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This paper develops and studies a feasible directions approach for the minimization of a continuous 
function over linear constraints in which the update directions belong to a predetermined finite set 
spanning the feasible set. These directions are recurrently investigated in a cyclic semi-random order, 
where the stepsize of the update is determined via univariate optimization. We establish that any 
accumulation point of this optimization procedure is a stationary point of the problem, meaning that 
the directional derivative in any feasible direction is nonnegative. To assess and establish a rate of 
convergence, we develop a new optimality measure that acts as a proxy for the stationarity condition, 
and substantiate its role by showing that it is coherent with first-order conditions in specific scenarios. 
Finally we prove that our method enjoys a sublinear rate of convergence of this optimality measure in 
expectation.
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1. Introduction

1.1. Problem formulation

In this paper, we seek to address the nonconvex, and possibly 
nonsmooth, problem

min { f (x) := h(x) − g(x) : Ax ≤ b} , (P)

where A ∈ Rm×n, b ∈ Rm , and C := {
x ∈Rn : Ax ≤ b

}
is a non-

empty feasible set, and we assume throughout the paper that

1. f : C →R is lower-bounded over C by inf
x∈C

f = f̄ > −∞,

2. h :Rn →R is continuously differentiable,
3. g :Rn →R is convex.

The underlying model (P) captures a wide variety of problems, 
most prominently those in which f is a non-smooth concave func-
tion or a continuously differentiable function that does not neces-
sarily have a Lipschitz continuous gradient.

Considering the nonconvexity of (P) and the fact that the ob-
jective may not be differentiable, we aim to obtain a stationary 
point of (P), where stationarity at a point x ∈ C means that the di-
rectional derivative with respect to any feasible direction at x is 
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nonnegative; this is defined formally in the following Section 2. 
We seek to achieve stationarity by using an optimization protocol 
that is oblivious to full first-order information, making it applicable 
to non-differentiable nonconvex problems, and robust to differen-
tiable problems with no Lipschitz continuity of the gradient.

Literature. The feasible directions approach, see e.g. [18, Chapter 
13], [8, Chapter 2], [9, Chapter 7], or the review paper [14], is 
a classical methodology in which the optimization procedure is 
updated along a chosen feasible direction. Variations of this ap-
proach include zeroth-order methods using directions generator 
such as those described in [14], first-order procedures such as the 
ε-perturbation method [18, Chapter 13.4] and the conditional gra-
dient [8, Chapter 2.2], or second-order methods such as the general 
algorithm [2] and the two directions method [12].

A common difficulty in feasible directions methods for con-
strained optimization is the jamming phenomenon in which the 
algorithm gets stuck in sub-optimal points as a result of the fact 
that the mapping defining the update procedure is not closed [18, 
Chapter 13]. The remedy for this unwanted scenario comes in the 
form of taking into account sufficiently close constraints, as done 
in the ε-perturbation method [18, Chapter 13.4] or in the GFD/RFD 
methods [6].

The starting point of this work is our recent work [6] in which 
both deterministic (GFD) and random (RFD) methods were de-
veloped to address problem (P). The optimization procedures in 
[6] first compute an ε-feasible direction (via approximately active 
constraints due to the jamming phenomenon), and then mini-
mize a consistent majorizer (cf. [7,16]) along that direction. Almost 
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sure subsequential convergence to stationary points was proved 
in [6] under the assumption that the proximity parameter ε with 
which the ε-feasible directions are generated is smaller than half 
the distance between the accumulation point and its closest non-
active constraint. This assumption on ε incorporates a difficulty 
as, in some sense, it requires unavailable information on accu-
mulation points of the generated sequence. Additionally, the work 
[6] does not establish any rates of convergence of the suggested 
method.

In this paper we introduce a new feasible directions method 
(see Section 3), called the regularized feasible directions search (RFDS) 
method that optimizes at each update step a regularized version 
of the objective function along one of the directions in the un-
derlying directions set. The method avoids the challenges of the 
jamming phenomenon, and any required treatment, by always up-
dating along directions from a predetermined finite set of direc-
tions, so that the update direction does not depend on the given 
point. We establish in Section 5 that the RFDS method achieves 
subsequence convergence to a stationary point without any condi-
tions on the parameters of the method, and although the method 
contains a random element, the convergence result is determinis-
tic. Moreover, we develop a new optimality measure in Section 4
that can be thought of as a measure for stationarity, and show that 
in expectation, it converges to zero in rate of O (1/k).

