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A GLOBAL SOLUTION FOR THE STRUCTURED TOTAL LEAST
SQUARES PROBLEM WITH BLOCK CIRCULANT MATRICES∗

AMIR BECK† AND AHARON BEN-TAL†

Abstract. We study the structured total least squares (STLS) problem of system of linear
equations Ax = b, where A has a block circulant structure with N blocks. We show that by
applying the discrete Fourier transform (DFT), the STLS problem decomposes into N unstructured
total least squares (TLS) problems. The N solutions of these problems are then assembled to generate
the optimal global solution of the STLS problem. Similar results are obtained for elementary block
circulant matrices. Here the optimal solution is obtained by assembling two solutions: one of an
unstructured TLS problem and the second of a multidimensional TLS problem.
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1. Introduction. Many problems in data fitting and estimation give rise to an
overdetermined system of linear equations Ax ≈ b, where both the matrix A and
the vector b are contaminated by noise. The total least squares (TLS) approach to
this problem [4, 1, 6] is to seek a perturbation matrix ΔA and a perturbation vector
Δb that minimize ‖ΔA‖2 + ‖Δb‖2 subject to the consistency equation b − Δb ∈
Range(A − ΔA).1 The TLS approach was extensively used in a variety of scientific
disciplines such as signal processing, automatic control, statistics, physics, economic,
biology, and medicine. One of the main reasons for the wide use of TLS is the fact
that the problem has essentially an explicit solution, expressed by the singular value
decomposition (SVD) of the augmented matrix (A,b) [4, 1, 6] (cf. section 2).

In many applications, the matrix A has a specific structure, e.g., Toeplitz or
Hankel, which imposes a requirement on the perturbation matrix ΔA to possess a
corresponding special structure. The TLS solution does not take into account this
requirement, and consequently many methods addressing the structured TLS (STLS)
problem were introduced in the literature [7, 8, 9, 5, 10, 11].

The STLS problem, even for linearly structured matrix ΔA (i.e., a structure that
can be represented as L(ΔA) = 0, where L is a linear operator) is generically a
nonconvex problem, and as a result the algorithms designed to solve it converge at
best to a local solution [7, 9, 5]. This state of affairs is prevailing even for the special
case of Toeplitz–Hankel structure [10, 11]. An exception is the case where some given
columns of A must remain fixed (i.e., the corresponding columns of ΔA are zero). A
global solution for this case is obtained in [12] in terms of the SVD of an appropriate
matrix.
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1Here and elsewhere in this paper a matrix norm is always the Frobenius norm, and a vector

norm is the Euclidean one.
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STLS WITH BLOCK CIRCULANT MATRICES 239

In this paper we study the STLS problem, where the matrix A has either a block
circulant (BC) structure,

A =

⎛
⎜⎜⎜⎝

A0 A1 · · · AN−1

AN−1 A0 · · · AN−2

...
...

...
A1 A2 · · · A0

⎞
⎟⎟⎟⎠ ,

or a (more special) elementary block circulant structure (EBC),

A =

⎛
⎜⎜⎜⎝

A0 A1 · · · A1

A1 A0 · · · A1

...
...

...
A1 A1 · · · A0

⎞
⎟⎟⎟⎠ ,

where A0,A1, . . . ,AN−1 are m× n matrices. A particular example from signal pro-
cessing, which gives rise to elementary block circulant structure, is described next.

Consider the problem of estimating N unknown vectors xk, 0 ≤ k ≤ N − 1, from
N vector observations bk, 0 ≤ k ≤ N − 1, where each observation vector bk is related
to all of the parameter vectors x0,x1, . . . ,xN−1 through the linear model

bk = A0xk +
∑
i �=k

A1xi + wk, 0 ≤ k ≤ N − 1.(1)

Here A0 and A1 represent the within channel and cross channel transfer matrices,
respectively, and wk is the kth noise vector. For the two channel case (N = 2), this
system is illustrated in Figure 1.
System (1) reflects the situation where the effect of all of the interfering vectors
xi, i �= k on the kth output bk is the same (i.e., independent of k).

Systems with BC structure appear in the context of multichannel signal estimation
[13, 14], image restoration [15], cyclic convolution filter banks [3], texture synthesis
and recognition [16], and more.

We will present efficient algorithms, which obtain a (global) solution for both the
BC and the EBC cases. The analysis relies heavily on the theory of discrete Fourier
transform (DFT) for block circulant matrices. Elements of this theory that are needed
for our purposes are collected in section 3. We show that for the BC case, under the
DFT, the original STLS problem, which is of size Nm × Nn, decomposes into N
(unstructured) TLS problems of size m×n. The solution is then obtained by solving
the N small problems (possibly in parallel), using the SVD of each system, and then
taking the inverse DFT. We thus obtain that the solution of the STLS problem with a
BC matrix is explicitly expressed by N singular value decomposition of N appropriate
matrices (N being the number of different blocks in A). The solution of the EBC is
similarly derived with one exception. In the EBC case the STLS problem decomposes
under the DFT to two smaller problems: a TLS problem and a multidimensional TLS
problem (cf. section 2).

The paper is organized as follows. In section 2 we briefly review both the classical
TLS problem and the multidimensional TLS problem. We recall the SVD-based
solution of both problems. Section 3 contains a summary of the results on the DFT
of BC matrices and block vectors. Sections 4 and 5 present the solution of the STLS
problem with BC and EBC matrices, respectively. Section 6 presents computational
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240 AMIR BECK AND AHARON BEN-TAL
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Fig. 1. Two channel model.

results that demonstrate the fact that the algorithm devised in this paper gives the
global optimum while other algorithms in the literature do not necessarily converge
to the global optimum.

