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ON THE SOLUTION OF THE TIKHONOV REGULARIZATION OF
THE TOTAL LEAST SQUARES PROBLEM∗

AMIR BECK† AND AHARON BEN-TAL†

Abstract. Total least squares (TLS) is a method for treating an overdetermined system of
linear equations Ax ≈ b, where both the matrix A and the vector b are contaminated by noise.
Tikhonov regularization of the TLS (TRTLS) leads to an optimization problem of minimizing the
sum of fractional quadratic and quadratic functions. As such, the problem is nonconvex. We show
how to reduce the problem to a single variable minimization of a function G over a closed interval.
Computing a value and a derivative of G consists of solving a single trust region subproblem. For the
special case of regularization with a squared Euclidean norm we show that G is unimodal and provide
an alternative algorithm, which requires only one spectral decomposition. A numerical example is
given to illustrate the effectiveness of our method.
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1. Introduction. Many problems in data fitting and estimation give rise to an
overdetermined system of linear equations Ax ≈ b, where both the matrix A ∈ R

m×n

and the vector b ∈ R
m are contaminated by noise. The total least squares (TLS)

approach to this problem [11, 12, 19] is to seek a perturbation matrix E ∈ R
m×n and

a perturbation vector r ∈ R
m that minimize ‖E‖2 + ‖r‖2 subject to the consistency

equation (A+E)x = b+ r (here and elsewhere in this paper a matrix norm is always
the Frobenius norm and a vector norm is the Euclidean one). The TLS approach
was extensively used in a variety of scientific disciplines such as signal processing,
automatic control, statistics, physics, economic, biology, and medicine (see, e.g., [19]
and the references therein). The TLS problem has essentially an explicit solution,
expressed by the singular value decomposition of the augmented matrix (A,b) (see,
e.g., [11, 19]).

In practical situations, the original (noise-free) linear system is often ill-conditioned.
For example, this happens when the system is obtained via discretization of ill-posed
problems such as integral equations of the first kind (see, e.g., [10] and the references
therein). In these cases the least squares (LS) solution as well as the TLS solution
can be physically meaningless, and thus regularization is essential for stabilizing the
solution.

There are two well-established approaches (among many others) to stabilize the
LS solution: (i) Tikhonov regularization, where a quadratic penalty is appended to
the LS objective function [4, 33], and (ii) regularized least squares (abbreviated RLS
and LSQI), where a quadratic constraint bounding the size of the solution is added
[4, 8].
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TIKHONOV REGULARIZATION OF THE TLS PROBLEM 99

For the TLS problem the situation is different. Stabilization by introducing a
quadratic constraint was extensively studied [1, 10, 14, 28, 24]. On the other hand,
Tikhonov regularization of the TLS (TRTLS) problem has not yet been considered.

In this paper we adopt the Tikhonov regularization concept to stabilize the TLS
solution; i.e., we consider the problem

(TRTLS) min
E,r,x

{
‖E‖2 + ‖r‖2 + ρ‖Lx‖2 : (A + E)x = b + r

}
,(1)

where L ∈ R
k×n, k ≤ n, is a full row rank matrix and ρ > 0 is a penalty parameter.

L is a matrix that defines a (semi)norm on the solution through which its “size” is
measured. A common example where L is not square is when L is an approximation
matrix of the first or second order derivative [10, 16, 18].

The main difficulty associated with problem (TRTLS) is its nonconvexity. Nev-
ertheless, we show in this paper that the problem can be solved efficiently to global
optimality. First, in section 2 we reduce problem (TRTLS) to one involving only the
x variables:

min
x∈Rn

{
‖Ax − b‖2

‖x‖2 + 1
+ ρ‖Lx‖2

}
.(2)

In section 3 we derive an extremely mild condition for the attainability of an opti-
mal solution to (2). An algorithm for solving problem (TRTLS) is then described
in section 4. The algorithm consists of minimizing a single variable continuous (and
differentiable under a mild condition) function G(α) on a closed interval. Computing
G(α) and its derivative involves the solution of a single trust region subproblem. The
interesting special case, where the matrix L in problem (TRTLS) is the identity ma-
trix, is studied in section 5, where we prove that in this case G is unimodal and provide
an alternative algorithm for solving the TRTLS problem requiring a single spectral
decomposition. Finally, we provide in section 6 a detailed algorithm for the solution
of the TRTLS problem (with a general regularization matrix) and demonstrate our
method through an image deblurring example.

2. Simplified formulation of the TRTLS problem. In order to simplify
problem (1), we use a derivation similar to the one used in [1].1 Problem (TRTLS)
can be written as a double minimization problem:

min
x

min
E,r

{
‖E‖2 + ‖r‖2 + ρ‖Lx‖2 : (A + E)x = b + r

}
.(3)

Consider the inner minimization problem

min
E,r

{
‖E‖2 + ‖r‖2 + ρ‖Lx‖2 : (A + E)x = b + r

}
.(4)

The Lagrangian of problem (4) is given by

L(E, r,λ) = ‖E‖2 + ‖r‖2 + ρ‖Lx‖2 + 2λT ((A + E)x − b − r).

Note that problem (4) is a linearly constrained convex problem with respect to the
variables E and r. Thus, the KKT conditions are necessary and sufficient [3, Propo-
sition 3.4.1], and we conclude that (E, r) is an optimal solution of (4) if and only if

1We thank Marc Teboulle for his contribution to this derivation.
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100 AMIR BECK AND AHARON BEN-TAL

there exists λ ∈ R
m such that

2E + 2λxT = 0 (∇EL = 0),(5)

2r − 2λ = 0 (∇rL = 0),(6)

(A + E)x = b + r (feasibility).(7)

From (6) we have λ = r. Substituting this into (5) we have

E = −rxT .(8)

Combining (8) with (7) we obtain (A − rxT )x = b + r, so

r =
Ax − b

‖x‖2 + 1
(9)

and consequently

E = − (Ax − b)xT

‖x‖2 + 1
.(10)

Finally, by substituting (9) and (10) into the objective function of problem (4) we

obtain that the value of problem (4) is equal to ‖Ax−b‖2

‖x‖2+1 + ρ‖Lx‖2. Consequently,

the TRTLS problem (1) reduces to

f∗ = min
x∈Rn

{
H(x) ≡ ‖Ax − b‖2

‖x‖2 + 1
+ ρ‖Lx‖2

}
.(11)

For a given optimal solution x to the simplified TRTLS problem (11), the optimal
pair (E, r) to the original TRTLS problem is given by (9) and (10).