Notation. Matrices and vectors are denoted by boldface letters. The 
nonnegative orthant is denoted by Rn+ . For any natural number l, 
we denote [l] = {1, 2, . . . , l}. The vector ei has 1 in the i-th compo-
nent and zeros elsewhere. We assume throughout the paper that 
the underlying norm on Rn is the l2-norm. For α ∈R, we use the 
notation [α]+ := max{α, 0}.

2. Mathematical preliminaries: feasible directions, stationarity 
and spanning sets

Adopting the classical terminology of [18, Section 2.4], a vector 
d ∈ Rn is a feasible direction at x ∈ C if there exists σ > 0 such 
that x + τd ∈ C for all τ ∈ [0, σ ]. The set of all feasible directions 
at a given point x ∈ C is a cone called the cone of feasible directions, 
and by exploiting the specific structure of C , it can be shown (see 
e.g., [4, Lemma 10.1.2]) to have the following form:

Dx = {d ∈Rn : aT
i d ≤ 0, i ∈ I(x)}, (2.1)

where I(x) ≡ {i ∈ [m] : aT
i x = bi} is the set of active constraints at 

x. Obviously, if I(x) = I(y), then Dx = Dy .
Using the set of feasible directions, we can define the stationar-

ity condition.

Definition 2.1 (Stationarity). A point x ∈ C is called a stationary 
point of (P) if

f ′(x;d) ≥ 0 for any d ∈ Dx.

Obviously, stationarity is a necessary optimality condition (see 
e.g., [18, Lemma 2.11]).

Lemma 2.1. Let x∗ ∈ C be a local minimum of (P). Then x∗ is a stationary 
point of (P).

We address the task of finding stationary points of (P) by 
exploring a finite number of directions that positively span (cf. 
[10,17,14]) the set of feasible directions. We first recall the defi-
nition of the positive span.
518
Definition 2.2 (Positive span [17, Definition 2.3]). The positive span of 
a finite set of vectors S = {v1, v2, . . . , vk} ⊆Rn , denoted by pos(S), 
is the convex cone given by

pos(S) :=
{

k∑
i=1

λivi : λi ≥ 0, i = 1,2, . . . ,k

}
.

A linear combination with nonnegative coefficients is called a 
positive linear combination, and thus pos(S) comprises all positive 
linear combinations of vectors from S .

Definition 2.3 (Positive spanning set [17, Definition 2.4]). A finite set 
S ⊆ Rn is a positive spanning set of a convex cone C ⊆ Rn if 
pos(S) = C . In this case, S is said to positively span C .

A finite set of vectors that spans the set of feasible directions 
at a point x ∈ C is called a positive spanning feasible directions (PSD) 
set. The notion of PSD sets is borrowed from [6] with the small 
adjustment that here the directions in the PSD set are normalized.

Definition 2.4 (PSD sets). Let x ∈ C and let Dx be the corresponding 
cone of feasible directions. Then a finite set V x ⊆ Dx containing 
normalized vectors that positively span Dx is called a positive 
spanning feasible directions (PSD) set of C at x.

The key for using our approach is the fact that stationarity of a 
point x ∈ C w.r.t. problem (P) can be verified by checking that the 
directional derivatives of h at x in all the directions of a given PSD 
set of C at x are nonnegative. This is a significant simplification of 
the stationarity condition (Definition 2.1) that requires the verifi-
cation of the directional derivative condition (2.1) with respect to 
all the feasible directions.

Theorem 2.1 (Stationarity via PSD sets [6, Theorem 3.1]). Let x∗ ∈ C and 
V x∗ = {v1, v2, . . . , vn} be a PSD set of C at x∗ . Then x∗ is a stationary 
point of (P) if and only if

f ′(x∗;vi) ≥ 0, i = 1,2, . . . ,n. (2.2)

Example 2.1 (Box constraints). Consider the box set C = Box[�, u] :=
{x : �i ≤ xi ≤ ui, i ∈ [n]}, where here �, u ∈ Rn are such that � < u. 
Given x ∈ C , the set of feasible directions is given by

Dx = {d ∈ Rn : di ≥ 0,d j ≤ 0, i ∈ Il(x), j ∈ Iu(x)},
where Il(x) = {i : xi = �i}, Iu(x) = {i : xi = ui}. A PSD set of C at x
is

V x = {ei : i ∈ Il(x)} ∪ {−ei : i ∈ Iu(x)} ∪ {±ei : i ∈ Ib(x)},
where Ib(x) = {i : �i < xi < ui}. By Theorem 2.1, a point x∗ ∈
Box[�, u] is a stationary point of (P) if and only if for i ∈ Il(x∗), j ∈
Iu(x∗), k ∈ Ib(x∗),

f ′(x∗,ei) ≥ 0, f ′(x∗,−e j) ≥ 0, f ′(x∗,±ek) ≥ 0.