The results in this paper are valid both for the real and complex case. We denote
by F the real field (R) or the complex field (C). Vectors in F

m are denoted by boldface
lowercase letters, e.g., y. Matrices in F

m×n are denoted by boldface uppercase letters
e.g., A. The Hermitian conjugate and the transpose of a matrix A are denoted by
A∗ and AT , respectively. Note that when F = R, A∗ = AT . The boldface letter i
denotes

√
−1. For a positive integer N and an integer j, we denote by [j]N the value

of j modulo N , e.g., [N ]N = 0, [−2]N = N − 2.

2. Review of the TLS Method. For the sake of completeness, we briefly
review the known results on the (unstructured) TLS and the multidimensional TLS
problems [4, 1, 6] . Given a linear system Ax ≈ b, where A ∈ F

m×n(m > n),b ∈ F
m,

and x ∈ F
n. The TLS problem is to find a perturbation matrix ΔA ∈ F

m×n and a
perturbation vector Δb ∈ F

m of minimum norm such that the system (A−ΔA)x =
b − Δb is consistent. More precisely, for some positive constant α > 0 we seek to
solve the following minimization problem:

(TLS) min
ΔA,Δb,x

‖ΔA‖2 + α‖Δb‖2

subject to (A − ΔA)x = b − Δb.

The algorithm for the solution of this problem was derived in [4] and is based on
one SVD calculation.
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STLS WITH BLOCK CIRCULANT MATRICES 241

Algorithm TLS (see [4]).
Input: A ∈ F

m×n,b ∈ F
m, α > 0.

Output: ΔA ∈ F
m×n,Δb ∈ F

m,x ∈ F
n.

1. Calculate the SVD (A,
√
αb) = UΣV∗, where V ∈ F

(n+1)×(n+1) is a uni-
tary matrix, U ∈ F

m×(n+1) is a matrix that satisfies U∗U = I, and Σ =
diag(σ1, σ2, . . . , σn+1), where σ1, . . . , σn+1 > 0.

2. If σn(A) > σn+1(A,
√
αb), then the solution of (TLS) is given by

(ΔA,Δb) = σn+1un+1v
T
n+1diag(1, 1, . . . , 1︸ ︷︷ ︸

n times

,
√
α),

x = − 1√
αVn+1,n+1

(V1,n+1, . . . , Vn,n+1)
T ,

where un+1 and vn+1 are the (n + 1)th columns of U and V, respectively,
and for every i, j, Vi,j is the (i,j)th component of V.

A known generalization of the TLS problem deals with the case in which we have
multiple right-hand side vectors; i.e., we are given k linear systems Ax1 ≈ b1,Ax2 ≈
b2, . . . ,Axk ≈ bk. Here we seek to find minimum weight perturbations ΔA ∈ F

m×n

and Δb1, . . . ,Δbk ∈ F
m such that the k linear systems (A−ΔA)xi = bi −Δbi, i =

1, 2, . . . , k, are consistent. Denote B = (b1,b2, . . . ,bk) and X = (x1,x2, . . . ,xk).
The problem is equivalent to finding a minimal weight perturbations ΔA ∈ F

m×n

and ΔB ∈ F
m×k such that the system (A − ΔA)X = B − ΔB is consistent. This is

the multidimensional TLS (MTLS):

(MTLS) min
ΔA,ΔB,X

‖ΔA‖2 + α‖ΔB‖2

subject to(A − ΔA)X = B − ΔB.

Algorithm MTLS (see [6, 1]).
Input: A ∈ F

m×n,B ∈ F
m×k, α > 0.

Output: ΔA ∈ F
m×n,ΔB ∈ F

m×k,X ∈ F
n×k.

1. Calculate the SVD (A,
√
αB) = UΣV∗, where here

U =
(

U1 U2

)
, V =

(
V11 V12

V21 V22

)
, Σ =

(
Σ1 O
O Σ2

)
,

and where U1 ∈ F
m×n,U2 ∈ F

m×k,V11 ∈ F
n×n,V12 ∈ F

n×k,V21 ∈ F
k×n,

V22 ∈ F
k×k,Σ1 ∈ F

n×n, and Σ2 ∈ F
k×k. Σ1 and Σ2 are both diagonal

matrices with real positive diagonal, V is a unitary matrix, and U satisfies
U∗U = I.

2. If σn(A) > σn+1( A
√
αB ), then the solution of (MTLS) is given by

( ΔA ΔB ) = U2Σ2(V
T
12,V

T
22)T

−1,

x = − 1√
α
V12V

−1
22 ,

where T =
(

In O
O

√
αIk

)
3. Block circulant matrices and the DFT. The aim of this section is to give

a short summary of results on DFT defined on block circulant matrices and block
vectors that are used in the paper. Subsection 3.1 (but not subsection 3.2) is based
on [13].
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242 AMIR BECK AND AHARON BEN-TAL

A block circulant matrix is a matrix of the form

C(A0,A1, . . . ,AN−1)
�
=

⎛
⎜⎜⎜⎝

A0 A1 · · · AN−1

AN−1 A0 · · · AN−2

...
...

...
A1 A2 · · · A0

⎞
⎟⎟⎟⎠ ,

where each submatrix Aj is a k× l matrix. The dimensions k and l will be clear from
the context and therefore are not part of the notation.

3.1. The DFT of block circulant matrices. From the definition of block
circulant matrices we have the following facts.

Lemma 3.1. Let A0,A1, . . . ,AN−1 ∈ F
k×l and B0,B1, . . . ,BN−1 ∈ F

l×m. Then
1. CT (A0,A1, . . . ,AN−1) and C∗(A0,A1, . . . ,AN−1) are also a block circulant

matrix, where

CT (A0,A1, . . . ,AN−1) = C(AT
0 ,A

T
N−1, . . . ,A

T
1 ),

C∗(A0,A1, . . . ,AN−1) = C(A∗
0,A

∗
N−1, . . . ,A

∗
1);

2. The product C(A0, . . . ,AN−1)C(B0, . . . ,BN−1) is a block circulant matrix
C(C0, . . . ,CN−1), where

Cj =

N−1∑
i=0

AjB[j−i]N , 0 ≤ j ≤ N − 1.(2)

We now define the DFT and its inverse, which are the main mathematical tools
used in the paper.

