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STRUCTURED TOTAL MAXIMUM LIKELIHOOD:
AN ALTERNATIVE TO STRUCTURED TOTAL LEAST SQUARES∗
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Abstract. Linear inverse problems with uncertain measurement matrices appear in many differ-
ent applications. One of the standard techniques for solving such problems is the total least squares
(TLS) method. Recently, an alternative approach has been suggested, based on maximizing an ap-
propriate likelihood function assuming that the measurement matrix consists of random Gaussian
variables. We refer to this technique as the total maximum likelihood (TML) method. Here we extend
this strategy to the case in which the measurement matrix is structured so that the perturbations are
not arbitrary but rather follow a fixed pattern. The resulting estimate is referred to as the structured
TML (STML). As we show, the STML can be viewed as a regularized version of the structured
TLS (STLS) approach in which the regularization consists of a logarithmic penalty. In contrast to
the STLS solution, the STML always exists. Furthermore, its performance in practice tends to be
superior to that of the STLS and competitive to other regularized solvers, as we illustrate via several
examples. We also consider a few interesting special cases in which the STML can be computed
efficiently either by reducing it into a one-dimensional problem regardless of the problem size or by
a decomposition via a discrete Fourier transform.
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problem, circulant structures
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1. Introduction. The total least squares (TLS) method, introduced first by
Golub and van Loan in [23], is a popular approach to deal with approximate linear
systems Ax ≈ b in which both the model matrix A and the right-hand side vector
b are subject to uncertainties [23, 24, 40]. One of the appealing features of the TLS
algorithm is that it coincides with the maximum likelihood (ML) solution when A
and b are known up to an additive Gaussian distortion. The derivation of TLS as
an ML estimate assumes that noisy measurements of A and b are given and jointly
estimates x and A.

Despite its popularity, in practice, the performance of the TLS method can be
quite poor. For example, in the case when A is square and nonsingular, it does not
take the uncertainty into account and reduces to the conventional least squares (LS)
solution. Furthermore, the TLS estimate can be viewed as a deregularized LS, where
the regularization parameter is negative. This deregularization often accounts for the
observed poor behavior [40, 43].

Alternative methods have been proposed in the literature in order to deal with
the uncertain LS model. In [20, 12] a robust LS strategy is suggested in which the
measurement matrix A lies in a known deterministic set, and the estimate is designed
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2624 AMIR BECK AND YONINA C. ELDAR

to cope with the worst-case A within the set. A statistical minimax criterion was
considered in [17]. Both these techniques require prior knowledge of a set of possible
matrices. In contrast, as we noted above, TLS can be viewed as an ML estimate
assuming that A is known up to some Gaussian distortion [3, 19, 15]. Other strategies
for improving the TLS performance consist of adding a quadratic constraint [38, 36]
or adding a quadratic penalty function that regularizes the solution [21, 5]. However,
which penalty function to choose is not obvious.

Recently, a new approach to the solution of linear systems with uncertain A
and b was introduced [42, 43]. In this strategy, the unknown A is again assumed to
be known up to a Gaussian distortion. However, instead of treating both x and A
as variables to be estimated, the measurement matrix A is considered random with
a Gaussian distribution, and only x is estimated. The corresponding ML solution
reduces to a regularized TLS estimator, with a regularization parameter that is a
solution to a concave-quasiconvex minimax problem. This problem can be solved by
a simple line-search over a unimodal1 function. The resulting estimate can be viewed
as a regularized version of the TLS method, with a logarithmic penalty. We refer to
this estimate as the total maximum likelihood (TML) solution. The TML technique
provides statistical reasoning to the regularized TLS method and suggests an inherent
logarithmic penalty scheme. Simulations and analysis provided in [43] demonstrate the
ability of the TML technique to improve the estimate of x over TLS method.

In many practical scenarios, the measurement matrix A has known structure so
that its elements cannot be chosen arbitrarily. For example, if A corresponds to a
linear-time invariant channel, then it will have a Toeplitz structure. In the context of
image deblurring, blurring with a spatially invariant point spread function corresponds
to a value of A that is block Toeplitz with Toeplitz blocks when zero boundary con-
ditions are assumed and block circulant with circulant blocks (BCCB) in the case of
periodic boundary conditions [2]. Intuitively, we should be able to exploit such struc-
tures to reduce the number of unknown parameters and improve the performance.
The structured TLS (STLS) method extends the TLS design strategy to the struc-
tured setting [37, 14, 1, 34, 33, 30]. Similarly to TLS, it can also be developed within
an ML framework. In contrast, however, the STLS estimate is a solution to a difficult
nonconvex optimization problem. Several algorithms have been proposed for solving
the STLS problem. These include the structured total least-norm algorithm [37], which
is an implementation of the Gauss–Newton technique, and other general-purpose opti-
mization methods; an excellent review of these results can be found in [31]. For general
structures, there is no guarantee that these methods converge to the global minimum
of the STLS optimization problem. The few known exceptions in which a global solu-
tion can be computed efficiently are the block circulant structure considered in [6] and
the restricted and matrix-restricted structures treated in [41] and [4], respectively. We
will discuss the matrix-restricted structure in section 4. The performance of STLS, like
that of TLS, is often unsatisfactory; in the limiting case in which the lengths of b and
x are equal and the matrix A is nonsingular, it is again equal to LS, demonstrating
that the structure cannot always properly be accounted for using this objective.

In this paper, we extend the TML approach of [42, 43] to the case in which
the measurement matrix is structured. To this end, we assume that our goal is to
estimate x when A is a random structured matrix whose structure parameters are

1A function f : I → R, I ⊆ R being a closed interval, is (strictly) unimodal if it has a unique
local minimizer on I, is (strictly) decreasing from the left boundary of the interval to this unique
minimum, and is (strictly) increasing from the minimum to the right boundary of the interval.
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STRUCTURED TOTAL MAXIMUM LIKELIHOOD 2625

independent and normally distributed. We refer to this new estimate as the structured
TML (STML) solution. The STML estimate can be viewed as a regularization of the
STML solution with a special choice of a logarithmic-type regularization term. Both
STLS and STML have the same order of computational complexity and require the
knowledge of the noise variances of the right-hand side vector and of the structure
components. A nice feature of the STML estimate is that it always exists, in contrast
to the STLS. Furthermore, its performance in practice tends to be much better than
STLS, as we illustrate through several examples. When the noise in the measure-
ment matrix is small, our approach is competitive to other regularized solvers such
as Tikhonov and LSQR with an appropriate stopping criteria; as the noise increases
(relatively to the noise in the right-hand side vector), the performance of our method,
which takes uncertainty in A into account, improves with respect to alternative reg-
ularized solvers.

The STML is a solution to a nonconvex optimization problem, and thus finding
it is not an easy task. Nevertheless, we show that it can be solved efficiently when the
underlying structure is circulant or BCCB and can be reduced into one-dimensional
unimodal optimization problems when a matrix-restricted structure is assumed. A
common thread to all these cases is that the covariance matrix of the observed vector
b has a special structure which can be exploited in order to derive a simplified method
for computing the STML solution.

We note that a similar reduction result for the matrix-restricted scenario was
already shown for the STLS estimate in [4]. The circulant structures were not studied
in the context of the STLS problem since they correspond to square measurement
matrices for which the STLS solution, when it exists, reduces to the conventional LS
estimate.

The rest of the paper is organized as follows. In section 2 we begin by reviewing
known results regarding TLS and STLS, as well as their interpretations as ML solu-
tions. The STML approach is discussed in section 3. We first show that a solution
to the ML problem in this setting always exists and then illustrate via simulations
that its performance is superior to STLS. In section 4 we present the class of matrix-
restricted structures for which the STML problem can be significantly simplified and
in fact be reduced to a one-dimensional problem. Section 5 considers the classes of
circulant matrices and BCCB matrices. For both cases we show that a global optimal
solution can be obtained by decomposing the objective into one-dimensional unimodal
problems. A MATLAB implementation and documentation of the STML estimate can
be found in [8].

2. Unstructured and STLS.

2.1. TLS methods. We are interested in the problem of estimating an unknown
deterministic vector x ∈ R

n from measurements

(2.1) b = Ax+w,

where A ∈ Rm×n is the model matrix and w is an unknown perturbation vector (or
“noise”). In the simplest setting, the matrix A is assumed to be known. A popular
estimation strategy in this case is the LS method in which the estimate x̂LS is the
solution of [11]:

(2.2) (LS) : min
x,w

{‖w‖2 : b = Ax+w}.