In the case where g ≡ 0, meaning that f = h is continuously dif-
ferentiable, the above translates to the well known condition

∇i f (x∗)

⎧⎨
⎩

≥ 0, i ∈ Il(x∗),
≤ 0, i ∈ Iu(x∗),
= 0, i ∈ Ib(x∗).

Example 2.2 (Affine constraints). Consider the affine subspace C =
{x ∈Rn : Dx = b}, where D ∈Rm×n and b ∈Rm . Then at any point 
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x ∈ C , it holds that the cone of feasible directions is given by Dx =
{d : Dd = 0}. A PSD set of C at any x is {±v1, ±v2, . . . , ±vk}, where 
{v1, v2, . . . , vk} is a basis for the null space of D. By Theorem 2.1, 
x∗ ∈ C is a stationary point of (P) if and only if

f ′(x∗,±vi) ≥ 0, i = 1,2, . . . ,k.

In the case where g ≡ 0, meaning f = h is continuously differen-
tiable, the above translates to

〈∇ f (x∗),vi〉 = 0, i = 1,2, . . . ,k.

We note that finding a positive spanning set for convex cones 
such as the Dx set, is a classical task known in the literature 
as the representation conversion problem for convex cones, from 
the so-called H-representation to the so-called V-representation 
(this conversion problem is also known as the vertex enumeration 
problem), and as such, has well established methods and imple-
mentations; for more details see [19, Chapter 1] or [11, Section 9], 
as well as [3,1], or [14, Section 8]. We further note that the ver-
tex enumeration problem can be tractable or intractable depending 
on the geometry of the feasible set; tractability is achieved, for 
example, when the number of constraints is small for example; 
for a class of sets in which the vertex enumeration problem is in-
tractable see [13].

3. The regularized feasible directions search (RFDS) method

3.1. Complete feasible directions sets

For any x ∈ C , we denote by V x a PSD set of C at x. Recall 
that V x is a positive spanning set of Dx and that Dx is essentially 
determined by its active set I(x) ⊆ [m] in the sense that Dx = Dy
whenever I(x) = I(y). We assume that V x is arbitrarily chosen, but 
that the choice is only determined by the set of active constraints 
I(x), meaning that V x = V y if I(x) = I(y).

Since the number of subsets of [m] is finite (2m), it follows that 
the number of possible PSD sets V x, x ∈ C , is bounded. We can 
thus define the complete feasible directions set of C as the union of 
the PSD sets over all feasible points:

V C =
⋃
x∈C

V x.

Due to the fact that any PSD set is finite, and, as was discussed 
above, the number of PSD sets is also finite, it follows that V C is 
finite. This set will be a fundamental ingredient in our algorithm.

Example 3.1 (Box constraints). Continuing Example 2.1, the com-
plete feasible directions set for the box set is V C = {±e1, ±e2,

. . . , ±en}.

Example 3.2 (Affine constraints). Continuing Example 2.2, since 
V x = {±v1, ±v2, . . . , ±vk} for any x in the affine subspace, it fol-
lows that V C = {±v1, ±v2, . . . , ±vk}.

3.2. The RFDS method

To find a stationary point of (P), our proposed method de-
scribed by Algorithm 1 executes a recurrent univariate optimiza-
tion in directions belonging to a complete feasible directions set

V C = {v1,v2, . . . ,vs}
that is computed in a preprocess. The optimization is done with 
respect to a regularized version of the objective function, and thus 
519
the method is called the regularized feasible directions search (RFDS) 
method. The process is composed of cycles where in each cycle, 
every direction is examined exactly once. The order is determined 
by an arbitrary permutation and the only requirement imposed on 
the permutation is that the first direction is chosen randomly.

Algorithm 1: Regularized Feasible Directions Search (RFDS).

Input: x0 ∈ C ; r ∈ (0, ∞], γ > 0.
1 Initialize: Generate a complete feasible directions set: V C = {v1, v2, . . . , vs};
2 for any k ≥ 0 do
3 choose the first direction p1 ∈ [s] randomly via a uniform distribution 

over [s] ;
4 determine the order of the remaining directions {pi}s

i=2 s.t. 
(p1, p2, . . . , ps) constitutes a permutation of the set [s] ;

5 set yk
0 ← xk ;

6 for any i ∈ [s] do
7 calculate the stepsize for direction vpi : 

q(i, k) ∈ argmin
{

f (yk
i−1 + tvpi ) + γ

2
t2 : t ∈ Ct,i

}
, where 

Ct,i := {t ∈ [0, r] : A(yk
i−1 + tvpi ) ≤ b};

8 update yk
i ← yk

i−1 + q(i, k)vpi ;

9 end

10 update: xk+1 ← yk
s ;

11 end

Several comments regarding the schematics of Algorithm 1 are 
in order.