Definition 3.1. Let A = C(A0,A1, . . . ,AN−1). Then the DFT of A denoted
by F(A) is the block circulant matrix of the same dimensions given by

F(A) = C(F0(A),F1(A), . . . ,FN−1(A)),

where Fj(A), 0 ≤ j ≤ N − 1 is defined by

Fj(A)
�
=

N−1∑
i=0

ωijAi, 0 ≤ j ≤ N − 1,

where ω = e−
2πi
N . The matrix Fj(A) is called the jth DFT component.

Definition 3.2. Let A = C(A0,A1, . . . ,AN−1). Then the inverse DFT (IDFT),
denoted by F−1, is the BC matrix

F−1(A) = (F−1
0 (A),F−1

1 (A), . . . ,F−1
N−1(A)),

where the jth block is given by

F−1
j (A)

�
=

1

N

N−1∑
i=0

ω−ijAi, 0 ≤ j ≤ N − 1.

In particular, we have

F−1
0 (A) =

1

N

N−1∑
i=0

Ai.(3)
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STLS WITH BLOCK CIRCULANT MATRICES 243

F−1 is indeed an inverse of F in the sense that for every A = C(A0, . . . ,AN−1)

F−1(F(A)) = F(F−1(A)) = A.(4)

The proof of this fact relies heavily on the useful identity

N−1∑
j=0

ωjp =

{
0, p = 1, 2, . . . , N − 1,
N, p = 0.

(5)

The following properties of Fj are generalizations to the block circulant case of well-
known properties of the DFT for vectors.

Lemma 3.2. Let A,B, and C be block circulant matrices A = C(A0,A1, . . . ,
AN−1), B = C(B0,B1, . . . ,BN−1), and C = C(C0,C1, . . . ,CN−1), where Aj ,Cj ∈
F
k×l,Bj ∈ F

l×m, 0 ≤ j ≤ N − 1. Then for every 0 ≤ j ≤ N − 1 the following holds:
1. (Fj(A))∗ = Fj(A

∗).
2. Fj(A + C) = Fj(A) + Fj(C).
3. Fj(AB) = Fj(A)Fj(B).
An important special case of block circulant matrices are elementary block circu-

lant matrices, which are matrices of the form

M(A0,A1)
�
=C(A0,A1, . . . ,A1) =

⎛
⎜⎜⎜⎝

A0 A1 · · · A1

A1 A0 · · · A1

...
...

...
A1 A1 · · · A0

⎞
⎟⎟⎟⎠ .

In this case there are also only two different DFT components:

F0(M(A0,A1)) = A0 + (N − 1)A1,

Fj(M(A0,A1)) = A0 − A1, 1 ≤ j ≤ N − 1.

It is also easy to see that there are only two different inverse DFT components:

F−1
0 (M(A0,A1)) =

1

N
(A0 + (N − 1)A1),

F−1
j (M(A0,A1)) =

1

N
(A0 − A1), 1 ≤ j ≤ N − 1.

3.2. The DFT of block vectors.
Definition 3.3. Let y0,y1, . . . ,yN−1 ∈ F

p; then the DFT of the block vector
y = (yT

0 ,y
T
1 , . . . ,y

T
N−1)

T ∈ F
Np is the vector f(y) = (f0(y)T , f1(y)T , . . . , fN−1(y)T )T

whose jth block (subvector) is given by

fj(y)
�
=

N−1∑
i=0

ω−ijyi.

Remark. Notice that the definition of the DFT for block vectors is slightly different
from the definition of the DFT for block circulant matrices (ω−ij instead of ωij).
Although the difference seems negligible, it is crucial to define the DFT for block
vectors in that manner; otherwise, some critical properties will be lost (cf. Lemma 3.4).
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244 AMIR BECK AND AHARON BEN-TAL

The inverse DFT of f is defined by

f−1
j (y) =

1

N

N−1∑
i=0

ωijyi.

For every 0 ≤ j ≤ N − 1,

f−1
j (f(y)) = fj(f

−1(y)) = yj .

The following properties of the DFT and the inverse DFT will be useful later on.

Lemma 3.3. Let y = (yT
0 ,y

T
1 , . . . ,y

T
N−1)

T and z = (zT0 , z
T
1 , . . . , z

T
N−1)

T , where
y0, . . . ,yN−1 ∈ F

m and z0, . . . , zN−1 ∈ F
m. Then we have the following:

1. (Norm preservation): ‖f(y)‖2 = N‖y‖2.

2. (Linearity): For every two scalars α, β ∈ F, f(αv + βz) = αf(v) + βf(z).

Proof. 1.

‖f(y)‖2 =

N−1∑
j=0

‖fj(y)‖2 =

N−1∑
j=0

∥∥∥∥∥
N−1∑
i=0

ω−ijyi

∥∥∥∥∥
2

=

N−1∑
j=0

(
N−1∑
k=0

ωkjyT
k

)(
N−1∑
i=0

ω−ijyi

)

=
N−1∑
j=0

N−1∑
i=0

N−1∑
k=0

ωj(k−i)yT
k yi

=

N−1∑
i=0

N−1∑
k=0

⎛
⎝N−1∑

j=0

ωj(i−k)

⎞
⎠yT

k yi
(5)
=

N−1∑
i=0

N‖yi‖2 = N‖y‖2.

2. It directly follows from the definition of the DFT for block vectors.

Lemma 3.4 shows a connection between the DFT of block circulant matrices and
the DFT of block vectors; this connection is one of the key ingredients in the analysis
of the total least squares for block circulant systems.

Lemma 3.4. Let A = C(A0,A1, . . . ,AN−1) and y = (yT
0 ,y

T
1 , . . . ,y

T
N−1)

T , where
y0, . . . ,yN−1 ∈ F

m and A0,A1, . . . ,AN−1 ∈ F
m×n. Then fj(Ay) = Fj(A)fj(y) for

every 0 ≤ j ≤ N − 1.