In other words, we seek a minimal norm perturbation to the clean measurements Ax
such that the system b = Ax+w is consistent. Problem (2.2) can also be written as
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2626 AMIR BECK AND YONINA C. ELDAR

the unconstrained minimization:

min
x

‖Ax− b‖2.

When A has full-column rank, the LS solution is explicitly given by

x̂LS = (ATA)−1ATb.

The LS estimator coincides with the ML solution when the vector w consists of
independent zero-mean random variables that are normally distributed, with equal
variances. It is also known to minimize the mean-squared error (MSE) among all
unbiased estimators of x [29]. Nonetheless, it may be outperformed in terms of MSE
by biased methods such as the regularized LS estimator due to Tikhonov and Arsenin
[39], the James–Stein method [27], the minimax MSE approach [17, 28, 16], and the
blind minimax methods [9].

The LS formulation assumes that the model matrix is known. In many practi-
cal applications, the measurement matrix is also subjected to uncertainty. The TLS
method is a natural generalization of the LS technique in which the measurements b
are modeled as

(2.3) b = (A+E)x+w.

Here A ∈ R
m×n is the nominal (given) measurement matrix, and the matrix E ∈

Rm×n is the unknown perturbation. As in the LS approach, we may seek the values
of x,w, and E such that (2.3) is consistent and such that the perturbations w and E
have minimal norm2 [23, 24, 40]:

(2.4) (TLS): min
E,w,x

{‖E‖2 + ‖w‖2 : b = (A+E)x+w}.

It is well known (see e.g., [24]) that by minimizing with respect to E and w, the
problem can be cast as the following minimization problem in the variables x:

(2.5) min
x

‖Ax− b‖2
‖x‖2 + 1

.

The TLS problem is nonconvex (in either of its two forms (2.4) and (2.5)) and, there-
fore, seems difficult to solve. Nevertheless, it is known to be tractable and in fact has a
simple solution in terms of the singular value decomposition of the augmented matrix
(A,b); see [23, 40] for details. It can also be viewed as a deregularization of the LS
solution [40, 43].

It is easy to see that when A is square and invertible, x̂LS and x̂TLS coincide and
are equal to the näıve solution x̂ = A−1b. Indeed, in this case we can choose w = 0
and E = 0 which clearly minimize the norm.

2.2. STLS methods. In many applications A is known to have some linear
structure; that is,

(2.6) A ∈
{

p∑
i=1

aiAi : ai ∈ R, i = 1, . . . , p

}
,

2For a matrix M, the norm ‖M‖ stands for the Frobenius norm of the matrix.

D
ow

nl
oa

de
d 

11
/1

4/
20

 to
 1

32
.6

6.
11

.2
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRUCTURED TOTAL MAXIMUM LIKELIHOOD 2627

where A1, . . . ,Ap ∈ Rm×n are the structure matrices and a1, . . . , ap are the structure
components; typically p is smaller than mn. Instead of allowing E to be an arbitrary
matrix, it is natural to consider only structured perturbations of the form

E =

p∑
i=1

eiAi,

where e1, . . . , ep are the unknown perturbation structure variables; we denote by e =
(e1, . . . , ep)

T the perturbation structure vector.
The measurement model (2.3) now becomes

(2.7) b =

(
A+

p∑
i=1

eiAi

)
x+w.

The STLS estimate is then the solution to [37, 14, 1, 34, 33, 30]

(2.8) (STLS): min
e,w,x

{
p∑

i=1

e2i + ‖w‖2 :

(
A+

p∑
i=1

eiAi

)
x = b+w

}
.

Note that similarly to the TLS solution, when A is square and invertible, x̂STLS = x̂LS

and the structure is not accounted for. We also note that the TLS problem is a special
case of (2.8), where we choose each value Ai as a matrix that is all zeros besides one
element which is equal to 1. In this case the number of structure variables is equal to
mn.

We can formulate the STLS problem as a minimization in the x variables only.
Specifically, by minimizing with respect to e1, . . . , ep and w, (2.8) reduces to

(2.9) min
x∈Rn

⎧⎨⎩(Ax− b)T

(
I+

p∑
i=1

Aixx
TAT

i

)−1

(Ax − b)

⎫⎬⎭ .

The STLS problem (2.9) is nonconvex, and in contrast to the unstructured TLS prob-
lem, finding its global solution is difficult. As noted in the introduction, several algo-
rithms have been proposed to solve (2.9) or, more precisely, to find a stationary point;
among these methods we mention efficient implementations of the Gauss–Newton al-
gorithm [37] and BFGS [32].

Under the assumption that e1, . . . , ep and the components of w are independent
normal random variables with equal variances, the STLS solution is an ML estimate.
This was first shown by Aoki and Yue [3]. Since the TLS solution is a special case,
it is also ML optimal. To develop the ML interpretation, we can rewrite the linear
model (2.7) equivalently as follows:

(2.10)
b = (

∑p
i=1 giAi)x+w,

a = g − e,

where a is the observed structure variables vector and g is the “true” unknown
structure variables vector. We then view both g and x as unknown deterministic
parameters which we seek to estimate from the measurements b and a. Assum-
ing that the components of e and w are independently normally distributed with
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2628 AMIR BECK AND YONINA C. ELDAR

zero-mean and variances σ2
e and σ2

w, respectively, the ML estimate for x and g is the
solution to

(2.11) min
x,g

1

σ2
w

∥∥∥∥∥
(

p∑
i=1

giAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖g− a‖2.

When σe = σw, (2.11) is equivalent to the STLS problem (2.8).

3. The STML estimate. The behavior of the TLS solution is often unsatisfac-
tory. In [42, 43] a different approach was advocated in order to treat the model (2.3).
The motivation for this new method comes from the ML formulation. For the TLS
setting, the ML strategy of (2.11) treats both x and the perturbation matrix E as
unknown variables to be estimated. However, in many applications, we are not really
interested in the nuisance parameter matrix E but rather only in the vector x. We
may therefore formulate an alternative ML approach in which only x is estimated,
under the same statistical model.

To derive the TML estimate, we assume, as before, that b = (A+E)x+w, where
E is a matrix comprised of independent normal random variables with zero-mean and
variance σ2

e . In this case, b is a Gaussian random vector with mean Ax and variance
σ2
e‖x‖2 + σ2

w. Therefore, computing the ML estimate of x reduces to solving [42, 43]

(3.1) min
x

{
‖Ax− b‖2
σ2
e‖x‖2 + σ2

w

+m log(σ2
e‖x‖2 + σ2

w)

}
,

where σ2
w is the variance of the components of the noise vector w. It was shown

in [42, 43] that problem (3.1) can be solved efficiently by transforming it into a
single-variable minimization of a unimodal function.

The objective in (3.1) can be viewed as a regularization of the TLS problem (2.5).
Therefore, this technique provides statistical reasoning to regularized TLS and sug-
gests an inherent logarithmic penalty scheme. Statistical analysis carried out in [43],
as well as numerical simulations, demonstrates the superiority of the TML approach
over TLS. It is therefore our goal to extend this approach to the structured model
(2.7).

3.1. The STML estimate and its existence. To derive the STML estimate,
suppose that the components of e and w are independent zero-mean normal random
variables with variances σ2

e and σ2
w, respectively. The observation b then follows a

normal distribution,

(3.2) b ∼ N

(
Ax, σ2

e

p∑
i=1

Aixx
TAT

i + σ2
wI

)
,

so that the log likelihood is

log f(b;x) = −m

2
log(2π)− 1

2
log detΣx − 1

2
(Ax− b)TΣ−1

x (Ax− b),

where

(3.3) Σx = σ2
e

p∑
i=1

Aixx
TAT

i + σ2
wI.
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The ML estimate of x is the solution to

(3.4) (STML) : min
x

{(Ax− b)TΣ−1
x (Ax− b) + log detΣx}.

When σe = σw, the first term (Ax − b)TΣ−1
x (Ax − b) is a scalar times the

STLS objective function (2.9). The second term, log detΣx, can be considered as
a regularization function and serves to stabilize the solution. One evidence of this
property is the next theorem which shows that the solution of the STML problem—
as opposed to the STLS solution—is always attained.

