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Abstract
Coordinate descent algorithms are popular in machine learning and large-scale data
analysis problems due to their low computational cost iterative schemes and their
improved performances. In this work, we define a monotone accelerated coordinate
gradient descent-typemethod for problems consisting ofminimizing f +g, where f is
quadratic and g is nonsmooth and non-separable and has a low-complexity proximal
mapping. The algorithm is enabled by employing the forward–backward envelope, a
composite envelope that possess an exact smooth reformulation of f + g. We prove
the algorithm achieves a convergence rate of O(1/k1.5) in terms of the original objec-
tive function, improving current coordinate descent-type algorithms. In addition, we
describe an adaptive variant of the algorithm that backtracks the spectral informa-
tion and coordinate Lipschitz constants of the problem. We numerically examine our
algorithms on various settings, including two-dimensional total-variation-based image
inpainting problems, showing a clear advantage in performance over current coordi-
nate descent-type methods.
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1 Introduction

Coordinate descent-type algorithms are popular in the fields of machine learning and
large-scale data analysis due to their low computational cost and their favorable per-
formance [16,17,38]. At each iteration of a coordinate descent-type algorithm, a set
of only a few coordinates, called the working set, is revised according to some deter-
ministic or random update rule. The update rule can consist of an exact minimization
of the working set, as in alternating minimization [9,34], or of a step (or few steps) of
a certain minimization algorithm as in block proximal gradient [3,7,15,23]) or block
conditional gradient methods [4,26]

Acurrent limitation of coordinate descent-typemethods is that they are applicable to
nonsmooth problems only under very specific structures. One such form comprises the
minimization of the sum of two convex functions—the first is smooth and the second
is nonsmooth and separable [3,15,23]. Unfortunately, in the non-separable case, these
algorithms are not guaranteed to converge to an optimal solution, as coordinate-wise
minima points are not necessarily global minimizers. Furthermore, in many non-
separable cases, coordinate-descent methods cannot even be directly applied, as a
change in one coordinate of a given point in the domain of the function might result
in a point that is outside of the domain.

In this paper, we approach the scenario of a composite optimization model, which
consists of the sum of a convex quadratic function and a nonsmooth convex function,
by replacing it with the forward–backward envelope function that was introduced and
studied in [36]. This envelope can be considered as a convex and smooth approximation
of the objective function, and most importantly, it shares the same set of minimizers
with the original problem as long as a certain smoothing parameter used to define the
forward–backward envelope is below a certain threshold. Therefore, we can define
very simple coordinate descent-type methods that alternate only a single coordinate
per iteration for problems in which the proximal operator can be efficiently computed
(see Remark 4.2 for examples).
Main contributions Our aim in this work is to extend the applicability of coordinate
descent-type methods to non-separable, nonsmooth functions. More specifically,

– By employing the composite envelope as a smooth approximation, we define a
monotone accelerated coordinate gradient descent method for general classes of

optimization problems.We prove that the algorithm converges at a rate of O
(

1
k1.5

)

in terms of the original objective function, rather than in terms of the composite
envelope. This convergence rate outperforms current guarantees of coordinate
descent-type methods for the considered nonsmooth and non-separable problems.

– We derive a theoretically justifiedmethod that backtracks the smoothing parameter
and the coordinate Lipschitz constants of the method. More specifically, we prove
that using a wrong smoothing parameter must result in the violation of a certain
lower bound, and thus frees us fromcomputing spectral information on the problem
parameters.

– We examine our algorithms through extensive numerical experiments, studying
three types of model constraints: affine sets, �1-balls, and hyperplanes intersected
with boxes, taking portfolio optimization as a specific example. In all these exper-
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iments, our method demonstrates significant improvement in performance over
existingmethods.We further consider the task of natural image inpainting, present-
ing a single-coordinate-descent algorithm for the two-dimensional total-variation
regularized problem.

Related Work In our work, we allow for coordinate-wise algorithms by substituting the
non-separable and nonsmooth objective functionwith the forward–backward envelope
[36] which is smooth and shares the same set of minimizers. Here, we discuss two
alternative coordinate-descent algorithms for such problems which we also compare
to in the experimental section.

The first approach is to reformulate the composite objective as a saddle point prob-
lem using the Fenchel conjugate, which enables to utilize primal–dual algorithms [14].
These algorithms share the same O(n) complexity per iteration as our method, and
are applicable when the proximal operator of f ∗, the Fenchel conjugate of the smooth
part f , is easy to compute. It was shown in [14] that the coordinate descent primal–
dual approach can guarantee an O(1/

√
k) rate of convergence. In our work, we are

able to improve this rate for the sum of a quadratic function and nonsmooth convex
function, by proving a convergence rate of O(1/k1.5) for our suggested algorithm,
while maintaining the same complexity per iteration.

The sketched proximal gradient algorithms of [19,20] can also be an alternative
when adopting a coordinate sketch. These methods assume that the available informa-
tion at each iteration is a random linear transformation (i.e., a sketch) of the gradient.
They prove linear rate of convergence for strongly convex objectives [20], and present
favorable iteration complexity guarantees when incorporating a momentum term [19].
However, these guarantees do not apply to the non-strongly convex problems we con-
sider in our work.

The forward–backward envelope was used in [27] for the analysis of block-
coordinate and incremental-type methods. They proved a linear rate of convergence
for certain block-type methods under the celebrated KL condition, when minimizing
a model consisting of a separable smooth function and general proper and closed
function.

Our work takes the forward–backward Envelope a step forward by utilizing it in
the definition of the algorithm. We further prove that despite the fact that the steps of
the method aim to minimize the smooth envelope, an O(1/k1.5) rate of convergence
in terms of the original objective function can be guaranteed.

2 Problem Formulation

Ourmain objective in this paper is to develop coordinate gradient descent-typemethods
for solving the convex, possibly nonsmooth, optimization model

(P) argmin
x∈Rn

{F(x) ≡ f (x) + g(x)}, (2.1)

where the following underlying assumption is made throughout the paper:
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Assumption 1 – f (x) = 1
2x

TMx + bT x is a quadratic function with a symmetric
positive semidefinite matrixM ∈ R

n×n and a vector b ∈ R
n .

– g : Rn → (−∞,∞] is a proper closed and convex function which is possibly
nonsmooth.

– The optimal set of (P), denoted by X∗, is nonempty.

This model appears frequently in various scientific applications, including portfolio
optimization, dual SVM, and regularized least squares problems (see more details in
Remark 4.2 and Sect. 5).

2.1 Notations

For a symmetric matrixA, we denote its minimal andmaximal eigenvalues by λmin(A)

and λmax(A), respectively, its spectral norm by ‖A‖2 =
√

λmax(ATA), and its i th
column by ai . The vector ei has 1 in its i th entry and 0 elsewhere, and e is the vector
of all ones. In addition, for a given proper closed and convex function h : R

n →
(−∞,∞], we denote the proximal operator as [31]

proxh(x) = argmin
u

{
h(u) + 1

2
‖u − x‖22

}
. (2.2)

The level set Lev( f , α) of a function f : Rn → R and scalar α ∈ R is defined as

Lev( f , α) = {
x ∈ R

n : f (x) ≤ α
}
. (2.3)

Given a nonempty closed and convex set C ⊆ R
n , the indicator function δC is given

by δC (x) = 0 for x ∈ C and ∞ otherwise. The orthogonal projection onto such
a set C is defined as PC (x) ≡ argminy∈C ‖y − x‖2, and the distance function as
dC (x) ≡ ‖x − PC (x)‖2 = miny∈C ‖y − x‖2. In this paper, we will not use the sup/inf
notation but rather use only the min/max notation.

