=0.2;
>> [out,fmin,parout] =prox_subgradient(@(x)max(A*x),@(x)f_sgrad(x,A),@(x)0,...

@(x,a)proj_simplex(x),1,1/50*ones(50,1),par);

prox_subgradient

#iter fun. val.

12 A. Beck and N. Guttmann-Beck

17 0.322719
45 0.298787
91 0.285807
: :

5675 0.081925
7103 0.074788
9926 0.074581

Optimal value = 0.074581

In the context of optimization over the unit-simplex, a better method is the co-mirror descent
method implemented in the MATLAB function comd whose syntax is

[out,fmin,parout] = comd(Ffun,Ffun_sgrad,Gfun,Gfun_sgrad,set,startx,[par])

comd can also handle additional functional constraints of the form gi(x) ≤ 0 that should be
inserted through the input Gfun. In our example, there are no additional functional constraints,
and thus Gfun and Gfun_sgrd should both be empty function handles ([]). The input set in
our case is the unit simplex, and thus should be fixed to be ’simplex’. Running the method
for 10,000 iterations gives the following output:

>> clear parmd
>> parmd.max_iter=10000;
>> comd(@(x)max(A*x),@(x)f_sgrad(x,A),[],[],’simplex’,1/50*ones(50,1),parmd);

Co-Mirror

#iter fun. val.

1 0.350156
2 0.312403
4 0.279940
: :

6901 0.050879
7727 0.050688
9977 0.050557

Optimal value = 0.050557

Clearly, comd was able to find a better solution than prox_subgradient. It is thus also
important to choose the ‘correct’ method among the solvers from the same group. As a rule of
thumb, if the problem at hand fits the model relevant for comd (see Table 1), then it is better to
use it rather than prox_subgradient.

3.4 l1-Regularized least squares

Consider the problem

min
x∈R100

1
2
∥Ax− b∥22 + 2∥x∥1, (6)

where A ∈ R80×100 and b ∈ R100 are generated by

>> randn(’seed’,315);
>> A=randn(80,100);
>> b=randn(80,1);

Optimization Methods & Software 13

We can solve the problem using the proximal gradient method implemented in the MATLAB
function prox_gradient. The model tackled by the proximal gradient method has the form:

min f (x) + λg(x),

where (in addition to being convex) f is smooth and g is proper and closed. Problem (6) fits the
above model with f (x) = 1

2∥Ax− b∥22, g(x) = ∥x∥1, λ = 2. The syntax for prox_gradient
is

[out,fmin,parout] = prox_gradient(Ffun,Ffun_grad,Gfun,Gfun_prox,lambda,
startx,[par])

To solve the problem using prox_gradient, we use the fact that ∇f (x) = AT(Ax− b).
Invoking prox_gradient with 100 iterations starting from the zeros vector yields the
following output:

>> clear par
>> par.max_iter=100;
>> [out,fmin,parout_pg] =prox_gradient(@(x)0.5*norm(A*x-b,2)^2,...

@(x)A’*(A*x-b),@(x)norm(x,1),@(x,a)prox_l1(x,a),2,zeros(100,1),par);

prox_gradient

#iter fun. val. L val.

1 44.647100 256.000000
2 23.720870 256.000000
3 20.469023 256.000000
: : :

98 14.989947 256.000000
99 14.989876 256.000000
100 14.989808 256.000000

Optimal value = 14.989744

The proximal gradient method uses a backtracking procedure to find the stepsize at each itera-
tion. The stepsize at iteration k is given by 1/Lk where Lk is a certain ‘Lipschitz estimate’. Note
that in the above run, all the Lipschitz estimates were chosen as 256, meaning that the back-
tracking procedure had an effect only at the first iteration (in which the default initial Lipschitz
estimate 1 was increased to 256).
FISTA (implemented in the MATLAB function fista), which belongs to the third group of

solvers, is a better method than the proximal gradient method in the sense that it possesses an
improved worst-case O(1/k2) rate of convergence in contrast to the O(1/k) rate of the proximal
gradient method. The syntax of fista is the same as the one of prox_gradient. Running
100 iterations of FISTA results with a better function value:

>> [out,fmin,parout_fista] =fista(@(x)0.5*norm(A*x-b,2)^2,...
@(x)A’*(A*x-b),@(x)norm(x,1),@(x,a)prox_l1(x,a),2,zeros(100,1),par);

FISTA

#iter fun. val. L val.