Proof. For every 0 ≤ j ≤ N − 1,

fj(Ay) =

N−1∑
i=0

ω−ij(Ay)i =

N−1∑
i=0

ω−ij

(
N−1∑
k=0

A[k−i]Nyk

)
=

N−1∑
i=0

N−1∑
k=0

ω−ijA[k−i]Nyk

=

N−1∑
k=0

N−1∑
i=0

ω−ijA[k−i]Nyk

=

N−1∑
k=0

ω−kj

(
N−1∑
i=0

ω(k−i)jA[k−i]N

)
yk =

N−1∑
k=0

ω−kjFj(A)yk

= Fj(A)

N−1∑
k=0

ω−kjyk = Fj(A)fj(y).
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STLS WITH BLOCK CIRCULANT MATRICES 245

4. STLS in the case of block circulant matrices.

4.1. The algorithm. Suppose that A has a block circulant structure, i.e.,
A = C(A0,A1, . . . ,AN−1), where Ai ∈ F

m×n, and we wish to find a perturbation
matrix ΔA, which also has a block circulant structure. We assume that the system
is overdetermined, i.e., m > n. The STLS problem for block circulant matrices can
be written as

minΔA0,...,ΔAN−1,Δb,x ‖ΔA‖2 + ‖Δb‖2

subject to (A − ΔA)x = b − Δb,
ΔA = C(ΔA0,ΔA1, . . . ,ΔAN−1).

(6)

In order to solve this problem, we will first apply the DFT on both sides of the
consistency equation

(A − ΔA)x = b − Δb.(7)

It will be useful to treat b ∈ F
Nm and Δb ∈ F

Nm as block vectors, i.e., (bT
0 ,b

T
1 , . . . ,

bT
N−1)

T and Δb = (ΔbT
0 , . . . ,ΔbT

N−1)
T , where bj ,Δbj ∈ F

m, 0 ≤ j ≤ N − 1. By
applying the block vector DFT, f , on both sides of (7) we obtain

f((A − ΔA)x) = f(b − Δb).

Using property 2 of Lemma 3.3 we have

f((A − ΔA)x) = f(b) − f(Δb),

which is equivalent to the following system of N equations:

fj((A − ΔA)x) = fj(b) − fj(Δb) ∀ 0 ≤ j ≤ N − 1.

Finally, using Lemma 3.4 we have that (7) is equivalent to the following N “small”
linear systems (in the unknown variables being f0(x), . . . , fN−1(x)):

(Fj(A) − Fj(ΔA))fj(x) = fj(b) − fj(Δb) ∀ 0 ≤ j ≤ N − 1.

The objective function ‖ΔA‖2 + ‖Δb‖2 can also be expressed solely by its DFT
components. Indeed, from Lemma 3.3 we have

‖Δb‖2 =
1

N
‖f(Δb)‖2 =

1

N

⎛
⎝N−1∑

j=0

‖fj(Δb)‖2

⎞
⎠ .(8)

Also, by the definition of Frobenius norm we have that ‖ΔA‖2 = Tr(ΔA∗ΔA).
Since ΔA is block circulant, then by Lemma 3.1 we have that ΔA∗ΔA is also block
circulant, and thus we can write

ΔA∗ΔA = C(R0,R1, . . . ,RN−1) =

⎛
⎜⎜⎜⎝

R0 R1 · · · RN−1

RN−1 R0 · · · RN−2

...
...

...
R1 R2 · · · R0

⎞
⎟⎟⎟⎠

for some R0,R1, . . .RN−1 ∈ F
n×n, and therefore

‖ΔA‖2 = Tr(ΔA∗ΔA) = NTr(R0).
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246 AMIR BECK AND AHARON BEN-TAL

Moreover,

‖ΔA‖2 = NTr(R0)
(4)
= NTr(F−1

0 (F(ΔA∗ΔA)))

=

N−1∑
j=0

Tr(Fj(ΔA∗ΔA)) (by (3))

=

N−1∑
j=0

Tr(Fj(ΔA)∗Fj(ΔA)) =

N−1∑
j=0

‖Fj(ΔA)‖2(by Lemma 3.1, property 2).(9)

We thus obtained that (6) is reduced to

minΔA0,...,ΔAN−1,Δb,x

∑N−1
j=0

(
‖Fj(ΔA)‖2 + 1

N ‖fj(Δb)‖2
)

subject to (Fj(A) − Fj(ΔA))fj(x) = fj(b) − fj(Δb), 0 ≤ j ≤ N − 1,
ΔA = C(ΔA0,ΔA1, . . . ,ΔAN−1).

(10)

Making the change of variables

Gj = Fj(ΔA) =

N−1∑
i=0

ωijΔAi, 0 ≤ j ≤ N − 1,

cj = fj(Δb) =

N−1∑
i=0

ω−ijΔbi, 0 ≤ j ≤ N − 1,

zj = fj(x) =

N−1∑
i=0

ω−ijxi, 0 ≤ j ≤ N − 1,

we obtain the following equivalent minimization problem:

minG0,...,GN−1,c0,...,cN−1,z0,...,zN−1

∑N−1
j=0

(
‖Gj‖2 + 1

N ‖cj‖2
)

subject to (Fj(A) − Gj)zj = fj(b) − cj , 0 ≤ j ≤ N − 1.
(11)

Since (10) is separable in the variables

(G0, c0, z0), (G1, c1, z1), . . . , (GN−1, cN−1, zN−1)

we actually need to solve N small TLS problems and then use the inverse DFT in
order to find the values of (ΔA,Δb,x).

We summarize the above by presenting the block circulant TLS (BCTLS) algo-
rithm for solving the STLS problem (6). The algorithm is essentially as simple as
the classical SVD-based algorithm since its main effort consists of solving N small
unstructured TLS problems.

