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1. Introduction. Gradient methods are probably the most basic and fundamental class of optimization algo-
rithms. For constrained problems, these methods, known as gradient projection algorithms (GPA), have been
extensively studied in the literature; see for example Goldstein [12], Levitin and Polyak [13], Bertsekas [4],
Dunn [10], Calamai and Moré [9], Dunn [11], Luo and Tseng [17], and Wang and Xiu [27]. More details and
further references on the GPA can be found in Bertsekas [5]. The main disadvantage of these methods is that
without imposing strong assumptions on the problem’s data, they exhibit a slow convergence rate, e.g., sublinear,
and thus do not seem to be competitive with the modern interior point methods (IPM) which, for convex opti-
mization problems, have attractive polynomial time complexity (Nesterov and Nemirovski [22]). However, the
power of IPM has some drawbacks and limits. Indeed, these IPM require sophisticated and heavy computational
tasks to be performed at each iteration, e.g., solving Newton’s type systems. For very large-scale problems in the
decision variables, a single iteration of such a polynomial time algorithm is often too expensive to be of practical
use. This has led to a revived interest in the study of simple algorithms, such as gradient-based methods. Despite
their apparent lack of efficiency, gradient methods appear to remain legitimate and affordable candidate algo-
rithms for large-scale applications, which in particular do not often require highly accurate solutions. This has
been substantiated by some recent theoretical and computational studies on gradient-based algorithms; see, e.g.,
Auslender and Teboulle [1], Beck and Teboulle [2], Bienstock [7], Ben-Tal et al. [3], and Nemirovski [20]. In
particular, we mention the successful computational experiments recently reported by Bienstock [7] for approxi-
mating linear programs, which also uses a simple algorithm (that relies on the Frank-Wolfe method applied to an
appropriate potential function); the work of Ben-Tal et al. [3] for solving very large-scale image reconstruction
problems, which uses a general mirror descent method (see Nemirovski and Yudin [21]), and which has been
recently proven by Beck and Teboulle [2] to be equivalent to a specific GPA; and the work of Nemirovski [20]
for approximating large instances of the Lovasz capacity of a graph. All the aforementioned works have clearly
shown that such simple gradient-type algorithms can be a viable alternative in practical solutions to large-scale
problems, especially when high accuracy is not required, and that their theoretical efficiency deserves to be
further studied.
The main advantage of GPA is its simplicity, provided that the orthogonal projection on the feasible set and

the gradient of the objective function can be easily computed. Indeed, for minimizing an objective function f
over a set of constraints S ⊂�n, the basic GPA simply consists of iterating the formula

xk+1 = PS�x
k− t	f �xk

� x0 ∈�n� (1)

where PS denotes the orthogonal projection map and t > 0 is some appropriately chosen step size. For example,
if the set of constraints is an affine space, then the resulting projection map at each iteration of GPA involves
only matrix-vector multiplications. One of the main drawbacks of GPA, as just mentioned, is that its convergence
rate is in general only sublinear, unless some further and often restrictive assumptions on the problem’s data are

398

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

68
.2

46
.9

3]
 o

n 
02

 S
ep

te
m

be
r 

20
14

, a
t 0

9:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

mailto:becka@ie.technion.ac.il
http://iew3.technion.ac.il/Home/Users/becka0.html
mailto:teboulle@post.tau.ac.il
http://www.math.tau.ac.il/~teboulle/


Beck and Teboulle: A Linearly Convergent Dual-Based Algorithm for Quadratically Constrained Convex Minimization
Mathematics of Operations Research 31(2), pp. 398–417, © 2006 INFORMS 399

made (e.g., strong convexity). A natural question is thus to identify classes of problems for which on the one
hand, the rate of convergence can be improved, say to linear, under weaker or reasonable assumptions, while, on
the other hand, the simplicity of the algorithm of GPA will be preserved, namely, the projections and gradients,
can be easily and analytically computed.
In this paper, we prove that for a class of quadratically constrained convex minimization problems (QCQP),

both requirements can be achieved. We present a new and simple dual-based projected gradient method, namely,
we derive a GPA-based algorithm which involves only simple matrix-vector multiplications producing a simple
and provably linearly convergent algorithm. To achieve this goal requires us to find an adequate equivalent
formulation of (QCQP) and a new line of analysis for proving its linear rate of convergence. Interestingly, the
class (QCQP) enlightens the difficulties encountered in the double task of deriving a simple algorithm with a
linear rate of convergence. Indeed, and to the best of our knowledge, none of the known results available in the
current literature can be directly applied to our problem to produce our declared tasks; see §3.
Our first objective is to construct a new dual problem on which the GPA can be applied, namely, where the

projections can be computed explicitly, and with an objective with a Lipschitz continuous gradient that can be
easily computed. It turns out that one can construct such a dual problem with the desirable affine constraints,
thus rendering the computation of the projections a trivial task. The dual objective function we derive possesses
an interesting structure, and is proven to be continuously differentiable with a Lipschitz continuous gradient that
is easy to compute. This is developed in §2, where we also state the resulting explicit dual gradient projection
(DGP) algorithm.
Our second and main contribution will be to prove that the proposed DGP algorithm is linearly convergent.

The latter task requires us to develop a specific and novel analysis, which we develop in §3. We end the paper
with a short appendix that includes some simple technical results that are used throughout this paper.

2. A dual approach for (QCQP). We consider the minimization of a strictly convex quadratic function
under strictly convex quadratic inequalities:

(QCQP) minimizexTQ0x+ 2bT0 x� x
TQix+ 2bTi x≤ ci� i= 1�2� � � � �m��

where Q0�Q1� � � � �Qm are n× n positive definite matrices, b0� b1� � � � � bm ∈�n and c1� � � � � cm ∈�.
A classical problem that can be cast as (QCQP) is the problem of projection onto the intersection of ellipsoids.

For a recent work considering this problem and its applications to nonlinear programming, we refer the reader
to the work of Lin and Han [14], and the references therein.
Throughout, we assume that (QCQP) is strictly feasible; as a result, we have ci + bTi Q

−1
i bi > 0 ∀ i. Because

we assume that Slater’s condition is satisfied, we thus have that strong duality is satisfied and the optimal value
of (QCQP) is equal to the attained optimal value of the dual problem. To solve (QCQP), we would like to derive
a dual problem that can be easily solved via the GPA, namely, with an analytical iteration formula.

2.1. Standard dual formulations. A standard dual formulation of (QCQP) can be easily shown to be
given by

maximize −
(
b0+

m∑
i=1

bi�i

)T(
Q0+

m∑
i=1

�iQi

)−1(
b0+

m∑
i=1

bi�i

)
−

m∑
i=1

�ici

s.t. �i ≥ 0� i= 1�2� � � � �m�

The trouble with this formulation is that each function value or gradient calculation of the dual objective function
consists of inverting a matrix. Thus, for very large-scale problems in the design variables n (even with small m),
a gradient-based algorithm would require us to compute the inverse of a huge matrix (and in general with no
specific structure) at each iteration, a task that is practically intractable. Our goal is to define an algorithm
that consists only of matrix-vector multiplications and does not involve any matrix inversion at each iteration
(excluding a one-time preprocessing calculation that might involve matrix inversion). To achieve this task, we
use a decomposition approach (see, e.g., Bertsekas and Tsitsiklis [6]), where we duplicate the variables to obtain
simpler expressions for the dual problem. An equivalent primal problem to (QCQP) is

minimize
1
m

m∑
i=1

xTi Q0xi+ 2bT0 x

s.t. xTi Qixi+ 2bTi xi ≤ ci� i= 1�2� � � � �m�

xi = x� i= 1� � � � �m�

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

68
.2

46
.9

3]
 o

n 
02

 S
ep

te
m

be
r 

20
14

, a
t 0

9:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Beck and Teboulle: A Linearly Convergent Dual-Based Algorithm for Quadratically Constrained Convex Minimization
400 Mathematics of Operations Research 31(2), pp. 398–417, © 2006 INFORMS

Assigning a Lagrange multiplier �i ∈�n for each linear equality constraint, we obtain the following dual:

maximize
{ m∑
i=1

gi��i
�
m∑
i=1

�i = b0

}
�

where for each i, gi��i
 = min�1/m
xTi Q0xi + 2�Ti xi� x
T
i Qixi + 2bTi xi ≤ ci�. The difficulty here is that the

function gi does not have an explicit expression. The only case where it is possible to find an explicit expression
for gi is the case where Q0 = �Qi for some � > 0 and for every i. The motivation behind the proposed new
formulation given below is, thus, somehow to enforce the situation where Q0 is equal to �Qi for some �> 0.
It turns out that this can be done by adding a redundant constraint.