Remark 3.1 (Case r = ∞). We allow r to be equal to ∞, and in this 
case the one-dimensional optimization is performed over the en-
tire nonnegative part of the real line. We note that in this case, 
with admittedly some abuse of notation, the relation t ∈ [0, r]
means that t ∈ [0, ∞).

Remark 3.2 (Stepsize for infeasible directions). The stepsize is deter-
mined by solving the following univariate optimization problem:

min
{

f (xk + td) + γ

2
t2 : tAd ≤ b − Axk, t ∈ [0, r]

}
. (3.1)

Hence, if the direction d is not feasible, then the solution to (3.1) is 
simply t = 0. Since the order of the directions in the cycle, except 
for the first direction, can be chosen arbitrarily, in practice direc-
tions can be omitted from the cycle if at one point in the cycle 
they are not feasible directions.

Remark 3.3 (Grouping opposite directions). Sometimes, e.g., as oc-
curs in Examples 3.1 and 3.2, we have the situation in which 
v, −v ∈ V C for some directions v. In this case, since the order of 
the directions in each cycle can be chosen arbitrarily, we can group 
these pairs of opposite directions together, and then perform the 
one-dimensional optimization with respect to v over the extended 
interval [−r, r] instead of [0, r].

Remark 3.4 (Worst-case single loop complexity). We note that the 
number of constraints forming the feasible set can lead to a non-
polynomial number of vectors in the set V C , allowing for a sce-
nario in which a single loop might examine a non-polynomial 
number of directions. In that regard, Algorithm 1 is suited for 
problems with tractable complete feasible directions sets.

Example 3.3 (Coordinate-wise optimization). Suppose that V =
Box[�, u] as defined in Example 2.1. Assuming that we group op-
posite directions as discussed in Remark 3.3, then Algorithm 1 is 
a coordinate descent-type method in which the first coordinate at 
each cycle is picked randomly via a uniform distribution and all 
other coordinates are picked arbitrary. One difference between the 
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suggested method and “standard” coordinate descent methods is 
that the regularization term γ

2 t2 is added in the one-dimensional 
optimization procedure.

Example 3.4 (Quadratic minimization over linear constraints). Suppose 
that f (x) = xT Qx +gT x +c. Then the stepsize is calculated by solv-
ing a univariate quadratic problem of the form mint{c1t2 +c2t +c3 :
t ∈ [0, lx,v]}, where lx,v ∈ [0, r] is determined according to the point 
x and the direction v. Hence, the stepsize receives one of the val-
ues in the set 

{
0,−c2/(2c1), lx,v

}
, giving it a closed-form solution.

4. The optimality measure

4.1. Definition

One aspect of the theoretical performance guarantees of an al-
gorithm is the rate at which it converges to the designated opti-
mality condition. The rate is given with respect to a proxy of the 
optimality condition, usually referred to as the optimality measure, 
see e.g., the gradient mapping [15, Section 2.2.3], the conditional 
gradient norm [5, Definition 13.2], or the first/second-order opti-
mality measures in [12, Section 4.1]. Optimality measures should 
be nonnegative, and be equal zero only at points satisfying the 
designated optimality condition.

To analyze the rate of the RFDS method, we define an optimal-
ity measure that quantifies the best improvement in the regular-
ized function value in all directions belonging to a given complete 
feasible directions set.

Definition 4.1 (Optimality measure). Given r ∈ (0, ∞], x ∈ C , and a 
corresponding complete feasible directions set V C = {v1, v2, . . . , vs}, 
define for any i ∈ [s],

η
γ
i (x; V , r) = min

{
z : z ∈ argmin

t∈Ci

{
f (x + tvi) + γ

2
t2

}}
,

Ci = {t ∈ [0, r] : A(x + tvi) ≤ b}.
(4.1)

That is, η
γ
i (x; V , r) is the smallest minimizer of the function 

t �→ f (x + tvi) + γ
2 t2 over a closed interval. The optimality mea-

sure Oγ
V C ,r at x with a radius r ∈ (0, ∞] is defined by Oγ

V C ,r(x) =∑s
i=1 η

γ
i (x; V , r)2.