1 23.720870 256.000000
2 20.469023 256.000000
3 18.708294 256.000000
: : :

99 14.988551 256.000000
100 14.988550 256.000000

Optimal value = 14.988550

14 A. Beck and N. Guttmann-Beck

Figure 2. Comparison between proximal gradient, FISTA and monotone FISTA: (a) without monotone FISTA and (b)
with monotone FISTA.

To make a more detailed comparison between the two methods, we plot the distance to opti-
mality in terms of function values of the sequences generated by the two methods. The optimal
value is approximated by 10,000 iterations of FISTA.
>> clear par;
>> par.max_iter=10000;
>> [out,fmin_accurate]=fista(@(x)0.5*norm(A*x-b,2)^2,@(x)A’*(A*x-b),...

@(x)norm(x,1),@(x,a)prox_l1(x,a),2,zeros(100,1),par);
>> semilogy(1:100,parout_fista.funValVec-fmin_accurate,...

1:100, parout_pg.funValVec-fmin_accurate,’LineWidth’,2);
>> legend(’fista’,’pg’)

The plot containing the comparison between the two methods is given in Figure 2(a).
As can be clearly seen in Figure 2(a), FISTA is not a monotone method. If one wishes the

method to produce a non-increasing sequence of function values, then it is possible to invoke the
monotone version of FISTA by setting par.monotone_flag to true. We can also prevent
any screen output by setting par.print_flag to false. The resulting plot is shown in
Figure 2(b).
par.max_iter=100;
par.monotone_flag=true;
par.print_flag=false;
[out,fmin,parout_mfista] =fista(@(x)0.5*norm(A*x-b,2)^2,...

@(x)A’*(A*x-b),@(x)norm(x,1),@(x,a)prox_l1(x,a),2,zeros(100,1),par);
figure(2)
semilogy(1:100,parout_fista.funValVec-fmin_accurate,1:100,...
parout_pg.funValVec-fmin_accurate,1:100,parout_mfista.funValVec-...
fmin_accurate,’LineWidth’,2);
legend(’fista’,’pg’,’mfista’);

3.5 Non-convexity

Although the solvers in the FOM package require the input function to be convex, they will
not prevent the user from inserting non-convex functions and no error message will be returned
(like in CVX [13] for example). In cases where the input function is supposed to be smooth and
convex, it is possible to plugin a smooth and non-convex function, and the solver should work,
but instead of guaranteeing convergence to an optimal solution, it is only guaranteed that the
limit points of the generated method are stationary points. As an example, consider the problem

min
x∈R3

{xTAx : ∥x∥2 ≤ 1}, (7)

Optimization Methods & Software 15

where
>> A=[1,1,4;1,1,4;4,4,-2];

A is not positive semidefinite, and thus the problem is non-convex. It is easy to see that the sta-
tionary points of the problem are the eigenvector corresponding to the minimum eigenvalue −6
and the zeros vector, the former being the actual optimal solution. Problem (7) fits the model

min f (x) + λg(x)

with f (x) = xTAx, λ = 1 and g(x) = δC(x), where C = { x ∈ R3 : ∥x∥2 ≤ 1}. Invoking the
proximal gradient method with starting point (0,−1, 0)T actually results with the optimal solution
>> out =prox_gradient(@(x)x’*A*x,@(x)2*A*x,@(x)0,...

@(x,a)proj_Euclidean_ball(x),1,[0;-1;0]);

prox_gradient

#iter fun. val. L val.