Algorithm BCTLS.
Input: A,b, where A = C(A0,A1, . . . ,AN−1) ∈ F

Nm×Nn is a BC matrix and b =
(bT

0 ,b
T
1 , . . . ,b

T
N−1)

T such that A0,A1, . . . ,AN−1 ∈ F
m×n and b0, . . . ,bN−1 ∈ F

m.
Output: ΔA,Δb,x, where ΔA ∈ F

Nm×Nn is a block circulant matrix, Δb ∈ F
Nm,

and x ∈ F
Nn is the STLS solution.

1. Calculate the N DFT components of A,

Fj(A) =

N−1∑
i=0

ωijAi, 0 ≤ j ≤ N − 1,(12)
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STLS WITH BLOCK CIRCULANT MATRICES 247

and the N DFT components of b,

fj(b) =

N−1∑
i=0

ω−ijbi, 0 ≤ j ≤ N − 1.

2. For every 0 ≤ j ≤ N−1, call the TLS algorithm with input
(
Fj(A), fj(b), 1

N

)
and obtain an output (Gj , cj , zj).

3. Denote G = C(G0,G1, . . . ,GN−1), c = (cT0 , c
T
1 , . . . , c

T
N−1)

T and z =
(zT0 , z

T
1 , . . . , z

T
N−1)

T . The output of the BCTLS algorithm is computed by
applying the inverse DFT of G, c, and z. The obtained solution of the STLS
problem (6) is then ΔA = C(ΔA0,ΔA1, . . . ,ΔAN−1), Δb = (ΔbT

0 ,ΔbT
1 , . . . ,

ΔbT
N−1)

T , and x = (xT
0 ,x

T
1 , . . . ,x

T
N−1), where

ΔAj = F−1
j (G) =

1

N

N−1∑
i=0

ω−ijGi, 0 ≤ j ≤ N − 1,(13)

Δbj = f−1
j (c) =

1

N

N−1∑
i=0

ωijci, 0 ≤ j ≤ N − 1,

xj = f−1
j (z) =

1

N

N−1∑
i=0

ωijzi, 0 ≤ j ≤ N − 1.(14)

Remark. Step 2 of Algorithm BCTLS requires N executions of algorithm TLS,
and hence the following condition must be satisfied (see step 2 of algorithm TLS):

σn(Fj(A)) > σn+1

(
Fj(A),

1√
N

fj(b)

)
∀0 ≤ j ≤ N − 1.(15)

We claim that condition (15) implies that the matrix A is full column rank, which
is the same as A∗A being nonsingular. Indeed, condition (15) implies in particular
that σn(Fj(A)) > 0 for every 0 ≤ j ≤ N − 1, which is the same as saying that
Fj(A)∗Fj(A) is nonsingular for every 0 ≤ j ≤ N − 1. By Lemma 3.2 we obtain that
Fj(A

∗A) is nonsingular for every 0 ≤ j ≤ N−1. By [13, Theorem 3.1], the eigenvalues
of A∗A are the Nn eigenvalues of the N matrices Fj(A

∗A). The latter matrices are
nonsingular, and hence have only nonzero eigenvalues. Therefore, all the eigenvalues
of A∗A are different from zero, and, as a result, A∗A is nonsingular.

From (14) it seems as if x is a complex vector even in the real case F = R.
However, we claim that in fact it is a real vector. This is proved in the following
theorem.

Theorem 4.1. Let A = C(A0,A1, . . . ,AN−1) and b = (bT
0 ,b

T
1 , . . . ,b

T
N−1)

T ,
where A0, . . . ,AN−1 ∈ R

m×n and b0, . . . ,bN−1 ∈ R
m. Then Algorithm BCTLS with

input A and b produces a real solution: ΔA ∈ R
Nm×Nn,Δb ∈ R

Nm, and x ∈ R
Nn.

Proof. Throughout the proof we use the same notation used in the description of
the BCTLS algorithm. The componentwise complex conjugate of a vector or a matrix
is denoted by (·). The proof is based on the following four claims:

(i) FN−j(A) = Fj(A) and fN−j(b) = fj(b) for every 0 ≤ j ≤ N − 1.
(ii) GN−j = Gj and cN−j = cj for every 0 ≤ j ≤ N − 1.
(iii) ΔA is a real-valued matrix, and Δb is a real-valued vector.
(iv) x is a real valued vector.
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248 AMIR BECK AND AHARON BEN-TAL

Proof of (i). For every 0 ≤ j ≤ N − 1,

FN−j(A) =

N−1∑
i=0

ωi(N−j)Ai =

N−1∑
i=0

ω−ijAi =

N−1∑
i=0

ωijAi =

N−1∑
i=0

ωijAi = Fj(A).

The proof that fN−j(b) = fj(b) is almost identical.
Proof of (ii). For every 0 ≤ j ≤ N − 1, let the SVD of

(
Fj(A), 1

N fj(b)
)

be given
by (

Fj(A),
1

N
fj(b)

)
= UjΣj(Vj)∗.(16)

Taking the complex conjugate of both sides of (16) and using fact (i), we obtain that
the SVD of

(
FN−j(A), 1

N fN−j(b)
)

is given by(
FN−j(A),

1

N
fN−j(b)

)
= U

j
Σj(Vj)∗.(17)

Since (Gj , cj , zj) is the output of the TLS algorithm with input
(
Fj(A), fj(b), 1

N

)
,

we have that

(Gj , cj) = σn+1u
j
n+1(v

j
n+1)

TT, (GN−j , cN−j) = σn+1u
N−j
n+1 (vN−j

n+1 )TT,(18)

where

T = (diag 1, 1, . . . , 1︸ ︷︷ ︸
n times

,
√

1/N).

uj
n+1 and vj

n+1 are the (n+1)th columns of the matrices Uj and Vj respectively. uN−j
n+1

and vN−j
n+1 are the (n + 1)th columns of the matrices UN−j and VN−j , respectively.