Theorem 3.1. The optimal solution of the STML problem (3.4) is attained.
Proof. See Appendix A.
We emphasize that attainment is not guaranteed for the STLS problem. Consider,

for example, the simple problem in R with A = 0, b = 1, and A1 = 1. In this setting,
(2.9) becomes

min
x

1

1 + x2
,

which, of course, does not have a global solution.

3.2. Numerical examples. The STML objective (3.4) is nonconvex, and thus
general optimization procedures are not guaranteed to obtain its global optimal so-
lution. This is true also for the STLS problem. In special cases, a globally optimal
point can be found by exploiting the problem structure. We discuss two such settings
in section 5. In section 4 we analyze a class of problems which can be reduced to
a single-variable minimization. For the general case we will use the BFGS method
implemented by the MATLAB function fminunc. In order to invoke such a method,
computation of the gradient is necessary. An explicit expression for the gradient is
given in the following lemma, whose very simple and technical proof is omitted.

Lemma 3.2. Let f : Rn → R be the function given by

(3.5) f(x) = log detΣx + (Ax− b)TΣ−1
x (Ax− b),

where A,A1, . . . ,Ap ∈ Rm×n, b ∈ Rm, and Σx is defined in (3.3). Then

∇f(x) = 2σ2
e

p∑
i=1

AT
i Σ

−1
x Aix+ 2ATΣ−1

x (Ax − b)

−2σ2
e

p∑
i=1

AT
i Σ

−1
x (Ax− b)xTAT

i Σ
−1
x (Ax− b).

We now illustrate the performance of STML and STLS by a simple numerical
example. Consider an exact linear system

bt = Atxt,

where At is a 30× 20 Toeplitz matrix with 7 diagonals corresponding to 7 structure
components:

At =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1 α5 α6 α7 0 0 0 0 0 · · ·
α2 α1 α5 α6 α7 0 0 0 0 · · ·
α3 α2 α1 α5 α6 α7 0 0 0 · · ·
α4 α3 α2 α1 α5 α6 α7 0 0 · · ·
0 α4 α3 α2 α1 α5 α6 α7 0 · · ·
...

...
...

...
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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2630 AMIR BECK AND YONINA C. ELDAR

Each of the structure components was randomly generated from a uniform distribution
on the interval [0, 1], and their specific values to 3 digits of accuracy are given in the
following table:

i 1 2 3 4 5 6 7
αi 0.721 0.578 0.579 0.080 0.810 0.919 0.921

The components of the 20× 1 vector xt were also randomly generated from a uniform
distribution on the interval [0, 1] and are given by (to 3 digits of accuracy):

i 1 2 3 4 5 6 7 8 9 10
xt(i) 0.533 0.745 0.996 0.833 0.134 0.389 0.732 0.380 0.221 0.853

i 11 12 13 14 15 16 17 18 19 20
xt(i) 0.224 0.684 0.331 0.988 0.028 0.658 0.160 0.621 0.028 0.623

The observed vector and structure components vector are given by

bo = bt +w,

αo = αt + e,

where w ∼ N(0, σ2
wIm) and e ∼ N(0, σ2

eIp).
Each of the standard deviations σw and σe has three possible values: 10−1, 10−2,

and 10−3. For each of the 9 options we generated 200 realizations of the perturbation
vectors w and e according to the chosen standard deviations and computed the aver-
age of the estimation error ‖x̂− xt‖ for the LS, STLS, and STML estimates (the last
two were computed by the MATLAB function fminunc with an initial vector chosen
as the least squares solution). Since, as was already mentioned, the STML is in a
sense a regularization of the STLS estimate with a special choice of regularizer, we
also computed the corresponding results for two popular regularized estimates:

1. TIK-GCV—Tikhonov solution (ATA+ λI)−1ATb, where λ is chosen by the
generalized cross validation (GCV) criteria [22] implemented by the MATLAB
function gcv from the “regularization tools” package [25], and

2. LSQR—the LSQR solution computed with the MATLAB function lsqr with
tolerance set to mσ2

w = 30σ2
w. The output of LSQR with low tolerance can

be considered as a regularized solution.
The mean over 200 runs for each of the 9 settings are summarized in the following

table (the boldfaced numbers represent the best results of the corresponding row):

σe σw LS STLS STML LSQR TIK-GCV
1e-3 0.0580 0.0523 0.0522 0.0580 0.0689

1e-3 1e-2 0.3700 0.3700 0.3688 0.2659 0.2210
1e-1 3.6452 3.6459 3.6330 1.3980 0.9557
1e-3 0.4181 0.2902 0.2635 0.4181 0.2821

1e-2 1e-2 0.5815 0.5612 0.4825 0.4140 0.3457
1e-1 3.9612 4.0894 3.1000 1.3994 0.9892
1e-3 1.4679 1.7391 0.9853 1.4645 1.0027

1e-1 1e-2 2.6212 5.0213 0.9767 1.2341 1.3078
1e-1 9.8396 34.0736 1.1731 1.4044 1.1444

Clearly, the STML estimate provides better results than LS and STLS. The reason for
that might be the inherent regularization of this estimate. For large values of σe the
STLS estimate usually behaves worse than LS, while the STML solution is better by
an order of magnitude. It can also be seen that the STML estimate was competitive to
the two other regularized solvers (LSQR and TIK-GCV). In particular, it gave the best

D
ow

nl
oa

de
d 

11
/1

4/
20

 to
 1

32
.6

6.
11

.2
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRUCTURED TOTAL MAXIMUM LIKELIHOOD 2631

results for low values of σw and also when σe = 10−1, σw = 10−2. In other words, when
the uncertainty in A is substantial with respect to the uncertainty in b, the STML
is superior to standard regularization methods. The Tikhonov solution was better in
all other cases. We also note that the BFGS method implemented in fminunc did not
converge for a small percentage of the runs (for either STLS or STML). Specifically,
in each of the 9 scenarios, we performed between 202 and 207 runs in order to obtain
the required 200 results (since in 2–7 runs the BFGS method did not converge for
either the STLS or STML problem). We also noticed through additional numerical
experiments that the observations that (1) STML outperforms STLS and (2) the gap
increases as σe grows are typical and only mildly depend on the initial values of At

and xt.
In our second example, we consider the discretization of the famous Phillips test

problem which is an integral equation of the first kind [35]. The exact system was
obtained from the “regularization tools” package [25]. The problem consists of a sym-
metric Toeplitz matrix with 17 diagonals corresponding to 9 structure components.
Each structure component was perturbed proportionally to its magnitude in the fol-
lowing manner: for every i = 1, . . . , 9, the structure component αi (i = 1, . . . , 9) was
changed to αi(1 + ei), where ei ∼ N(0, 0.02). We also chose σw = 0.001. Since the
problem here corresponds to a 32 × 32 square measurement matrix, the STLS solu-
tion coincides with LS. We compared the STML estimate with the STLS solution and
the Tikhonov solution whose parameter is chosen via GCV. A representative run is
given in Figure 3.1. Evidently, the STML and TIK-GCV estimates fit the true signal
reasonably, whereas the STLS solution behaves erratically.

5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 
STML
STLS
TIK−GCV
TRUE

Fig. 3.1. The true signal versus the STLS, Tikhonov (with parameter choice via GCV), and
STML estimates.

4. The matrix-restricted structure. As we have seen in the previous section,
computation of the STML estimate amounts to solving a nonconvex optimization
problem. Therefore, in general, there is no method that efficiently finds the global
minimum. In this section we discuss a special structure in which the STML problem
can be reduced into a single-variable minimization.
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2632 AMIR BECK AND YONINA C. ELDAR

4.1. Definition and problem reduction. Suppose that the errors in the model
matrix A are of the form DEC, where D ∈ Rm×p,C ∈ Rl×n are known matrices and
E ∈ Rp×l is unknown. This structure, which we will refer to as a matrix-restricted
structure, allows us to model various interesting special cases. For example, the choice

(4.1) D =

(
Im1

0(m−m1)×m1

)
,C = In,

corresponds to the situation in which the firstm1 rows ofA are contaminated by noise,
while the remainderm−m1 rows are noise free. The choice D = Im,C = (0n1 , In−n1),
corresponds to the scenario in which the first n1 columns of A are error free while the
remaining n− n1 are noisy. Finally, the TML problem can be recovered by assuming
D = Im,C = In.