3. Attainability of the minimum. In this section, we find a sufficient condi-
tion for the attainability of the minimum in (11). First, notice that if k = n, then
L has full rank and as a result the objective function is a coercive function2 and the
minimum is attained (see [3]). On the other hand, if k < n, then the minimum in
(11) might not be attained. This is illustrated by the following example.

Example. Consider problem (11) with data

m = 3, n = 2, A =

⎛
⎝ 1 0

0 1
0 0

⎞
⎠ , b =

⎛
⎝ 4

0
0

⎞
⎠ , L =

(
1 0
)
, ρ = 1.

The TRTLS problem (11) in this case is

min
x1,x2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x1 − 4)2 + x2
2

1 + x2
1 + x2

2

+ x2
1︸ ︷︷ ︸

H(x1,x2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .(12)

To show the nonattainment of the minimum, suppose on the contrary that the
minimum is attained at a point (x∗

1, x
∗
2). Notice that

(x∗
1)

2 ≤ H(x∗
1, x

∗
2) ≤ H(0, x2) ∀x2 ∈ R.

2A real valued function f : R
n → R is coercive if lim‖x‖→∞ f(x) = ∞.
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TIKHONOV REGULARIZATION OF THE TLS PROBLEM 101

Since H(0, x2) =
16+x2

2

1+x2
2

x2→∞−→ 1 we conclude that |x∗
1| ≤ 1, which implies the inequality

(x∗
1 − 4)2 > 1 + (x∗

1)
2. Therefore, the function ϕ(y) = H(x∗

1, y) =
(x∗

1−4)2+y2

1+(x∗
1)2+y2 + (x∗

1)
2

is strictly decreasing and as a result we have, for example, H(x∗
1, x

∗
2 +1) < H(x∗

1, x
∗
2),

which is a contradiction to the assumption that the minimum is attained at (x∗
1, x

∗
2).

We therefore conclude that the minimum (12) is not attained.
Theorem 3.1 introduces a sufficient condition for the attainability of the minimum

of the TRTLS problem (11).
Theorem 3.1. Consider problem (11) with A ∈ R

m×n,b ∈ R
m, and L ∈

R
k×n, n > k. Let F ∈ R

n×k be a matrix whose columns form an orthogonal basis
for the null space of L. If the following condition is satisfied,

λmin

(
FTATAF FTATb

bTAF ‖b‖2

)
< λmin(FTATAF),(13)

then
(i)

f∗ ≤ λmin

(
FTATAF FTATb

bTAF ‖b‖2

)
;(14)

(ii) the minimum of (11) is attained.
Proof. (i) Let d ∈ R

p+1 be an eigenvector corresponding to the minimum eigen-
value of the matrix

H =

(
FTATAF FTATb

bTAF ‖b‖2

)
.

Then

dTHd

‖d‖2
= λmin(H).(15)

dp+1 must be different from zero since otherwise we would have

λmin(H)
d=(d̃T ,0)T

=
dTHd

‖d‖2
=

d̃TFTATAFd̃

‖d̃‖2
≥ λmin(FTATAF),

which is in contradiction to (13). Therefore, dp+1 �= 0. Let y ∈ R
p be such that

d
−dp+1

= (yT ,−1)T . Then

λmin(H)
(15)
=

dTHd

‖d‖2
=

(
d

dn+1

)T
H
(

d
dn+1

)
∥∥∥( d

dn+1

)∥∥∥2

=

(
yT −1

)
H

(
y
−1

)
‖
(

yT −1
)
‖2

=
yTFTATAFy − 2yTFTATb + ‖b‖2

‖y‖2 + 1

FTF=I,LF=0
=

yTFTATAFy − 2yTFTATb + ‖b‖2

yTFTFy + 1
+ ρ‖LFy‖2

= H(Fy) ≥ f∗,
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102 AMIR BECK AND AHARON BEN-TAL

thus proving (i). To prove (ii), suppose on the contrary that the minimum value of
(11), f∗, is not attained, which implies that there exists a sequence xk, k ≥ 1, such
that

‖xk‖ → ∞, q(xk) + h(xk)︸ ︷︷ ︸
H(xk)

→ f∗,(16)

where q(xk) ≡ ‖Axk−b‖2

‖xk‖2+1 and h(xk) ≡ ρ‖Lxk‖2. Since both the sequences q(xk) and
xk

‖xk‖ are bounded, there exists a subsequence xnk
for which the subsequences q(xnk

)

and
xnk

‖xnk
‖ converge to a finite value. That is, there exist η and d such that

q(xnk
) → η,

xnk

‖xnk
‖ → d.

Now, from (16) it follows that

q(xnk
) + h(xnk

)

‖xnk
‖2

→ 0

and since q(xnk
) is bounded we have that

h(xnk
)

‖xnk
‖2 → 0. But, on the other hand,

h(xnk
)

‖xnk
‖2 → ρ‖Ld‖2 and as a result we have that ‖Ld‖2 = 0, which is equivalent to

d ∈ Null(L). To summarize, we have found a subsequence xnk
for which q(xnk

)
converges and

xnk

‖xnk
‖ → d, where d ∈ Null(L) and ‖d‖ = 1. Now,

f∗ = lim
k→∞

{q(xnk
) + h(xnk

)}
h(·)≥0

≥ lim
k→∞

q(xnk
) = lim

k→∞

‖Axnk
− b‖2

‖xnk
‖2 + 1

= lim
k→∞

xT
nk

ATAxnk
− 2bTAxnk

+ ‖b‖2

‖xnk
‖2 + 1

= lim
k→∞

(
xnk

‖xnk
‖

)T
ATA
(

xnk

‖xnk
‖

)
− 2 1

‖xnk
‖b

TA
(

xnk

‖xnk
‖

)
+ ‖b‖2

‖xnk
‖2

1 + 1
‖xnk

‖2

= dTATAd.