To reduce clutter, we will omit the parameter γ from the nota-
tion ηγ

i and just write ηi , assuming that the identity of γ is clear 
from context, mainly from the notation Oγ

V C ,r .

Lemma 4.1 verifies that Oγ
V C ,r indeed satisfies the basic proper-

ties of optimality measures, regardless of the choices of V C , r and 
γ .

Lemma 4.1. Let r ∈ (0, ∞], γ > 0 and V C = {v1, v2, . . . , vs} be a com-
plete feasible directions set of C. Then Oγ

V C ,r(x) ≥ 0 for any x ∈ C and if 
Oγ

V C ,r(x) = 0, then x is a stationary point of (P).

Proof. Obviously Oγ
V C ,r is nonnegative since it is defined as a 

sum of squares. Suppose that Oγ
V C ,r(x) = 0. Since V C is a com-

plete feasible directions set of C , it follows that there exists a 
PSD set V x ⊆ V C that spans all feasible directions of C at x. Since 
Oγ

V C ,r(x) = 0, we have that

f (x) ≤ f (x + tv) + γ

2
t2 for all t ∈ [0, r],v ∈ V x.

Rearranging, dividing by t ∈ (0, r), and taking the limit t → 0+
then yields f ′(x; v) ≥ 0 for all v ∈ V x . Consequently, by Theo-
rem 2.1, x is a stationary point of (P ). �
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4.2. Relation to explicit optimality measures

In this section we assume that r = ∞ and that g = 0, meaning 
that the objective function f = h is smooth. To give some more 
insight into the definition of the optimality measure, we will es-
tablish a direct relation between Oγ

V C ,r and an optimality measure 
that is expressed in terms of the directional derivatives of the ob-
jective function in the directions of V C .

As usual, we assume that the given complete feasible directions 
set is V C = {v1, v2, . . . , vs}. We define cx,i as the maximal stepsize 
(possibly ∞) that can be taken when moving from x ∈ C towards 
the direction vi ∈ V C :

cx,i ≡ max {t : A(x + tvi) ≤ b, t ≥ 0} .

Noting that vi ∈ V C is a feasible direction at x if and only if 
cx,i > 0, we may interpretate cx,i as the “level” of feasibility in the 
direction of vi at x. The result assumes in addition that f ∈ C1,1

L
[5, Chapter 5], meaning that ‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖ for all 
x, y ∈Rn .

Theorem 4.1. Suppose that g ≡ 0 and f ∈ C1,1
L for some L > 0, and let 

x ∈ C. Then

Oγ
V C ,r(x) ≥ 1

(L + γ )2

∑
i∈[s]

min{[−〈∇ f (x),vi〉]+, (L + γ )cx,i}2.

(4.2)

Proof. Let i ∈ [s] and vi ∈ V C . Assume that 〈∇ f (x), vi〉 < 0. Define 
φ(t) ≡ f (x + tvi) + γ

2 t2. Then φ′(0) = 〈∇ f (x), vi〉 < 0. Also, for any 
0 ≤ t < −〈∇ f (x),vi〉

L+γ it holds that

φ′(t) ≤ |φ′(t) − φ′(0)| + φ′(0)

≤ |〈∇ f (x + tvi),vi〉 − 〈∇ f (x),vi〉| + γ t + φ′(0)

≤ (L + γ )t + φ′(0) < 0,

(4.3)

where the third inequality follows from the facts that f ∈ C1,1
L and 

‖vi‖ = 1 as well as the Cauchy-Schwarz inequality (recall that all 
vectors in PSD sets are unitary). The last inequality in (4.3) is a 
result of the assertion that t < −〈∇ f (x),vi〉

L+γ . Relation (4.3) implies 

that φ is a monotonic decreasing function over 
[

0,−〈∇ f (x),vi〉
L+γ

)
, 

implying that any minimizer of φ over [0, cx,i] is bounded below 
by min

{
−〈∇ f (x),vi〉

L+γ , cx,i

}
. Recalling the definition of ηi(x, V c, r) as 

the smallest minimizer of φ over the interval [0, cx,i], we conclude 
that

ηi(x, V c, r) ≥ min

{
−〈∇ f (x),vi〉

L + γ
, cx,i

}

= 1

L + γ
min{−〈∇ f (x),vi〉, (L + γ )cx,i}.