3 The Forward–Backward Envelope

Asdescribed above, in order to employ coordinate gradient descent type algorithms,we
aim to replace the problem (P) with minimization of a smooth function. One approach
would be to find a smooth approximation of the (generally) nonsmooth function g,
say gμ (μ > 0 being a smoothing parameter), and rewrite the problem as

min
x∈Rn

{
f (x) + gμ(x)

}
. (3.1)

A popular choice (see for example [6,32]) for the smooth approximation function gμ

is the celebrated Moreau envelope, defined as [31]

Mμ
g (x) ≡ min

u∈Rn

{
g(u) + 1

2μ
‖u − x‖22

}
. (3.2)
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Fig. 1 The composite envelope Mμ
f ,g compared with the Moreau envelope alternative f + Mμ

g for f (x) =
0.5x2 − 0.8x , g(x) = 0.8|x |, and μ = 0.2

In general, however, the optimal set of problem (3.1) is different than the optimal
set of (P), and thus, the two problems are not equivalent. Therefore, in this paper
we employ a different approach and replace the objective function by the so-called
forward–backward envelope function, which was recently introduced in [36]. The
forward–backward envelope function is, in a sense, a combined smoothed version of
the composite function F = f + g:

Definition 3.1 (Forward–Backward Envelope Function, [36, Definition 2.1]) The
forward–backward envelope function of ( f , g) with a smoothing parameter of μ > 0
is the function:

Mμ
f ,g(x) ≡ f (x) − μ

2
‖∇ f (x)‖22 + Mμ

g (x − μ∇ f (x)).

where Mμ
g is theMoreau envelope (Eq. 3.2) of g with a smoothing parameter ofμ > 0.

As stated in Theorem3.1 below and demonstrated in Fig. 1, the fundamental proper-
ties of the composite envelope function are that it is (i) convex, (ii) smooth, and (iii) its
set of minimizers coincides with the set of minimizers of problem (P). This means that
the optimization problem (P) is equivalent to minimizing the smooth unconstrained
convex function, Mμ

f ,g , and therefore, can be solved by coordinate descent-type meth-
ods. Theorem 3.1 spells out known properties of the forward–backward envelope
function that are essential for the analysis that follows.

Theorem 3.1 Let f and g satisfy Assumption 1, and let μ ∈
(
0, 1

λmax(M)

)
.1 Then,

(i) [18, Proposition 3.3] Mμ
f ,g is convex.

1 In the extreme case whereM = 0, the condition is μ ∈ (0, ∞).

123



Journal of Optimization Theory and Applications

(ii) [36, Proposition 2.3] The set of minimizers of F = f + g coincides with the set of
minimizers of Mμ

f ,g:

argmin
x∈Rn

F(x) = argmin
x∈Rn

Mμ
f ,g(x),

as well as the optimal values:

min
x∈Rn

F(x) = min
x∈Rn

Mμ
f ,g(x).

(iii) [18, Proposition 4.4] Mμ
f ,g is 1

μ
-smooth, and

∇Mμ
f ,g(x) = (I − μM)G1/μ

f ,g (x), for all x ∈ R
n,

where G1/μ
f ,g is the gradient mapping defined as [33],

G1/μ
f ,g (x) ≡ 1

μ

[
x − proxμg (x − μ∇ f (x))

]
, for all x ∈ R

n . (3.3)

As an illustration of parts (i) and (ii) of Theorem 3.1, consider problem (P) with
g = δC , namely, the minimization of 1

2x
TMx + bT x over a nonempty closed and

convex set C . Utilizing the above theorem and the fact that Mμ
δC

= 1
2μd2

C [31], we can
reformulate problem (P) in this setting as the following smooth optimization problem:

argmin
x∈Rn

1

2
xT (M − μM2)x + bT (I − μM)x + 1

2μ
d2

C ((I − μM)x − μb) , (3.4)

where μ ∈
(
0, 1

λmax(M)

)
. Note that the above formulation bares some resemblance

to the following classical penalty-based smooth reformulation (η > 0 is a penalty
parameter):

argmin
x

{
1

2
xTMx + bT x + η

2
dC (x)2

}
.

However, the major difference is that the last formulation does not share in general
the same minimizers as the original problem. In this sense, problem (3.4) can be seen
as an exact penalty reformulation. Concrete examples of this reformulation appear in
Remark 4.2 and in Sect. 5.

4 Coordinate Descent Methods

In this section, we utilize the properties of the forward–backward envelope (Theorem
3.1) to define a coordinate gradient descent method for the nonsmooth, non-separable

123



Journal of Optimization Theory and Applications

objective (P). We then provide theoretically justified conditions on the algorithm
parameters so that these constants can be estimated during run time. We prove that the

suggested algorithm converges in the rate of O
(

1
k1.5

)
in terms of the expected values

of the original objective function F = f + g.

4.1 AMonotone Accelerated Coordinate Gradient Descent Method for Smooth
Minimization

Given a continuously differentiable convex function H : Rn → R, whose gradient is
Lipschitz continuous with a Lipschitz constant L > 0, a problem of the form

min
x∈Rn

H(x), (4.1)

can be solved, for example, by accelerated gradient-based methods that enjoy
an O(1/k2) rate of convergence in terms of function values. One example of
such an algorithm is the accelerated gradient (AG) method first introduced by
in [1], and then generalized in [37]. The method repeats the following steps:
AG

(a) Define yk = (1 − θk)xk + θkzk .
(b) Set zk+1 = zk − 1

θk L
∇H(yk).

(c) Set xk+1 = yk − 1
L ∇H(yk).

(d) Set θk+1 to satisfy 1−θk+1

(θk+1)2
= 1

(θk )2
.

The above scheme is not a monotone method, meaning that the sequence of function
values it generates is not necessarily nonincreasing. A monotone sequence can be
produced by replacing step (c) with

(c1) Set x̃k+1 = yk − 1
L ∇H(yk).

(c2) Choose xk+1 satisfying H(xk+1) ≤ min{H(x̃k+1), H(xk)}.
We proceed by presenting a monotone accelerated coordinate gradient descent

method for solving problem (4.1). We now assume that ∇H has coordinate Lipschitz
constants L1, L2, . . . , Ln > 0, which means that

∥∥∥∥
∂ H(x + tei )

∂xi
− ∂ H(x)

∂xi

∥∥∥∥ ≤ Li |t |, for any x ∈ R
n, t ∈ R.

It is well known (see e.g., [3, Lemma 11.9]) that the above property implies the
following “sufficient decrease" property

H(xk) − H

(
xk − 1

Li
∇i H(xk)ei

)
≥ 1

2Li
(∇i H(xk))2, for all i ∈ {1, 2, . . . , n}.

(4.2)

The maximal coordinate Lipschitz constant is denoted by

Lmax = max{L1, L2, . . . , Ln}.
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Several variants of randomized accelerated coordinate gradient descent methods exist

in the literature [15,28]—all share an O
(

1
k2

)
rate of convergence in terms of expected

function values, and are usually designed also to incorporate a nonsmooth separable
component. The algorithm below is based on a monotone version of these methods;
it can be seen as a coordinate descent variant of algorithm AG.

Algorithm 1: Monotone Accelerated Coordinate Gradient Descent (MACGD)

Initialization: x0 ∈ R
n , z0 = x0, θ0 = 1, and coordinate Lipschitz constants of ∇ H :

L1, L2, . . . , Ln > 0.
General Step: For any k = 0, 1, 2, . . . execute the following steps:
1. Pick ik at random (uniformly).
2. Define yk = (1 − θk )xk + θkzk .
3. Set s = ∇ik H(yk ).

4. Set x̃k+1 = yk − s
Lik

eik , and zk+1 = zk − s
nθk Lik

eik .