1 1.000000 8.000000
2 -3.538462 8.000000
3 -5.537778 8.000000
: : :

12 -6.000000 8.000000
13 -6.000000 8.000000
14 -6.000000 8.000000

Stopping because the norm of the difference between consecutive
iterates is too small

Optimal value = -6.000000
>> out
out =

-0.4082
-0.4083
0.8165

Note that the function handle for g is the zeros function, which has the correct value of g
on its domain. In general, when inputting a function handle representing an extended real-valued
function to one of the FOM solvers, it is only important that it will be consistent with the function
over its domain.
Starting from (1, 1, 1)T produces the zeros vector which is just a stationary point.

>> out =prox_gradient(@(x)x’*A*x,@(x)2*A*x,@(x)0,...
@(x,a)proj_Euclidean_ball(x),1,[1;1;1]);

prox_gradient

#iter fun. val. L val.

1 6.000000 16.000000
2 0.375000 16.000000
3 0.023437 16.000000
8 0.000000 16.000000
9 0.000000 16.000000

10 0.000000 16.000000
Stopping because the norm of the difference between consecutive
iterates is too small

Optimal value = 0.000000
>> out
out =

1.0e-06 *
0.5506
0.5506
0.5506

16 A. Beck and N. Guttmann-Beck

Figure 3. True and noisy step functions.

3.6 One-dimensional signal denoising

Consider the following denoising problem:

min
x∈R1000

{
1
2
(xi − yi)2 + 4

999∑

i=1
|xi − xi+1|

}

, (8)

where y is a noisy step function generated as follows (x being the original step function):
>> randn(’seed’,314);
>> x=zeros(1000,1);
>> x(1:250)=1;
>> x(251:500)=3;
>> x(751:1000)=2;
>> y=x+0.05*randn(size(x));

We can plot ‘true’ and noisy signals (see Figure 3).
>> figure(3)
>> subplot(1,2,1)
>> plot(1:1000,x,’.’)
>> subplot(1,2,2)
>> plot(1:1000,y,’.’)

The problem can be solved using the fast dual proximal gradient (FDPG) method implemented
in the MATLAB function fdpg. The model tackled by the FDPG method is (see Table 1)

min
x
f (x) + λg(Ax),

where f is strongly convex, λ > 0, A is a linear transformation and g is proper closed convex
and proximable. The denoising problem (8) fits the above model with λ = 4, f (x) = 1

2∥x− y∥2,
g(y) = ∥y∥1 and A : R1000 → R999 being the linear transformation for which (Ax)i = xi −
xi+1, i = 1, 2, . . . , 999.
A=sparse(999,1000);
A=spdiags([ones(999,1),-ones(999,1)],[0,1],A);

Optimization Methods & Software 17

The syntax of fdpg is

[out,fmin,parout] = fdpg(Ffun,F_grad_conj,Gfun,Gfun_prox,Afun,
Atfun,lambda,starty,[par])

The second input argument of fdpg is the gradient of f ∗, which in this case is given by

∇f ∗(x) = argmax
z

{⟨x, z⟩ − f (z)} = argmax
z

{
⟨x, z⟩ − 1

2
∥z− y∥2

}
= x+ y.

The following command computes an optimal solution of (12) using fdpg

>> [out,fmin,parout] = fdpg(@(x)0.5*norm(x-y)^2,@(x)x+y,...
@(x)norm(x,1),@(x,a)prox_l1(x,a),@(x)A*x,@(x)A’*x,4,zeros(999,1));

fdpg

#iter fun. val. feas. viol. L val.

1 248.511179 3.1607e-07 4.000000
2 107.310785 3.1607e-07 4.000000
3 74.301824 3.1607e-07 4.000000
: : : :

998 28.904498 3.14599e-07 4.000000
999 28.899496 3.13701e-07 4.000000

1000 28.895505 3.13267e-07 4.000000

Optimal value = 28.895505

It is interesting to note that it is not really necessary to explicitly form the matrix associ-
ated with the linear mapping A, and instead the linear operator and its adjoint can be expressed
directly as @(x)diff(x) and @(x)[-x(1);-diff(x);x(end)] respectively.3
Since the function g is real-valued, it is better to invoke the solver with par.real_

valued_flag set to true, since in this case there is no need to check for feasibility violation
and the algorithm outputs the iterate with the smallest function value.