(4.4)

The above holds for indices i ∈ [s] for which 〈∇ f (x), vi〉 < 0. Thus, 
for any i ∈ [s],

ηi(x, V c, r) ≥ 1

L + γ
min{[−〈∇ f (x),vi〉]+, (L + γ )cx,i}. (4.5)

Indeed, (4.5) reduces to (4.4) when 〈∇ f (x), vi〉 < 0 and to the 
trivial inequality ηi(x, V c, r) ≥ 0 otherwise. Summing over i the 
squares of both left-hand and right-hand sides of (4.5) yield the 
desired result (4.2). �
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The quantity

Gγ
V C ,r(x) := 1

(L + γ )2

∑
i∈[s]

min{[−〈∇ f (x),vi〉]+, (L + γ )cx,i}2

(4.6)

is always nonnegative, and it is equal to zero if and only if x ∈ C is 
a stationary point (indeed, Gγ

V C ,r(x) = 0 if and only if 〈∇ f (x), vi〉 ≥
0 for all the feasible directions vi in V C at x). Thus, Gγ

V C ,r is an 
optimality measure explicitly expressed in terms of the directional 
derivatives in the directions of the given complete feasible direc-
tions set V C . Theorem 4.1 states that Oγ

V C ,r(x) ≥ Gγ
V C ,r(x) for x ∈ C .

Let us consider the two simple examples of C = Rn and C =
Rn+ .

Example 4.1. In case where C = Rn , the stationarity condition 
is obviously ∇ f (x) = 0, and thus a possible (and actually quite 
popular) optimality measure is ‖∇ f (x)‖2. For this case we can 
take V C = {±e1, ±e2, . . . , ±en} and Gγ

V C ,r(x) is given by (note that 
cx,i = ∞ for all x, i)

Gγ
V C ,r(x) = 1

(L + γ )2

∑
i∈[s]

[−∇i f (x)]2+ + 1

(L + γ )2

∑
i∈[s]

[∇i f (x)]2+

= 1

(L + γ )2
‖∇ f (x)‖2,

meaning that it is a constant times the “standard” optimality con-
dition ‖∇ f (x)‖2. By Theorem 4.1, we conclude that Oγ

V C ,r(x) ≥
1

(L+γ )2 ‖∇ f (x)‖2.

Example 4.2. In the case where C =Rn+ , we can take the complete 
feasible directions set as V C = {±e1, ±e2, . . . , ±en}, and we have 
that

Gγ
V C ,r(x) = 1

(L + γ )2

n∑
i=1

([min{(L + γ )xi, [∇i f (x)]+}2

+ [−∇i f (x)]2+).

It is easy to see that Gγ
V C ,r(x) = 0 if and only if it holds that 

∇i f (x) 
{ = 0, xi > 0,

≥ 0, xi = 0,
which is the well known stationarity con-

ditions for smooth problems over the nonnegative orthant. By The-
orem 4.1, Oγ

V C ,r(x) ≥ Gγ
V C ,r(x).

5. Convergence analysis

In this section we establish the theoretical performance guar-
antees of the RFDS method (Algorithm 1) – the expected rate 
of convergence and the subsequence convergence to a stationary 
point. Before doing so, we derive some basic properties of the out-
put sequence of the algorithm.

Lemma 5.1. Let {xk}k≥0 be the sequence generated by the RFDS method. 
Then

(a) f (yk
i−1) − f (yk

i ) ≥ γ
2 q(i, k)2 = γ

2 ‖yk
i−1 − yk

i ‖2 for all i ∈ [s].
(b) f (xk) − f (xk+1) ≥ γ

2 t2
k := ∑

i∈[s]
γ
2 q(i, k)2 ≥ γ

2s ‖xk+1 − xk‖2 for 
all k ≥ 0.

(c) The sequence { f (xk)}k≥0 is non-ascending and convergent.

(d)
∑K

k=0 t2
k ≤ 2( f (x0)− f̄ )

γ for any integer K > 0.

(e) lim
k→∞

tk = lim
k→∞

‖xk+1 −xk‖ = lim
k→∞

‖yk
i−1 −yk

i ‖ = lim
k→∞

q(i, k) = 0

for any i ∈ [s].