The matrix-restricted structure was analyzed in the context of STLS in [4] where
it was shown that for such a structure the problem can be reduced into a single-
variable minimization, and that under some additional conditions the one-dimensional
objective is unimodal. Another closely related structure discussed in the context of
the STLS problem is the restricted case [41] in which the matrix and right-hand side
perturbations are jointly assumed to have the “DEC” structure. The STLS problem in
this setting can be solved using the restricted singular value decomposition [41]. In this
section we show that much like the STLS, the STML problem with matrix-restricted
structure can be reduced into a single-variable problem.

The linear model corresponding to the matrix-restricted structure is

(4.2) b = (A+DEC)x+w.

Denoting the ith column of D by di (i = 1, . . . , p) and the jth row of C by cj (j =
1, . . . , l), we can rewrite (4.2) as

(4.3) b =

⎛⎝A+

p∑
i=1

l∑
j=1

eijAij

⎞⎠x+w,

where eij is the (i, j)th component of E and Aij = dic
T
j . The special structure of Aij

allows us to simplify the STML problem.
Lemma 4.1. The STML problem corresponding to the linear model with ei,j ∼

N(0, σe) and wi ∼ N(0, σw) is

(4.4) min
x∈Rn

{log detΣx + (Ax− b)TΣ−1
x (Ax− b)},

where

Σx = σ2
e‖Cx‖2DDT + σ2

wIm.

Proof. All we need to compute is the matrixΣx for the matrix-restricted structure.
By (4.3) it follows that

p∑
i=1

l∑
j=1

Aijxx
TAT

ij =

p∑
i=1

l∑
j=1

dic
T
j xx

T cjd
T
i =

p∑
i=1

l∑
j=1

xT cjc
T
j xdid

T
i

= xT

⎡⎣ l∑
j=1

cjc
T
j

⎤⎦x

p∑
i=1

did
T
i = xTCTCxDDT = ‖Cx‖2DDT ,

proving the result.
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4.2. An equivalent one-dimensional problem. In order to solve problem
(4.4), we can use the same methodology that was used in [42]. This allows us to convert
the problem into a single-variable minimization and then use a one-dimensional solver.

We begin by noting that (4.4) can be rewritten as:

(4.5) min
α≥0

G(α),

where G(α) is defined as:

(4.6) G(α) ≡ min
x

{
log detΓα + (Ax− b)TΓ−1

α (Ax − b) : ‖Cx‖2 = α
}
,

with

Γα = σ2
eαDDT + σ2

wIm.

An evaluation of the function G(·) requires the solution of a minimization problem of a
quadratic function subject to a single quadratic equality constraint. This is a special
case of the class of generalized trust region subproblems (GTRS) which consists of
minimizing a general quadratic function (possibly indefinite) subject to a general
quadratic constraint. It is known that under mild conditions GTRS problems possess
necessary and sufficient optimality conditions, and that—as a result—they can be
solved efficiently [34].

The function G(·) is not convex or unimodal, and therefore, general one-
dimensional solvers are not guaranteed to reach the global minimum. However, it
is usually simpler to solve one-dimensional optimization problems than multivariate
ones. An interesting property is that every local minimum point of (4.5) corresponds
to at least one local minimum of the multivariate problem (4.4). The reverse claim
does not hold true, which means that local optima points of the multivariate prob-
lem (4.4) might vanish in the transition to the one-dimensional problem (4.5). This
property is summarized in Theorem 4.2 below. The proof is very similar to the proof
of Theorem 4.1 of [4] and is included here for completeness.

Theorem 4.2. Let α0 be a local minimum of the single-variable problem (4.5),
and let x be an optimal solution of (4.6) with α = α0. Then x is a local minimum of
problem (4.4).

Proof. Since α0 is a local minimum of (4.5), there exists an interval I = [α0 −
δ, α0 + δ] such that G(α0) ≤ G(α) for every α ∈ I

⋂
[0,∞]. Let x0 be an optimal

solution of (4.6) with α = α0 as stated in the theorem. Our objective is to show
that x0 is a local minimum of (4.4). Let x ∈ Rn satisfy ‖x − x0‖ ≤ ρ, where ρ =
min{1, δ

2λmax(CTC)(‖x0‖+1)
}. By the mean value theorem, there exists λ ∈ [0, 1] such

that

xTCTCx− xT
0 C

TCx0 = 2[x0 + λ(x − x0)]
TCTC(x− x0)

so that

|xTCTCx− xT
0 C

TCx0| ≤ 2λmax(C
TC)‖x0 + λ(x − x0)‖‖x− x0‖

≤ 2λmax(C
TC)(‖x0‖+ ‖x− x0‖)‖x− x0‖

≤ 2λmax(C
TC)(‖x0‖+ 1)ρ ≤ δ.

Now, since xT
0 C

TCx0 = α0 it follows that xTCTCx ∈ I
⋂
[0,∞], and as a result

G(xTCTCx) ≥ G(α0).
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2634 AMIR BECK AND YONINA C. ELDAR

Finally, let g(·) be the objective function of problem (4.4). Then

g(x) ≥ G(xTCTCx) ≥ G(α0) = G(xT
0 C

TCx0) = g(x0),

establishing the result.
The following example demonstrates that indeed local minima points might vanish

in the passage to the one-dimensional problem.
Example. Consider the STML problem with (randomly generated) data

A =

⎛⎝−0.69 0.96
0.70 0.88
1.14 0.21

⎞⎠ , b =

⎛⎝1.34
1.52
0.87

⎞⎠ , C =

(
0.89 1.19
−2.30 −2.01

)
,

D =

⎛⎝1.16 0.42 −0.58
0.84 0.46 0.16
0.97 0.16 0.12

⎞⎠ ,

and σe = σw = 1. This example was randomly generated by choosing the compo-
nents of b, A, C, and D from a standard normal distribution (using the MATLAB
function randn) and then rounded to have only two digits after the decimal point.
Approximately 10% of the problems generated in this manner had the property of
having multiple local minima, and this example is one such instance.

In Figure 4.1 the contour plot is presented on the left image and the function G(·)
is presented on the right image. The function G is presented here only for values in the
range [0, 2], but a plot of this function for larger values reveals that it is increasing for
values in the range (2,∞). The global optimum is attained at x̃ = (−0.1188, 0.4537)
with value 2.4314. It can also be seen from the contour plot that there exists a local
minimum at x̂ = (−0.3343, 0.0208), and its value is 3.5524. The interesting fact is
that the function G(·) has only one local minimum point (and hence also global) that
is attained at α = 0.5963 which matches the global optimum x̃. Therefore, in this
example, we can see that x̂ vanishes in the process of passing to the one-dimensional
formulation.

x
1

x 2

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.5

3

3.5

4

4.5

5

α

G
(α

)

Fig. 4.1. A contour plot of the two-dimensional problem (left) and the corresponding one-
dimensional formulation (right).

Recall that, in fact, we reformulated the STML problem as a one-dimensional
bilevel optimization problem. That is, each evaluation of the objective function G(α)
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requires the solution of another optimization problem. In the unstructured case, i.e.,
when D = C = I, it was shown in [43] that the TML can be recast as a minimization
of a one-dimensional unimodal explicit function.

5. Circulant-based structures. Two classes of matrices that appear in appli-
cations are circulant matrices and block circulant with circulant blocks (BCCB). The
first class appears in one-dimensional deconvolution problems with periodic boundary
conditions, while the class of BCCB matrices emerges in two-dimensional deconvolu-
tion problems (such as image deblurring) with periodic boundary conditions [2, 26].
In this section we show that when the model matrix has one of these structures, the
STML can be found by solving a unimodal single-variable optimization problem.

In section 5.1 we present necessary notation, as well as a complex relaxation
of the corresponding optimization problem. In section 5.3 we decompose the complex
relaxation into one-dimensional complex-valued problems, which are later transformed
into one-dimensional unimodal real-valued problems in section 5.4. The consequence
is that a global optimum point of the complex relaxation can be found efficiently. In
section 5.5 we show that the complex relaxation has at least one real-valued solution
which implies that the original real-valued problem can be solved efficiently.

5.1. Basic definitions and notation. Although our primary interest in the
context of this paper is to consider real-valued matrices and vectors, we will need to
deal with the complex domain in our analysis. Therefore, in this section we use the
notation F to stand for the underlying number field which is either the real number
field R or the complex number field C.