>> clear par
>> par.real_valued_flag=true;
>> [out,fmin,parout] = fdpg(@(x)0.5*norm(x-y)^2,@(x)x+y,...

@(x)norm(x,1),@(x,a)prox_l1(x,a),@(x)A*x,@(x)A’*x,4,zeros(999,1),par);

fdpg

#iter fun. val. L val.

2 107.310785 4.000000
3 74.301824 4.000000
4 60.396805 4.000000
: : :

498 28.910757 4.000000
499 28.899488 4.000000
500 28.892469 4.000000

Optimal value = 28.892469

The last recorded iteration is 500 since there was no improvement of function value following
that iteration (although 1000 iterations were employed). Note also that a slightly smaller func-
tion value was obtained in this case. The obtained solution is an excellent reconstruction of the
original signal (see Figure 4)

>> figure(4);
>> plot(1:1000,out,’.’)

18 A. Beck and N. Guttmann-Beck

Figure 4. Reconstructed signal using fdpg.

4. Matrix variables

With the exception of nested_fista, all the solvers in the FOM package are able to solve
problems with matrix variables and are not restricted to solve problems over column vectors. For
example, consider the problem

min
X∈R30×40

{
1
2
∥C⊙ (X− D)∥2F + ∥AXB∥F

}
,

where ⊙ denotes the Hadamard product (that is component-wise product) and C,D ∈ R30×30,
A ∈ R20×30 and B ∈ R40×50 are generated by the commands
>> randn(’seed’,314);
>> rand(’seed’,314);
>> A=randn(20,30);
>> B=randn(40,50);
>> C=1+rand(30,40);
>> D=randn(30,40);

To solve the problem, we will use the FDPG method with

f (X) = ∥C⊙ (X− D)∥2F , g(Y) = ∥Y∥F , λ = 1, A(X) ≡ AXB.

Note that since C has only non-zero components, f is strongly convex as required. In employing
the FDPG method, we will use the following facts:

• the adjoint linear transformation is given by X *→ ATXBT,
• the gradient of the conjugate of f is given by ∇f ∗(Y) = argmaxX{⟨X,Y⟩ − f (X)} = E⊙ Y+
D,

where E is the matrix defined by Eij = 1/C2ij, i = 1, 2, . . . , 30, j = 1, 2, . . . , 40.
The command invoking fdpg is

>> E = 1./(C.^2);
>> clear par

Optimization Methods & Software 19

>> par.real_valued_flag=true;
>> [out,fmin,parout] = fdpg(@(X)0.5*norm(C.*(X-D),’fro’)^2,@(X)E.*X+D,...

@(X)norm(X,’fro’),@(x,a)prox_Euclidean_norm(x,a),@(X)A*X*B,...
@(X)A’*X*B’,1,zeros(20,50),par);

fdpg

#iter fun. val. L val.

2 693.740808 4096.000000
3 623.515605 4096.000000
6 553.714050 8192.000000
: : :

281 485.921545 8192.000000
282 485.921545 8192.000000
283 485.921545 8192.000000

Stopping because the norm of the difference between consecutive
iterates is too small

Optimal value = 485.921545

5. Nested FISTA example – finding a point in the intersection of balls

Consider the problem of finding a point in the intersection of 5000 balls of dimension 200

∥x− ci∥ ≤ ri, i = 1, 2, . . . , 5000,

where the centres and radii are generated by the commands
>> randn(’seed’,315);
>> rand(’seed’,315);
>> n=200;
>> m=5000;
>> x_true=randn(n,1);
>> r_all=[];
>> c_all=[];
>> for k=1:m
>> r=rand;
>> r_all=[r_all;r];
>> d=randn(n,1);
>> d=d/norm(d);
>> c=x_true+0.9*r*d;
>> c_all=[c_all,c];
>> end

The above process starts by choosing randomly a point x_true and then generates 5000
balls that are guaranteed to contain x_true. To solve the problem, we first formulate it as the
following minimization problem:

min
x∈R200

5000∑

i=1

[
∥x− ci∥22 − r2i

]
+ . (9)

