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A Minimax Chebyshev Estimator for
Bounded Error Estimation

Yonina C. Eldar, Senior Member, IEEE, Amir Beck, and Marc Teboulle

Abstract—We develop a nonlinear minimax estimator for the
classical linear regression model assuming that the true parameter
vector lies in an intersection of ellipsoids. We seek an estimate that
minimizes the worst-case estimation error over the given param-
eter set. Since this problem is intractable, we approximate it using
semidefinite relaxation, and refer to the resulting estimate as the
relaxed Chebyshev center (RCC). We show that the RCC is unique
and feasible, meaning it is consistent with the prior information.
We then prove that the constrained least-squares (CLS) estimate
for this problem can also be obtained as a relaxation of the Cheby-
shev center, that is looser than the RCC. Finally, we demonstrate
through simulations that the RCC can significantly improve the es-
timation error over the CLS method.

Index Terms—Bounded error estimation, Chebyshev center,
constrained least-squares, semidefinite programming, semidefinite
relaxation.

I. INTRODUCTION

MANY estimation problems in a broad range of applica-
tions can be written in the form of a linear regression

model. In this class of problems, the goal is to construct an esti-
mate of a deterministic parameter vector from noisy obser-
vations , where is a known model matrix and

is an unknown perturbation vector.
The celebrated least-squares (LS) method minimizes the data

error between the estimated data and . This
approach is deterministic in nature, as no statistical information
is assumed on or . Nonetheless, if the covariance of is
known, then it can be incorporated as a weighting matrix, such
that the resulting weighted LS estimate minimizes the variance
among all unbiased methods. However, this does not necessarily
lead to a small estimation error . In particular, when is
ill-conditioned, for example, when the system is obtained via
discretization of ill-posed problems such as integral equations
of the first kind [1] or in certain image processing problems [2],
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the LS will give poor results with respect to the estimation error.
Thus, many attempts have been made to develop estimators that
may be biased but closer to in some statistical sense [3]–[10].
By now it is well established that even though unbiasedness may
be appealing intuitively, it does not necessarily lead to a small
estimation error [11].

A popular strategy for improving the estimation error of
LS is to incorporate prior information on . For example,
the Tikhonov estimator minimizes the data error subject to a
weighted norm constraint on [5]. In practical applications,
more general restrictions on can be given, such as interval
constraints on the individual components of . These type of
bounds rise naturally e.g., in image processing where the pixel
values are limited. To deal with more general type of restric-
tions, the constrained LS estimator (CLS) has been proposed,
which minimizes the data error subject to the constraint that
lies in a convex set [12]. However, this method does not deal
directly with the estimation error.

In some scenarios, the distribution of the noise may not be
known, or the noise may not be random (for example, in prob-
lems resulting from quantization). A common estimation tech-
nique in these settings is the bounded error approach, also re-
ferred to as set-membership estimation (see e.g., [13] and the
survey papers [14], [15]). This strategy is designed to deal with
bounded noise, and prior information of the form for
some set .

In this paper, we adopt the bounded error methodology and
assume that the noise is norm-bounded . The es-
timator we develop can also be used when is random by
choosing proportional to its variance. We further suppose that

where we focus on sets that are given by an intersec-
tion of ellipsoids. This form of is quite general and includes a
large variety of structures, among them are weighted norm con-
straints, and interval restrictions. Since we do not assume a sta-
tistical model, our objective is to choose to be close to in the
squared error sense. Thus, instead of minimizing the data error,
we suggest minimizing the worst-case estimation error
over all feasible solutions. As we show in Section II, the pro-
posed minimax estimator has a nice geometric interpretation in
terms of the center of the minimum radius ball enclosing the
feasible set. Therefore, this methodology is also referred to as
the Chebyshev center approach [16], [17]. In Section VII, we
demonstrate that this strategy can indeed reduce the estimation
error dramatically with respect to the CLS method.