5. Choose xk+1 ∈ argmin

{
H(x) : x ∈

{
x̃k+1, xk − 1

Lik
∇ik H(xk )eik

}}
.

6. Set θk+1 to satisfy 1−θk+1

(θk+1)2
= 1

(θk )2
.

By step 5 and the sufficient decrease property (4.2), we conclude that

H(xk) − H(xk+1) ≥ H(xk) − H

(
xk − 1

Lik

∇ik H(xk)eik

)
≥ 1

2Lik

(∇ik H(xk))2,

which in particular implies the monotonicity of the method. The resulting rate of
convergence of this method is given in Theorem 4.1 below. Its proof is almost identical
to the derivations in [28], and is provided for the sake of completeness in “Appendix
A.” We use the notation ξk = {i0, i1, . . . , ik}.
Theorem 4.1 Let {xk}k≥0 be the sequence generated by the MACGD method, and let
x∗ be a minimizer of H over Rn. Then, for any k ≥ 1,

Eξk−1 [H(xk)] − H(x∗) ≤ 2n2 ∑n
i=1 Li (x∗

i − x0i )2

(k + 1)2
. (4.3)

4.2 Accelerated Coordinate Gradient Descent for Solving (P)

Wereturn to problem (P) (see (2.1)) underAssumption1.Obviously, since the objective
function in (P) is not smooth, the MACGD method cannot be employed to solve it
directly. Instead, we employ it on the forward–backward envelope function Mμ

f ,g ,
and call the devised method MACGD-FB (“FB" for forward–backward). Recalling
Theorem 3.1(ii), it follows that the set of minimizers of problem (P) is the same as the
set of minimizers of Mμ

f ,g , and thus, the defined procedure, Algorithm 2, also aims at
finding optimal solutions of the original problem (P). We note that in the description

123



Journal of Optimization Theory and Applications

of the MACGD-FB method and elsewhere in this paper, mT
i is the i th row of M for

any i ∈ {1, 2, . . . , n}.

Algorithm 2: Monotone Accelerated Coordinate Gradient Descent Forward–Backward
(MACGD-FB) for problem (P)

Initialization: x0 ∈ R
n , z0 = x0, θ0 = 1, a smoothing parameter μ > 0, and the coordinate Lipschitz

constants of ∇Mμ
f ,g : L1, L2, . . . , Ln > 0.

General Step: For any k = 0, 1, 2, . . . execute the following steps:
1. Pick ik ∈ {1, 2, . . . , n}.
2. Define yk = (1 − θk )xk + θkzk .

3. Set s = ∂ Mμ
f ,g(yk )

∂ yik
= 1

μ (eT
ik

− μmT
ik

)(yk − proxμg(yk − μ(Myk + b))).

4. Set x̃k+1 = yk − s
Lik

eik , and zk+1 = zk − s
nθk Lik

eik .

5. Set r = ∂ Mμ
f ,g(xk )

∂xik
= 1

μ (eT
ik

− μmT
ik

)(xk − proxμg(xk − μ(Mxk + b))).

6. Set wk+1 = xk − r
Lik

eik .

7. Update θk+1 =
√

(θk )4+4(θk )2−(θk )2

2 .

8. Set xk+1 = argmin
{

Mμ
f ,g(x) : x ∈ {x̃k+1,wk+1}

}
.

In the above description, we use the following formula for the i th partial derivative
of Mμ

f ,g that is based on Theorem 3.1(iii):

∂ Mμ
f ,g(x)

∂xi
= eT

i ∇Mμ
f ,g(x) = eT

i (I − μM)G1/μ
f ,g (x)

= (eT
i − μmT

i )

[
1

μ

(
x − proxμg (x − μ (Mx + b))

)]
.

Remark 4.1 (Complexity of computing Mxk,Mzk,Myk) While a naive implementa-
tion of MACGD-FB involves computing Mxk,Mzk,Myk in O(n2) operations per
iteration, this complexity can be reduced to O(n) by keeping in memory the vectors
Mxk , Mzk and Myk . Utilizing the fact that zk+1 = zk + (zk+1

ik
− zk

ik
)eik , the vector

Mzk+1 can be easily updated in O(n) operations by the formula:

Mzk+1 = Mzk + (zk+1
ik

− zk
ik
)mik .

In the same way, the vector Mxk+1 can be computed in O(n) operations as xk+1

differs from yk or xk , depending on step 8, only in its ik th coordinate. Finally, the
vector Myk+1 is a linear combination of the vectors Mxk+1 and Mzk+1.

Remark 4.2 (Complexity of the prox) The MACGD-FB method makes sense from a
computational point of view onlywhen proxμg can be efficiently computed, preferably
in O(n) operations. A non-exhaustive list of examples in which this is the case are:
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– g = δBox[�,u] = δ{x:�≤x≤u}.
– g = δB2[c,r ] = δ{x:‖x−c‖2≤r} or g = δB1[c,r ] = δ{x:‖x−c‖1≤r} for c ∈ R

n, r > 0, see
[13].

– g = δC where C = {x ∈ R
n : aT x = b, l ≤ x ≤ u}, see [29].

– g = δC where C = {Ax = d} with a full row rank A ∈ R
m×n and

d ∈ R
m . Assuming that m 
 n, then for any μ > 0, proxμg(x) = PC (x) =

1
μ

(
x − AT (AAT )−1(Ax − d)

)
can be computed in O(n) operations (after a pre-

process in which AAT is computed).
– g(x) = ∑n

i=1 gi (xi ), where every gi is a one-dimensional function whose prox
can be computed in O(1) operations (e.g., g(x) = ‖x‖1).

– g(x) = λTV(x) (λ > 0), the total variation regularization, see [2,24,25].
– g(x) = ‖x‖2.
A direct application of Theorem 4.1 and the fact that the minimal values of F and

Mμ
f ,g are the same (Theorem 3.1(ii)) is the following O

(
1
k2

)
rate of convergence of

the expected function values of the surrogate function Mμ
f ,g(x

k) to the optimal value
of (P).

Theorem 4.2 Let {xk}k≥0 be the sequence generated by the MACGD-FB method

employed on problem (P) with μ ∈
(
0, 1

λmax(M)

)
and L1, L2, . . . , Ln being coor-

dinate Lipschitz constants of ∇Mμ
f ,g. Then for any k ≥ 1 and x∗ ∈ X∗,

Eξk−1 [Mμ
f ,g(x

k)] − F(x∗) ≤ 2n2Lmax‖x∗ − x0‖22
(k + 1)2

,

where Lmax = max{L1, L2, . . . , Ln}.
An apparent disadvantage of Theorem 4.2 is that the rate of convergence is not

given in terms of the original objective function F = f + g, but in terms of the
forward–backward envelope Mμ

f ,g . We now aim to show that the randomized index

selection strategy obtains an O
(

1
k1.5

)
rate in terms of the objective function of the

original problem. This result requires in addition a bounded level set assumption on
the original function F and Lipschitz continuity of g over its domain.

Assumption 2 – The level sets of F = f + g are bounded.
– dom(g) is closed and g Lipschitz continuous over dom(g) with constant �g > 0.

A direct consequence of Assumption 2 (combined with Assumption 1) is that the
level sets of Mμ

f ,g are also bounded and that F is Lipschitz continuous on its level sets
intersected with dom(g).

Lemma 4.1 Suppose that Assumptions 1 and 2 hold, then

(i) the level sets of Mμ
f ,g are bounded;

(ii) F is Lispchitz continuous on Lev(Mμ
f ,g, α) ∩ dom(g) (see Definition in (2.3)) for

any α ∈ R.
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Proof (i) Denote the optimal value of (P) by Fopt, then byAssumption 2 the following
level set is bounded

Lev(F, Fopt) = {x ∈ R
n : F(x) ≤ Fopt} = X∗.