The class of n× n circulant matrices consists of all n× n matrices in which each
row is a cyclic right shift of the previous row. That is, an n× n circulant matrix is of
the form

(5.1) T (1)(c) ≡

⎛⎜⎜⎜⎜⎜⎝
c1 c2 c3 · · · cn
cn c1 c2 · · · cn−1

cn−1 cn c1 · · · cn−2

...
...

...
...

c2 c3 c4 · · · c1

⎞⎟⎟⎟⎟⎟⎠ (c ∈ F
n).

The linear operator T (1) : Fn → Fn×n can also be written as

T (1)(c) =

n∑
j=1

cjA
(1)
j ,

where A
(1)
j = Sj−1

n , with Sn being the n × n “cyclic shift matrix” defined by Sn =

T 1((0, 1, 0, 0, . . . , 0)T ).
The set of circulant matrices over the number field F is given by

(5.2) L(1)(F) =
{
T (1)(c) : c ∈ F

n
}
.

We will always assume that the circulant matrices are of size n× n with a known n.
The representation (5.2) will be referred to as the algebraic representation of the set.

A well-known property of the set of n × n circulant matrices over the complex
number field, L(1)(C), is that they are exactly the matrices which are diagonalizable
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2636 AMIR BECK AND YONINA C. ELDAR

by the unitary discrete Fourier transform (DFT) matrix Fn [18]. That is, we can also

write a spectral representation of L(1)(C) by

(5.3) L(1)(C) = {F∗
ndiag(λ)Fn : λ ∈ C

n} .

An mn×mn BCCB matrix with n2 blocks of size m×m has the form⎛⎜⎜⎜⎜⎜⎝
C1 C2 C3 · · · Cn

Cn C1 C2 · · · Cn−1

Cn−1 Cn C1 · · · Cn−2

...
...

...
...

C2 C3 C4 · · · C1

⎞⎟⎟⎟⎟⎟⎠ ,

where C1, . . . ,Cn ∈ L(1)(F). We denote the set of all such matrices by L(2)(F). The

algebraic representation of L(2)(F) is given by

L(2)(F) =
{
T (2)(c) : c ∈ F

mn
}
,

where the linear operator T (2) : Fmn → Fmn×mn is defined by

(5.4) T (2)(c) =

mn∑
k=1

ckA
(2)
k .

The mn structure matrices A
(2)
1 , . . . ,A

(2)
mn are the mn Kronecker products Sj

n ⊗ Si
m,

i = 0, . . . ,m−1, j = 1, . . . , n−1 (in some order). Similar to the circulant case, L(2)(C)
also has a spectral representation,

L(2)(C) = {(Fn ⊗ Fm)∗diag(λ)(Fn ⊗ Fm) : λ ∈ C
mn} ;

that is, BCCB matrices are exactly the matrices which are diagonalizable by the
unitary two-dimensional DFT matrix Fn⊗Fm. We will assume throughout the section
that the BCCB matrices consist of n2 blocks of m × m matrices and that m and n
are known.

One more property that will be important in our analysis is that for every k = 1, 2
and c ∈ Fpk ,

‖T (k)(c)‖2F = pk‖c‖2.

To summarize our notation, we consider two structures L(k)(F), k = 1, 2, given by

(5.5) L(k)(F) =

{
T (k)(c) =

pk∑
i=1

ciA
(k)
i : c ∈ F

pk

}
, k = 1, 2,

where

p1 = n, p2 = mn.

Over the complex domain, each of these spaces consists of matrices that are all diag-
onalizable by the same unitary matrix:

(5.6) L(k)(C) =
{
Q∗

(k)diag(λ)Q(k) : λ ∈ F
pk

}
,
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where

(5.7) Q(1) = Fn, Q(2) = Fn ⊗ Fm.

In the derivations below, we consider both structures simultaneously. The index k,
that takes the values 1 or 2, will indicate the identity of the structure (1, circulant;
2, BCCB).

5.2. The STML problem. Our goal is to find efficient methods for calculating
the STML estimate corresponding to each of the two linear models

(5.8) b = (A+ T (k)(c))x +w,

where A ∈ L(k)(R) and b ∈ Rpk are known and w ∈ Rpk and c ∈ Rpk are the
unknown perturbations. The STML associated with the model (5.8) is the solution to

(5.9) (PR) : min
x

{
(Ax− b)T

[
Σ(k)

x

]−1

(Ax− b) + log detΣ(k)
x : x ∈ R

pk

}
,

where

Σ(k)
x = σ2

e

pk∑
i=1

A
(k)
i xxT

[
A

(k)
i

]T
+ σ2

wI

for every x ∈ Rpk .
Analyzing (5.9) turns out to be difficult since the spectral representation (5.6)

holds only over the complex domain and not over the real domain. We therefore begin
by solving (5.9) over the complex domain; namely, we consider the problem

(5.10) (PC) : min
x

{
(Ax− b)∗

[
Σ(k)

x

]−1

(Ax − b) + log detΣ(k)
x : x ∈ C

pk

}
,

where the definition of Σ
(k)
x is extended to the complex domain as follows:

Σ(k)
x = σ2

e

pk∑
i=1

A
(k)
i xx∗

[
A

(k)
i

]∗
+ σ2

wI

for every x ∈ Cpk . We will call problem (PC) the convex relaxation of (PR). This
terminology is consistent with the one presented in [7].

Clearly, if the solution to (5.10) turns out to be real, then it will also be the STML
estimate. In the next subsections we will show that the convex counterpart can be
solved exactly; namely, a global optimum can be found. We also prove that (5.10) has
at least one optimal solution that is real. If, in addition, there is a solution to Ax = b,
then (5.10) has a unique solution which coincides with the STML. Therefore, solving
(5.10) will often result in the true STML estimate.

Our strategy for solving (5.10) is to first show that it can be decomposed into pk
one-dimensional complex-valued problems. We then show that the solution to each
such problem can be found by solving a one-dimensional unimodal real-valued prob-
lem. This implies that the global optimum can be found exactly.
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5.3. Solving (PC). In order to decompose (PC) of (5.10) into a set of one-

dimensional problems, we exploit the spectral decomposition of Σ
(k)
x .

Proposition 5.1. Let x ∈ Cpk . Then

(5.11) Σ(k)
x = Q∗

(k)diag
([

pkσ
2
e |x̃i|2 + σ2

w

]pk

i=1

)
Q(k),

where x̃ = Q(k)x and Q(k) is given by (5.7).

Note that Proposition 5.1 implies that Σ
(k)
x ∈ L(k)(C) for every x ∈ Cpk .

The proof of Proposition 5.1 relies on the following lemma whose simple and
technical proof is omitted.

Lemma 5.2. Let m, p be positive integers, and let v ∈ Cm,Z ∈ Cm×p, and d > 0.
Then the optimal value of the following minimization problem in the variables α ∈ Cp

(5.12) min
α

‖v + Zα‖2 + d‖α‖2

is

(5.13) dv∗(dI+ ZZ∗)−1v.

We are now ready to prove Proposition 5.1.
Proof. Let x ∈ Cpk be fixed. Consider the optimization problem (5.12) with

arbitrary v ∈ Cpk and constant d =
σ2
w

σ2
e
, and let Z ∈ Cpk×pk be given by

Z =
(
A

(k)
1 x,A

(k)
2 x, . . . ,A(k)

pk
x
)
.

By Lemma 5.2, the optimal value of problem (5.12) is given by

σ2
w

σ2
e

v∗
(
σ2
w

σ2
e

I+

pk∑
i=1

A
(k)
i xx∗

[
A

(k)
i

]∗)−1

v,

which is the same as

(5.14) σ2
wv

∗
[
Σ(k)

x

]−1

v.

To find a different expression for the optimal value of problem (5.12), let us rewrite
it explicitly:

min

⎧⎨⎩
∥∥∥∥∥v +

pk∑
i=1

αiA
(k)
i x

∥∥∥∥∥
2

+ d‖α‖2 : α ∈ C
pk

⎫⎬⎭ ,

which is the same as

min

{∥∥∥v + T (k)(α)x
∥∥∥2 + d

pk
‖T (k)(α)‖2 : α ∈ C

pk

}
.