Since d ∈ Null(L) we can write d = Fv, and therefore we obtain the following lower
bound on f∗:

f∗ ≥ min
vTFTFv=1

vTFTATAFv
FTF=I

= min
‖v‖2=1

vTFTATAFv = λmin(FTATAF).

On the other hand, by condition (13), λmin(FTATAFT ) > λmin(H), and therefore
we have that

f∗ > λmin(H),

which is a contradiction to part (i).
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TIKHONOV REGULARIZATION OF THE TLS PROBLEM 103

Remarks.
1. Weak inequality is always satisfied in (13): the matrix in the right-hand side

of (13) is a principal submatrix of the one in the left-hand side. Hence, by the
interlacing theorem of eigenvalues [34, Theorem 7.8], weak inequality holds.

2. Condition (13) is invariant to the specific choice of the orthogonal basis of
the null space of L.

3. For L = 0 problem (11) reduces to the classical TLS problem. In this case
we can take F = I in condition (13), which then reduces to the well-known
condition [11, 19] for the attainability of the minimum in the TLS problem:

λmin

(
ATA ATb
bTA ‖b‖2

)
< λmin

(
ATA
)
.(17)

Incidentally, for the nonregularized version of problem (12), i.e.,

min
x1,x2

{
(x1 − 4)2 + x2

2

1 + x2
1 + x2

2

}
,(18)

condition (17) does hold since

λmin

(
ATA ATb
bTA ‖b‖2

)
= 0 < 1 = λmin

(
ATA
)

and indeed (18) attains an optimal solution x∗
1 = 4, x∗

2 = 0.
4. The TRTLS problem (12), for which nonattainability of the minimum was

established, indeed does not satisfy condition (13). F can be chosen to be
( 0
1 ), and we have

λmin(FTATAF) = 1

and

λmin

(
FTATAF FTATb

bTAF ‖b‖2

)
= λmin

(
1 0
0 4

)
= 1.

4. Solving the TRTLS problem with general L. In this section we consider
the TRTLS problem (11) with a full row rank k×n regularization matrix L. We will
assume that condition (13) is satisfied, and therefore the minimum is attained.

Problem (11) can be formulated as a double minimization problem in the following
way:

min
α≥1

min
‖x‖2=α−1

{
‖Ax − b‖2

α
+ ρ‖Lx‖2

}
,

which can be written as

min
α≥1

{G(α)},(19)

where

G(α) ≡ min
‖x‖2=α−1

{
‖Ax − b‖2

α
+ ρ‖Lx‖2

}
.(20)
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104 AMIR BECK AND AHARON BEN-TAL

Calculating function values of G requires solving a minimization problem with a
quadratic objective function and a norm equality constraint. In section 4.1 we briefly
review known results on this problem including necessary and sufficient optimality
conditions. In section 4.2 continuity and differentiability of G are established under
standard second order sufficiency conditions. In section 4.3 an upper bound ᾱ on the
value of the optimal α is derived. Thus, the TRTLS problem (11) is reduced to a one
dimensional minimization of G over a finite interval [1, ᾱ].

4.1. Minimization of a quadratic function subject to a norm equality
constraint. In this section we consider the minimization problem

min
‖x‖2=β

{
xTQx − 2fTx + c

}
.(21)

We do not assume that Q is positive semidefinite, and therefore the objective function
need not be convex. Problem (21) is the well-known trust region subproblem (TRS);
it has been extensively studied from both theoretical and algorithmic aspects [2, 5,
7, 23, 27, 31].3 Necessary and sufficient conditions for a (global) solution of (21) are
well established [5, 7, 32].

Theorem 4.1 (see [5, 7, 32]). Consider problem (21) with a symmetric matrix
Q ∈ R

n×n, f ∈ R
n, c ∈ R, β ∈ R

+. Then x∗ is an optimal solution of (21) if and only
if there exists λ∗ ∈ R such that

(Q − λ∗I)x∗ = f ,(22)

‖x∗‖2 = β,(23)

Q − λ∗I 
 0.(24)

Moreover, if f /∈ Null(Q − λmin(Q)I)⊥, then the solution of problem (21) is unique.
Many algorithms have been suggested to solve the TRS. A solution based on the

complete spectral decomposition can be found in [8]. For medium and large-scale
problems the latter approach is not applicable. Thus, several methods have been
devised for these scenarios [5, 7, 13, 23, 25, 30, 29].

4.2. Continuity and differentiability of G.

4.2.1. Continuity. The continuity of G(α) for α > 1 follows from a theorem by
Gauvin and Dubeau [9, Theorem 3.3] . The notation in [9] is quite different from the
notation in this paper, and therefore we will present the three sufficient conditions for
continuity of G at a point ᾱ from [9] in our terminology (the quotation from [9] is in
italic).

1. The feasible set {x : ‖x‖2 = ᾱ− 1} is nonempty. This condition is naturally
satisfied for ᾱ > 1.

2. There exists ε > 0 such that
⋃

|α−ᾱ|<ε{x : ‖x‖2 = α− 1} is compact. This is

also true in our problem since the union is equal to {x : ᾱ − 1 − ε ≤ ‖x‖2 ≤
ᾱ− 1 + ε}, which is obviously compact.