Finding the Chebyshev center of a set is a difficult and typ-
ically intractable problem. Two exceptions are when the set is
polyhedral and the estimation error is measured by the norm
[18], and when the set is finite [19]. Recently, we considered this
approach for given by an ellipsoid [20]. When the problem is
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defined over the complex domain we showed that the Cheby-
shev center can be computed exactly by relying on strong du-
ality results [21]. In the real domain, we suggested an approxi-
mation based on Lagrange duality and semidefinite relaxation,
referred to as the relaxed Chebyshev center (RCC). We then
showed through numerical simulations that the RCC estimate
outperforms other estimates such as least squares and Tikhonov
with respect to the estimation error.

Here, we generalize the RCC estimator to the intersection of
several ellipsoids in order to extend its applicability to a larger
set of signal processing problems. In addition, we further ex-
plore the properties of the RCC estimate, and compare it to the
CLS approach, thus providing new results even for the case of a
single ellipsoid treated in [20]. In particular, we show that both
the exact Chebyshev center and the RCC are unique and fea-
sible, meaning they satisfy the prior constraints and are therefore
consistent with the given prior knowledge. Our development of
the RCC estimate in this paper is different than that presented
for the single ellipsoid case in [20]. Here, we use the fact that
the RCC can be cast as a solution to a convex-concave saddle
point program. This method of proof leads to an alternative rep-
resentation of the RCC which has several advantages. First, it
is simpler to solve than the minimization problem obtained in
[20]. Second, the same method can be used to show that the CLS
estimator can also be viewed as a relaxation of the Chebyshev
center, however this relaxation is looser than that of the RCC.
This motivates the observation that in many different examples
the RCC leads to smaller estimation error. Third, this approach
immediately reveals the feasibility of the RCC solution. Finally,
as we discuss next, this strategy can be used to explore methods
for representing linear constraints.

In many applications there are interval restrictions on of
the form . These constraints can be written as two
linear inequalities, or a single quadratic constraint

. The true Chebyshev center is the same regardless of the
specific characterization chosen, as it is defined by the constraint
set which is the same in both cases. However, as we show, the
RCC depends on the specific representation of the set. An im-
portant question therefore in the context of the RCC is how to
best represent linear constraints in order to obtain a smaller es-
timation error. Here we show that the quadratic characterization
leads to a tighter approximation of the true minimax value and
is therefore preferable in this sense.

The paper is organized as follows. In Section II, we discuss
the geometrical properties of the Chebyshev center and its ap-
plication to estimation problems. We then develop in Section III
the RCC using a simpler method than that in [20]. The feasibility
of the Chebyshev center and the RCC estimate are discussed in
Section IV. In Section V, we show that the CLS estimate can
also be viewed as a relaxation of the Chebyshev center, which
is looser than the RCC. The representation of linear constraints
is discussed in Section VI. In Section VII, we demonstrate via
examples that the RCC strategy can dramatically reduce the es-
timation error with respect to the CLS method.

II. THE CHEBYSHEV CENTER

We denote vectors by boldface lowercase letters, e.g., , and
matrices by boldface uppercase letters, e.g., . The th compo-

nent of a vector is written as , and is an estimated vector.
The identity matrix is denoted by , and is the transpose of

. Given two matrices and , means that
is positive definite (semidefinite).

We treat the problem of estimating a deterministic parameter
vector from observations which are related
through the linear model

(1)

Here, is a known model matrix, is a perturbation
vector with bounded norm , and lies in the set
defined by the intersection of ellipsoids:

(2)
where , and . To simplify notation,
we present the results for the real case, however all the deriva-
tions hold true for complex-valued data as well. Combining the
restrictions on and , the feasible parameter set, which is the
set of all possible values of , is given by

(3)

In order to obtain strictly feasible optimization problems, we
assume throughout that there is at least one point in the interior
of . In addition, we require that is compact. To this end, it
is sufficient to assume that is invertible.

Given the prior knowledge , a popular estimation
strategy is the CLS approach, in which the estimate is chosen to
minimize the data error over the set . Thus, the CLS estimate,
denoted , is the solution to

(4)

Clearly is feasible, namely it satisfies the constraints
defining our prior knowledge. However, the fact that it mini-
mizes the data error over does not mean that it leads to a small
estimation error . In fact, the simulations in Section VII
demonstrate that the resulting error can be quite large.