P
a
a
p
P
t
(

e

g
i

V
(

h

T
t

m
k

P

2

w
5
w
E

2

S

∑
k

C

i
g

C
t
i

m
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roof. Part (a) follows immediately from the update rule of yk
i , 

nd (b) follows from summing the inequality in part (a) over i ∈ [s]
nd applying Young’s inequality. Part (c) is a direct consequence of 
art (b) and the underlying assumption that f is lower-bounded. 
art (d) is derived by summing the first inequality in (b) and using 
he fact that the sequence { f (xk)}k≥0 is bounded-below by f̄ . Part 
e) readily follows by combining (a), (b) and (c). �

Theorem 5.1 establishes an O (1/k) rate of convergence of the 
xpected value of the optimality measure Oγ

V C ,r of the sequence 
enerated by the RFDS method. We use the following notation: pk

1
s the random variable that corresponds to the direction vpk

1
in 

C chosen to be first in the cycle of the k-th iteration and ξk =
p0

1, p
1
1, . . . , p

k
1) is the multivariate random variable containing the 

istory of these random variables up to cycle k.

heorem 5.1 (Expected rate). Let {xk}k≥0 be a sequence generated by 
he RFDS method. Then for any integer K > 0 it holds that

in
∈[K ]

Eξk−1

(
Oγ

V C ,r(xk)
)

≤ 2s( f (x0) − f̄ )

γ K
. (5.1)

roof. By Lemma 5.1(d), we have that

γ −1( f (x0) − f̄ ) ≥
K∑

k=0

t2
k ≥

K∑
k=1

t2
k ≥

K∑
k=1

q(1,k)2, (5.2)

here the last inequality follows from the definition of tk (Lemma 
.1(b)) as t2

k := ∑
i∈[s] q(i, k)2. Taking expectation on relation (5.2)

.r.t. ξK , using the law of total expectation, and noting that 
ξK (q(1, k)2) =Eξk (q(1, k)2) yields

γ −1( f (x0) − f̄ ) ≥
K∑

k=1

Eξk (q(1,k)2)

=
K∑

k=1

Eξk−1

(
Epk

1
(q(1,k)2)

)
.

(5.3)

ince by definition (cf. (4.1)) ηpk
1
(xk; V , r) ≤ q(1, k), we have that

K

=1

Eξk−1

(
Epk

1
(q(1,k)2)

)
≥

K∑
k=1

Eξk−1

(
Epk

1
(ηpk

1
(xk; V , r)2)

)

= 1

s

K∑
k=1

Eξk−1

(
s∑

i=1

ηi(xk; V , r)2

)

≥ K

s
min
k∈[K ]

Eξk−1

(
s∑

i=1

ηi(xk; V C , r)2

)

= K

s
min
k∈[K ]

Eξk−1

(
Oγ

V C ,r(xk)
)

. (5.4)

ombining (5.3) and (5.4), the desired result (5.1) follows. �
Theorem 5.1 together with Theorem 4.1 implies the follow-

ng rate on the directional derivatives-based optimality measure 
radient-feasibility level Gγ

V C ,r when f ∈ C1,1
L .

orollary 5.1. Suppose that g ≡ 0, f ∈ C1,1 and r = ∞. Let {xk}k≥0 be 
he sequence generated by the RFDS method. Then for any integer K > 0
t holds that (Gγ

V C ,r is given in (4.6))

in Eξk−1

(
Gγ

V C ,r(xk)
)

≤ 2s( f (x0) − f̄ )
.

k∈[K ] γ K
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For example, when C = Rn , in the setting of Example 4.1, 
we have that Gγ

V C ,r(x) = 1
(L+γ )2 ‖∇ f (x)‖2, and we thus obtain by 

Corollary 5.1 that (note that here s = 2n)

min
k∈[K ]

Eξk−1‖∇ f (xk)‖2 ≤ 4(L + γ )2n( f (x0) − f̄ )

γ K
.

The right-hand side in the above inequality depends on γ through 
the expression (L+γ )2

γ whose minimal value is L, and is attained at 
γ = L. Thus, if we employ the RFDS method with γ = L we obtain 
the bound

min
k∈[K ]

Eξk−1‖∇ f (xk)‖2 ≤ 4Ln( f (x0) − f̄ )

K
.

We conclude the analysis with Theorem 5.2 below that shows a 
deterministic subsequence convergence guarantee for the sequence 
generated by the RFDS method. Note that this deterministic result 
is established even though the RFDS method incorporates random-
ness. The following technical lemma will be used in the proof, 
where we denote B[c, r] := {x : ‖x − c‖ ≤ r}.

Lemma 5.2. Let x∗ ∈ C , r > 0, and d �= 0 be a normalized feasible direc-
tion of C at x∗ . Then there exists ε̃, ̃r > 0 (possibly depending on x∗) for 
which

x + td ∈ C for any x ∈ B[x∗, ε̃] ∩ C, t ∈ [0, r̃]. (5.5)

Proof. Denote I=(x∗) ≡ {i : aT
i x∗ = bi} and I<(x∗) ≡ {i : aT

i x∗ < bi}. 