2.2. A new dual formulation for (QCQP). One of the key arguments in establishing the new dual for-
mulation is to guarantee that we can write Q0 as a positive linear combination of the matrices Qi, i.e., that
Q0 =

∑m
i=1�iQi where �1��2� � � � ��m > 0. Of course, there is no guarantee that there exists such a linear com-

bination. This is the reason why we will add a redundant constraint to the original problem (QCQP), which
will enforce the validity of such a linear combination. The following lemma allows us to do that. In the sequel,
�min�Q
 (�max�Q
) denotes the minimum (maximum) eigenvalue of Q.

Lemma 2.1. Let Q0� � � � �Qm be n× n positive definite matrices, b1� � � � � bm ∈ �n and c1� � � � � cm ∈ �. Let
�1� � � � ��m be m positive real numbers that satisfy the following inequality:

m∑
i=1

�i�max�Qi
 < �min�Q0
� (2)

Then, the following set of quadratic inequalities

xTQix+ 2bTi x≤ ci� i= 1�2� � � � �m� (3)

imply the inequality
xTQm+1x≤ cm+1�

where

Qm+1 =Q0−
m∑
i=1

�iQi� cm+1 = �max�Qm+1
 min
i=1� � � � �m

(
1√

�min�Qi


√
ci+ bTQ−1

i bi+�Q−1
i bi�

)2

�

Proof. By Lemma A.1, the system of inequalities (3) implies that �x�2 ≤ �, where

�= min
i=1� � � � �m

(
1√

�min�Qi


√
ci+ bTQ−1

i bi+�Q−1
i bi�

)2

�

Let �1� � � � ��m be m positive real numbers such that

m∑
i=1

�i�max�Qi
 < �min�Q0
�

This inequality implies that Qm+1 = Q0 −
∑m

i=1�iQi is a positive definite matrix. Thus, xTQm+1x ≤
�max�Qm+1
�x�2 ≤ �max�Qm+1
�. �

An immediate consequence of Lemma 2.1 is that (QCQP) is equivalent to the following minimization problem:

minimizexTQ0x+ 2bT0 x� x
TQix+ 2bTi x≤ ci� i= 1�2� � � � �m+ 1��

where Qm+1, cm+1 are as defined in Lemma 2.1 and bm+1 = 0. Note that by the construction of Qm+1, it follows
that there are positive numbers �1� � � � ��m+1 such that

Q0 =
m+1∑
i=1

�iQi� (4)

where �1� � � � ��m > 0 are chosen to satisfy (2) and �m+1 = 1. Given the eigenvalues of the matrices, finding
such parameters is a trivial task. We can now use a decomposition technique to find the desired dual problem.
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The decomposition is obtained by duplicating the variables x ∈ �n, so that the resulting problem is equivalent
to (QCQP) in the variables �x� xi
, i= 1�2� � � � �m+ 1:

minimize xTQ0x+ 2bT0 x

s.t. xTi Qixi+ 2bTi xi ≤ ci� i= 1�2� � � � �m+ 1� (5)

xi = x� i= 1� � � � �m+ 1�

Substituting (4), we have that (5) is equivalent to

minimize
m+1∑
i=1

�ix
T
i Qixi+ 2bT0 x

s.t. xTi Qixi+ 2bTi xi ≤ ci� i= 1�2� � � � �m+ 1�

xi = x� i= 1� � � � �m+ 1�

where x1� � � � � xm+1 are vectors in �n. We associate a Lagrange multiplier �i ∈ �n for every constraint xi = x
and form the Lagrangian

L�x�x1� � � � � xm+1��1� � � � � �m+1
 =
m+1∑
i=1

�ix
T
i Qixi+ 2bT0 x+

m+1∑
i=1

2�Ti �xi− x


=
m+1∑
i=1

��ix
T
i Qixi+ 2�Ti xi
+ 2

(
b0−

m+1∑
i=1

�i

)T

x�

Consequently, the dual problem of (QCQP) is maxh��1� � � � � �m+1
�, where

h��1� � � � � �m+1
 = inf
xTi Qixi+2bTi xi≤ci

L�x� x1� � � � � xm+1��1� � � � � �m+1


=
m+1∑
i=1

inf
xTi Qixi+2bTi xi≤ci

��ix
T
i Qixi+ 2�Ti xi
+ inf

x

(
2
(
b0−

m+1∑
i=1

�i

)T

x

)
� (6)

To find an explicit expression for h��1� � � � � �m+1
, we will solve each of the minimization problems in (6).
The next lemma enables us to find the required expression.

Lemma 2.2. Let Q be an n × n positive definite matrix, � ∈ �n, and let b ∈ �n, c ∈ � such that
c+ bTQ−1b > 0. Then,

min
xT Qx+2bT x≤c

�xT Qx+ 2�T x
=− gQ�z
− 2
√
 zTQ−1b− bTQ−1b�

where

gQ�z
=


zT Q−1z if zT Q−1z≤ 1�

2
√
zT Q−1z− 1 if zT Q−1z > 1�

(7)

z= �− b√
 
�

 = c+ bTQ−1b�

Proof. A direct result of the KKT optimality conditions. �

Now, using the separable structure of the minimization problem (6), with the following notations,

zi =
�1/�i
�i− bi√

 i
�  i = ci+ bTi Q

−1
i bi� i= 1� � � � �m+ 1�

it follows that the dual problem to (QCQP) is given by

maximize
m+1∑
i=1

�−�i igQi
�zi
− 2

√
 iz

T
i Q

−1
i bi− bTi Q

−1
i bi


s.t.
m+1∑
i=1

√
 i�izi = b0−

m+1∑
i=1

�ibi�
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We summarize our development in the following theorem:

Theorem 2.1 (A Dual Problem for (QCQP)). A dual problem for (QCQP) is given by (DQCQP) de-
fined by

�DQCQP
 maximize
{m+1∑

i=1
�−"igQi

�zi
+hTi zi
+p�
m+1∑
i=1

�izi = e

}
�

where
• gQ is defined by (7).
• �1� � � � ��m are m positive real numbers such that

∑m
i=1�i�max�Qi
 < �min�Q0
.

•
Qm+1 = Q0−

m∑
i=1

�iQi�

cm+1 = �max�Qm+1
 min
i=1� � � � �m

(
1√

�min�Qi


√
ci+ bTQ−1

i bi+�Q−1
i bi�

)2

�

bm+1 = 0� �m+1 = 1�

p = −
m+1∑
i=1

bTi Q
−1
i bi� e= b0−

m+1∑
i=1

�ibi�

• For every i= 1�2� � � � �m+ 1,

"i = �i�ci+ bTi Q
−1
i bi
 > 0� hi =−2

√
ci+ bTi Q

−1
i biQ

−1
i bi� �i =

√
ci+ bTi Q

−1
i bi�i�

Following the analysis of the derivation of the dual problem, we can easily obtain the relation between the
optimal solution of (QCQP) and the optimal solution of (DQCQP).

Lemma 2.3. Suppose that �z1� z2� � � � � zm+1
 is the solution of (DQCQP). Define the following variables for
i= 1�2� � � � �m+ 1:

xi =



−
√

 i
zTi Q

−1
i zi

Q−1
i zi−Q−1

i bi if zTi Q
−1
i zi ≥ 1�

−Q−1
i �
√
 izi+ bi
 if zTi Q

−1
i zi < 1�

Then, x1 = x2 = · · · = xm+1 and their common value x is the solution to (QCQP).

We will now show that the objective function in (DQCQP),

h�z1� � � � � zm+1
=
m+1∑
i=1

�−"igQi
�zi
+hTi zi
+p�

is a concave function with a Lipschitz continuous gradient.

Theorem 2.2. The objective function h of (DQCQP) satisfies the following properties:
(i) h is concave and everywhere finite on ��m+1
n, and
(ii) h is continuously differentiable and has a Lipschitz continuous gradient with Lipschitz constant Lh =

2max1≤i≤m+1"i/�min�Qi
�.