Now, since the sets of minimizers of F and Mμ
f ,g coincide (Theorem 3.1(ii)), we

get that Lev(Mμ
f ,g, Fopt) = X∗, and thus in particular, bounded. Finally, by [35,

Corollary 8.7.1], we conclude that all the level sets of Mμ
f ,g are bounded.

(ii) Let α ∈ R. By Assumption 2, g is Lipschitz continuous with constant �g

over dom(g). Following part (i) and the fact that Mμ
f ,g is closed, we get

that Lev(Mμ
f ,g, α) is compact. Therefore, by the continuity of ∇ f and Weier-

strass theorem, there exists � f > 0 such that ‖∇ f (x)‖2 ≤ � f for any x ∈
Lev(Mμ

f ,g, α) ∩ dom(g), which implies that F is � f + �g-Lipschitz continuous

over Lev(Mμ
f ,g, α) ∩ dom(g).

��
Given x0 ∈ R

n , a consequence of Assumption 2 and Lemma 4.1(i) is that there
exists R such that

max
x,x∗∈Rn

{
‖x − x∗‖2 : x ∈ Lev(Mμ

f ,g, Mμ
f ,g(x

0)), x∗ ∈ X∗} ≤ R. (4.4)

Define for any δ > 0 the set

Sδ ≡ {x : ‖x − x∗‖2 ≤ δ for all x∗ ∈ X∗}. (4.5)

Obviously, by the convexity and compactness of X∗, it follows that Sδ is also convex
and compact. Let then R satisfy (4.4). By themonotonicity of theMACGD-FBmethod,
it follows that Mμ

f ,g(x
k) ≤ Mμ

f ,g(x
0) for any k, and thus,

xk ∈ SR for any k. (4.6)

Theorem 4.3 below states the O
(

1
k1.5

)
convergence result of the sequence of

expected values of the original objective function. It requires two results which are
fundamental in the analysis of first-order methods. The first one is the descent lemma.

Lemma 4.2 (Descent Lemma [8, Proposition A.24]) Suppose that a differentiable
function h : Rn → R is L-smooth over Rn, meaning that

‖∇h(x) − ∇h(y)‖2 ≤ L ‖x − y‖2 for any x, y ∈ R
n .

Then

h(y) ≤ h(x) + 〈∇h(x), y − x〉 + L

2
‖y − x‖22 for any x, y ∈ R

n .
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The second result is the so-called second prox theorem that is an important char-
acterization of the proximal operator given in (2.2).

Lemma 4.3 (Second Prox Theorem [3, Theorem 6.39]) Suppose that h : R
n →

(−∞,∞] is a proper closed and convex function. Then, u = proxh(x) if and only if

〈x − u, y − u〉 ≤ h(y) − h(u) for any y ∈ R
n .

The main convergence result now follows. Note that since the sequence generated by
the method {xk}k≥0 is not necessarily in dom(g), the rate of convergence is in terms
of the projected sequence2 {Pdom(g)(xk)}k≥0.

Theorem 4.3 Suppose that Assumptions 1 and 2 hold. Let {xk}k≥0 be the sequence gen-

erated by the MACGD-FB method employed on problem (P) with μ ∈
(
0, 1

λmax(M)

)
.

Let R satisfy (4.4) and �F be a Lipschitz constant3 of F over S2R, where S2R is the
set given in (4.5) with δ = 2R. Then for any K ≥ 3 and x∗ ∈ X∗,

min
k=1,2,...,K

Eξk−1 [F(Pdom(g)(xk))] − F(x∗) ≤
√
2C

(K − 2)1.5
,

where C = (μ�F + R) 4n1.5LmaxR
1−μλmax(M)

and Lmax = max{L1, L2, . . . , Ln} with

L1, L2, . . . , Ln being coordinate Lipschitz constants of ∇Mμ
f ,g.

Proof Theorem 4.2 states the following convergence rate in terms of the envelope
function:

Eξk−1

[
Mμ

f ,g(x
k)
]

− F(x∗) ≤ 2n2LmaxR2

(k + 1)2
. (4.7)

In what follows, we first lower bound the left-hand side of (4.7) in terms of the gradient
mapping, G1/μ

f ,g (xk) (see (3.3)). Then, we derive an upper bound on F(Pdom(g)(xk))−
F(x∗) in terms of the gradient mapping which will ultimately result in a rate of
convergence in terms of the original objective function F .

We start with lower bounding the left-hand side of (4.7) by the gradient mapping.

Since wk+1 = xk − 1
Lik

∂ Mμ
f ,g(xk )

∂xik
eik , the following sufficient decrease property holds

(see 4.2):

Mμ
f ,g(x

k) − Mμ
f ,g(w

k+1) ≥ 1

2Lik

(
∂ Mμ

f ,g(x
k)

∂xik

)2

,

2 Recall that for a nonempty closed and convex set C , PC denotes the orthogonal projection operator.
3 The existence of such a Lipschitz constant is warranted by Lemma 4.1.
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which along with the relation Mμ
f ,g(x

k+1) ≤ Mμ
f ,g(w

k+1) implies that

Mμ
f ,g(x

k) − Mμ
f ,g(x

k+1) ≥ 1

2Lik

(
∂ Mμ

f ,g(x
k)

∂xik

)2

.

Taking expectation over the uniformly distributed random variable ik results in

Mμ
f ,g(x

k) − Eik

[
Mμ

f ,g(x
k+1)

]
≥ 1

n

n∑
i=1

1

2Li

(
∂ Mμ

f ,g(x
k)

∂xi

)2

≥ 1

2nLmax

∥∥∥∇Mμ
f ,g(x

k)

∥∥∥
2

2
. (4.8)

Since ∇Mμ
f ,g(x) = (I − μM)G1/μ

f ,g (x) (Theorem 3.1(iii)), we can deduce that

∥∥∥∇Mμ
f ,g(x

k)

∥∥∥
2

2
= G1/μ

f ,g (xk)T (I − μM)2G1/μ
f ,g (xk)

≥ λmin((I − μM)2)

∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

= (1 − μλmax(M))2
∥∥∥G1/μ

f ,g (xk)

∥∥∥
2

2
,

where the last equality follows by the fact that μ < 1
λmax(M)

. Combining the above
with (4.8) leads to

Mμ
f ,g(x

k) − Eik

[
Mμ

f ,g(x
k+1)

]
≥ D

∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2
,

where

D ≡ (1 − μλmax(M))2

2nLmax
. (4.9)

Now, by taking expectation over ξk−1, we get

Eξk−1

[
Mμ

f ,g(x
k)
]

− Eξk

[
Mμ

f ,g(x
k+1)

]
≥ DEξk−1

[∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

]
,

which, for some x∗ ∈ X∗, can be rewritten equivalently as

Eξk−1

[
Mμ

f ,g(x
k)
]

− F(x∗) ≥ Eξk

[
Mμ

f ,g(x
k+1)

]

− F(x∗) + DEξk−1

[∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

]
.
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Let p be a positive integer. Summing the above inequality over k = p, p+1, . . . , 2p−
1 and utilizing the fact that Mμ

f ,g(x
k) ≥ Mμ

f ,g(x
∗) = F(x∗) (Theorem 3.1(ii)) result

in

Eξp−1

[
Mμ

f ,g(x
p)
]

− F(x∗) ≥ Eξ2p−1

[
Mμ

f ,g(x
2p)

]

−F(x∗) + D
2p−1∑
k=p

Eξk−1

[∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

]

≥ Eξ2p−1

[
Mμ

f ,g(x
2p)

]

−F(x∗) + Dp min
k=p,p+1,...,2p−1

Eξk−1

[∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

]

≥ Dp min
k=p,p+1,...,2p−1

Eξk−1

[∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

]
.