To design an estimator with small estimation error, we sug-
gest minimizing the worst-case error over all feasible vectors.
This is equivalent to finding the Chebyshev center of :

(5)

To develop a geometrical interpretation of , note that (5) can
be written equivalently as

(6)

For a given , the set of all values of satisfying
defines a ball with radius and center . Thus, the constraint
in (6) is equivalent to the requirement that the ball defined by
and encloses the set . Since the minimization is over the
squared-radius , it follows that the Chebyshev center is the
center of the minimum radius ball enclosing and the squared
radius of the ball is the optimal minimax value of (5). This is
illustrated in Fig. 1 with the filled area being the intersection
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Fig. 1. Chebyshev center of the intersection of three ellipsoids.

of three ellipsoids. The dotted circle is the minimum inscribing
circle of the intersection of the ellipsoids.

Computing the Chebyshev center (5) is a hard optimization
problem. To better understand its intrinsic difficulty, note that
the inner maximization is a non-convex quadratic optimization
problem. Relying on strong duality results derived in the con-
text of quadratic optimization [21], it was recently shown that
despite the non-convexity of the problem, it can be solved effi-
ciently over the complex domain when is the intersection of
two ellipsoids. The same approach was then used over the real
domain to develop an approximation of the Chebyshev center.
Here, we extend these ideas to a more general quadratic con-
straint set. The importance of this generalization is that in many
practical applications there are more than two constraints. For
example, interval restrictions are popular in image processing
in which the components of represent individual pixel values
which are limited to a fixed interval (e.g., [0,255]). A bound
of the form can be represented by the ellipsoid

, or by the intersection of the two degen-
erate ellipsoids and . These types of sets
and the best way to represent them are discussed in Section VI.
Another popular constraint is for some , where

is the discretization of a first- or second-order differential op-
erator that accounts for smoothness properties of [1], [22].

III. THE RELAXED CHEBYSHEV CENTER

The RCC estimator, denoted , is obtained by replacing
the non-convex inner maximization in (5) by its semidefinite
relaxation, and then solving the resulting convex-concave min-
imax problem.

To develop , consider the inner maximization in (5):

(7)

where , are defined by (2), and is defined
similarly with , , so
that . Thus, the set can be written as

(8)

Denoting , (7) can be written equivalently as

(9)

where

(10)

and we defined

(11)

The objective in (9) is concave (linear) in , but the set
is not convex. To obtain a relaxation of (9) we may replace by
the convex set

(12)

The RCC is the solution to the resulting minimax problem:

(13)

The objective in (13) is concave (linear) in and and
convex in . Furthermore, the set is bounded. Therefore, we
can replace the order of the minimization and maximization
[23], resulting in the equivalent problem

(14)

The inner minimization is a simple quadratic problem, whose
optimal value is . Thus, (14) reduces to

(15)

which is a convex optimization problem with a concave objec-
tive and linear matrix inequality constraints. The RCC estimate
is the -part of the solution to (15).

The RCC is not generally equal to the Chebyshev center of
. An exception is when with the problem defined over

the complex domain [20]. Since clearly , we have that

(16)

Therefore, the RCC provides an upper bound on the optimal
minimax value.

In Theorem III.1 below, we present an explicit representation
of the RCC.

Theorem III.1: The RCC estimate, which is the solu-
tion to (15), is given by

(17)
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where is an optimal solution of the following
convex optimization problem in variables:

(18)

Before proving the theorem, note that (18) can be cast as a
semidefinite program (SDP) [24]:

(19)

This SDP can be solved by one of the many available SDP
solvers such as SeDuMi [25] and SDPT3 [26].

Proof: To prove the theorem we show that (18) is the dual
of (15). Since (15) is convex and strictly feasible (because we
assumed that there is a point in the interior of ), its optimal
value is equal to that of its dual problem. To compute the dual,
we first form the Lagrangian:

(20)

where and are the dual variables. Differentiating
with respect to and equating to 0,

(21)

where we used the fact that since , is invertible.
The derivative with respect to yields

(22)

Combining (21) and (22) yields (17).
Next we note that since , we must have from (22) that

. Finally, substituting (21) and (22) into (20),
we obtain the dual problem (18).