Proof. The concavity of the function h follows by construction as a direct result of duality, which proves
the first part of (i). To prove (ii) and the remaining part of (i), we first note that from the separable structure of
the function h (linear combination of gQi

), it is sufficient to show that for Q� 0, the function gQ has a Lipschitz
continuous gradient 	gQ. In fact, this property follows directly from a general result on proximal regularization
of convex functions (Rockafellar [26]). Indeed, let us show that

gQ�u
= 2 inf
v∈�n

{
�v�Q−1 +

1
2
�v− u�2Q−1

}
� (8)

where �z�Q−1 �=
√
zT Q−1z, Q� 0. This implies that gQ is differentiable and finite everywhere and has a Lipschitz

gradient with Lipschitz constant 2�max�Q
−1
; see, e.g., Rockafellar [26].
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To prove (8), let h1�v
= �1/2
�v−u�2
Q−1 and h2�v
= �v�Q−1 . Then, gQ�u
= 2 infv∈�nh1�v
+h2�v
�. Invok-

ing the Fenchel Duality Theorem (Rockafellar [25]), we then obtain gQ�u
= 2 supz−h∗1�z
−h∗2�z
�, where the
conjugates of h1, h2 are respectively given by

h∗1�z
=
1
2
zT Qz+ zT u� h∗2�z
=


0 if �z�Q ≤ 1�

+� otherwise.

Therefore, gQ�u
= sup−zT Qz− 2zT u� �z�Q ≤ 1�. Invoking Lemma 2.2, it follows that (7) and (8) coincide,
and a simple computation shows that 	h has a Lipschitz constant Lh = 2max1≤i≤m+1"i/�min�Qi
�. �

2.3. The dual gradient projection algorithm for (DQCQP). The derived dual problem (DQCQP) shares
the two basic ingredients needed to apply a GPA: a concave objective with computable Lipschitz gradient, and
an affine constraint set for which the orthogonal projection can be computed analytically.
From now on, and for convenience reasons, the dual problem (DQCQP) will be rewritten as a convex mini-

mization problem (we also omit the constant term p in the objective function (cf. Theorem 2.1)):

(DQCQP) minimize
{m+1∑

i=1
"igQi

�'i
−hTi 'i�
m+1∑
i=1

�i'i = e

}
�

where gQ is defined by (7). The objective function of (DQCQP) is denoted by

f �'
=
m+1∑
i=1

�"igQi
�'i
−hTi 'i
� (9)

where ' = �'i

m+1
i=1 and 'i ∈ �n for every i = 1� � � � �m + 1. It was proved in §2.2 that f has a Lipschitz

continuous gradient. The feasible set is denoted by S and defined by the affine set S = '�
∑m+1

i=1 �i'i = e�, so
that (DQCQP) can be written as the convex minimization problem

(DQCQP) minf �'
� ' ∈ S��
Note that S has a very special structure that enables us to find a simple and explicit expression for the

projection operator PS , thus yielding to a simple algorithm for solving (DQCQP).

Lemma 2.4. Let y = �y1� � � � � ym+1
. Then, PSy = �yj −�jw

m+1
j=1 , where

w=
(m+1∑

i=1
�2
i

)−1(m+1∑
i=1

�iyi− e

)
�

Proof. Follows by direct calculation. �

Using Lemma 2.4, we can now give the formal description of the dual gradient projection (DGP) algorithm,
which results as a direct application of GPA (cf. (1)) when applied to (DQCQP).

DGP Algorithm for (DQCQP). Start with '0
0�'

0
1� � � � �'

0
m+1 ∈ �n and let t ∈ �0�2L−1
, where L =

2max1≤i≤m+1"i/�min�Qi
�. Generate the sequence �'
k
0�'

k
1� � � � �'

k
m+1
 as follows:

yki =



'k
i − t�2"iQ

−1
i 'k

i +hi
� 'k
i Q

−1
i 'k

i ≤ 1�

'k
i − t

(
2"i

Q−1
i 'k

i√
'k
i Q

−1
i 'k

i

+hi

)
� else�

i= 1�2� � � � �m+ 1�

'k+1
i = yki −�iw

k� i= 1�2� � � � �m+ 1�

where wk = �
∑m+1

i=1 �2
i 

−1�
∑m+1

i=1 �iy
k
i − e
.

3. Linear rate of convergence of DGP. This section covers the second and main contribution of this paper,
namely, to prove that the DGP algorithm is linearly convergent. For that purpose, we first need some results on
the general GPA.
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3.1. Preliminaries. In this subsection, we use the same notation �f � S
 as in (DQCQP), but for a general
objective and constraints set, as defined below. For a closed and convex set S, PS denotes the orthogonal
projection on the set S and d�x�S
 ≡ min�y − x�� y ∈ S� is the usual point to set distance. Consider the
following convex optimization problem:

(P) inff �x
� x ∈ S��

satisfying the following assumption:

Assumption A.
• S ⊆�n is a closed convex set.
• The optimal set X∗ = x∗ ∈ S� f �x∗
≡ f ∗ = infx∈S f �x
� is nonempty.
• f � �n→� is a continuously differentiable convex function and 	f is Lipschitz continuous on �n, that is,

�	f �x
−	f �y
� ≤ L�x− y� for every x� y ∈�n�

where L> 0 is the Lipschitz constant.

A standard result (see, e.g., Levitin and Polyak [13, Theorem 5.1]) on the convergence of the GPA applied to
(P), i.e.,

x0 ∈�n� xk+1 = PS�x
k− t	f �xk

� t ∈ �0�2L−1
� k= 1�2� � � � �

states that if S ⊂ �n is closed convex and bounded, then the sequence xk� converges to some x∗ ∈ X∗ at a
sublinear rate in function values, i.e.,

f �xk
− f ∗ ≤ C

k

for every k≥ 1 and some constant C > 0.
To prove linear convergence of the function values or the sequence, stronger assumptions than Assumption A

must be imposed. For instance, it is known that strong convexity implies linear convergence of the sequence
generated by GPA. However, in (DQCQP) the objective is not a strongly convex function. To overcome this
difficulty, we need some kind of weaker hypothesis. A standard way to achieve this is through the use of the
theory of error bounds. Indeed, it is widely known that the existence of error bounds is a key ingredient in
proving convergence rates of iterative methods. Major contributions on developing and using error bounds to
derive rate of convergence results of iterative descent algorithms have been developed in a series of papers by
Luo and Tseng [16, 17, 18, 19] and Luo [15]; for a comprehensive survey on error bounds, their applications,
and further references, we refer the reader to Pang [23].
Linear rate of convergence results for the GPAs were proven in the aforementioned papers, under various

type of error bound assumptions and for several classes of optimization problems. Here we follow the works of
Luo and Tseng, and consider a slightly modified error bound, which we call the gradient error bound (GREB),
that will be useful to analyze the special structure of problem (DQCCP). In the rest of this paper, t is a fixed
positive number. Let T be the map defined by

T �x
= �PS�x− t	f �x

− x��

Assumption 3.1 (GREB). For every closed bounded set B⊆�n, there exists /B > 0 such that

d�x�X∗
≤ /BT �x
 for every x ∈ B ∩ S�

The next result shows that under Assumption A and the GREB hypothesis, the sequence generated by GPA
converges at a linear rate.

Theorem 3.1 (Linear Rate of Convergence of d�xk�X∗
). Let f be a convex function with a Lipschitz
continuous gradient. Suppose that GREB is satisfied. Let xk� be a sequence generated by GPA with constant
stepsize t ∈ �0�2/L
. Then, there exists ' ∈ �0�1
 such that

d�xk+1�X∗
≤ 'd�xk�X∗
� k≥ 0�
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Proof. Let x∗ ∈X∗. By using the Lipschitz continuity of 	f on �n and the argument in Polyak [24, p. 207],
the sequence xk� produced by the GPA satisfies

�xk+1− x∗�2 ≤ �xk− x∗�2− �1−Lt/2
�xk+1− xk�2 = �xk− x∗�2− �1−Lt/2
T �xk
2� (10)

Therefore, under the GREB assumption, it follows that there exists / > 0 such that d�xk�X∗
≤ /T �xk
, k≥ 0,
and the global linear rate follows immediately:

d2�xk+1�X∗
≤ �1−/−2�1−Lt/2

d2�xk�X∗
� �

The linear rate of convergence of the distance of the sequence from the optimal set implies also the linear
rate of convergence of the function values of the sequence.