3. The Mangasarian–Fromovitz regularity conditions are satisfied (see [22]). In
our problem, this means that the gradient of the constraint is different from
zero at the optimal solution, i.e., x∗ �= 0. This is true for ᾱ > 1 since
‖x∗‖2 = ᾱ− 1.

3The TRS is usually considered with an inequality constraint ‖x‖2 ≤ β instead of an equality
one; however, all known results can be trivially converted to the equality case.
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TIKHONOV REGULARIZATION OF THE TLS PROBLEM 105

What is left to prove is that G is continuous at α = 1 (from the right). This is proved
next.

Lemma 4.1. G is continuous at α = 1 from the right.
Proof. First, G(1) = ‖b‖2. Now, for every α > 1 let xα be such that H(xα) = G(α)

and ‖xα‖2 = α− 1. Then

|G(α) − G(1)| = |H(xα) − ‖b‖2|

=

∣∣∣∣‖Axα − b‖2

α
+ ρ‖Lxα‖2 − ‖b‖2

∣∣∣∣
=

∣∣∣∣
(

1

α
− 1

)
‖b‖2 +

xT
αATAxα − 2bTAxα

α
+ ρxT

αLTLxα

∣∣∣∣
≤
(

1 − 1

α

)
‖b‖2 +

(
λmax(ATA)

α
+ ρλmax(LTL)

)
‖xα‖2

+ 2
‖ATb‖

α
‖xα‖

‖xα‖2=α−1
=

(
1 − 1

α

)
‖b‖2 +

(
λmax(ATA)

α
+ ρλmax(LTL)

)
(α− 1)

+ 2
‖ATb‖

α

√
α− 1

α→1+

−→ 0.

Therefore, limα→1+ G(α) = G(1).
Corollary 4.1. G is continuous over [1,∞).

4.2.2. Differentiability. The function G is of the general form

G(α) = min
g(x)=α−1

f(x, α),(25)

where

f(x, α) ≡ xTQαx − 2fTα x + cα

and

g(x) = ‖x‖2, Qα =
1

α
ATA + ρLTL, fα =

1

α
ATb, cα =

1

α
‖b‖2.(26)

The single variable function G is not necessarily differentiable. In this subsection we
show that under a suitable condition, G is differentiable of any order.

Our argument is the same as the one used in the sensitivity analysis of minimiza-
tion problems (see, e.g., [3, 26] and the references therein). Theorem 4.2 establishes
the differentiability of G under a suitable regularity condition.

Theorem 4.2. For every α > 1 that satisfies the condition

fα /∈ Null(Qα − λmin(Qα)I)⊥,(27)

G(α) is differentiable of any order and its first derivative is given by

G′(α) = λ(α) + f ′
α(x(α), α) = λ(α) − ‖Ax(α) − b‖2

α2
,(28)
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where x(α) and λ(α) are the unique solutions of the KKT conditions (22) and (23).
Proof. Let α > 1 be such that condition (27) is satisfied. By Theorem 4.1,

condition (27) implies the uniqueness of the solution of the minimization problem
(25). Consider the system of equations

(Qα − λI)x = fα,(29)

‖x‖2 = α− 1.(30)

By Theorem 4.1, x(α) and λ(α) are the solutions of the system for the given α. The
Jacobian matrix associated with the system of equations (29) and (30) with respect
to (x, λ) at (x(α), λ(α)) is given by

J =

(
Qα − λ(α)I x(α)

x(α)T 0

)
.

To show that J is nonsingular note first that condition (27) implies also that

Qα − λ(α)I � 0.(31)

This is true since (29) implies that fα ∈ Range(Qα − λ(α)I) = Null(Qα − λ(α)I)⊥.
This condition combined with (27) and (24) implies that λ(α) < λmin(Qα). To show
the nonsingularity of J , we will prove that the only solution of the system

J

(
w
t

)
= 0, w ∈ R

n, t ∈ R,

is the trivial solution. Indeed, the system can be written explicitly as

(Qα − λ(α)I)w + 2tx(α) = 0,(32)

2x(α)Tw = 0.(33)

Multiplying (32) by wT from the left and using (33), we obtain wT (Qα−λ(α)I)w = 0.
Since Qα − λ(α)I � 0 we conclude that w = 0. Substituting this into (32) we have
t = 0, proving the nonsingularity of J . Invoking the implicit function theorem, the
differentiability of any order of x(α) and λ(α) in a neighborhood of α follows. Now
x(α) and λ(α) satisfy the identities (in α)

f ′
x(x(α), α) − λ(α)g′x(x(α)) = 0,(34)

g(x(α)) = α− 1.(35)

Differentiating both sides of (35) yields the equation

ẋ(α)T g′x(x(α)) = 1.(36)

Multiplying (34) from the left by ẋ(α)T we obtain

ẋ(α)T f ′
x(x(α), α) − λ(α)ẋ(α)T g′x(x(α)) = 0.(37)

By substituting (36) into (37) we obtain

ẋ(α)T f ′
x(x(α), α) = λ(α).(38)
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Fig. 1. Examples of G(α).

G(α) and its derivatives are given by

G(α) = f(x(α), α),

G′(α) = ẋ(α)T f ′
x(x(α), α) + f ′

α(x(α), α).(39)

Substituting (38) into (39), the expression for the derivative (28) follows.
Example. Some examples of G(α) are given in Figure 1. These examples were

randomly generated with dimensions m = n = 4 and k = 3.
In all of these examples G is continuous and differentiable. Note that in most

examples the function G seems to be “well behaved” in the sense that it is strictly
unimodal. A “bad” example is given in Figure 2(a), where we see an example of a
nondifferentiable function. The point of nondifferentiability is ᾱ = 2.275. Figure 2(b)
plots the quantity dist(fα,Null(Qα − λmin(Qα)I)⊥) versus α. It can be readily seen
that the point in which the distance is zero is exactly the point ᾱ.