Using the notation (5.5), it follows that we can also write the above as

(5.15) min

{
‖v +Wx‖2 + d

pk
‖W‖2 : W ∈ L(k)(C)

}
.
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Now, using the spectral representation of L(k)(C) given in (5.6), we make the
change of variables W = Q∗

(k)diag(λ)Q(k), where λ ∈ Cpk , which combined with the

unitarity property of Q(k), transforms problem (5.15) into

(5.16) min

{
‖ṽ + diag(λ)x̃‖2 + d

pk
‖λ‖2 : λ ∈ C

pk

}
,

where ṽ = Q(k)v and x̃ = Q(k)x. Problem (5.16) is separable and can be written as

(5.17) min

{
pk∑
i=1

(
|ṽi + λix̃i|2 +

d

pk
|λi|2

)
: λ ∈ C

pk

}
.

Differentiating with respect to λi for every i = 1, . . . , pk, we obtain that the optimal
solution is attained at

λi = − x̃iṽi

|x̃i|2 + d
pk

.

Substituting the above expression back into the objective function of (5.17), we obtain
the following expression for the optimal value:

(5.18)
d

pk

pk∑
i=1

|ṽi|2

|x̃i|2 + d
pk

=
d

pk
v∗
[
Q∗

(k)diag

(
1

|x̃i|2 + d
pk

)
Q(k)

]
v.

We arrived at two different expressions—(5.14) and (5.18)—for the same quantity
(the optimal value of problem (5.12)). As a result, these two expressions are obviously
the same:

σ2
wv

∗
[
Σ(k)

x

]−1

v =
d

pk
v∗
[
Q∗

(k)diag

(
1

|x̃i|2 + d
pk

)
Q(k)

]
v.

Since the above equality is satisfied for every v ∈ Cpk , it follows that

σ2
w[Σ

(k)
x ]−1 =

d

pk
Q∗

(k)diag

(
1

|x̃i|2 + d
pk

)
Q(k),

which after taking the inverse of both sides gives the desired identity (5.11).
Using Proposition 5.1 we can now decompose (5.10) into pk one-dimensional prob-

lems over the complex domain. To this end we assume that the observed matrix A
also belongs to the underlying structure, that is, A ∈ L(k)(R).

Theorem 5.3 (decomposition for circulant and BCCB structures). Let α be the
eigenvalues of A defined by the relation

(5.19) A = Q∗
(k)diag(α)Q(k),

where Q(k) is defined by (5.7). Then every solution to problem (PC) (see (5.10)) is
given by x = Q∗

(k)x̃, where for every i = 1, . . . , pk, the ith component of x̃, x̃i, is an
optimal solution to the one-dimensional complex-valued problem

(5.20) min
x̃i∈C

{
|αix̃i − b̃i|2

pkσ2
e |x̃i|2 + σ2

w

+ log(pkσ
2
e |x̃i|2 + σ2

w)

}
,
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with b̃ = Q(k)b.

Proof. Plugging the expression (5.11) for Σ
(k)
x into problem (PC) and using the

unitarity property of Q(k), we obtain the following equivalent formulation:

min
x

{
(Q(k)Ax−Q(k)b)

∗diag
([

pkσ
2
e |x̃i|2 + σ2

w

]pk

i=1

)−1

(Q(k)Ax−Q(k)b)

+ log det
[
diag

([
pkσ

2
e |x̃i|2 + σ2

w

]pk

i=1

)]
: x ∈ C

pk

}
.(5.21)

Note that

Q(k)Ax−Q(k)b = Q(k)AQ∗
(k)Q(k)x− b̃ = diag(α)x̃− b̃.

Making the change of variables x̃ = Q(k)x and using the above identity, problem
(5.21) reduces to the separable problem

min
x̃∈Cpk

{
pk∑
i=1

[
|αix̃i − b̃i|2

pkσ2
e |x̃i|2 + σ2

w

+ log(pkσ
2
e |x̃i|2 + σ2

w)

]}
,

establishing the desired result.
Theorem 5.3 implies that a solution to (PC) can be constructed via the following

three stages:
1. Find the eigenvalues of A given by the relation (5.19), and compute b̃ =

Q(k)b.
2. For each i = 1, . . . , pk find x̃i ∈ C which is an optimal solution of (5.20).
3. An optimal solution of (PC) is given by x = Q∗

(k)x̃.

It remains to discuss how to solve (5.20). This is the topic of the next section.

5.4. Solution of the one-dimensional problem. Our objective is to show
how to solve for each i = 1, . . . , pk the one-dimensional problem (5.20), that is, how
to solve problems of the form

(5.22) min
z∈C

{
f(z) ≡ |az − b|2

c|z|2 + d
+ log(c|z|2 + d)

}
,

where a, b ∈ C and c, d ∈ R++.
Note that since (5.22) is over the complex domain, it is essentially a two-

dimensional problem of the real domain (taking the real and imaginary part as the
variables). In this section we will show how to further reduce the problem into the
following one-dimensional minimization problem over the real domain:

(5.23) min
y≥0

{
g(y) ≡

|a|2y − 2|ab|√y + |b|2
cy + d

+ log(cy + d)

}
.

The equivalence between (5.22) and (5.23) is established in Lemma 5.4 below.
It is also proven that the new one-dimensional problem (5.23) is strictly unimodal,
which means that it is possible to efficiently find its global minimum. The proof of
this lemma and the subsequent results in this section mainly involve a rather technical
analysis of one-dimensional problems and are therefore relegated to the appendices.
In the lemma, we use the following notation. For a complex number z ∈ C the sign
function is given by

sgn (z) ≡
{ z

|z| , z �= 0,

0, z = 0.
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Note that |sgn (z)| = 1 for any nonzero z.
Lemma 5.4 (equivalence of (5.22) and (5.23)). (i) If ab �= 0, then ỹ is an optimal

solution of (5.23) if and only if z = sgn (āb)
√
ỹ is an optimal solution of (5.22).

(ii) If ab = 0, then ỹ is an optimal solution of (5.23) if and only if z = ω
√
ỹ is an

optimal solution of (5.22) for every ω ∈ C satisfying |ω| = 1.
Proof. See Appendix B.
Remark 5.1. A direct consequence from Lemma 5.4 is that if a and b are real,

then problem (5.22) has a real optimal solution.
The key properties of (5.23) are summarized in the following lemma.
Lemma 5.5 (properties of problem (5.23)). (i) The solution of (5.23) is attained.
(ii) If ỹ is an optimal solution of (5.23), then ỹ ≤ M , where

M =

⎧⎨⎩
|b|2
|a|2 , a �= 0,

d
c

(
e|b|

2/d − 1
)
, a = 0.

(iii) The objective function g(·) of (5.23) is strictly unimodal over [0,∞). In par-
ticular, the optimal solution of (5.23) is unique.

Proof. See Appendix C.
Lemma 5.5 shows that the one-dimensional problem (5.23) is a problem of min-

imizing a unimodal function over a closed and bounded interval [0,M ]. Therefore, it
is possible to efficiently find the global minimum of (5.23) by invoking any one of the
one-dimensional solvers for unimodal functions (such as golden section or parabolic
interpolation). By Lemma 5.4, this also means that it is possible to efficiently find the
global optimal solution of the one-dimensional complex-valued problem (5.22).

We can also formulate a very simple condition under which the optimal solution
of (5.22) is unique.

Theorem 5.6 (uniqueness of the optimal solution of (PC)). If the linear system
Ax = b has a solution, then problem (PC) has a unique solution.

Proof. See Appendix D.

5.5. Solution of (PR). Recall that our basic assumptions are that A ∈ L(k)(R)
and b ∈ Rpk , so the data of the problem is real-valued. Our analysis in the previous
section was on the complex-valued problem (PC). The next result shows that problem
(PC) has at least one real-valued solution, thus establishing the equivalence of prob-
lems (PR) and (PC) in the sense that at least one optimal solution of problem (PC) is
the optimal solution of problem (PR). The proof of the theorem below demonstrates
explicitly how to find the real solution.

Theorem 5.7. Problem (PC) has at least one real-valued optimal solution x ∈
Rpk .

Proof. We will prove the result for k = 1, that is, for the circulant case. The proof
for the BCCB case (k = 2) is similar. We use the following notation:

Ån = {z ∈ C
n : z1 ∈ R, zj+1 = zn+1−j , j = 1, . . . , n− 1}.