Corollary 3.1 (Linear Rate of Convergence of the Function Values). Let f be a convex function
with Lipschitz continuous gradient. Suppose that GREB is satisfied. Let xk� be a sequence generated by GPA
with constant stepsize t ∈ �0�2/L
. Then, there is  ∈ �0�1
 and C > 0 such that

f �xk
− f ∗ ≤C k�

Proof. By the mean-value theorem, we have

f �xk
− f ∗ = 	f �zk
T �xk− yk
≤ �	f �zk
�d�xk�X∗
�

where yk = argmin�y−xk�� y ∈X∗� and zk = �1−wk
x
k+wky

k for some wk ∈ 00�11. Because by (10) xk�⊆ S
is bounded, then so is zk�, so �	f �zk
� ≤ l for some l > 0. Invoking Theorem 3.1, the result immediately
follows. �

The main task that thus remains is to prove that GREB is fulfilled for (DQCQP) so that by Theorem 3.1 the
linear rate of convergence of distances from the optimal set of the sequence produced by GPA on (DQCQP) will
follow. Furthermore, because strong duality holds for the pair (QCQP) and (DQCQP), then as a consequence of
Corollary 3.1 this will prove the linear convergence of the sequence of the function values for both primal and
dual problems. We end these preliminaries by introducing an assumption that is slightly different from GREB,
but, nonetheless, will be proven to be equivalent to GREB.

Assumption 3.2. For every bounded set B⊆�n, there exist /B > 0 and 3 > 0 such that

d�x�X∗
≤ /BT �x
 for every x ∈ B ∩X∗
3 ∩ S�

where X∗
3 = x� d�x�X∗
≤ 3�.

The following lemma states that GREB is equivalent to Assumption 3.2.

Lemma 3.1. Let f � �n→�. Then, Assumption 3.2 is equivalent to GREB.

Proof. First, assume that GREB is fulfilled. Then, Assumption 3.2 holds true because B ∩ X∗
3 is also a

bounded set. Now, assume that Assumption 3.2 is fulfilled. To prove that GREB holds true, consider a bounded
set B ⊆ �n. Define the function h�x
 ≡ d�x�X∗
/T �x
 for every x ∈ cl�B − X∗

3 
 ∩ S. The function h�x
 is
continuous over the closed and bounded set cl�B−X∗

3 
∩S. Thus, by the Weierstrass theorem, h�x
 is bounded
over cl�B − X∗

3 
 ∩ S so that there is 4 > 0 such that h�x
 ≤ 4 for every x ∈ cl�B − X∗
3 
 ∩ S. In other words,

we have
d�x�X∗
≤ 4T �x
 for every x ∈ cl�B−X∗

3 
∩ S�
which, combined with Assumption 3.2, proves the result. �

3.2. A sufficient condition for GREB. As was already noted, proving the validity of GREB is, generally
speaking, a hard task. For that reason, in this subsection we develop an alternative condition that implies GREB.
The new condition is expressed in terms of one-dimensional functions, which are restrictions of the multivariate
function to certain line segments. The linear space associated with the affine set of constraints S of (DQCQP)
is denoted by W and is defined by W = '�

∑m+1
i=1 �i'i = 0�. We adopt the following terminology: A vector

d ∈W will be called a feasible direction. The following result establishes a relation between the projection on S
and the projection on W .
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Lemma 3.2. Let W be the linear space associated with S. Then, there exists b ∈ S such that

PS'= PW'+ b for every ' ∈��m+1
n�

Proof. Let s ∈ S and ' ∈��m+1
n. Then,

PS�'
 = argmin
x∈S

�x−'� = argmin
x∈S

�x− s+ s−'�
y=x−s= argmin

y∈W
�y− �'− s
�+ s = PW �'− s
+ s = PW �'
−PW s+ s�

By setting b= s−PW s ∈ S, the lemma is proved. �

The following technical lemma, which introduces an equivalent condition to Assumption 3.2, is a key argument
in proving the sufficient condition for GREB to hold. For any set C ⊂ �n, we use the notation NC�·
 for the
normal cone to C and bd�C
 for its boundary; see, e.g., Rockafellar [25].

Lemma 3.3. Assumption 3.2 is equivalent to the following condition: For every bounded set B ⊆ �n and
'∗ ∈X∗, there exist 3 > 0 and /B > 0 such that

�PW	f �'∗ +�d
�
�

≥ 3

t/B

for every d ∈W ∩NX∗�'
∗
, � ∈ �0�11, and '∗ ∈ bd�X∗
 such that �d� = 3 and '∗ +�d ∈ B.

Proof. By Assumption 3.2, there exists /B > 0 such that

d�'�X∗
≤ /B�'−PS�'− t	f �'

� for every ' ∈ S ∩B such that d�'�X∗
≤ 3�

By Lemma 3.2, we have
'−PS�'− t	f �'

= tPW	f �'
�

Thus, Assumption 3.2 is equivalent to

d�'�X∗
≤ /Bt�PW	f �'
� for every ' ∈ S ∩B such that d�'�X∗
≤ 3�

Denote '∗ = PX∗�'
 and make the change of variables '= '∗ +�d.
Note that as a consequence of the relation '∗ = PX∗�'
, we have that d ∈ NX∗�'

∗
. Thus, Assumption 3.2
holds true if and only if

��d� ≤ /Bt�PW	f �'∗ +�d
�
for every d ∈W ∩ NX∗�'

∗
, � ∈ �0�11, and '∗ ∈ bd�X∗
 such that �d� = 3 and '∗ + �d ∈ B. Dividing by �
yields the desired result. �

For every optimal solution '∗ ∈ bd�X∗
 and every feasible direction d ∈ W , we investigate the following
scalar function (recall that f is the dual objective given in (9)):

hd�'∗��
= f �'∗ +�d
� � ∈ 00�11� (11)

and find a condition in terms of the one-dimensional function hd�'∗��
 that implies GREB.

Lemma 3.4 (A Sufficient Condition for GREB). The following condition implies GREB: For every
bounded set B, there exist 3 > 0 and sB > 0 for which

h′d�'∗��


�
≥ sB

for every d ∈W ∩NX∗�'
∗
, � ∈ �0�11, and '∗ ∈ bd�X∗
 such that �d� = 3 and '∗ +�d ∈ B.

Proof. Let 81�82� � � � �8k� be an orthonormal basis for W . Then, every d ∈W has the following repre-
sentation as a linear combination of the orthonormal basis:

d=
k∑

j=1
�d�8j�8j� (12)
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Recall that PW is a projection on the linear space W . Thus, for all ', PW'=
∑k

j=1�'�8j�8j , so that �PW'�2 =∑k
j=1�'�8j�2. Now we compute h′d�'∗��
 using the directional derivative formula:

h′d�'∗��
= �d�	f �'∗ +�d
� (12)=
k∑

j=1
�d�8j��8j�	f �'

∗ +�d
� ≤
k∑

j=1
��d�8j�� · ��8j�	f �'

∗ +�d
���

By the Cauchy-Schwartz inequality, one has for all j = 1�2� � � � � k, ��d�8j�� ≤
3︷︸︸︷
�d� ·

1︷︸︸︷
�8j� = 3. Also, from

the equivalence of norms in finite-dimensional spaces, we obtain that there exists N > 0 such that �x�1 ≤N�x�,
where �·�1 is the standard l1 norm. Therefore, from the latter inequality on h′d�'∗��
, we have

h′d�'∗��
 ≤
k∑

j=1
��d�8j�� · ��8j�	f �'

∗ +�d
�� ≤ 3
k∑

j=1
��8j�	f �'

∗ +�d
��

≤ 3N

√
k∑

j=1
�8j�	f �'

∗ +�d
�2 = 3N�PW	f �'∗ +�d
�� (13)

It follows from the premise of the lemma that there exist sB > 0 and 3 > 0 for which

h′d�'∗��


�
≥ sB (14)

for every d ∈W ∩NX∗�'
∗
, � ∈ �0�11, and '∗ ∈ bd�X∗
 such that �d� = 3 and '∗ + �d ∈ B. Combining (14)

with (13), we obtain that
�PW	f �'∗ +�d
�

�
≥ sB
3N

for every d ∈W ∩NX∗�'
∗
, � ∈ �0�11, and '∗ ∈ bd�X∗
 such that �d� = 3 and '∗+�d ∈ B. Invoking Lemma 3.3,

the latter relation is equivalent to Assumption 3.2, which thus implies that GREB holds true. �

Before proving that Assumption 3.2 is satisfied for problem (DQCQP), we will prove that X∗ is a polyhedral
set. This structure of X∗ will play a crucial part in the sequel.

3.3. X∗ is polyhedral. We will need to consider the following index sets. For every vector u= �uj

m+1
j=1 ∈

��m+1
n, we consider the partition of the set 1�2� � � � �m+ 1� into the three sets:

Iu = j� �uj�Q−1j < 1�� Ju = j� �uj�Q−1j > 1�� and Ku = j� �uj�Q−1j = 1�� (15)

We are now ready to show that the optimal solution set X∗ of (DQCQP) is a polyhedral set.