For , the expression for the RCC reduces to the one
obtained in [20]. We note that our derivation in Theorem III.1
for an arbitrary is significantly simpler than the derivation in
[20] for the special case . The main difference is that
here we replace the inner maximization with its semidefinite

relaxation, while in [20], this maximization was replaced by its
Lagrangian dual. These derivations are equivalent since the dual
problem of the inner maximization problem is also the dual of
the (convex) semidefinite relaxation [24]. Besides its simplicity,
this approach can be used to show that the CLS may also be
interpreted as a relaxation of the Chebyshev center. This is the
topic of Section V.

IV. FEASIBILITY OF THE EXACT CHEBYSHEV

CENTER AND THE RCC

The Chebyshev center and RCC approaches are designed to
estimate when we have the prior knowledge where
is defined by (8) [or (3)]. Therefore, a desirable property of these
estimates is that they should also reside in the set , meaning
they should be consistent with the prior information.

In Section IV-A, we use the definition of the exact Chebyshev
center to establish its feasibility. We then prove in Section IV-B
the feasibility of the RCC by using the representation (15).

A. Feasibility of the Chebyshev Center

Proposition IV.1: The solution of (5) is unique and feasible.
Proof: Problem (5) can be written as

(23)

where . Since is a max-
imum of convex functions of , it is convex. As a result,

is strictly convex which readily implies [27] that (23) has
a unique solution.

In order to prove the feasibility of the Chebyshev center, we
will assume by contradiction that the optimal solution of (5)
is infeasible, i.e., . Let , where denotes
the orthogonal projection operator onto the convex set . By
the projection theorem on convex sets [27], we have

for every (24)

Therefore, for every ,

where the first inequality follows from the fact that and
the last inequality is due to (24). Thus

for every (25)

which using the compactness of implies that

contradicting the optimality of .

B. Feasibility of the RCC

Proposition IV.2: The RCC estimate of (13) is unique
and feasible.
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Proof: The uniqueness follows from similar arguments as
in the proof of Proposition IV.1. The feasibility results from the
observation that can be expressed as the solution to (15).

Specifically, let be a solution to (15). Since
, where is defined by (12), we have that

(26)

In addition, . Since , this, in turn,
implies that

(27)

where we used the fact that if and , then
. We conclude that for

, which implies that with defined
by (8).

V. RELATION WITH THE CLS

Using a similar derivation to that of the RCC estimator we
now show that the CLS estimate can also be viewed as a relax-
ation of the Chebyshev center. However, this relaxation is looser
than that of the RCC meaning that the resulting bound on the
minimax value is larger.

The RCC estimate was based on the prior information
with given by (2), and the bounded error constraint

. The CLS estimate, which is the solution to (4), tries
to minimize the noise (or the data error) over .

To establish the relation with the Chebyshev center, we first
note that is equivalent to and .
Now, the RCC was obtained by replacing by the equiva-
lent set with given by (10), and then relaxing the
non-convex constraint in to obtain the convex set of (12).
As we now show, the CLS can be viewed as a relaxed Cheby-
shev center where is replaced by a different convex set , that
is larger than . To obtain , note that can be written as

(28)

In this representation, we substituted only in the noise
constraint, but not in the constraints . We now relax the
non-convex equality and obtain the relaxed convex set

(29)

Evidently, the relaxation only effected the noise constraint and
not those in . This results in a set that includes the set of
(12). To see this, note that since , for any , we
have that

(30)

where and are defined by (2) and (11), respec-
tively. Now, if , then and
which implies from (46) that so that .

Theorem V.1 establishes that is the solution to the re-
sulting minimax problem:

(31)

Theorem V.1: The CLS estimate of (4) is the same as the
relaxed Chebyshev center (31).