So far we have shown how to reduce the TRTLS problem (11) to a one dimensional
problem minα≥1 G(α). One of the problems frequently arising in one dimensional (line
search) methods is determining an initial interval of search in which the optimum is
known to reside. At this point, we have only shown that a lower bound on α is 1.
Next we derive an upper bound.

4.3. Upper bound on the norm of optimal solutions. Let x∗ be an optimal
solution of problem (11). In this section we find an upper bound for ‖x∗‖. We recall
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Fig. 2. An example of a nondifferentiable G(α).

the assumption that L is full row rank. In the case where k = n, it is very easy to
bound the ‖x∗‖, as can be seen from the following lemma.

Lemma 4.2. Suppose that k = n, and let x∗ be an optimal solution of minx∈Rn H(x).

Then ‖x∗‖2 ≤ ‖b‖2

ρλmin(LLT )
.

Proof. First, notice that λmin(LLT ) > 0 since L has full row rank. Now,

ρ‖Lx∗‖2 ≤ H(x∗) ≤ H(0) = ‖b‖2,

and the result follows from the simple observation that ‖Lx∗‖2 = (x∗)TLTLx∗ ≥
λmin(LLT )‖x∗‖2 > 0.

The case in which k < n is much harder. In this case, we assume that condition
(13) is satisfied.

Theorem 4.3. Suppose that condition (13) is satisfied, and let x∗ be an optimal
solution of minx∈Rn H(x). Then

‖x∗‖2 ≤ max

{
1,

‖b‖2 + λmax(ATA)(δ + 2
√
δ) + ‖ATb‖(δ + 2

√
δ) + l1(1 + δ))

l1 − l2

}2

+δ,

(40)
where

l2 = λmin

(
FTATAF FTATb

bTAF ‖b‖2

)
,

l1 = λmin(FTATAF),

δ = l2
λmin(LLT )ρ

, and F is a matrix whose columns form an orthogonal base of Null(L).

Proof. Consider the decomposition

x∗ = Fv + LTw,(41)

where v ∈ R
n−k and w ∈ R

n (such decomposition is possible since Null(L) =
(Range(LT ))⊥). Now,

‖x∗‖2 = ‖v‖2 + wTLLTw.(42)
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TIKHONOV REGULARIZATION OF THE TLS PROBLEM 109

By (14),

H(x∗) = f∗ ≤ l2.

As a result,

ρ‖Lx∗‖2 ≤ l2.(43)

Substituting (41) into (43) we obtain

ρwT (LLT )2w ≤ l2,

which implies the following inequality:

wTLLTw = wT (LLT )2w
wTLLTw

wT (LLT )2w
≤ l2

ρ
λmax((LLT )−1(LLT )(LLT )−1) = δ.

(44)
We assume for now that ‖v‖ ≥ 1. Substituting the decomposition (41) into the
objective function H we have

H (x∗)

=
‖Ax∗ − b‖2

‖x∗‖2 + 1
+ ρ‖Lx∗‖2

≥ ‖Ax∗ − b‖2

‖x∗‖2 + 1
=

‖A(Fv + LTw) − b‖2

‖Fv + LTw‖2 + 1

=
vTFTATAFv + 2vTFTATALTw − 2vTFTATb + wTLATALTw − 2wTLATb + ‖b‖2

1 + ‖v‖2 + wTLLTw

=

vT FT AT AFv
‖v‖2 + β

1 + γ
≥ l1 + β

1 + γ
,

where

γ =
1 + wTLLTw

‖v‖2
,

β =
2vTFTATALTw − 2vTFTATb + wTLATALTw − 2wTLATb + ‖b‖2

‖v‖2
.

We have thus proven that H(x∗) ≥ θ, where θ = l1+β
1+γ . Combining this with Theorem

3.1 and condition (13) we have θ ≤ l2 < l1. Now,

l1 − l2 ≤ l1 − θ = |θ − l1| =

∣∣∣∣ l1 + β

1 + γ
− l1

∣∣∣∣ =
∣∣∣∣β − l1γ

1 + γ

∣∣∣∣ ≤ β + l1γ.(45)

Also,

(46)

γ ≤ 1 + δ

‖v‖2

‖v‖≥1

≤ 1 + δ

‖v‖ ,

β ≤ 2|vTFTATALTw| + 2|vTFTATb| + |wTLATALTw| + 2|wTLATb| + ‖b‖2

‖v‖2

(∗)
≤ 2

‖v‖

(
λmax(ATA)

√
δ + ‖ATb‖

)
+

1

‖v‖2

(
‖b‖2 + λmax(ATA)δ + 2‖ATb‖

√
δ
)D
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110 AMIR BECK AND AHARON BEN-TAL

‖v‖≥1

≤ 2

‖v‖

(
λmax(ATA)

√
δ + ‖ATb‖

)
+

1

‖v‖

(
‖b‖2 + λmax(ATA)δ + 2‖ATb‖

√
δ
)

=
1

‖v‖

(
‖b‖2 + λmax(ATA)(δ + 2

√
δ) + ‖ATb‖(2 + 2

√
δ)
)
,

(47)

where inequality (*) is true due to the Cauchy–Schwarz inequality and trivial linear
algebra inequalities. For example, |vTFTATALTw| is bounded as follows:

|vTFTATALTw|
C-S
≤ ‖Fv‖ · ‖ATALTw‖

λmax(F)≤1

≤ ‖v‖λmax(ATA)‖LTw‖
(44)

≤ λmax(ATA)‖v‖
√
δ.

Using the upper bound on β (47) and the upper bound on γ (46), we conclude that
if ‖v‖ ≥ 1, then

l1 − l2
(45)

≤ β + l1γ

≤ 1

‖v‖

(
‖b‖2 + λmax(ATA)(δ + 2

√
δ) + ‖ATb‖(2 + 2

√
δ) + l1(1 + δ)

)
.