The above inequality provides a lower bound on Eξp−1

[
Mμ

f ,g(x
p)
]
− F(x∗) in terms

of the gradient mapping. Combining it with (4.7) yields

min
k=p,p+1,...,2p−1

E

[∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

]
≤ 2n2LmaxR2

Dp(p + 1)2
. (4.10)

In the next step, we aim to upper bound F(xk) − F(x∗) in terms of the gradient
mapping as to combine it later on with (4.10). We first recall the definition of the
prox-grad operator:

Tμ−1(x) ≡ proxμg(x − μ∇ f (x)).

Then obviously

G1/μ
f ,g (x) = 1

μ
(x − Tμ−1(x)). (4.11)

We first note that for any k, it holds that Tμ−1(xk) ∈ S2R . This is due to the following
chain of equalities and inequalities that holds for any x∗ ∈ X :

‖Tμ−1(xk) − x∗‖2 = ‖Tμ−1(xk) − Tμ−1(x∗)‖2
= ‖proxμg(x

k − μ∇ f (xk)) − proxμg(x
∗ − μ∇ f (x∗))‖2

(∗)≤ ‖xk − μ∇ f (xk) − x∗ + μ∇ f (x∗)‖2
≤ ‖xk − x∗‖2 + μ‖∇ f (xk) − ∇ f (x∗)‖2

(∗∗)≤ 2‖xk − x∗‖2
(∗∗∗)≤ 2R,
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where (*) is due to the nonexpansiveness property of the prox operator [3, Theorem
6.42], (**) follows by the fact that ∇ f is Lipschitz with constant λmax(M) and hence
Lipschitz with constant 1

μ
> λmax(M). Finally, (***) is a consequence of the relation

xk ∈ SR (see (4.6)).
Now, since �F is a Lipschitz constant of F over S2R , the following holds:

F(Pdom(g)(xk)) − F(x∗) = F(Pdom(g)(xk)) − F(Tμ−1(xk)) + F(Tμ−1(xk)) − F(x∗)

≤ �F

∥∥∥Pdom(g)(xk) − Tμ−1(xk)

∥∥∥
2
+ F(Tμ−1(xk)) − F(x∗)

≤ �F

∥∥∥xk − Tμ−1(xk)

∥∥∥
2
+ F(Tμ−1(xk)) − F(x∗)

(4.11)= μ�F

∥∥∥G1/μ
f ,g (xk)

∥∥∥
2
+ F(Tμ−1(xk)) − F(x∗), (4.12)

where the nonexpansivity of the orthogonal projection operator [3, Theorem 5.4]
and the fact that Tμ−1(xk) ∈ dom(g) were used in the second inequality. To bound

F(Tμ−1(xk))− F(x∗), we first note that since f is 1
μ
-smooth, it follows by the descent

lemma (Lemma 4.2) that

f (Tμ−1 (xk)) − f (x∗) ≤ f (xk) + 〈∇ f (xk), Tμ−1 (xk) − xk〉 + 1

2μ

∥∥∥Tμ−1 (xk) − xk
∥∥∥
2

2
− f (x∗)

≤ 〈∇ f (xk), Tμ−1 (xk) − x∗〉 + 1

2μ

∥∥∥Tμ−1 (xk) − xk
∥∥∥
2

2
, (4.13)

where in the last inequality we used the fact that since f is convex, then f (xk) −
f (x∗) ≤ 〈∇ f (xk), xk − x∗〉. Noting that Tμ−1(xk) = proxμg(x

k − μ∇ f (xk)), then
invoking the second prox theorem (Lemma4.3)with h = μg, x = xk −μ∇ f (xk),u =
Tμ−1(xk) and y = x∗, we have

g(Tμ−1(xk)) − g(x∗) ≤ 1

μ

〈
xk − μ∇ f (xk) − Tμ−1(xk), Tμ−1(xk) − x∗〉 .

(4.14)

Combining (4.13) and (4.14), and recalling that G1/μ
f ,g (x) = μ−1(x − Tμ−1(x)), we

obtain that

F(Tμ−1(xk)) − F(x∗) = f (Tμ−1(xk)) + g(Tμ−1(xk)) − f (x∗) − g(x∗)

≤ 1

μ

〈
xk − Tμ−1(xk), Tμ−1(xk) − x∗〉 + 1

2μ

∥∥∥Tμ−1(xk) − xk
∥∥∥
2

2

=
〈
G1/μ

f ,g (xk), Tμ−1(xk) − xk + xk − x∗〉 + μ

2

∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

=
〈
G1/μ

f ,g (xk), xk − x∗〉 − μ

2

∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

≤
∥∥∥G1/μ

f ,g (xk)

∥∥∥
2

∥∥∥xk − x∗
∥∥∥
2

≤ R
∥∥∥G1/μ

f ,g (xk)

∥∥∥
2
,
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where the last inequality follows by (4.6). Utilizing the above and the inequality in
(4.12) implies

F(Pdom(g)(xk)) − F(x∗) ≤ (μ�F + R)

∥∥∥G1/μ
f ,g (xk)

∥∥∥
2
.

Hence, squaring and taking expectation with respect to ξk−1 results in

Eξk−1

[
(F(Pdom(g)(xk)) − F(x∗))2

]
≤ (μ�F + R)2 Eξk−1

[∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

]
, (4.15)

which is the desired upper bound on Eξk−1

[
(F(Pdom(g)(xk)) − F(x∗))2

]
in terms of

the gradient mapping.
Combining (4.10) with (4.15) implies that the following holds for any p ≥ 1:

min
k=1,2,...,2p−1

Eξk−1

[
(F(Pdom(g)(xk)) − F(x∗))2

]

≤ min
k=p,...,2p−1

Eξk−1

[
(F(Pdom(g)(xk)) − F(x∗))2

]

≤ (μ�F + R)2 min
k=p,...,2p−1

Eξk−1

[∥∥∥G1/μ
f ,g (xk)

∥∥∥
2

2

]

(4.10)≤ (μ�F + R)2
2n2LmaxR2

Dp(p + 1)2
.

Using the inequality E[Y ]2 ≤ E[Y 2] for any random vector Y , taking the square
root of both sides, recalling the definition of D (see 4.9), and using the inequality
p(p + 1)2 ≥ p3 for all p ≥ 1 yield

min
k=1,2,...,2p−1

Eξk−1

[
F(Pdom(g)(xk))

]
− F(x∗) ≤ (μ�F + R)

√
2Lmaxn R√

D
√

p3

= (μ�F + R)
4n1.5LmaxR

1 − μλmax(M)︸ ︷︷ ︸
C

· 1

2p1.5

= C

2p1.5
.

Finally, let K ≥ 3 be a positive integer, then by the trivial inequatlity K ≥ 2�K/2�−1,
it follows that

min
k=1,2,...,K

Eξk−1

[
F(Pdom(g)(xk))

]
− F(x∗)

≤ min
k=1,2,...,2�K/2�−1

Eξk−1

[
F(Pdom(g)(xk))

]
− F(x∗)

≤ C

2�K/2�1.5
�K/2�≥K/2−1≤

√
2C

(K − 2)1.5
. ��
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4.3 Smoothing Parameter and Coordinate Lipschitz Constants

In several large-scale settings, choosing the smoothing parameter μ by computing
λmax(M) exactly is an inapplicable task. In this part, we offer an alternative scheme
that computes μ during the execution of the MACGD-FB algorithm. For this goal, we
provide a lower bound on Mμ

f ,g that must be violated for large enough μ.