The proof relies on the following two properties:
A. w ∈ Rn ⇔ Fnw ∈ Ån.
B. Given a circulant matrix C ∈ L(1)(C), with a spectral decomposition C =

F∗
ndiag(λ)Fn, the following holds: C is real-valued (A ∈ L(1)(R)) if and only

if λ ∈ Ån (see [13]).
Let α be the eigenvalues vector of A defined by the relation

(5.24) A = F∗
ndiag(α)Fn.
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Then by Theorem 5.3, every solution to problem (PC) is given by x = F∗
nx̃, where

for every i = 1, . . . , n, the ith component of x̃, x̃i, is an optimal solution to the
one-dimensional complex-valued problem

(5.25) (Ei) min
x̃i∈C

{
|αix̃i − b̃i|2

nσ2
e |x̃i|2 + σ2

w

+ log(nσ2
e |x̃i|2 + σ2

w)

}
,

where b̃ = Fnb. By properties A and B we have that α1, b̃1 ∈ R, and it holds that
for every j = 1, . . . , n− 1,

αj+1 = αn+1−j , b̃j+1 = b̃n+1−j .

From the latter properties combined with Remark 5.1, it follows that (E1) has a real
optimal solution, and in addition it holds that if x̂j+1 is an optimal solution of (Ej+1),
then x̂j+1 is an optimal solution of (En+1−j). Therefore, x̃ can be chosen to reside in
Å, and as a consequence, the corresponding solution x = F∗

nx̃ is real-valued.
Note that combining the latter result with the uniqueness theorem, Theorem 5.6,

it follows that if the linear system Ax = b has a solution, then the unique solution
of problem (PC) is real-valued.

5.6. An image deblurring example. We conclude this section with an image
deblurring example illustrating the potential of the STML estimate for problems with
periodic boundary conditions. First recall that circulant and BCCB matrices are nec-
essarily square, and therefore, if the corresponding matrices are invertible, the STLS
and LS estimates coincide with the näıve solution to the linear system. Thus, in this
case, the STLS essentially ignores the uncertainty in the model matrix. This is in con-
trast to the STML estimate which, in the same setting, does take into consideration
the uncertainty in the model matrix and does not utilize any additional information.

Consider the 256 × 256 cameraman gray image (top left image of Figure 5.1)
scaled so that all the pixels are in the interval [0, 1]. We blur it with a Gaussian point
spread function (PSF) of dimension 31× 31 with standard deviation 2 implemented
by the command psfGauss([31,31],2) from [26]. The blurring is performed under the
assumption of periodic boundary conditions so that the “true” linear system can be
described by

bt = Atxt,

where At has a BCCB structure, xt is the “vectorized” true image (that is, a vector
obtained by stacking the column of the true image), and bt is the vectorized blurred,
but noiseless, image. We assume that the blurring operator is not exactly known and
that the observed PSF is constructed by adding a 31 × 31 matrix with components
independently generated from a zero-mean normal distribution with standard devia-
tion 10−4. The observed image is constructed by adding to each of the components of
bt a zero-mean normally distributed random variable with standard deviation 10−3,
and it is displayed on the top left image of Figure 5.1.

The top right image of Figure 5.1 is the very poor quality näıve solution, which
as mentioned above, coincides with the STLS estimate. The bottom left image is the
reconstruction using Tikhonov with the regularization parameter chosen according
to GCV (abbreviated as before as TIK-GCV), and the bottom right image is the
STML solution (with σe = 10−4, σw = 10−3). Both TIK-GCV and STML provide
images which are very close to the original. The STML solution is slightly better in
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blurred and noisy STLS

TIK-GCV STML

Fig. 5.1. Deblurring of the cameraman. Top left: blurred and noisy image. Top right: näıve
reconstruction which coincides with the STLS estimate. Bottom left: Tikhonov with GCV parameter
choice. Bottom right: the STML solution.

the sense that its relative error ‖xt − xSTML‖/‖xt‖ is 0.092, while the relative error
of the Tikhonov solution is equal to 0.1021. This example was given as an illustration
of the potential of the STML technique; extensive numerical experiments on image
deblurring problems is beyond the scope of the current paper.

6. Conclusion. This paper presented and analyzed a new solution technique
called STML for solving structured approximate linear systems Ax ≈ b in which
both A and b are uncertain. The ML interpretation of the estimate was described
under suitable normality assumptions and was compared to the statistical meaning of
the well-known STLS method. We demonstrated via several examples the advantage of
the STML technique over the STLS estimate. Computing the STML involves solving
a nonconvex problem. As a result, theoretically, only stationary points are guaranteed
to be found by general-purpose optimization methods. Several structures in which the
STML problem can be significantly reduced, and even globally solved, were presented.
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Unfortunately, it does not seem likely that the global optimal solution of the problem
can be found efficiently for all possible structures. Therefore, an important line of
future research is to seek new and useful structures in which the problem can be
solved by some specialized numerical scheme.

Appendix A. Proof of Theorem 3.1. Denote the objective function of (3.4)
by f . Note that f(x+u) = f(x) for every x ∈ Rn and u ∈ V ≡ Null(A)∩Null(A1)∩
. . . ∩ Null(Ap). We can thus restrict the decision variable x to be in the orthogonal
complement of V . This is accomplished by making the change of variables x = Gy,
where G is a matrix whose columns are a basis for V ⊥. The problem then becomes

(A.1) min
y

{g(y) ≡ (Ãy − b)T Σ̃−1
x (Ãy − b) + log det Σ̃x},

where

Ã = AG, Σ̃x = σ2
e

p∑
i=1

Ãiyy
T ÃT

i + σ2
wI,

with Ãi = AiG for i = 1, . . . , p. The problems are equivalent in the sense that y is
an optimal solution of (A.1) if and only if Gy + u is an optimal solution of (3.4) for

every u ∈ V . Note that by the construction of Ã and Ãi, we have that

(A.2) Null(Ã) ∩Null(Ã1) ∩ . . . ∩ Null(Ãp) = {0}.

Now, consider the following decomposition:

(A.3) y = Fη +Nv,

where F is a matrix whose columns form a basis for W =
⋂p

i=1 Null(Ãi) and N is
a matrix whose columns form a basis for W⊥. Later on, we will use the following
properties:

A. ÃF is of full column rank (follows from (A.2)).
B. NT (

∑p
i=1 Ã

T
i Ãi)N is nonsingular.

In addition, using the definition of F, we have that Ãiy = ÃiNv for every i = 1, . . . , p
so that

(A.4) Σ̃x = σ2
e

p∑
i=1

ÃiNvvTNT ÃT
i + σ2

wI.

To show that the solution of problem (A.1) is attained, it is enough to show that
the level set Lα = {y : g(y) ≤ α} is nonempty and bounded for some choice of α [10,
Proposition 2.1.1] (g is continuous so closedness of the level set is guaranteed). Let α
be such that Lα is nonempty, and let y ∈ Lα. First, note that

Tr(Σ̃x)
(A.4)
= Tr

(
σ2
e

∑p
i=1 ÃiNvvTNT ÃT

i + σ2
wI
)

= σ2
wm+ σ2

ev
TNT

(∑p
i=1 Ã

T
i Ãi

)
Nv

≥ σ2
wm+ σ2

eγ‖v‖2,

where γ is the minimum eigenvalue of NT (
∑p

i=1 ÃiÃ
T
i )N which is guaranteed to be

positive by property B. We use the following notation: for a k × k matrix M the
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eigenvalues are denoted by λ1(M) ≥ λ2(M) ≥ · · · ≥ λk(M). Also, H is the matrix

given by
∑p

i=1 ÃiNvvTNT ÃT
i . Using this notation we have

det(Σ̃x) = Πm
i=1(σ

2
eλi(H) + σ2

w).

Since λi(H) ≥ 0 for all i, for every j = 1, . . . ,m one has

det(Σ̃x) ≥ σ2(m−1)
w (σ2

eλj(H) + σ2
w).

Summing these inequalities over j = 1, . . . ,m, we obtain

m det(Σ̃x) ≥ σ2(m−1)
w

(
σ2
e

∑m
j=1 λj(H) + σ2

wm
)

= σ2(m−1)
w Tr(Σ̃x)

≥ σ2(m−1)
w (σ2

wm+ σ2
eγ‖v‖2).