Therefore,

‖v‖ ≤ max

{
1,

‖b‖2 + λmax(ATA)(δ + 2
√
δ) + ‖ATb‖(δ + 2

√
δ) + l1(1 + δ)

l1 − l2

}
.

(48)
Finally,

‖x∗‖2

= ‖v‖2 + ‖LTw‖2

(44),(48)

≤ max

{
1,

‖b‖2 + λmax(ATA)(δ + 2
√
δ) + ‖ATb‖(δ + 2

√
δ) + l1(1 + δ)

l1 − l2

}2

+ δ.

Remark. Recall that the sufficient condition for attainability is that l2 < l1. Note
that if l2 is very close to l1, then the upper bound on ‖x∗‖2 might be very large.

5. The case L = I.

5.1. Strict unimodality of G. In this section we show that in the case in
which L = I, the function G defined in (20) has a very attractive property: strictly
unimodal. A strictly unimodal function over an interval [a, b] is a function that has a
unique global minimum α∗ and is strictly decreasing over [a, α∗] and strictly increasing
over [α∗, b] (α∗ can be equal to a or b and in that case the function is monotone).
The fact that G is strictly unimodal implies that we can solve the one dimensional
minimization problem efficiently (with, e.g., the golden section method; see [3]).

Theorem 5.1. Consider problem (11) with L = I. If ATb /∈ Null(ATA −
λmin(ATA)I)⊥, then G, defined in (20), is differentiable for every α > 1 and strictly
unimodal.

Proof. First, by substituting Qα = 1
αATA + ρI and fα = 1

αATb into (27) we
obtain the following sufficient condition for differentiability of G at α:

ATb /∈ Null(ATA − λmin(ATA)I)⊥.
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TIKHONOV REGULARIZATION OF THE TLS PROBLEM 111

Now, in order to prove the strict unimodality of G, it is sufficient to prove the following
property of G: if G′(α) = 0, then G′′(α) > 0. By differentiating both sides of (39), we
obtain

G′′(α) = ẍ(α)T f ′
x(x(α), α)+ẋ(α)T f ′′

x2(x(α), α)ẋ(α)+2ẋ(α)T f ′′
xα(x(α), α)+f ′′

α2(x(α), α).
(49)
Differentiating (36), we have

ẍ(α)T g′x(x(α)) + ẋ(α)T g′′x2(x(α))ẋ(α) = 0.(50)

Therefore,

G′′(α) = G′′(α) − λ(α) · 0
(50)
= G′′(α) − λ(α)(ẍ(α)T g′x(x(α)) + ẋ(α)T g′′x2(x(α))ẋ(α))

(49)
=

A︷ ︸︸ ︷
ẍ(α)T (f ′

x(x(α), α) − λ(α)g′x(x(α)))

+

B︷ ︸︸ ︷
ẋ(α)T (f ′′

x2(x(α), α) − λ(α)g′′x2(x(α))) ẋ(α)

+ 2ẋ(α)T f ′′
xα(x(α), α) + f ′′

α2(x(α), α)︸ ︷︷ ︸
C

.

By (34) we have A = 0 and

B = ẋ(α)T (f ′′
x2(x(α), α) − λ(α)g′′x2(x(α))) ẋ(α) = ẋ(α)T (Qα − λ(α)I)ẋ(α)

(31)
> 0.

The latter inequality is true since by (36) ẋ(α) �= 0. Suppose that G′(α) = 0; then

ẋ(α)T f ′
x(x(α), α) + f ′

α(x(α), α) = 0,

which can also be written as

2ẋ(α)T
(

AT (Ax(α) − b)

α

)
− ‖Ax(α) − b‖2

α2
= −2ρẋ(α)TLTLx(α).(51)

Now,

C = 2ẋ(α)T f ′′
xα(x(α), α) + f ′′

α2(x(α), α)

= −4ẋ(α)T
AT (Ax(α) − b)

α2
+ 2

‖Ax(α) − b‖2

α3

(51)
= 4ρ

ẋ(α)TLTLx(α)

α
.

In our case L = I, and thus C = 4ρ ẋ(α)Tx(α)
α

(36)
= 2ρ

α > 0 and we conclude that, when
G′(α) = 0, then G′′(α) = A + B + C > 0, proving the unimodality property.
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5.2. Another approach to the case L = I.

5.2.1. The schematic algorithm. In the case L = I the problem is given by

min
x∈Rn

{
H(x) ≡ ‖Ax − b‖2

‖x‖2 + 1
+ ρ‖x‖2

}
.(52)

We use the following simple observation, which goes back to Dinkelbach [6]: For every
t ∈ R, the following two statements are equivalent:

min
x∈Rn

H(x) ≤ t,

min
x∈Rn

{‖Ax − b‖2 + ρ‖x‖4 + ρ‖x‖2 − t(‖x‖2 + 1)} ≤ 0.(53)

The minimization problem (53) also seems hard to solve; however, we will show in
section 5.2.2 that it is in fact a very simple problem having essentially an explicit
solution. Consider the function φ : R → R defined by

φ(t) = min
x∈Rn

{‖Ax − b‖2 + ρ‖x‖4 + ρ‖x‖2 − t(‖x‖2 + 1)}.

We claim that φ is strictly decreasing. To prove this suppose that t1 < t2, and let
xt1 ≡ argminx∈Rn{‖Ax − b‖2 + ρ‖x‖4 + ρ‖x‖2 − t1(‖x‖2 + 1)}. Then

φ(t1) = ‖Axt1 − b‖2 + ρ‖xt1‖4 + ρ‖xt1‖2 − t1(‖xt1‖2 + 1)

> ‖Axt1 − b‖2 + ρ‖xt1‖4 + ρ‖xt1‖2 − t2(‖xt1‖2 + 1) ≥ φ(t2).