Theorem 4.4 Let f and g satisfy Assumption 1 and suppose that in addition g is
nonnegative.

(a) If μ ∈
(
0, 1

λmax(M)

)
, then, for all x ∈ R

n,

Mμ
f ,g(x) ≥ φμ(x), (4.16)

where

φμ(x) ≡ bT (I − μM)x − μ

2
‖b‖22 .

(b) If μ > 1
λmax(M)

and M �= 0, then,

min
x∈Rn

{Mμ
f ,g(x) − φμ(x)} = −∞. (4.17)

Proof (a) Since μ < 1
λmax(M)

which results in that M − μM2 � 0, and since the

nonnegativity of g implies the nonnegativity of Mμ
g , we can lower bound the

composite envelope function as follows:

Mμ
f ,g(x) = 1

2
xT (M − μM2)x + bT (I − μM)x + Mμ

g ((I − μM)x − μb) − μ

2
‖b‖22

≥ bT (I − μM)x − μ

2
‖b‖22 = φμ(x),

Therefore, if μ ∈
(
0, 1

λmax(M)

)
then Mμ

f ,g(x) ≥ φμ(x) for all x ∈ R
n .

(b) Suppose that μ > 1
λmax(M)

and let λ = λmax(M). Then, there exists a normalized
eigenvector v such that Mv = λv. Then

min
x∈Rn

{Mμ
f ,g(x) − φμ(x)} ≤ min

x=αv,α∈R{Mμ
f ,g(x) − φμ(x)}

= min
α∈R

{
(λ − μλ2)

α2

2
+ Mμ

g (α(1 − μλ)v − μb)

}

(4.18)

Take x0 ∈ dom(g) (whose existence is guaranteed by the properness of g). Then
for any x ∈ R

n ,

Mμ
g (x) = min

u∈Rn

{
g(u) + 1

2μ
‖u − x‖22

}
≤ g(x0) + 1

2μ
‖x − x0‖22 .
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Utilizing the above inequality with x = α(1 − μλ)v − μb in (4.18), we obtain
that

min
x∈Rn

{
Mμ

f ,g(x) − φμ(x)
}

≤ min
α∈R

{
h(α) ≡ (λ − μλ2)

α2

2
+ 1

2μ
‖α(1 − μλ)v − μb − x0‖22 + g(x0)

}
.

The function h is a one-dimensional quadratic function in α where the coefficient

of α2 is 1
2

(
(λ − μλ2) + (1−μλ)2

μ

)
. The minimal value of h is guaranteed to be

−∞ if the coefficient is negative, meaning if

(λ − μλ2) + (1 − μλ)2

μ
< 0,

which after some simple arrangement can be seen to be the same as

1 − μλ

μ
< 0,

a valid inequality as we assume here that μ > 1
λ
.

��
Theorem 4.4 indicates that Mμ

f ,g(x) is lower bounded by φμ(x); nevertheless, this
is guaranteed only if μ is smaller than 1/λmax(M). As revealed by (4.17), if μ >

1/λmax(M), then this lower bound must be violated.

Remark 4.3 (Lower Boundedness of g) The nonnegativity condition on g is quite
common in applications, and in fact, holds for all the examples in Remark 4.2. That
said, Theorem 4.4 and our algorithm are applicable also for cases in which g is lower
bounded by some constant Cg , and in these cases, φμ(x) is modified to φμ(x) ≡
bT (I − μM)x − μ

2 ‖b‖22 − Cg.

To avoid calculating the exact coordinate Lipschitz constants {Li }n
i=1, we backtrack

them as to provide a sufficient descent in the objective function. Specifically, for

xk+1 = xk − 1
Li

∂ Mμ
f ,g(xk )

∂xi
, the following holds:

Mμ
f ,g(x

k) − Mμ
f ,g(x

k+1) ≥ 1

2Li

(
∂ Mμ

f ,g(x
k)

∂xi

)2

, for all i ∈ {1, 2, . . . , n}.
(4.19)

Based on Theorem 4.4 and inequality (4.19), we derive Algorithm 3 below which
does not require pre-calculations, and is a variant of the MACGD-FB method with
backtracking. We initialize the smoothing parameter μ > 0 and set the coordinate
Lipschitz constants Li = α/μ with some α > 0. To compute the coordinate Lipschitz
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constants, we adopt a backtracking procedure (step 8) that guarantees the validity of
(4.19). As to the smoothing parameter μ, we decrease it either if the lower bound
condition in (4.16) fails for the current iterates x = {x̃k+1, yk,wk+1} (step 9), or if
the decrease condition (inequality (4.19)) does not hold while Li ≥ 1

μ
. We note that

our numerical results appearing in Sect. 5 show that practically, Algorithm 3 finds
a smoothing parameter μ that is smaller than 1/λmax(M) after at most two mega
iterations (mega iteration = n iterations of a coordinate descent-type algorithm).

5 Numerical Experiments

To demonstrate the effectiveness of our approach, we performed extensive numerical
experiments, where our goalwas twofold. First, we examined theMACGD-FBmethod
(with backtracking—Algorithm 3) on a variety of synthetic data scenarios, considering
common hard constraints that are nonsmooth and non-separable. We compared the
performance of the algorithm with several state-of-the-art alternatives. Second, we
performed a natural image inpainting experiment, showcasing our method on the two-
dimensional total-variation regularization.

5.1 Synthetic Experiments

In our synthetic experiments, we consider problem (P) with the following instances:4

1. Affine set We examine a least-squares problem under an affine set constraint:

min
x

{
1

2
‖f − Ax‖22 , s.t. Dx = c

}
,

where A ∈ R
120×100, f ∈ R

120,D ∈ R
70×100, c ∈ R

70 are all generated i.i.d.
from a Gaussian distribution with Ai, j , fi ∼ N (0, 1

120 ), Di, j ∼ N (0, 1
100 ), and

ci ∼ N (0, 1
70 ).

2. �1-ball We study the hard-constrained Lasso ( [22]) for the same parameters above
and R0 = 1

2 :

min
x

{
1

2
‖f − Ax‖22 , s.t. ‖x‖1 ≤ R0

}
,

3. Intersection of a hyperplane and a box We explore the Markowitz portfolio opti-
mization problem [30] of the form of

min
x

{
1

2
xT �x − T x, s.t. 1T x = 1, x ≥ 0

}
,

4 We describe below how to reproduce these synthetic datasets, and they are available from the authors on
reasonable request.
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Fig. 2 A comparison between current coordinate descent-type algorithms and the proposed monotone
accelerated coordinate gradient descent algorithm (Algorithm 3). The central line is the median over the
1000 runs and the ribbons show 90%, 75%, 60%, 40%, 25%, and 10% quantiles

where ∈ R
100, � = HTH, H ∈ R

100×100, with αi ∼ N (0, 1
100 ) and Hi, j ∼

N (0, 1
100 ). Apart from finance applications, this type of constraint is also used in

the formulation of the dual support vector machine problem (SVM) [10].

We compare our method to non-coordinate descent-type algorithms employed
directly on problem (P), as well as several coordinate descent-type algorithms. Specif-
ically, we consider the following methods:

– Proximal gradient (also known as ISTA) [12].
– Fast iterative shrinkage thresholding (FISTA) [5].
– Sketched gradient algorithm (SEGA) [20].
– Stochastic variance reduced coordinate descent (SVRCD) [21].
– Coordinate fixed point algorithm [11,27],which is similar to the coordinate descent
primal–dual algorithm [14] with h = 0, using their notations.

– Coordinate descent primal–dual algorithm [14] with h = ‖·‖22.
– The proposed monotone accelerated coordinate gradient descent forward–
backward (MACGD-FB) with backtracking, as detailed in Algorithm 3.