Theorem 3.2. X∗ is a polyhedral set. More precisely, let <∗ = �<∗j 

m+1
j=1 be an optimal solution of (DQCQP),

i.e., <∗ ∈X∗. Then, '= �'j

m+1
j=1 ∈X∗ if and only if

'j = �aj + 1
<∗j � j = 1�2� � � � �m+ 1� (16)

where aj ∈� satisfies the following set of linear equalities and inequalities:

m+1∑
j=1

�j<
∗
j aj = 0� (17)

aj = 0� j ∈ I<∗� (18)

aj ≥
1

�<∗j �Q−1j
− 1� j ∈ J<∗� (19)

aj ≥ 0� j ∈K<∗� (20)

m+1∑
j=1

(
2"j�<∗j �Q−1j −hTj <

∗
j

)
aj = 0� (21)

where I<∗ , J<∗ , and K<∗ are the corresponding index sets defined by (15).
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Proof. Fix any '= �'j

m+1
j=1 ∈X∗. Let '� = �'

�
j 


m+1
j=1 for � ∈ �0�11, where

'
�
j = �1−�
<∗j +�'j� j = 1�2� � � � �m+ 1�

For all � ∈ �0�11 sufficiently small, we have I'� ⊇ I<∗ and J'� ⊇ J<∗ . Then, for j ∈ I'� ∪ K'� , we have
j ∈ I<∗ ∪K<∗ and the strict convexity of �·�2Q−1j yields

gQj

(
'
�
j + <∗j
2

)
=
∥∥∥∥'

�
j + <∗j
2

∥∥∥∥2
Q−1j

≤
�'�

j �2Q−1j +�<∗j �2Q−1j
2

= gQj

(
'
�
j

)+ gQj
�<∗j 


2
�

with the inequality strict whenever '�
j �= <∗j . For j ∈ J'� , we have j ∈ I<∗ ∪K<∗ and thus

gQj

(
'
�
j + <∗j
2

)
= 2

∥∥∥∥'
�
j + <∗j
2

∥∥∥∥
Q−1j

− 1≤ �'�
j �Q−1j +�<∗j �Q−1j − 1= gQj

(
'
�
j

)+ gQj
�<∗j 


2
�

where the inequality is true due to the triangle inequality and is therefore strictly satisfied whenever '�
j and <∗j

do not lie on the same ray from the origin. It follows from (9) that

f

(
'�+ <∗

2

)
=

m+1∑
j=1

"jgQj

(
'
�
j + <∗j
2

)
−hTj

(
'
�
j + <∗j
2

)

≤
m+1∑
j=1

"j
gQj

(
'
�
j

)+ gQj
�<∗j 


2
−hTj

(
'�+ <∗

2

)

= f �'�
+ f �<∗

2

�

with the inequality strict whenever '�
j �= <∗j for some j ∈ I'� ∪K'� or '�

j and <∗j do not lie on the same ray
from the origin for some j ∈ J'� . Because X∗ is convex so that '� ∈ X∗ and �'�+ <∗
/2 ∈ X∗, the left-hand
side must equal the right-hand side. This implies that '�

j = <∗j for all j ∈ I'� ∪K'� and '
�
j and <∗j lie on the

same ray from the origin for all j ∈ J'� . This in turn implies that (i) 'j = <∗j for all j ∈ I'� ∪ K'� , and (ii)
'j = �1+ aj
<

∗
j for all j ∈ J'� , where aj ∈ �. Because I�∗ ⊇ I<∗ , (i) implies that 'j = <∗j for all j ∈ I<∗ . By

switching the role of ' and <∗ in the above argument, we also have <∗j = 'j for all j ∈ I'. Hence, I<∗ = I'. Then,
J'� ⊆ J<∗ ∪K<∗ = J' ∪K', so (ii) implies

�'j�Q−1j = �1+ aj
�<∗j �Q−1j ≥ 1

for all j ∈ J'� (aj ≥−1 because otherwise we would have �'4
j �Q−1j = ��1− 4
+ 4�1+aj
��<∗j �Q−1j < 1 for some

4 ∈ �0�11, implying j ∈ I'4 = I<∗ ). Thus,

'j = �1+ aj
<
∗
j � j = 1�2� � � � �m+ 1�

with
aj = 0 ∀ j ∈ I'� ∪K'�� aj ≥

1
�<∗j �Q−1j

− 1 ∀ j ∈ J'� �

Because I'� ⊇ I<∗ and J'� ⊇ J<∗ , this proves (16) and (18)–(20). (17) and (21) follow from plugging (16) into
the equations for '− <∗ ∈W and f �'
= f �<∗
. The converse follows by using <∗ ∈ S and (16), (17) to show
' ∈ S, and using (16) and (18)–(20) to show that gQj

�'j
= gQj
�<∗j 
+ 2aj�<∗j �Q−1j for j = 1�2� � � � �m+ 1, so

that (16) and (21) yield f �'
= f �<∗
. �

We denote by X∗
j ⊆�n the set of all jth components of the optimal solution set X∗, i.e.,

X∗
j ≡ '∗j ∈�n� �'∗j 


m+1
j=1 ∈X∗ for some '∗1� � � � �'

∗
j−1�'

∗
j+1� � � � �'

∗
m+1 ∈�n��

It is clear that X∗
j is a closed and convex set for every j = 1�2� � � � �m+1. A direct consequence of Theorem 3.2

is that the index set I'∗ is independent of the choice of '
∗ ∈ X∗ and that for j ∈ I'∗ , the set X∗

j is a singleton.
This is summarized in Lemma 3.5.
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Lemma 3.5. Let X∗ be the optimal solution set of (DQCQP) and let '∗ ∈X∗. If

�'∗j �Q−1j < 1

for some j �1≤ j ≤m+ 1
, then
X∗
j = '∗j ��

From now on, <∗ will denote a fixed optimal solution. We end this subsection by proving that for two optimal
solutions with the same set of active inequalities (i.e., inequalities that are satisfied as equalities) in the linear
system given by (17)–(21), the corresponding partitions of the index set (15) are the same. This result will be
useful in the sequel.

Lemma 3.6. Let '1 = �'1
j 


m+1
j=1 and '2 = �'2

j 

m+1
j=1 be two optimal solutions (i.e., '1�'2 ∈ X∗) and let di =

�di
j

m+1
j=1 , �aij 
j∈J<∗∪K<∗ , i = 1�2 be the additional vectors/scalars given by Theorem 3.2 for which the linear

system (17)–(21) is satisfied for '= 'i, d = di, aj = aij , j ∈ J<∗ ∪K<∗ , i= 1�2. Assume that the sets of active
inequalities corresponding to the two solutions 'i, di, �aij 
j∈J<∗∪K<∗ , i= 1�2 of the linear system (17)–(21) are
the same. Then, I'1 = I'2 , J'1 = J'2� and K'1 =K'2 .

Proof. First note that by Lemma 3.5, we have I'1 = I'2 . All that is left to prove is that K'1 = K'2 . (The
equality J'1 = J'2 will follow from the fact that I'i , J'i , K'i is a partition for i = 1�2.) Let j ∈K'1 . Then, the
following statement holds true:
(A) Either j ∈K<∗ and the inequality aj ≥ 0 (see (20)) is active for a1j , i.e., a

1
j = 0, or j ∈ J<∗ and the inequality

aj ≥ 1/�<∗j �Q−1j − 1 (see (19)) is active for a1j , i.e, a
1
j = 1/�<∗j �Q−1j − 1.

Because by the premise of the lemma the sets of the active inequalities of the two solutions are identical, then
it follows that statement (A) is equivalent to saying that j ∈K'2 , which proves the result. �

3.4. Proving GREB for (DQCQP). We begin this section by developing a necessary condition on a set of
representative points from the optimal set of (DQCQP). Using this condition, we will then prove the validity of
the GREB assumption for (DQCQP).
We now recall the concept of a face and derive some basic properties of faces of convex sets needed for our

analysis.
Definition 3.1. Let C be a closed convex set. A closed convex set F ⊆ C is called a face if there is a

supporting hyperplane H of C such that H ∩C = F .
Example. A set that contains one extreme point of C is a face.
We use the notation ri�S
 for the relative interior of a set S (see, e.g., Rockafellar [25]). We will need the

following result on faces, proven by Burke and Moré [8, Theorem 2.3].