To solve the problem, we will use the nested FISTA method, which is a simple generaliza-
tion of FISTA aimed at solving problems of the form (see Table 1 and Appendix for a detailed
description)

min
x

ϕ(f(x)) + g(Ax), (10)

where (in addition to convexity of all the functions involved) ϕ is a Lipschitz continuous and
(componentwise) non-decreasing function, f is a vector-valued functions whose components are

20 A. Beck and N. Guttmann-Beck

smooth, A is a linear transformation and g is proper and closed. Problem (9) fits model (9) with
(the choice below of A is actually arbitrary)

ϕ(y) =
5000∑

i=1
[yi]+, f(x) =

⎛

⎜⎜⎜⎝

∥x− c1∥2 − r21
∥x− c2∥2 − r22

...
∥x− c5000∥2 − r25000

⎞

⎟⎟⎟⎠
, g(x) ≡ 0, A = I.

The syntax of nested_fista is
[out,fmin,parout] = nested_fista(Phifun,Phifun_prox,Ffun,Ffun_grad,Gfun,

Gfun_prox,Afun,Atfun,lambda,startx,[par])

To solve the problem using nested_fista, we will exploit the following formulas (where
the prox of αϕ utilizes the relation α[u]+ = (α/2)|u| + αu/2):

proxαϕ(y) = T α
2

(
y− α

2
e
)
, ∇f (x) = 2(x− c1 x− c2 · · · x− c5000),

where Tβ is the soft-thresholding operator (also implemented in the MATLAB function
prox_l1) and e is the vector of all ones. With the above formulas in mind, we can define
>> phi=@(y)sum(pos(y));
>> prox_phi=@(x,a)prox_l1(x-a/2,a/2);
>> f=@(x)(sum_square(x*ones(1,m)-c_all)-(r_all.^2)’)’;
>> grad_f=@(x)2*(x*ones(1,m)-c_all);

We can now solve the problem
>> [xf,fun_xf,parout] = nested_fista (@(x) phi(x),...

@(x,a) prox_phi(x,a),@(x) f(x),@(x) grad_f(x), @(x)0,@(x,a)x,...
@(x) x,@(x) x, 1,zeros(n,1));

nested-fista

#iter fun. val. L val. inner L val. inner iternu.

1 283431.366571 16384.000000 256 50
2 71260.317218 16384.000000 128 50
3 9347.554536 16384.000000 64 50
: : : : :

991 0.000000 16384.000000 2.842171e-14 2
992 0.000000 16384.000000 2.842171e-14 2
993 0.000000 16384.000000 5.684342e-14 2

Stopping because of 100 iterations with no improvement

Optimal value = 0.000000

The obtained solution is a good reconstruction of the vector x_true
>> norm(x_true-xf)
ans =

3.6669e-04

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Israel Science Foundation [grant number 1821/16].

Optimization Methods & Software 21

Notes

1. This definition of strong convexity is valid since the underlying space is assumed to be Euclidean.
2. For a problem of the form fopt = min{f (x) : x ∈ X }, an ε-optimal solution is a vector x̂ ∈ X satisfying f (x̂) − fopt ≤

ε. For a problem of the form fopt = min{f (x) : g(x) = 0, x ∈ X } an ε-optimal and feasible solution is a vector x̂ ∈ X
satisfying ∥g(x̂)∥2 ≤ ε, f (x̂) − fopt ≤ ε.

3. We thank an anonymous referee for this observation.

References

[1] H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, in CMS
Books in Mathematics/Ouvrages de Mathématiques de la SMC, 2nd ed., Springer, Cham, 2017. With a foreword by
Hédy Attouch.

[2] A. Beck. First-order methods in optimization, volume 25 of MOS-SIAM Series on Optimization. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA; 2017.

[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J.
Imaging Sci. 2(1) (2009), pp. 183–202.

[4] A. Beck and M. Teboulle, Gradient-based algorithms with applications to signal-recovery problems, in Con-
vex Optimization in Signal Processing and Communications, Cambridge University Press, Cambridge, 2010,
pp. 42–88.