For proximal gradient, FISTA and coordinate fixed point algorithms, we use a step
size of 1/λmax(M). In the sketched gradient and stochastic variance reduced coordinate
descent, we use α = 1/(nλmax(M)), pi = 1/n, and θ = n. In the coordinate descent
primal–dual algorithm with h = ‖·‖22, we use σi = 1, τi = 1/λmax(M), and πi = 1/n
for all coordinates. Note that all these algorithms require the spectral information of
M.

In our proposedMAFGD-FBmethod, we backtrack the algorithm parameters and it
is thus free of computingλmax(M) and the coordinate Lipschitz constants.We initialize
x0 = 0, μ = 0.9, and Li = 0.1/μ, and use the parameters of γμ = 0.5 and γL = 1.5
for the smoothing parameter and the Lipschitz constants, respectively.

Figure 2 presents the mean squared error between the methods’ output and the
optimal solution of problem (P) obtained by running FISTAdirectly on problem (P) for
1000 iterations. For a fair comparison, we counted every n iterations of the coordinate
descent-type algorithms as one iteration, thus making the computational effort per
iteration of each method similar. As shown in Fig. 2, the MACGD-FB algorithm starts
with larger errors, a natural artifact of backtracking the algorithmparameters; however,
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Fig. 3 MSE performance of three types of index selection strategies for the MACGD-FB algorithm (Algo-
rithm 3)

after few iterations, it outperforms current algorithms. An empirical check reveals that
out of 1000 runs of the MACGD-FB for the portfolio optimization task, 796 finished
updating μ in the first mega iteration (n iterations of CGD), and the rest finished in
the second iteration.

Till now, we have only discussed a randomized index selection; nevertheless, the
literature contains several options on how to choose the index ik . In Fig. 3, we examine
empirically three of them:

– Cyclic ik = (k mod n) + 1.
– RandomizedAt each iteration ik is randomly generated from a uniform distribution
on U {1, 2, . . . , n}.

– Cyclic shuffleAt the beginning of each batch of n iterations, the order of the chosen
indices in the next n iterations is picked by a random permutation.

As shown in Fig. 3, the cyclic and the cyclic-shuffle variants have a clear advantage
over the randomized version in our simulations. This observation, however, is purely
empirical, and yet there is no theoretical explanation for this phenomenon.

5.2 Total-Variation

We demonstrate our method on a natural image inpainting task using the two-
dimensional �1 total-variation regularization [2]. We evaluate the performance of
proximal gradient and MACGD-FB for 20 iterations on images from the popular
Set11,5 corrupted with the noise of 10dB SNR and with 50% missing pixels. In this
case, M is a diagonal matrix with binary values indicating if a pixel is missing, and
therefore, λmax(M) = 1 and does not need to be estimated. For the Lipschitz constants
estimation, we use a learning rate of γL = 1.2 and initializations of L = 0.6/μ and
x0 = 0. The index selection strategy in this experiment is the cyclic shuffle. As shown
in Figs. 4 and 5, the MACGD-FB algorithm that alternates a single pixel per iteration
achieves improved results and is especially efficient in highly corrupted areas where
many pixels are missing. Moreover, in Table 1 we present the PSNR results of our
method while changing a patch of 8× 8 at every iteration, showing a clear advantage
over the proximal gradient alternative.

5 This standard dataset is available in https://github.com/aaberdam/AdaLISTA.
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Fig. 4 TV convergence rate

Fig. 5 Image inpainting with 10 dB SNR and 50% missing pixels. From left to right: original image,
corrupted image (8.587 dB), proximal gradient (24.529 dB), and MACGD-FB (24.997 dB)

6 Conclusions

In this work, we utilized the forward–backward envelope to develop amonotone accel-
erated coordinate gradient decent algorithm for problem (P) which is nonsmooth and
non-separable. Our scheme achieves a convergence rate of O(1/k1.5)which improves
current coordinate descent-typesmethods.We further suggested a backtracking variant
of our algorithm which is free of computing the spectral information and coordinate
Lipschitz constants of the problem. As demonstrated through an extensive numerical
study, our method outperforms current coordinate descent-type methods in various
settings.
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Appendix A: Proof of Theorem 4.1

Throughout the proof, we use the notation: L = diag({Li }n
i=1) and denote the L-norm

and the L-inner product by

〈x, y〉L ≡ ∑n
i=1 Li xi yi ; ‖x‖L ≡ √〈x, x〉L =

√∑n
i=1 Li x2i .

By the definition of step 4 and the block descent lemma [3, Lemma 11.8], it follows
that

H(x̃k+1) ≤ H(yk) + ∇ik H(yk)(x̃ k+1
ik

− yk
ik
) + Lik

2
(x̃ k+1

ik
− yk

ik
)2

Taking the expectation with respect to ik , and recalling that x̃k+1 = yk −
1

Lik
∇ik H(yk)eik , we obtain

Eik H(x̃k+1) ≤ H(yk) + ∇H(yk)T (sk+1 − yk) + n

2
‖sk+1 − yk‖2L,

(7.1)

where sk+1 = yk − 1
nL

−1∇H(yk). Define

tk+1 ≡ zk − 1

nθk
L−1∇H(yk)

= argmin
y

{
∇H(yk)T (y − zk) + nθk

2
‖y − zk‖2L

}
. (7.2)

Obviously, sk+1 − yk = θk(tk+1 − zk). Thus, by (7.1) and the fact that H(xk+1) ≤
H(x̃k+1) (step 5), it follows that

Eik H(xk+1) ≤ Eik H(x̃k+1) ≤ H(yk) + ∇H(yk)T (sk+1 − yk) + n

2
‖sk+1 − yk‖2L

= H(yk) + θk
[
∇H(yk)T (tk+1 − zk) + nθk

2
‖tk+1 − zk‖2L

]
. (7.3)

By Tseng’s three-points property [37, Property 1] and the relation (7.2), we have

∇H(yk)T (x∗ − zk) + nθk

2
‖x∗ − zk‖2L − ∇H(yk)T (tk+1 − zk)

−nθk

2
‖tk+1 − zk‖2L ≥ nθk

2
‖x∗ − tk+1‖2L. (7.4)

Combining the above with (7.3) yields
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Eik H(xk+1) ≤ H(yk ) + θk

[
∇ H(yk )T (x∗ − zk ) + nθk

2
‖x∗ − zk‖2L − nθk

2
‖x∗ − tk+1‖2L

]

= H(yk ) + θk

[
∇ H(yk )T (x∗ − zk ) + n2θk

2
‖x∗ − zk‖2L − n2θk

2
Eik ‖x∗ − zk+1‖2L

]
,

(7.5)

where the equality follows by the following argument:

‖x∗ − zk‖2L − ‖x∗ − tk+1‖2L = 2〈tk+1 − zk, x∗ − zk〉L − ‖tk+1 − zk‖2L
= 2nEik 〈zk+1 − zk, x∗ − zk〉L − nEik ‖zk+1 − zk‖2L
= nEik (‖x∗ − zk‖2L − ‖x∗ − zk+1‖2L)

Now, using the update formula in step 2, we have

∇H(yk)T (θkx∗ − θkzk) = ∇H(yk)T (θkx∗ − yk + (1 − θk)xk)

= θk∇H(yk)T (x∗ − yk) + (1 − θk)∇H(yk)T (xk − yk).