If I<(x∗) �= ∅, we define ε̃ = r̃ ≡ min

{
|aT

i x∗−bi |
2‖ai‖ : i ∈ I<(x∗)

}
; oth-

erwise, we choose arbitrarily ε̃ = r̃ = 1. Take x ∈ B[x∗, ̃ε] ∩ C and 
t ∈ [0, ̃r]. For any i ∈ I<(x∗) (relevant only when I<(x∗) �= ∅),

aT
i (x + td) − bi = aT

i x∗ − bi + aT
i (x − x∗) + taT

i d

≤ aT
i x∗ − bi + ε̃‖ai‖ + r̃‖ai‖

≤ aT
i x∗ − bi + |aT

i x∗ − bi|
2

+ |aT
i x∗ − bi|

2
= 0.

If i ∈ I=(x∗), then since d is a feasible descent direction of C at x∗ , 
it follows that aT

i d ≤ 0. Since x ∈ C , it holds that aT
i x − bi ≤ 0, and 

consequently, aT
i (x + td) − bi = aT

i x − bi + taT
i d ≤ 0. We have thus 

established that aT
i (x + td) − bi ≤ 0 for all i ∈ [m], and hence that 

x + td ∈ C as required. �
Theorem 5.2 (Subsequence convergence). Any accumulation point of 
the sequence {xk}k≥0 generated by the RFDS method is a stationary point 
of (P).

Proof. Let x∗ be an accumulation point of {xk}k≥0. Then there ex-
ists a subsequence {xk j } j≥0 that converges to x∗ . We first show 
that y

k j

i → x∗ for any i ∈ [s]. By telescoping and invoking the tri-
angle inequality we have

‖x∗ − y
k j

i ‖ =
∥∥∥∥∥x∗ − xk j +

i∑
l=1

(y
k j

l−1 − y
k j

l )

∥∥∥∥∥
≤

∥∥∥x∗ − xk j

∥∥∥ +
i∑

l=1

∥∥∥y
k j

l−1 − y
k j

l

∥∥∥ .

Taking a limit and utilizing Lemma 5.1(e), we deduce that (note 
that i ≤ s is bounded)
522
lim
j→∞

‖x∗ − y
k j

i ‖ ≤ lim
j→∞

∥∥∥x∗ − xk j

∥∥∥ +
i∑

l=1

lim
j→∞

‖y
k j

l−1 − y
k j

l ‖

= 0.

Now, let us consider the subset {w1, w2, . . . , ws∗ } = V x∗ ⊆ V C , 
which is a PSD set of C at x∗ . By Lemma 5.2, there exist ε̃ > 0 and 
r̃ ∈ (0, r] such that (5.5) holds. Since y

k j

i → x∗ , there exists J > 0
such that for any j ≥ J it holds that

‖x∗ − y
k j

i ‖ < ε̃.

Denote by n(k, i) the step in which the i-th direction in V x∗ is 
chosen during the computation of the k-th iteration. Then

y
k j

n(k j ,i)
+ twi ∈ C for any j ≥ J , t ∈ [0, r̃], i ∈ [s∗].

The above together with the update procedure of the RFDS method 
implies that for any t ∈ [0, ̃r]

f (y
k j

n(k j ,i)
+ q(n(k j, i),k j)wi) + γ

2
q(n(k j, i),k j)

2

≤ f (y
k j

n(k j ,i)
+ twi) + γ

2
t2.

(5.6)

We have that y
k j

n(k j ,i)
→ x∗ as j → ∞, and by Lemma 5.1(e), 

q(n(k j, i), k j) → 0. Thus, due the continuity of f (recall that 
it is the sum of a continuous function and a concave func-
tion), f (y

k j

n(k j ,i)
+ q(n(k j, i), k j)wi) → f (x∗). Consequently, taking 

the limit j → ∞ in (5.6), yields that

f (x∗) ≤ f (x∗ + twi) + γ

2
t2 for all t ∈ [0, r̃],

which is the same as

f (x∗ + twi) − f (x∗)
t

≥ −γ

2
t for all t ∈ (0, r̃].

Taking the limit t → 0+ in the above, we obtain that

f ′(x∗;wi) = lim
t→0+

f (x∗ + twi) − f (x∗)
t

≥ 0.

Since the above holds for any direction in the PSD set V x∗ of C at 
x∗ , Theorem 2.1 implies that x∗ is a stationary point of (P). �
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