From (16) and (17) it follows that

uN−j
n+1 = uj

n+1, vN−j
n+1 = vj

n+1.(19)

Substituting (19) into (18) we deduce that GN−j = Gj and cN−j = cj .
Proof of (iii). First notice that (G0, c0, z0) is the output of the TLS algorithm

with real input (F0(A0), f0(b), 1
N ), and therefore G0 and c0 are real-valued. If N is

odd, then ΔAj can be written as

ΔAj =
1

N

N−1∑
i=0

ω−ijGi

=
1

N
G0 +

1

N

N−1
2∑

i=1

(ω−ijGi + ω−(N−i)jGN−i)

fact (ii)
=

1

N
G0 +

1

N

N−1
2∑

i=1

(ω−ijGi + ω−ijGi),

which is a real-valued matrix. The proof for the case where N is even and for the
vector Δb are almost identical.
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STLS WITH BLOCK CIRCULANT MATRICES 249

Proof of (iv). Since ΔA is a real-valued matrix and Δb is a real-valued matrix
and x is the unique solution of the real system (A − ΔA)x = b − Δb, we conclude
that x must be real-valued.

Computational complexity of algorithm BCTLS. There are two kinds of calcula-
tions performed by Algorithm BCTLS:

1. DFT and IDFT calculations. Steps 1 and 3 require the calculation of the
DFT of a block circulant matrix and a block vector (step 1) and the IDFT of
a block circulant matrix and a block vector (step 3). The calculation of the
DFT or the IDFT of a block circulant matrix given in (12) and (13) both re-
quire O(N2mn) operations. However, this can be reduced to O(N log(N)mn)
if one uses fast Fourier transform (FFT) [2]. Indeed, the computation of the
sequence F0(A), . . . ,FN−1(A) involves mn DFT calculations of sequences
of scalars, one for each component of A0, . . . ,AN−1. Each of the mn DFT
calculations can be done in O(N log(N)) operations by the classical FFT.
Similarly, the computational effort required in order to calculate the DFT or
the IDFT of a block vector is O(N log(N)m). Therefore, the overall compu-
tational effort of the DFT computations is O(N log(N)mn).

2. SVD calculations. The algorithm requires N SVD calculations in step 2. The
SVD of an m × n matrix can be calculated in O(m2n) operations (see, e.g.,
[6]). Thus, step 2 requires O(Nm2n) operations.

As a consequence, the overall computational complexity of the algorithm is
O(Nm2n + N log(N)mn) operations. Note that the computational effort of the un-
structured TLS problem with a matrix of the same size Nm × Nn is O(N3m2n)
operations, which, for large N , is significantly higher.

4.2. Illustration of Algorithm BCTLS. In this section we illustrate the
BCTLS algorithm through an example with N = 3,m = 3, and n = 2. Suppose
we have a “correct” linear system

A(c)x(c) = b(c),

where the “correct” solution is x(c) = (1, 1, 1, 1, 1, 1)T , A(c) is the 9×6 matrix defined

by A(c) = C(A
(c)
0 ,A

(c)
1 ,A

(c)
2 ), where

A
(c)
0 =

⎛
⎝ 1 1

1 1
1 0

⎞
⎠ , A

(c)
1 =

⎛
⎝ 1 1

0 0
1 0

⎞
⎠ , A

(c)
2 =

⎛
⎝ 1 1

1 0
0 1

⎞
⎠ ,

and b(c) is the “correct” observed vector, i.e., b(c) = A(c)x = (6, 3, 3, 6, 3, 3, 6, 3, 3)T .

Assume now that each component of A
(c)
0 ,A

(c)
1 ,A

(c)
2 , and b(c) is corrupted by a

Gaussian additive noise with zero expectation and standard variation 0.3. In one
realization of the noise, this gave rise to the “observed matrix” A = C(A0,A1,A2),

A0 =

⎛
⎝1.529 0.584

0.989 0.839
1.094 −0.091

⎞
⎠ , A1 =

⎛
⎝1.038 0.935

0.177 −0.140
0.681 −0.148

⎞
⎠ , A2 =

⎛
⎝1.074 0.132

1.287 0.224
0.092 1.195

⎞
⎠ ,

and the “observed vector,”

b = (5.934, 2.925, 2.941, 5.656, 2.989, 3.043, 6.434, 3.114, 3.163)T .
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250 AMIR BECK AND AHARON BEN-TAL

Ignoring the special structure of A and applying the (unstructured) TLS algo-
rithm, the TLS solution is

xTLS = (0.6832, 1.0906, 0.8109, 1.3365, 0.9744, 1.1405)T .

To solve the STLS problem we need to compute the three DFT components of A and
b:

F0(A) = A0 + A1 + A2 =

⎛
⎝ 3.6424 2.6517

2.4546 0.9236
1.8682 0.9557

⎞
⎠ ,

F1(A) = A0 + ωA1 + ω2A2 =

⎛
⎝ 0.4728 − 0.0307i −0.4499 − 0.1702i

0.2566 − 0.9609i 0.7974 − 0.3166i
0.7077 + 0.5107i −0.6149 − 1.1646i

⎞
⎠ ,

F2(A) = A0 + ω2A1 + ωA2 =

⎛
⎝ 0.4728 + 0.0307i −0.4499 + 0.1702i

0.2566 + 0.9609i 0.7974 + 0.3166i
0.7077 − 0.5107i −0.6149 + 1.1646i

⎞
⎠ ,

f0(b) = b0 + b1 + b2 = (18.0260, 9.0289, 9.1477)T ,

f1(b) = b0 + ω2b1 + ωb2

= (−0.1106 + 0.6740i,−0.1266 + 0.1085i,−0.1621 + 0.1034i)T ,

f2(b) = b0 + ωb1 + ω2b2

= (−0.1106 − 0.6740i,−0.1266 − 0.1085i,−0.1621 − 0.1034i)T .