Lemma 3.7 (Burke and Moré [8]). Let C be a closed convex set and let F be a face of C. If x� y ∈ ri F ,
then

NC�x
=NC�y
�

First, we recall that X∗ is a polyhedral set and thus has a finite number of faces. Denote the faces of X∗ by
F1� F2� � � � � Fk and let v

1� � � � � vk be arbitrary chosen representatives of the relative interiors of the faces, i.e.,

vi ∈ ri Fi� i= 1�2� � � � � k�

If a relative interior of some face has several possible sets of active inequalities in the linear system (17)–(21),
then we will take several representatives of the same relative interior; each corresponds to a possible set of active
inequalities (hence the same face might appear more than once). Overall, each possibility of a set of active
inequalities in the linear system has a representative in the set vi�ki=1. This process does not ruin the finiteness
of the representatives set.

Definition 3.2. Let C be a closed convex set. A direction d is an exterior direction of C at a point x ∈C
if x+�d �∈C for all �> 0. The set of all exterior directions of C at x is denoted by EC�x
.

Remark 3.1. (i) For every x ∈ bd�C
, NC�x
⊆EC�x
∪ 0�.
(ii) For every x ∈ int�C
, EC�x
=�, NC�x
= 0�.

Lemma 3.8. Let '∗ ∈X∗, d ∈W ∩EX∗�'
∗
 and let s > 0. Then, hd�'∗��
 is not linear on the interval 00� s1.

Proof. By contradiction. Suppose that there exists a feasible direction d ∈W and s > 0 such that hd�'∗��

is linear on 00� s1. There are two possible cases:

(i) The slope of the line is zero. In this case, for every � ∈ 00� s1, the point ' = '∗ + �d is in the feasible
set S and has the same objective function value as '∗. From this it follows that ' ∈ X∗, which contradicts the
fact that d ∈EX∗ .
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(ii) The slope of the line is not zero. '∗ is a minimizer of (DQCQP) and hd�'∗ is a differentiable function,
thus h′d�'∗�0
= 0 by Fermat’s theorem. On the other hand, hd�'∗��
 is linear on 00� s1 with a nonzero slope, and
as a result h′d�'∗�0
 �= 0, which is a contradiction. �

We will use the following notation. For every positive definite matrix Q,

�'�Q =
√
'TQ'�

The next theorem states that a certain linear system admits only the trivial solution. This property will be the
key argument proving the main result below.

Theorem 3.3. For every i= 1�2� � � � � k, the following system in the variables A1� � � � � Am+1 does not have
a solution:

�NLSi





∑
j∈Jvi∪Kvi

Aj�jv
i
j = 0�

Aj ≥ 0� j ∈Kvi �

Aj = 0� j ∈ Ivi �
�Ajv

i
j 

m+1
j=1 ∈EX∗�v

i
�

Proof. Fix some i and assume by contradiction that �NLSi
 does have a solution. Define

dj = Ajv
i
j � j = 1�2� � � � �m+ 1�

Thus, d = �d1� � � � � dm+1
 is a feasible direction (i.e.,
∑m+1

j=1 �jdj = 0 so d ∈ W ). Also, one has d ∈ EX∗�v
i
.

Define

B= min
j� Aj<0

{
1
Aj

(
1

�vij�Q−1j
− 1

)}
�

We will now show that the function hd�vi ��
= f �vi + �d
 is linear on 00�B1 in contradiction to Lemma 3.8.
Because 0≤ �≤ B, the following inequalities are satisfied:

�vij +�dj�Q−1j ≥ 1� j ∈ Jvi ∪Kvi � (22)

1+�Aj ≥ 0� j ∈ Jvi ∪Kvi � (23)

Thus, for every d ∈W and every � ∈ 00�B1, using the definition of gQ and f (cf. (7), (9)), we have

hd�vi ��
 = f �vi+�d


=
m+1∑
j=1

(
"jgQj

�vij +�dj
−hTj �v
i
j +�dj


)
= ∑

j∈Jvi∪Kvi

(
"jgQj

�vij +�dj
−hTj �v
i
j +�dj


)+∑
j∈Ivi

(
"jgQj

�vij 
−hTj v
i
j

)
︸ ︷︷ ︸

constant

= ∑
j∈Jvi∪Kvi

(
"jgQj

�vij +�Ajv
i
j 
−hTj �v

i
j +�Ajv

i
j 

)+ constant

(22)= ∑
j∈Jvi∪Kvi

(
2"j �1+�Aj �

√
�vij 


T Q−1
j vij −�Ajh

T
j v

i
j −hTj v

i
j

)
+ constant

(23)= ∑
j∈Jvi∪Kvi

(
2"j�1+�Aj


√
�vij 


T Q−1
j vij −�Ajh

T
j v

i
j −hTj v

i
j

)
+ constant

︸ ︷︷ ︸
linear in �

�

To summarize, we have obtained that hd�vi ��
 is a linear function of � on 00�B1 in contradiction to Lemma 3.8.
Thus, �NLSi
 does not have a solution. �
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In the following, we denote B3 = x� �x� = 3�.

Theorem 3.4 (Necessary Condition on the Representative Points of X∗). Let 1 ≤ i ≤ k. Then, for
every 3 > 0, there exists B > 0 (not depending on i) such that the following system of inequalities



d��Ajv
i
j 

m+1
j=1 �NX∗�v

i
∩B3
≤ 3/2�

Aj ≥ 0� j ∈Kvi �

Aj = 0� j ∈ Ivi �

(24)

implies ∥∥∥∥ ∑
j∈Jvi∪Kvi

�jAjv
i
j

∥∥∥∥≥ B�

Proof. Assume that there are variables A1� � � � � Am+1 that satisfy (24). We will show that �Ajv
i
j 

m+1
j=1 ∈EX∗�v

i
.
Denote w = �Ajv

i
j 

m+1
j=1 . Now, d��Ajv

i
j 

m+1
j=1 �NX∗�v

i
 ∩ B3
 ≤ 3/2, and thus there is a direction d ∈ NX∗�v
i
 such

that �d� = 3 and �d−w� ≤ 3/2. Therefore, with �d� = 3, we obtain

�w� ≤ �d�+�d−w� = 3
2
3� �w� ≥ �d�−�d−w� = 3

2
�

The inequality �d−w� ≤ 3/2 is equivalent to �d−w�2 ≤ 32/4, which after some simple algebraic manipulation
together with the bounds on �w� implies

�d�w� ≥ �d�2+�w�2− 32/4
2

= �3/4
32+�w�2
2

≥ �3/4
32+ �1/4
32

2
= 1
2
32 > 0� (25)

To summarize, we have that �d�w�> 0 for some d ∈ NX∗�v
i
. Furthermore, w ∈ EX∗�v

i
 because otherwise
there would exist �> 0 such that �x= vi+�w ∈X∗, but from the definition of the normal cone we have that

d ∈NX∗�v
i
 ⇒ ��x− vi� d� ≤ 0�

Substituting �x= vi+�w, we derive that ��w�d� ≤ 0, in contradiction to (25).
Now, consider the following minimization problem:

minimize

∥∥∥∥ ∑
j∈Jvi∪Kvi

�jAjv
i
j

∥∥∥∥
s.t. d��Ajv

i
j 

m+1
j=1 �NX∗�v

i
∩B3
≤ 3/2�

Aj ≥ 0� j ∈Kvi �

Aj = 0� j ∈ Ivi �
Here, we minimize a continuous function on a closed and bounded set. Thus, the minimum is attained. Denoting
the value of the minimum by Bi, one has Bi > 0 because otherwise the minimizing vector would be a solution
for �NLSi
, which is a contradiction to Theorem 3.3. The result follows by setting B =mini=1� � � � �k Bi. �

We are now ready to prove the main result of this section.

Theorem 3.5 (GREB Is Fulfilled for (DQCQP)). For every bounded set B, the inequality

h′d�'∗��


�
≥  

holds true for every d ∈W ∩ NX∗�'
∗
, � ∈ �0�11, and '∗ ∈ bd�X∗
 such that �d� = 3 and '∗ + �d ∈ B. The

positive numbers 3 and  are chosen so that

3 <min

{
min
j∈I'∗

∣∣1−�'∗j �Q−1j ∣∣
�Q−1

j �1/2
� min
j∈K'∗

1
�Q−1

j �1/2
}
� (26)

 < min
j=1� � � � �m+1

{
1�

1
4Nj

�

(
3

4C

)4

�

(
B

D

)4}
� (27)
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Here, B is as defined in Theorem 3.4 and C, D are given by

C =
√
�m+ 1
 · max

j=1� � � � �m+1
�max�Qj
 · max

j=1� � � � �m+1

{√
Nj�Nj�

1
2"j

}
� (28)

D=√m+ 1 · max
j=1� � � � �m+1

{
��j �

√
�max�Qj


}
· max
j=1� � � � �m+1

{
4

√
Nj�

√
Nj�

1√
2"j

}
� (29)

Nj = �Q−1
j �3/2

�N + 23
3

2"j
� (30)

where N is a positive number for which the inclusion

B⊆ x ∈�n� �x� ≤N� (31)

holds true.