(7.6)

Thus, combining (7.5) and (7.6) along with the gradient inequality, the following is
implied:

Eik H(xk+1) ≤ (1 − θk)H(xk) + θk H(x∗) + n2(θk)2

2
‖x∗

−zk‖2L − n2(θk)2

2
Eik ‖x∗ − zk+1‖2L, (7.7)

which is the same as

Eik H(xk+1) − H(x∗) ≤ (1 − θk)(H(xk) − H(x∗)) + n2(θk)2

2
‖x∗

− zk‖2L − n2(θk)2

2
Eik ‖x∗ − zk+1‖2L. (7.8)

Taking expectation over ξk−1 leads to

Eξk H(xk+1) − H(x∗) ≤ (1 − θk)(Eξk−1 H(xk) − H(x∗))

+n2(θk)2

2
Eξk−1‖x∗ − zk‖2L − n2(θk)2

2
Eξk ‖x∗ − zk+1‖2L.

(7.9)

Denoting ek ≡ Eξk−1 H(xk) − H(x∗) and �k ≡ n2
2 Eξk−1‖x∗ − zk‖2L, we can rewrite

(7.9) as
ek+1 ≤ (1 − θk)ek + (θk)2�k − (θk)2�k+1.
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Dividing the inequality by (θk)2 yields

1

(θk)2
ek+1 ≤ 1 − θk

(θk)2
ek + �k − �k+1.

By the definition of the sequence θk (Step 6), the above is the same as

1

(θk)2
ek+1 ≤ 1

(θk−1)2
ek + �k − �k+1,

and hence,
1

(θk)2
ek+1 + �k+1 ≤ 1

(θk−1)2
ek + �k .

Since θ0 = 1 the above inequality results in that 1
(θk−1)2

ek ≤ �0, which by the facts

that �0 = n2
2 ‖x∗ − x0‖2L and θk ≤ 2

k+2 (see [37]) leads to the desired result (4.3).

References

1. Auslender, A., Teboulle,M.: Interior gradient and proximalmethods for convex and conic optimization.
SIAM J. Optim. 16(3), 697–725 (2006)

2. Barbero, A., Sra, S.: Modular proximal optimization for multidimensional total-variation regulariza-
tion. arXiv preprint arXiv:1411.0589 (2014)

3. Beck, A.: First-Order Methods in Optimization, vol. 25. SIAM (2017)
4. Beck,A., Pauwels, E., Sabach, S.: The cyclic block conditional gradientmethod for convexoptimization

problems. SIAM J. Optim. 25(4), 2024–2049 (2015)
5. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM J. Imaging Sci. 2(1), 183–202 (2009)
6. Beck, A., Teboulle, M.: Smoothing and first order methods: a unified framework. SIAM J. Optim.

22(2), 557–580 (2012)
7. Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. SIAM J.

Optim. 23(4), 2037–2060 (2013)
8. Bertsekas, D.P.: Nonlinear Program. Athena Scientific Optimization and Computation Series, 2nd edn.

Athena Scientific, Belmont (1999)
9. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, vol. 23.

Prentice Hall, Englewood Cliffs (1989)
10. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov.

2(2), 121–167 (1998)
11. Combettes, P.L., Pesquet, J.C.: Stochastic quasi-Fejér block-coordinate fixed point iterations with

random sweeping. SIAM J. Optim. 25(2), 1221–1248 (2015)
12. Daubechies, I., Defrise,M., DeMol, C.: An iterative thresholding algorithm for linear inverse problems

with a sparsity constraint. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 57(11), 1413–
1457 (2004)

13. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the l 1-ball for learning
in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning, pp.
272–279 (2008)

14. Fercoq, O., Bianchi, P.: A coordinate-descent primal-dual algorithm with large step size and possibly
nonseparable functions. SIAM J. Optim. 29(1), 100–134 (2019)

15. Fercoq, O., Richtárik, P.: Accelerated, parallel, and proximal coordinate descent. SIAM J. Optim.
25(4), 1997–2023 (2015)

16. Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat.
1(2), 302–332 (2007)

123

http://arxiv.org/abs/1411.0589


Journal of Optimization Theory and Applications

17. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordi-
nate descent. J. Stat. Softw. 33(1), 1 (2010)

18. Giselsson, P., Fält, M.: Envelope functions: unifications and further properties. J. Optim. Theory Appl.
178(3), 673–698 (2018). https://doi.org/10.1007/s10957-018-1328-z

19. Hanzely, F., Kovalev, D., Richtárik, P.: Variance reduced coordinate descent with acceleration: new
method with a surprising application to finite-sum problems. arXiv preprint arXiv:2002.04670 (2020)

20. Hanzely, F., Mishchenko, K., Richtárik, P.: SEGA: Variance reduction via gradient sketching. In:
Advances in Neural Information Processing Systems, vol. 31, pp. 2082–2093 (2018)

21. Hanzely, F., Richtárik, P.: One method to rule them all: variance reduction for data, parameters and
many new methods. arXiv preprint arXiv:1905.11266 (2019)

22. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The Lasso and General-
izations. CRC Press (2015)

23. Hong, M., Wang, X., Razaviyayn, M., Luo, Z.Q.: Iteration complexity analysis of block coordinate
descent methods. Math. Program. 163(1–2), 85–114 (2017)

24. Johnson, N.A.: A dynamic programming algorithm for the fused Lasso and L0-segmentation. J. Com-
put. Graph. Stat. 22(2), 246–260 (2013)

25. Kolmogorov, V., Pock, T., Rolinek, M.: Total variation on a tree. SIAM J. Imaging Sci. 9(2), 605–636
(2016)

26. Lacoste-Julien, S., Jaggi, M., Schmidt, M., Pletscher, P.: Block-coordinate Frank-Wolfe optimization
for structural SVMs. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International
Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 28, pp. 53–61.
PMLR (2013)

27. Latafat, P., Themelis, A., Patrinos, P.: Block-coordinate and incremental aggregated proximal gradient
methods for nonsmooth nonconvex problems. Math. Program. 1–30 (2021)

28. Lu,H., Freund, R.,Mirrokni, V.: Accelerating greedy coordinate descentmethods. In: Dy, J., Krause, A.
(eds.) Proceedings of the 35th International Conference onMachine Learning. Proceedings ofMachine
Learning Research, vol. 80, pp. 3257–3266. PMLR (2018)

29. Maculan, N., Santiago, C.P., Macambira, E., Jardim, M.: An O(n) algorithm for projecting a vector on
the intersection of a hyperplane and a box in R n. J. Optim. Theory Appl. 117(3), 553–574 (2003)

30. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)
31. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. de la Sociétémathématique de France

93, 273–299 (1965)
32. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM

J. Optim. 22(2), 341–362 (2012)
33. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161

(2013)
34. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables, vol.

30. SIAM (1970)
35. Rockafellar, R.T.:ConvexAnalysis. PrincetonMathematical Series,No. 28, PrincetonUniversity Press,

Princeton (1970)
36. Stella, L., Themelis, A., Patrinos, P.: Forward–backward quasi-newton methods for nonsmooth opti-

mization problems. Comput. Optim. Appl. 67(3), 443–487 (2017)
37. Tseng, P.: On accelerated proximal gradient methods for convex–concave optimization. Unpublished

manuscript (2008)
38. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s10957-018-1328-z
http://arxiv.org/abs/2002.04670
http://arxiv.org/abs/1905.11266

	An Accelerated Coordinate Gradient Descent Algorithm for Non-separable Composite Optimization
	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Notations

	3 The Forward–Backward Envelope
	4 Coordinate Descent Methods
	4.1 A Monotone Accelerated Coordinate Gradient Descent Method for Smooth Minimization
	4.2 Accelerated Coordinate Gradient Descent for Solving (P)
	4.3 Smoothing Parameter and Coordinate Lipschitz Constants

	5 Numerical Experiments
	5.1 Synthetic Experiments
	5.2 Total-Variation

	6 Conclusions
	Acknowledgements
	Appendix A: Proof of Theorem 4.1
	References