Applying the TLS algorithm on the three sets of inputs (Fj(A), fj(b), 1/3) we derive
the three DFT components of x:

f0(x) =

(
2.5428
3.4395

)
, f1(x) =

(
−0.2096 + 0.1416i
−0.1480 − 0.1697i

)
, f2(x) =

(
−0.2096 − 0.1416i
−0.1480 + 0.1697i

)
,

and the solution of the STLS is given by

xSTLS = x = f−1(f(x)) =
1

3

⎛
⎝ f0(x) + f1(x) + f2(x)

f0(x) + ωf1(x) + ω2f2(x)
f0(x) + ω2f1(x) + ωf2(x)

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.7079
1.0478
0.8357
1.2938
0.9993
1.0978

⎞
⎟⎟⎟⎟⎟⎟⎠ .

It is interesting to note that in this particular case it so happens that

|(xSTLS)i − x
(c)
i | < |(xTLS)i − x

(c)
i | ∀i.(20)

Notice also that, as claimed in Theorem 4.1, xSTLS is a real vector.

5. STLS in the case of elementary block circulant systems. In this section
we assume that A is an elementary block circulant matrix, i.e., A = M(A0,A1),A0,
A1 ∈ Fm×n(m > n) (see section 3), and we wish to find a perturbation matrix
ΔA, which also has an elementary block circulant structure. In this case, the STLS
problem becomes

minΔA0,Δ,A1,Δb,x ‖ΔA‖2 + ‖Δb‖2

subject to (A − ΔA)x = b − Δb,
ΔA = M(ΔA0,ΔA1).

(21)
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STLS WITH BLOCK CIRCULANT MATRICES 251

Remark. Although an EBC matrix is a special case of a BC matrix, we cannot
apply the BCTLS algorithm to solve (21) since an EBC matrix possesses additional
special structure, Aj = Ak∀j �= k(j, k �= 0), which is not guaranteed to be produced
by the BCTLS algorithm.

As in the case of the block circulant structure, we will apply the DFT on both
sides of the consistency equation (A−ΔA)x = b−Δb and obtain that the consistency
equation is equivalent to N “small” linear systems: the linear system

(F0(A) − F0(ΔA))f0(x) = f0(b) − f0(Δb)

and the N − 1 linear systems

(F1(A) − F1(ΔA))fj(x) = fj(b) − fj(Δb), j = 1, 2, . . . , N − 1.

From (9) and (8) we have that

‖Δb‖2 =
1

N

⎛
⎝N−1∑

j=0

‖fj(Δb)‖2

⎞
⎠ , ‖ΔA‖2 = ‖F0(ΔA)‖2 + (N − 1)‖F1(ΔA)‖2.

Thus we obtain that in the case of EBC structure, the STLS problem (21) is reduced
to

minΔA0,ΔA1,Δb ‖ΔA0‖2 + 1
N ‖Δb0‖2 + (N − 1)‖ΔA1‖2 + 1

N

∑N−1
i=1 ‖Δbi‖2

subject to (F0(A) − F0(ΔA))f0(x) = f0(b) − f0(Δb)
(F1(A) − F1(ΔA))fj(x) = fj(b) − fj(Δb), 1 ≤ j ≤ N − 1,
ΔA = M(ΔA0,ΔA1).

Making the change of variables

G0 = F0(ΔA) = ΔA0 + (N − 1)ΔA1,

G1 = F1(ΔA) = ΔA0 − ΔA1,

cj = fj(Δb) =

N−1∑
i=0

ω−ijΔbi, 0 ≤ j ≤ N − 1,

zj = fj(x) =

N−1∑
i=0

ω−ijxi, 0 ≤ j ≤ N − 1,

we obtain the following equivalent minimization problem:

minG0,G1,c0,...,cN−1,z0,...,zN−1
‖G0‖2 + 1

N ‖c0‖2 + (N − 1)‖G1‖2 + 1
N

∑N−1
i=1 ‖ci‖2

subject to (F0(A) − G0)z0 = f0(b) − c0

(F1(A) − G1)zj = fj(b) − cj , 1 ≤ j ≤ N − 1,
(22)

which is separable with respect to the groups of variables (G0, c0, z0) and the variables
set

{(G1, c1, z1), . . . , (GN−1, cN−1, zN−1)}.

Therefore, the solution of the minimization problem (22) is the sum of the two mini-
mization problems

minG0,c0,z0 ‖G0‖2 + 1
N ‖c0‖2

subject to (F0(A) − G0)z0 = f0(b) − c0
(23)
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252 AMIR BECK AND AHARON BEN-TAL

and

minG1,c1,...,cN−1,z1,...,zN−1
(N − 1)‖G1‖2 + 1

N

∑N−1
i=1 ‖ci‖2

subject to (F1(A) − G1)zj = fj(b) − cj , 1 ≤ j ≤ N − 1.
(24)

The minimization problem (23) is a TLS problem, and the second problem (24) is
an MTLS problem. This gives rise to the following algorithm for solving the STLS
problem for EBC matrices.

Algorithm EBCTLS for elementary block circulant matrices.
Input: A,b, where A = M(A0,A1) ∈ F

Nm×Nm is an EBC matrix and b =
(bT

0 ,b
T
1 , . . . ,b

T
N−1)

T such that A0,A1 ∈ F
m×n and b0, . . . ,bN−1 ∈ F

m.
Output: ΔA,Δb,x, where ΔA ∈ F

Nm×Nm is an elementary block circulant matrix,
Δb ∈ F

Nm, and x ∈ F
Nn is the STLS solution.

1. Calculate the two different DFT components of A,

F0(A) = A0 + (N − 1)A1, F1(A) = A0 − A1,

and the N DFT components of b,

fj(b) =

N−1∑
i=0

ω−ijbi, 0 ≤ j ≤ N − 1.