From the above observation we also have that t∗ ≡ minx∈Rn H(x) is the unique root
of φ(·). Moreover, t∗ ∈ [0, ‖b‖2] since

φ(0) = min
x∈Rn

{‖Ax − b‖2 + ρ‖x‖4 + ρ‖x‖2} ≥ 0

and

φ(‖b‖2) = min
x∈Rn

{‖Ax − b‖2 + ρ‖x‖4 + (ρ− ‖b‖2)‖x‖2 − ‖b‖2}

≤ min
x∈Rn

{‖A0 − b‖2 + ρ‖0‖4 + (ρ− ‖b‖2)‖0‖2 − ‖b‖2} = 0.

As a result, the optimal t∗ can be found by, e.g., a simple bisection algorithm with
an initial interval [0, ‖b‖2].

5.2.2. Solving the subproblem. The subproblem can also be written as

min
x∈Rn

{
xTATAx + (ρ− t)‖x‖2 + ρ‖x‖4 − 2bTAx + ‖b‖2 − t

}
.

Making the change of variables x = Uz, where U is orthogonal matrix diagonalizing
ATA, i.e., UTATAU = diag(λ1, . . . , λn), the problem then reduces to

min
z∈Rn

n∑
j=1

{
λjz

2
j + (ρ− t)z2

j + ρz4
j − 2fjzj

}
,(54)

where f = UTATb. Note that since ρ canbe smaller than t, (54) might be a non-
convex problem. But, in fact, this does not really matter since this is a separable
problem in its variables. Therefore, the solution of (54) requires solving n indepen-
dent minimization problems:

min
zj∈R

{
(λj + ρ− t)z2

j + ρz4
j − 2fjzj

}
.(55)
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TIKHONOV REGULARIZATION OF THE TLS PROBLEM 113

The scalar objective function is a coercive function (since the dominating factor
is z4

j ). Therefore, the minimum of (55) is attained at a point satisfying g′j(zj) = 0,

where gj(zj) = (λj + ρ − t)z2
j + ρz4

j − 2fjzj . Therefore, the minimum is attained at
one of the real roots of

4ρz3
j + 2(λj + ρ− t)zj − 2fj = 0.(56)

This is a cubic equation and therefore can be solved explicitly by Cardano’s formula.
More precisely, the roots of the cubic equation x3 + 3Qx− 2R = 0 are given by

x1 = (R +
√
Q3 + R2)1/3 + (R−

√
Q3 + R2)1/3

and

x2,3 = − 1

2

[
(R +
√

Q3 + R2)1/3 + (R−
√

Q3 + R2)1/3
]

±
√

3

2
i
[
(R +
√
Q3 + R2)1/3 − (R−

√
Q3 + R2)1/3

]
.

In any case, it has three real roots if Q3 + R2 ≤ 0 and only one real root (and two
complex roots) otherwise. The minimum of (55) is attained at one of the roots of
the cubic equation (56). Therefore, the initial step of the algorithm is to diagonalize
the matrix ATA, and then a bisection algorithm is invoked to find the unique root
of the strictly decreasing function φ. The calculation of a function value of φ requires
solving n cubic equations.

The algorithm described in this section is summarized below.

Algorithm TRTLSI.

Input: A ∈ R
m×n,b ∈ R

m, ρ > 0, and ε—a tolerance parameter.
Output: x∗—a solution (up to some tolerance) of the TRTLS problem (11) with
L = I.

1. Set tmin ← 0 and tmax ← ‖b‖2.
2. Compute the spectral decomposition of ATA: UTATAU = diag(λ1, λ2, . . . , λn).
3. Set f ← UTATb.
4. While |tmax − tmin| > ε repeat steps (a), (b), and (c):

(a) For every j = 1, 2, . . . , n compute the solutions zj1, . . . , z
j
pj

of the one
dimensional cubic equation (56). Here pj denotes the number of different
real solutions of the jth cubic equation.

(b) For every j = 1, 2, . . . , n set

βj ← min
k=1,...,pj

{(λj + ρ− t)(zjk)
2 + ρ(zjk)

4 − 2fjz
j
k}.

(c) If
∑n

j=1 βj − t < 0, then tmax = t; else tmin = t.
5. Set

mj ← argmin
k=1,...,pj

{(λj + ρ− t)(zjk)
2 + ρ(zjk)

4 − 2fjz
j
k}.

6. Let w be such that wj = zjmj
for every j = 1, . . . , n.

7. Set x∗ = Uw.
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The dominant computational effort when applying algorithm TRTLSI is the single
calculation of the spectral decomposition of ATA, which requires O(n3) operations.
At each iteration the computational cost of solving n cubic equations is O(n). For
problems with up to several hundreds of variables, algorithm TRTLSI is therefore ap-
plicable. However, for problems with thousands or even tens of thousands of variables,
algorithm TRTLSI cannot be implemented. Nevertheless, it is still possible to use the
approach of solving the one dimensional minimization problem (19) since large-scale
TRSs can be solved efficiently (see, e.g., [5, 7] and the references therein). A specific
implementation of the algorithm for a general regularization matrix is given in the
subsequent section.

6. Implementation and example. We have shown that solving the TRTLS
problem (11) (for a general regularization matrix L) reduces to a problem of solving
a one dimensional minimization problem over a closed interval. The specific details
of the algorithm (for a general regularization matrix) depend on the choice of the
one dimensional solver and the selection of a method for solving the TRS. In section
6.1 we describe a specific implementation—algorithm TRTLSG. We then apply the
proposed algorithm in section 6.2 to an image deblurring example.

6.1. A detailed algorithm for the TRTLS problem. We use the method
of Moré and Sorensen for solving the TRS (21). The method is based on applying
Newton’s method to the problem

1

φ(λ)
− 1

β
= 0,(57)

where φ(λ) ≡ fT (Q− λI)−1f . The main computational effort at each iteration is the
calculation of a Cholesky factorization of a matrix of the form Q−λI. For large-scale
problems the Cholesky factorization is not affordable, and other nondirect methods,
such as Krylov subspace methods, can be employed (see, e.g., [29] and the references in
[5, 7]). In our example n = 1024 so that Moré and Sorensen’s method is appropriate.