Proof. Let B be some fixed bounded set and let 3 and  be positive numbers that satisfy (26) and (27).
Assume by contradiction that there exists an optimal solution '∗, a feasible direction d, and � ∈ �0�11 such that

h′d�'∗��


�
<  �

where d and ' satisfy

d ∈W ∩NX∗�'
∗
� �d� = 3� '∗ ∈ bd�X∗
� and '∗ +�d ∈ B�

Because '∗ ∈ bd�X∗
, it follows that
'∗ ∈ ri�Fp


for some 1≤ p≤ k. By the construction of the representative set vi�ki=1, we can assume that v
p and '∗ have the

same set of active inequalities in the linear system (17)–(21). Because vp ∈ ri �Fp
, we have by Lemma 3.7 that
NX∗�'

∗
=NX∗�v
p
�

and thus d ∈NX∗�v
p
. For simplicity of notation, in the sequel we set hd�·
≡ hd�'∗�·
.

Let zi��
≡ gQi
�'∗i +�di
. Then, the function hd in (11) can be written as

hd��
=
m+1∑
i=1

�"izi��
−hTi �'
∗
i +�di

� (32)

By the optimality of '∗, we have that h′d�0
= 0. Now, h′d is a continuous function over 00��1. By the piecewise
twice-differentiable property of zi� h

′
d has one-sided derivatives on �0��
. Thus, by the mean value theorem (see

Theorem A.1), there exists c ∈ �0��
 such that

 >
h′d��

�

= h′d��
−h′d�0

�− 0

∈ 0�hd
′′+�c
� �hd
′′−�c
1�

Here, we assume without loss of generality that �hd

′′
+�c
 < �hd


′′
−�c
. Consequently, we have that �hd


′′
+�c
 <  .

By (32), we have

�hd

′′
+�c
=

m+1∑
i=1

"i�zi

′′
+�c
�

From the convexity of zj and Theorem A.2, it follows that �zj

′′
+�c
≥ 0 for all j = 1�2� � � � �m+1 and c ∈ �0�1
.

As a consequence (recall that "j > 0 for every j),

 > �hd

′′
+�c
=

m+1∑
i=1

"i�zi

′′
+�c
≥ "j�zj


′′
+�c
� j = 1�2� � � � �m+ 1�

Thus,
�zj


′′
+�c
 <

 

"j
� (33)
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We will divide the investigation of inequality (33) into several cases. Before doing so, we note that by
Lemma 3.6 we have I'∗ = Ivp , J'∗ = Jvp , and K'∗ = Kvp , and hence for convenience we omit the subscripts in
the index sets defined in (15) and use the notation I , J , K. For every feasible direction d ∈W , we partition
K into two disjoint sets: K =Kd

1 ∪Kd
2 , where

Kd
1 =

{
j� �'∗j �Q−1j = 1� dT

j Q
−1
j '∗j > 0

}
�

Kd
2 =

{
j� �'∗j �Q−1j = 1� dT

j Q
−1
j '∗j ≤ 0

}
�

We also need the following quantity that will play an important role in bounding several expressions:

Mj =
(�'∗j �Q−1j +�Q−1

j �1/23
)3

2"j
� j = 1� � � � �m+ 1� (34)

Because '∗ +�d ∈ B, we have from (31) and ��d� ≤ 3 that �'∗j � ≤ �'∗� ≤N + 3 for every j = 1� � � � �m+ 1,
and, hence, by a simple algebraic manipulation, that Mj ≤ Nj for every j = 1� � � � �m+ 1, where Nj is given
by (30). Now we consider inequality (33) for the following cases.
• j ∈ I . In this case, �'∗j �Q−1j < 1. Combining this with the fact that �d� = 3 and (26), we obtain that for all

� ∈ 00�11, the inequality �'∗j +�dj�Q−1j < 1 is satisfied and as a result for every � ∈ 00�11, we have
zj��
= �'∗j +�dj�2Q−1j = �'∗j �2Q−1j + 2�dT

j Q
−1
j '∗j +�2�dj�2Q−1j �

Thus,  /"j > �zj

′′
+�c
= 2�dj�2Q−1j .

• j ∈ J . In this case, we have two subcases. Either zj��
= �'∗j +�dj�2Q−1j for every � in some right neighbor-

hood of c (i.e., �c� c+E
 for some E> 0) or zj��
= 2�'∗j +�dj�Q−1j −1 for every � in some right neighborhood
of c. In the first subcase, we have, similar to the case j ∈ I , that �dj�2Q−1j ≤  /2"j . In the second subcase, we
have

 

"j
> �zj


′′
+�c


Lemma A.2= 2
�dj�2Q−1j �'

∗
j �2Q−1j − �dT

j Q
−1
j '∗j 


2

�'∗j + cdj�3Q−1j
(35)

=
2�'∗j �2Q−1j

�'∗j + cdj�3Q−1j

(
�dj�2Q−1j − �dT

j Q
−1
j '∗j 


2

�'∗j �2Q−1j

)

>
1

Nj"j

(
�dj�2Q−1j − �dT

j Q
−1
j '∗j 


2

�'∗j �2Q−1j

)
� (36)

The last inequality is valid because �'∗j �Q−1j > 1 for every j ∈ J and

�'∗j + cdj�Q−1j ≤ �'∗j �Q−1j + c�dj�Q−1j ≤ �'∗j �Q−1j + c�Q−1
j �1/2�dj�

≤ �'∗j �Q−1j + c�Q−1
j �1/2�d� = �'∗j �Q−1j + c�Q−1

j �1/23
c<1
< �'∗j �Q−1j +�Q−1

j �1/23
�34
= 3

√
2Mj"j ≤ 3

√
2Nj"j �

By Lemma A.3, there is Aj ∈� such that

�dj − Aj'
∗
j �2Q−1j = �dj�2Q−1j − �dT

j Q
−1
j '∗j 


2

�'∗j �2Q−1j
�36

< Nj �

Combining the two subcases, we conclude that there exists Aj ∈� (in the first subcase, take Aj = 0) such that

�dj − Aj'
∗
j �2Q−1j ≤max

{
Nj�

1
2"j

}
 �

• j ∈Kd
1 . In this case, �'∗j + cdj�Q−1j > 1 and thus �zj


′′
+�c
 has the same form as in (35) and so there exists

Aj ∈� such that
�dj − Aj'

∗
j �2Q−1j ≤Nj �
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We also have that dT
j Q

−1
j '∗j > 0, which implies that (see Lemma A.3)

Aj =
dT
j Q

−1
j '∗j

�'∗j �2Q−1j
> 0�

• j ∈Kd
2 . Here we have two subcases: (1) �'∗j + cdj�Q−1j < 1, and (2) �'∗j + cdj�Q−1j ≥ 1.

Subcase 1. Here, zj��
 = �'∗j + �dj�2Q−1j for � in a neighborhood around c, so �zj

′′
+�c
 = �zj


′′�c
 =
2�dj�2Q−1j . Thus, as in the case j ∈ I , one has �dj�

2
Q−1j

<  /2"j .