2. Call the TLS algorithm with input
(
F0(A), f0(b), 1

N

)
and obtain an output

(G0, c0, z0).
3. Call the MTLS algorithm with input (F1(A), f1(b), . . . , fN−1(b), 1

N(N−1) )

and obtain an output G1, c1, c2, . . . , cN−1 and z1, . . . , zN−1.
4. Denote G = M(G0,G1), c = (cT0 , c

T
1 , . . . , c

T
N−1)

T and z = (zT0 , z
T
1 , . . . , z

T
N−1)

T .
The output of the EBCTLS algorithm is computed by applying the inverse
DFT of G, c, and z. The optimal solution of the STLS problem (21) is
then ΔA = M(ΔA0,ΔA1), Δb = (ΔbT

0 ,ΔbT
1 , . . . ,ΔbT

N−1)
T , and x =

(xT
0 ,x

T
1 , . . . ,x

T
N−1), where

ΔA0 = F−1
0 (G) =

1

N
(G0 + (N − 1)G1),

ΔA1 = F−1
1 (G) =

1

N
(G0 − G1),

Δbj = f−1
j (c) =

1

N

N−1∑
i=0

ωijci, 0 ≤ j ≤ N − 1,

xj = f−1
j (z) =

1

N

N−1∑
i=0

ωijzi, 0 ≤ j ≤ N − 1.

Remarks.
1. Steps 2 and 3 of Algorithm BCTLS require the following conditions to be

satisfied (see step 2 of the TLS and MTLS algorithms):

σn(F0(A)) > σn+1

(
F0(A),

1√
N

f0(b)

)
,

σn(F1(A)) > σn+1

(
F1(A),

1√
N(N − 1)

f1(b), . . . ,
1√

N(N − 1)
fN−1(b)

)
.

2. In the case F = R, the EBCTLS algorithm generates a real solution ΔA,Δb,
and x. The proof is almost identical to the proof of Theorem 4.1.
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6. Computational results. In this section we compare the SVD-based algo-
rithms, BCTLS and EBCTLS, which find the global optimum of the STLS problem
with BC and EBC matrices, respectively, to the following three methods.

1. The least squares (LS) method. Here, we enforce ΔA to be zero, and we choose
a minimal norm Δb. This is of course a very naive algorithm, and it assumes
that the nominal value of the matrix is the true value. If the matrix A has
full column rank, then the LS solution is given by xLS = (ATA)−1ATb and
Δb = b − AxLS (see, e.g., [1]).

2. The TLS method. The (unstructured) TLS method disregards the linear
structure of the matrix A and seeks a perturbation matrix ΔA and a pertur-
bation vector Δb that minimize ‖ΔA‖2 + ‖Δb‖2 subject to the consistency
equation b − Δb ∈ Range(A − ΔA).

3. The structured total least norm (STLN) method. This method was introduced
and studied in [7]. The STLN method (with 2-norm) is an iterative method
for solving STLS problems with arbitrary linear structure. In each iteration
of the STLN algorithm, a least squares problem is solved. In our problem, the
size of the matrix in the least squares problem is (Nm+2mn)×(Nn+2mn). If
N 	 m,n, then the complexity per iteration of the STLN method is O(m3n3),
which is computationally very demanding. The algorithm is essentially a
Newton-like method applied to a nonconvex function. There is no theoretical
proof of convergence and, even when convergence occurs, there is no guarantee
that it converges to a global optimum.

The first example considers a block circulant structure with N = 2,m = 28, n = 4.
We assume that there is a “correct” system,

b(c) = A(c)x(c),

where A(c) is given by

A(c) =

(
A

(c)
0 A

(c)
1

A
(c)
1 A

(c)
0

)

with A
(c)
0 ,A

(c)
1 ∈ R

28×4. Each component of the matrices A
(c)
0 and A

(c)
1 was chosen

to be −1 or 1 with probability 1/2 independently of the other components. Each
component of the correct vector x(c) was a randomly chosen integer number between
−10 and 9. The actual data A,b contains noise and is thus a perturbation of A(c) and
b(c) (where A has the same structure as A(c)). In our experiments each component
of A and b is the corresponding component of A(c) and b(c) plus a normal random
variable with zero expectation and standard deviation equal to 0.2. We considered
three quantities to describe the results: the relative error of the matrix, the relative
error of the solution, and the function value:

Aerr = ‖A − ΔA − A(c)‖/‖A(c)‖,
xerr = ‖x − x(c)‖/‖x(c)‖,

value = ‖ΔA‖2 + ‖Δb‖2.

The results given in the table below are the average over 200 realizations of the
noise affecting the matrix A(c) and the vector b(c).

D
ow

nl
oa

de
d 

10
/3

1/
20

 to
 1

32
.6

6.
11

.2
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



254 AMIR BECK AND AHARON BEN-TAL

Method Value
LS 16.4376

TLS 6.2414
STLN 2.7601

BCTLS 2.7601

In this example the STLN algorithm converged to the global optimum. The
average number of iterations of the STLN algorithm was 14 and ranged between 11
and 17. It also can be seen that both the BCTLS and the STLN solutions were better
than the LS solution in all aspects.

In our second example, we considered an EBC matrix with N = 3, m = 16, and
n = 4. Hence, A(c) is given by

A(c) =

⎛
⎜⎝ A

(c)
0 A

(c)
1 A

(c)
1

A
(c)
1 A

(c)
0 A

(c)
1

A
(c)
1 A

(c)
1 A

(c)
0

⎞
⎟⎠ ,

where A
(c)
0 ,A

(c)
1 ∈ R

16×4 and the components of A
(c)
0 and A

(c)
1 were randomly chosen

to be 0 or 1. Each component of the correct vector x(c) was a randomly chosen integer
number between −10 and 9. The results in the table below are the average over 100
realizations of the noise

Method Value
LS 523.9572

TLS 34.4647
STLN 12.4633

EBCTLS 6.1789

As can be seen from the above table, the STLN method in this case is suboptimal
and does not converge to a global optimum. Moreover, in 17 out of the 100 instances
the STLN algorithm did not converge at all, and in all 83 other cases it converged,
after hundreds of iterations, but not to a global optimum.
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