Algorithm TRTLSG.

Input: A ∈ R
m×n,b ∈ R

m,L ∈ R
k×n, ρ > 0, and ε1, ε2—tolerance parameters.

Output: x∗—a solution (up to some tolerance) of the TRTLS problem (11).

1. Set αmin ← 1 + ε1.
2. If k = n, set αmax to be the upper bound given in Lemma 4.2; else αmax is

equal to the upper bound given in Theorem 4.3.
3. While |αmax − αmin| > ε2 repeat steps (a), (b), and (c):

(a) Set α ← αmin+αmax

2 .
(b) Solve the following TRS:

min
‖x‖2=α−1

{
xTQαx − 2fTα x

}
,

where Qα and fα are given in (26), and obtain a solution x(α) and a
multiplier λ(α) that satisfy conditions (22), (23), and (24) (with Q =
Qα, fα,x

∗ = x(α), and λ∗ = λ(α)).

(c) If λ(α) − ‖Ax(α) − b‖2

α2︸ ︷︷ ︸
G′(α)

> 0, then αmax = α; else αmin = α.

4. Set x∗ = x(αmax).

D
ow

nl
oa

de
d 

10
/3

1/
20

 to
 1

32
.6

6.
11

.2
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



TIKHONOV REGULARIZATION OF THE TLS PROBLEM 115

In our implementation the tolerance parameters take the values ε1 = 10−1 and
ε2 = 10−6.

The one dimensional solver in algorithm TRTLSG is a simple bisection algorithm
applied to the derivative of G(α). To guarantee global convergence of the algorithm,
the function G should be unimodal. For the case L = I the unimodality property
was proven in section 5.1. We observed through numerous random examples of the
TRTLS problem of different dimensions (4 ≤ n,m, k ≤ 1024) that the unimodality
property almost always holds even for L �= I. The “bad” example in Figure 2 (with
m = n = 4, k = 3) is an exceptional example. Moreover, for n > 10 we have not been
able to find a single example which is not unimodal. Thus, for all practical purposes,
algorithm TRTLSG finds the global optimum. If, for some reason, the function G
is not unimodal, then algorithm TRTLSG does not necessarily converge to a global
minimum and more sophisticated one dimensional global solvers should be employed.

6.2. Example. To illustrate the effectiveness of the TRTLS approach, we con-
sider an image deblurring example. The TRTLS problems arising in this example
were solved by algorithm TRTLSG implemented in MATLAB.

The choice of the regularization parameter ρ in our experiments was done by
using the L-curve method [16, 21]. This method was originally devised as a method
for choosing the regularization parameter for a regularized least squares problem.
The L-curve is a plot of the L-norm ‖Lxρ‖ versus the residual ‖Axρ − b‖, where
xρ is the solution of the regularization method with parameter ρ. The obtained plot
usually has an L-shape appearance, and the chosen parameter is the one which is
the closest to the left bottom corner. For the TLS problem, we follow the L-curve
approach described in [24]: we plot the L-norm ‖Lxρ‖2 versus the fractional residual
‖Axρ − b‖2/(1 + ‖xρ‖2) for a various number of regularization parameters and pick
the parameter closest to the L-shaped corner.

Let X be a 32×32 two dimensional image obtained from the sum of three harmonic
oscillations:

X(z1, z2) =

3∑
l=1

ai cos(wl,1z1 + wl,2z2 + φl),

(
wl,i =

2πkl,i
n

)
, 1 ≤ z1, z2 ≤ 32,

where kl,i ∈ Z
2 (see Figure 3—true image). The specific values of the parameters are

given in Table 1.

Table 1

Image parameters.

l al wl,1 wl,2 φl

1 1.3936 0.1473 0.0982 5.8777
2 0.5579 0.0982 0.0982 5.7611
3 0.8529 0.0491 0.0982 2.5778

We consider the square system

Atruextrue = btrue,

where xtrue ∈ R
1024 is obtained by stacking the columns of the 32 × 32 image X.

The vector xtrue was normalized so that ‖xtrue‖ = 1. The 1024 × 1024 matrix Atrue

represents an atmospheric turbulence blur originating from [15] and implemented in
the function blur(n,3) from the “Regularization Tools” [17]. The observed matrix
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Fig. 3. Results for different regularization solvers.

and vector were generated by adding white noise to the data: A = Atrue + σE and
b = btrue+σe, where each component of E ∈ R

1024×1024 and e ∈ R
1024 was generated

from a standard normal distribution.
In our experiment the standard deviation σ was chosen to be 0.05, which results in

a highly noisy image (see Figure 3—observation). The LS estimator was implemented
in the function lsqr from [17]; it can be readily observed that it produces a poor image.

The choice of regularization matrix has a major influence on the quality of the
obtained image. The solution of the TRTLS problem with standard regularization
produces an unsatisfactory image (see Figure 3—TRTLS with L = I).

To produce a better result, we use a regularization matrix that accounts for the
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smoothness property of this image. In particular, the matrix L was chosen to satisfy
the relation

LTL = RTR + I,(58)

where R is a discrete approximation of the Laplace operator, which is a two dimen-
sional convolution with the following mask:⎡

⎣ −1 −1 −1
−1 8 −1
−1 −1 −1

⎤
⎦ .

This operator is standard in image processing [20]. With this choice of L, the TRTLS
algorithm gave the much better image (see Figure 3—TRTLS with L �= I). We also
compared our results to the one obtained by the classic Tikhonov regularization of
the least squares, i.e., the solution of the minimization problem

min
x

{‖Ax − b‖2 + ρ‖Lx‖2}

with the same regularization matrix given in (58). Tikhonov regularization of the
least squares (see Figure 3—Tikhonov L �= I) provides a better image than the least
squares, but its quality is inferior to the one obtained by the corresponding TRTLSG
algorithm.
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