Proof: To prove the theorem we first follow similar steps as
in the proof of the RCC, and replace the order of the minimiza-
tion and the maximization. Noting that as before the optimal
choice of is we arrive at the equivalent problem

(32)

We now show that (32) and the CLS problem (4) have the
same solution . To see this, let be an optimal solution
of (32) and let be the solution of (4). Suppose to the contrary
that . Since the objective function in the CLS problem
is strictly convex (because is invertible), is the unique
optimal solution, which implies that

(33)

Define

(34)

It is easy to see that . Indeed, , and since
we have immediately that . Furthermore

(35)

where the last inequality follows from (33). Denote the objective
value of (32) by . Then

(36)

which contradicts the optimality of . Therefore, we must
have .

We conclude that the RCC and CLS estimates can both be
viewed as relaxations of the Chebyshev center problem (5).
Since , the CLS estimate is the solution of a looser
relaxation than the one associated with the RCC. As we show
in Section VII, the estimation error corresponding to the CLS
estimate is typically much larger than that resulting from the
RCC approach.

VI. MODELLING OF LINEAR CONSTRAINTS

As we noted in Section II, there are many signal processing
examples in which there are interval constraints on the elements
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of . In this section we address the question of how to best
represent such restrictions.

Specifically, suppose that one of the constraints defining the
set is a double-sided linear inequality of the form

(37)

where and is a nonzero vector. The constraint
(37) can also be written in quadratic form as

(38)

An important question that arises is whether or not the RCC
depends on the specific representation of the set . Clearly the
CLS and Chebyshev center estimates are independent of the rep-
resentation of , as they depend only the set itself. However,
the RCC estimate is more involved as it is a result of a relaxation
of , so that different characterizations may lead to different re-
laxed sets. In this section we show that indeed the RCC depends
on the specific form of chosen. Furthermore, we prove that
the quadratic representation (38) is better than the linear char-
acterization (37) in the sense that the resulting minimax value
is smaller.

Suppose that we have the following two representations of
the same set:

(39)

where , and with
, and . The RCC estimates corresponding to

these sets are obtained by forming the relaxed sets and , as
defined by (12), namely:

(40)

(41)

and then solving (13). Denote by and the objective values
resulting from and , respectively. As in (16), both values
are upper bounds on the exact squared radius of the minimum
enclosing ball of , i.e.,

(42)

This follows from the fact that and . In the
next theorem we show that the “quadratic” representation
provides a tighter upper bound than the one given by the “linear”
representation .

Theorem VI.1: Let and denote the optimal values of
(13) when and , respectively. Then .

Proof: To prove the result, we will show that

(43)

Fig. 2. The RCC of the intersection of an ellipsoid with the box
[�1; 1] � [�1;1] using a quadratic representation (top) and a linear rep-
resentation (bottom).

which implies

(44)

To show (43), it is sufficient to prove that if is in ,
then it is also in . Let . Since the first
constraints defining are the same as the first constraints
defining , we only need to show that the last two constraints
in are satisfied, i.e.,

(45)

Since , we have

(46)
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Fig. 3. Comparison between the RCC and CLS estimates.

Combining (46) with the matrix inequality , it follows
that

(47)

But (47) is equivalent to , which, in
turn, is the same as (45). Therefore, , proving the
result.

A consequence of the theorem, is that in the presence of sev-
eral double sided linear constraints, it is best to represent all of
them as quadratic constraints.

The importance of the representation of linear constraints in
the context of Lagrangian dual bounds was noted in1 [28, Ex-
ample 1] where the following two representations of the same
optimization problem were considered:

The Lagrangian dual bound of the first problem is (i.e., mean-
ingless); the dual bound of the second problem is equal to 1

1We are indebted to H. Wolkowicz for refereeing us to this example.

which is the optimal value of the two (identical) problems. The-
orem VI.1 provides another motivation to using the quadratic
representation.

We have observed through numerical examples that the linear
representation provides a bound on the squared radius of the
minimum enclosing circle that is much worse than the quadratic
formulation. A typical example can be seen in Fig. 2. The filled
region describes the intersection of a randomly generated ellip-
soid with the box . The asterisk in the top
picture is the RCC of the set when the
box constraints are modelled as , 1, 2. The asterisk
in the bottom picture is the RCC when the box constraints are
represented as , 1, 2. Clearly, the RCC using
the linear representation is far from the center of the filled re-
gion (actually, it is on the boundary of the area!). In contrast,
the RCC corresponding to the quadratic representation seems
like a good measure of the center of the set. The minimax value
using the linear representation was approximately 37% higher
than that resulting from the quadratic representation.