[5] A. Beck and M. Teboulle, Smoothing and first order methods: a unified framework, SIAM J. Optim. 22(2) (2012),
pp. 557–580.

[6] A. Beck and M. Teboulle, A fast dual proximal gradient algorithm for convex minimization and applications, Oper.
Res. Lett. 42(1) (2014), pp. 1–6.

[7] A. Beck, A. Ben-Tal, N. Guttmann-Beck, and L. Tetruashvili, The CoMirror algorithm for solving nonsmooth
constrained convex problems, Oper. Res. Lett. 38(6) (2010), pp. 493–498.

[8] S.R. Becker, E.J. Candès, and M.C. Grant, Templates for convex cone problems with applications to sparse signal
recovery, Math. Program. Comput. 3(3) (2011), pp. 165–218.

[9] P.L. Combettes and V.R. Wajs, Signal recovery by proximal forward–backward splitting, Multiscale Model. Simul.
4(4) (2005), pp. 1168–1200.

[10] D.L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Theory 41(3) (1995), pp. 613–627.
[11] J.C. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari, Composite Objective Mirror Descent, in COLT 2010 –

The 23rd Conference on Learning Theory, Haifa, Israel, 2010, pp. 14–26.
[12] J. Eckstein, Some saddle-function splitting methods for convex programming, Optim. Methods Softw. 4 (1994),

pp. 75–83.
[13] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.0 beta. Available at

http://cvxr.com/cvx, September 2013.
[14] B. He and X. Yuan, On the O(1/n) convergence rate of the Douglas–Rachford alternating direction method, SIAM

J. Numer. Anal. 50(2) (2012), pp. 700–709.
[15] J.J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93 (1965), pp. 273–299.
[16] R. Shefi and M. Teboulle, Rate of convergence analysis of decomposition methods based on the proximal method

of multipliers for convex minimization, SIAM J. Optim. 24(1) (2014), pp. 269–297.
[17] J.F. Sturm, Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones, Optim. Methods Softw. 11

(1999), pp. 625–653.
[18] K.C. Toh, M.J. Todd, and R.H. Tütüncü, SDPT3 – a MATLAB software package for semidefinite programming,

version 1.3, Optim. Methods Softw. 11(1–4) (1999), pp. 545–581. Interior point methods.

Appendix. Nested FISTA

Nested FISTA is an extension of the monotone version of FISTA for solving models of the form

min
x

{ϕ(f(x)) + λg(Ax)},

where
• ϕ : Rm → R is Lipschitz, non-decreasing and proximable.
• f = (f1, f2, . . . , fm)T : Rn → Rm. The components f1, f2, . . . , fm are smooth.
• g – proper closed and proximable.
• A – linear transformation.
• λ – positive scalar.
The general update formula of nested FISTA is as follows:

• zk = argminx∈Rn {ϕ(f(yk) + ∇f(yk)T(x− yk)) + λg(Ax) + Mk
2 ∥x− yk∥2};

22 A. Beck and N. Guttmann-Beck

• xk+1 ∈ argminx∈Rn {ϕ(f(x)) + λg(Ax) : x ∈ {xk , zk}};

• tk+1 =
1+

√
1+4t2k
2 ;

• yk+1 = xk+1 + tk
tk+1

(zk − xk+1) + (
tk−1
tk+1

)(xk+1 − xk).

The scalarMk > 0 is chosen by a backtracking procedure. The vector zk is a solution of an optimization problem that
is solved by the FDPG method.

	1. Introduction
	2. Models, methods and underlying assumptions
	2.1. Assumptions
	2.2. Oracles
	2.3. Solvers overview

	3. A tour of FOM
	3.1. Choosing the model
	3.2. Choosing the solver
	3.3. Choice of solver in the same group
	3.4. l1-Regularized least squares
	3.5. Non-convexity
	3.6. One-dimensional signal denoising

	4. Matrix variables
	5. Nested FISTA example -- finding a point in the intersection of balls
	Disclosure statement
	Funding
	Notes