Therefore, since g(y) ≤ α, it follows that

σ2(m−1)
w (σ2

wm+ σ2
eγ‖v‖2) ≤ m det(Σ̃x) = melog(det(

˜Σx)) ≤ meg(y) ≤ meα,

which implies

‖v‖2 ≤ ε,

where ε = mγ−1σ−2
e (σ

−2(m−1)
w eα − σ2

w). Therefore, v is bounded.

It remains to show that η is bounded. Since Σ̃x � σ2
wI, it follows that log det Σ̃x ≥

log det(σ2
wI) = 2m logσw , which combined with g(y) ≤ α implies that

(A.5) (Ãy − b)T Σ̃−1
x (Ãy − b) ≤ δ ≡ α− 2m logσw .

Next, we upper bound the largest eigenvalue of Σ̃x. From the definition of Σ̃x, we
have

λ1

(
Σ̃x

)
≤ λ1

(
σ2
e

p∑
i=1

ÃiNvvTNT ÃT
i

)
+ σ2

w ≤ σ2
e

p∑
i=1

λ1

(
ÃiNvvTNT ÃT

i

)
+ σ2

w

= σ2
e

p∑
i=1

‖ÃiNv‖2 + σ2
w ≤ σ2

eε

p∑
i=1

λ1

(
ÃiNNT ÃT

i

)
+ σ2

w .(A.6)

Therefore, Σ̃−1
x � β−1I, where β = σ2

e

∑
ελ1(ÃiNNT ÃT

i ) + σ2
w , which along with

(A.5) implies

‖Ãy − b‖2 ≤ βδ.

Plugging the decomposition (A.3) into the latter inequality, we obtain ‖Ã(Fη+Nv)−
b‖ ≤

√
βδ. Hence,

‖ÃFη‖ ≤
√
βδ + ‖ÃNv− b‖ ≤

√
βδ + ‖ÃN‖‖v‖+ ‖b‖ ≤

√
βδ + ‖ÃN‖

√
ε+ ‖b‖.

On the other hand, since ÃF is of full column rank, the matrix FT ÃT ÃF is
nonsingular yielding

‖η‖2 ≤ 1

λmin

(
FT ÃT ÃF

) (√βδ + ‖ÃN‖
√
ε+ ‖b‖

)2
,
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proving the boundedness of η. To summarize, since both v and η are bounded it
follows that the level set Lα is bounded, proving the attainment of the solution.

Appendix B. Proof of Lemma 5.4. Let z be an optimal solution of (5.22).
Then by the optimality of z we have

f(z) ≤ f(ωz) for every ω ∈ C satisfying |ω| = 1,

which is the same as

|az − b|2
c|z|2 + d

+ log(c|z|2 + d) ≤ |aωz − b|2
c|ωz|2 + d

+ log(c|ωz|2 + d).

The latter inequality reduces to

(B.1) �((1− ω)ab̄z) ≥ 0.

We will now show that ab̄z is a nonnegative real number. This is obviously true
if z = 0. Otherwise, we split the analysis into two cases.

Case I. If ab �= 0, then substituting

ω =
ab̄z

|ab̄z|

into (B.1) yields �(ab̄z) ≥ |ab̄z|, implying that ab̄z is a nonnegative real number and,
in particular, that sgn (z) = sgn (āb).

Case II. If ab = 0, the function f satisfies f(ωz) = f(z) for every z, ω ∈ C such
that |ω| = 1, and thus ωz is also an optimal solution for every z satisfying |ω| = 1.

A conclusion from the above two cases is that if the minimum of (5.22) is attained
at a nonzero solution, then there must be at least one optimal solution z for which
sgn (z) = sgn (āb); consequently, we can make the change of variables z = sgn (āb)

√
y

which transforms problem (5.22) into (5.23).

Appendix C. Proof of Lemma 5.5. (i) Attainment follows from the fact that
g(y) → ∞ as y → ∞.

(ii) An optimal solution ỹ to (5.23) satisfies

log(cỹ + d) ≤ g(ỹ) ≤ g(0) =
|b|2
d

+ log(d)

so that

ỹ ≤ d

c

(
e|b|

2/d − 1
)
.

If a �= 0, then the following holds:

log(cỹ + d) ≤ g(ỹ) ≤ g

(
|b|2
|a|2

)
= log

(
c|b|2
|a|2 + d

)
so that ỹ ≤ |b|2

|a|2 .
(iii) Let y∗ be an optimal solution of (5.23). We will show that g is strictly

decreasing over [0, y∗] and strictly increasing over [y∗,∞), thus also establishing that
y∗ is the unique optimal solution of (5.23). We will prove that the function is strictly
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decreasing over [0, y∗]. The proof that the function is strictly increasing over [y∗,∞)
is similar and is thus omitted. If y∗ = 0, then there is nothing to prove. If y∗ > 0,
then let us consider y1, y2 ∈ [0, y∗] such that y1 < y2 and show that g(y1) > g(y2).
Since y∗ is a minimum point of g over [0,∞) it follows that g(y∗) ≤ g(y1). Denote
α = g(y1). Then the two inequalities

g(y∗) ≤ α, g(y1) ≤ α

can be rewritten as

fα(y
∗) ≤ 0, fα(y1) ≤ 0,

where

fα(y) ≡ |a|2y − 2|ab|√y + |b|2 + (cy + d) log(cy + d)− α(cy + d).

Since y1 < y2 < y∗ it follows that y2 is a convex combination of y1 and y∗. Specifically,

y2 = λy1 + (1− λ)y∗, λ =
y∗ − y2
y∗ − y1

.

The function fα(·) is strictly convex over [0,∞) (its second derivative is positive), and
hence

fα(y2) = fα(λy1 + (1− λ)y∗) < λfα(y1) + (1− λ)fα(y
∗) ≤ λ · 0 + (1− λ) · 0 = 0,

which is equivalent to g(y2) < α so that g(y2) < g(y1).

Appendix D. Proof of Theorem 5.6. In order to prove Theorem 5.6 we need
to establish two lemmas. The first one—Lemma D.1—is concerned with a sufficient
condition for uniqueness of the optimal solution of (5.22). The second one—Lemma
D.2—provides a sufficient condition for uniqueness of the optimal solution of (PC) in
terms of the eigenvalues of the model matrix A and the transformed right-hand side
vector Q(k)b.

Lemma D.1. Consider problem (5.22) with a, b ∈ C and c, d ∈ R++. Suppose that
either a �= 0 or a = b = 0. Then the optimal solution of (5.22) is unique.

Proof. Note that by Lemma 5.5 the optimal solution of the corresponding one-
dimensional real-valued problem (5.23) is always unique. By Lemma 5.4, if a, b �= 0,
this also means that problem (5.22) has a unique optimal solution. If a �= 0 and b = 0,
the objective function of problem (5.22) reduces to

|a|2|z|2
c|z|2 + d

+ log(c|z|2 + d),

which is increasing with respect to |z|2. Therefore, the unique optimal solution in this
case is z = 0. If a = b = 0, the objective function becomes log(c|z|2+d), which, again,
is increasing with respect to |z|2, implying that also in this case the unique optimal
solution is z = 0.

Exploiting the analysis of the one-dimensional problems, we can also formulate a
condition under which (PC) has a unique solution.

Lemma D.2. Let α be the eigenvalues vector of A defined by the relation

A = Q∗
(k)diag(α)Q(k),
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and let b̃ = Q(k)b. Suppose that for every i = 1, . . . , pk either αi �= 0 or αi = b̃i = 0.
Then the optimal solution of problem (PC) is unique.

Proof. By the decomposition theorem, Theorem 5.3, it follows that the opti-
mal solution of problem (PC) is unique if and only if each of the one-dimensional
complex-valued problems (5.20) has a unique solution. Invoking Lemma D.1 for each
of these problems, the result follows.

We are now ready to prove the uniqueness theorem, Theorem 5.6.
The condition of Lemma D.2 translates to the condition that the linear system

(D.1) diag(α)z = b̃

has a solution. Substituting diag(α) = Q(k)AQ∗
(k), b̃ = Q(k)b in the system (D.1)

yields Q(k)AQ∗
(k)z = Q(k)b, which is equivalent to the system

(D.2) Az̃ = b

after making the change of variables z̃ = Q∗
(k)z. We conclude that if the system (D.2)

has a solution, then problem (PC) has a unique solution.
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