Subcase 2. Because q��
= �'∗j +�dj�2Q−1j is a convex function of � and q�0
= 1≤ q�c
, q is an increasing

function on 0c��
, so that q��
≥ q�c
≥ 1 for all �≥ c. This implies zj��
= 2�'∗j +�dj�Q−1j − 1 for �≥ c,
and hence Lemma A.2 yields

�zj

′′
+�c
= 2

�dj�2Q−1j �'
∗
j �2Q−1j − �dT

j Q
−1
j '∗j 


2

�'∗j + cdj�3Q−1j
�

By (36), we have

�dj�2Q−1j
(
1− �dT

j Q
−1
j '∗j 


2

�'∗j �2Q−1j · �dj�2Q−1j

)
<Nj �

As a result, at least one of the following two inequalities must be satisfied:

�dj�2Q−1j <
√
Nj �

1− �dT
j Q

−1
j '∗j 


2

�'∗j �2Q−1j · �dj�2Q−1j
<
√
Nj �

We will show that the second inequality is impossible. Suppose otherwise that the second inequality is valid.
By the definition of  (cf. (27)), one has  < 1/4Nj ∀ j , and as a result we have

√
Nj < 1/2. Thus,

�dT
j Q

−1
j '∗j 


2

�'∗j �2Q−1j · �dj�2Q−1j
> 1−

√
Nj >

1
2
� (37)

Recall that for j ∈Kd
2 , �'∗j �Q−1j = 1 and dT

j Q
−1
j '∗j ≤ 0, and so by substituting this in (37), we obtain

dT
j Q

−1
j '∗j <−

�dj�Q−1j√
2

<−
�dj�Q−1j

2
� (38)

From this, it follows that for all � ∈ �0�11 and j ∈Kd
2 ,

�'∗j +�dj�2Q−1j = �'∗j �2Q−1j + 2�dT
j Q

−1
j '∗j +�2�dj�2Q−1j

(38)� j∈K
< 1−��dj�Q−1j +�2�dj�2Q−1j
= 1+��dj�Q−1j

(−1+��dj�Q−1j
)

0<�≤1
< 1+��dj�Q−1j

(−1+�dj�Q−1j )
< 1+��dj�Q−1j �−1+�Q−1

j �1/23
 < 1�

where the last inequality follows from 3 < 1/�Q−1
j �1/2 (cf. (26)).

Therefore, we have a contradiction to the assumption that �'∗j + cdj�Q−1j ≥ 1. Thus, in this subcase, we have
�dj�2Q−1j <

√
Nj �
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We summarize all our conclusions from the inequality  > "j�zj

′′
+�c
 for j = 1� � � � �m+ 1:

�dj�Q−1j <

√
 

2"j
� j ∈ I�

�dj − Aj'
∗
j �Q−1j <

√
max

{
Nj�

1
2"j

}
 � j ∈ J �

�dj − Aj'
∗
j �Q−1j <

√
Nj � j ∈Kd

1 �

�dj�2Q−1j <
√
Nj � j ∈Kd

2 �

where Aj > 0 for every j ∈Kd
1 . By Theorem 3.2 (see (19) and (20)), we obtain that there are numbers �j�j∈J∪Kd

1

such that �j ≥ 0 for all j ∈Kd
1 and satisfy

'∗j = �jv
p
j � j ∈ J ∪Kd

1 �

Defining Ãj = �jAj , the above four inequalities become

�dj�Q−1j <

√
 

2"j
� j ∈ I�

�dj − Ãjv
p
j �Q−1j <

√
max

{
Nj�

1
2"j

}
 � j ∈ J � (39)

�dj − Ãjv
p
j �Q−1j <

√
Nj � j ∈Kd

1 � (40)

�dj�2Q−1j <
√
Nj � j ∈Kd

2 �

Define a vector u ∈��m+1
n by

uj =


Ãjv

p
j if j ∈ J ∪Kd

1 �

0 otherwise.

Now, define a norm on vectors of ��m+1
n by �v�2� �=
∑m+1

j=1 �vj�2Q−1j , and denote by �I � the cardinality of an
index set I . Then,

�d− u�2� =
m+1∑
j=1

�dj − uj�2Q−1j
= ∑

j∈J∪Kd
1

�dj − uj�2Q−1j + ∑
j∈I∪Kd

2

�dj − uj�2Q−1j

= ∑
j∈J∪Kd

1

�dj − Ãjv
p
j �2Q−1j + ∑

j∈I∪Kd
2

�dj�2Q−1j
(39), (40)≤ ∑

j∈J∪Kd
1

max
{
Nj�

1
2"j

}
 + ∑

j∈I∪Kd
2

max
{
 

2"j
�
√
Nj 

}

≤ �J ∪Kd
1 � max

j∈J∪Kd
1

{
Nj �

 

2"j

}
+ �I ∪Kd

2 � max
j∈I∪Kd

2

{
 

2"j
�
√
Nj 

}

≤ ��J ∪Kd
1 � + �I ∪Kd

2 �
 max
j=1� � � � �m+1

{√
Nj �Nj �

 

2"j

}
�J∪Kd

1 �+�I∪Kd
2 �=m+1�0< <1≤ √

 �m+ 1
 max
j=1� � � � �m+1

{√
Nj�Nj�

1
2"j

}
�

Note that �v�2 ≤ max
j=1� � � � �m+1

�max�Qj
�v�2� for every v ∈ ��m+1
n and let C be given by (28). With these

notations, we have
�d− �Ãjv

p
j 


m+1
j=1 � ≤C 4

√
 �
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where d ∈NX∗�v
p
∩B3, Ãj ≥ 0 for j ∈Kd

1 and Ãj = 0 for j  J ∪Kd
1 . Hence,

d��Ajv
p
j 


m+1
j=1 �NX∗�v

p
∩B3
≤C 4
√
 

�27

< 3/4�

According to Theorem 3.4, to obtain the desired contradiction it is sufficient to prove that∥∥∥∥ ∑
j∈J∪Kd

1

Ãj�jv
p
j

∥∥∥∥< B�

and in fact∥∥∥∥ ∑
j∈J∪Kd

1

Ãj�jv
p
j

∥∥∥∥ d∈W=
∥∥∥∥ ∑
j∈J∪Kd

1

Ãj�jv
p
j −

m+1∑
j=1

�jdj

∥∥∥∥
=

∥∥∥∥ ∑
j∈J∪Kd

1

�j�Ãjv
p
j −dj
−

∑
j∈I∪Kd

2

�jdj

∥∥∥∥
≤ ∑

j∈J∪Kd
1

��j ��Ãjvpj −dj�+
∑

j∈I∪Kd
2

��j ��dj�

≤ ∑
j∈J∪Kd

1

��j �
√
�max�Qj
�Ãjvpj −dj�Q−1j + ∑

j∈I∪Kd
2

��j �
√
�max�Qj
�dj�Q−1j

(39), (40)≤ 4
√
 D�

where D is given by (29). But by the definition of  , we have that 4
√
 D < B and thus we have obtained the

desired contradiction to Theorem 3.4 and the theorem is proved. �

Appendix. We collect here some simple technical results that are used throughout the paper.

Lemma A.1. Let Q be a positive definite matrix, b ∈ �n, c ∈ �. If x satisfies the following quadratic
inequality

xTQx+ 2bT x≤ c� (41)

then
�x�2 ≤ a�

where

a=
(

1√
�min�Q


√
c+ bTQ−1b+�Q−1b�

)2

�

Proof. Rewrite (41) as �Q1/2�x + Q−1b
�2 ≤ c + bTQ−1b; then using �Q1/2�x + Q−1b
�2 ≥ �min�Q
 ·
�x+Q−1b�2 and �x+Q−1b� ≥ �x�−�Q−1b�, the result follows. �

Theorem A.1. Let z� �→� be a continuous function over a closed interval 0a� b1 with one-sided deriva-
tives in �a� b
. Then, there exists c ∈ �a� b
 such that the ratio �z�b
− z�a

/�b− a
 lies between the one-sided
derivatives z′−�c
 and z′+�c
.

Proof. Follows as an easy extension of the classical mean value theorem for differentiable functions. �

For any continuously differentiable function z� �→�, we denote by z′′+ (z′′−) the right (left) derivative of its
derivative z′.

Theorem A.2. Let z� �→� be a continuously differentiable convex function. If z′ has one-sided derivatives
at a point x ∈�, then z′′−�x
� z

′′
+�x
≥ 0.

Proof. Because z is a differentiable convex function, it follows that z′ is a nondecreasing function (see, e.g.,
Rockafellar [25, Theorem 24.1]). As a result, z′′−, z

′′
+ are nonnegative. �

Lemma A.2. For any d ∈��m+1
n, define z��
= 2�'∗ +�d�Q−1 − 1. Then,

d2z

d�2
�= z′′��
= 2

�d�2
Q−1�'∗�2Q−1 − �dTQ−1'∗
2

�'∗ +�d�3
Q−1

for every � such that �'∗ +�d�Q−1 > 0.
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Proof. By a straightforward calculation. �

Lemma A.3. Let Q be a positive definite matrix and let u� v ∈�n. Then,

min
"∈�

�u− "v�2Q = �u�2Q−
�uTQv
2

�v�2Q
�

where the minimum is attained at "∗ = uTQv/�v�2Q.
Proof. One has �u−"v�2Q = �u�2Q−2�uTQv
"+�v�2Q"2, and the result follows immediately by minimizing

the resulting one-dimensional quadratic function. �
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