VII. EXAMPLES

To illustrate the effectiveness of the RCC approach in com-
parison with the CLS method, we consider two examples from
the “Regularization Tools” [29].
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Fig. 4. Comparison between different estimators.

A. Heat Equation

The first example is a discretization of the heat integral equa-
tion implemented in the function . In this case,

(48)

where and . The matrix in this
problem is extremely ill-conditioned. The true vector is shown
in Fig. 3 (True Signal) and resides in the set

(49)

where is the vector of all ones. The observed vector is given by
where the elements of are zero-mean, independent

Gaussian random variables with standard deviation 0.001. Both
and are shown in Fig. 3 (Observation).

To compute the RCC, we chose the set as

with for some constant , and .
We then used the following quadratic representation of :

For comparison, we computed the CLS estimate which is the
solution to .

The results of the RCC and CLS estimates for and
are shown at the bottom of Fig. 3. Evidently, the RCC

approach leads to the best performance. The squared error of the
RCC image was 196 and 55 times smaller than
that of the CLS solution for and respectively.

The performance of both methods is better when ,
as expected. However, it is interesting to note that even when
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, so that very loose prior information is used, the RCC
results in very good performance.

B. Image Deblurring

As a second example, we consider a small image deblurring
problem, again from the regularization tools.

In this problem the true value of is of length 256 and is ob-
tained by stacking the columns of the 16 16 image. The matrix

is of size 256 256 and represents an atmospheric turbu-
lence blur originating from [30]; it is implemented in the func-
tion (4 is the half bandwidth and 0.8 is the stan-
dard deviation associated with the corresponding point spread
function). The image corresponding to is shown at the top
left corner of Fig. 4. The image is scaled so that each pixel is
bounded below and above by 0 and 4, respectively.

The observed vector was generated by where each
component of was independently generated from a
normal distribution with zero mean and standard deviation 0.05.
The noisy image is shown in Fig. 4 (Observation). To estimate

we considered several approaches.
• LS. The LS estimator given by . As

can be seen in Fig. 4, the resulting image is very poor.
• RLS. The regularized LS solution which is the CLS corre-

sponding to the norm constraint . In our exper-
iments was chosen to be . As can be seen from
Fig. 4, the RLS method also generates a poor image.

• CLS. Here we consider the CLS estimator when the bound
on the pixels are taken into account. That is, the CLS image
is the solution to the minimization problem

Note that we use the quadratic representation of the con-
straints . The image resulting from the CLS
approach is much clearer than those resulting from the LS
and RLS strategies.

• RCC. Finally, we compare the previous results with the
RCC estimate corresponding to the set

The upper bound on the squared norm of the noise vector
was chosen to be . Evidently, the RCC results
in the best image quality. The squared error of the RCC
image was 33% smaller than the squared
error of the CLS image .

VIII. CONCLUSION

We introduced a new estimation strategy for estimating a de-
terministic parameter vector in the linear regression model,
when is known to lie in a known parameter set . In our
development, we considered the case in which can be de-
scribed by a set of quadratic inequality constraints. This includes
bounded norm and interval (linear) restrictions. Instead of mini-
mizing the data error, which results from a maximum likelihood
approach, we suggested maximizing the worst-case estimation
error over the given parameter set, which is equivalent to finding
the Chebyshev center of the set. This allows control of the esti-
mation error which is a direct measure of estimator quality. To

this end we add a constraint on the resulting data error which
can be chosen to be proportional to the variance of the noise.
Since the resulting problem is intractable, we suggested a relax-
ation based on semidefinite programming which can be solved
efficiently. We then demonstrated via examples that the perfor-
mance of the proposed RCC estimate can be much better than
that of conventional least-squares based methods in terms of es-
timation error.
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