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Abstract We introduce the notion of predicted decrease approximation (PDA) for
constrained convex optimization, a flexible framework which includes as special cases
known algorithms such as generalized conditional gradient, proximal gradient, greedy
coordinate descent for separable constraints and working set methods for linear equal-
ity constraints with bounds. The new scheme allows the development of a unified
convergence analysis for these methods. We further consider a partially strongly con-
vex nonsmooth model and show that dual application of PDA-based methods yields
new sublinear convergence rate estimates in terms of both primal and dual objectives.
As an example of an application, we provide an explicit working set selection rule for
SMO-type methods for training the support vector machine with an improved primal
convergence analysis.
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1 Introduction

1.1 Context

Linear oracle based methods, such as the conditional gradient algorithm, are arguably
among the simplestmethods to tackle problems consisting ofminimizing smooth func-
tions over compact convex sets. Indeed, suchmethods amount to solving a sequence of
linear programs over the constraint set [5,12,14,15,24]. This simplicity translates into
O(1/k) convergence rates (k being the iteration counter) which are not improvable
in general [7,17]. Despite its apparent simplicity, it was shown in recent works that
linear oracle based methods have a very elegant interpretation in the context of convex
duality [3] and allow for stronger primal–dual convergence results [17].

In view of this situation, a legitimate question is whether these nice convergence
properties can be generalized to more complicated models, as well as more advanced
methods such as proximal splitting methods or working set-based methods for con-
strained optimization problems. Our starting point will be to take a new look at the
conditional gradient algorithm and treat it as an analytical tool that will enable us to
analyze convergence properties of more advanced methods.

1.2 Contributions

Our main idea is to ensure that an algorithmic step is “at least as good” as a conditional
gradient step. This is the concept of “predicted decrease” which is central in this
work and is very much related to the inexact oracle with multiplicative error already
presented in [21,22] in the context of conditional gradient and in [8,16] in the context
of support vector machines. As a first step, we show that this concept of predicted
decrease is general enough to encompass a variety of descent methods for problems
of the form

min
y∈Rd

{F(y) + G(y)} ,

where F is smooth and convex and G is a closed, convex with compact domain.
Our framework allows to unify the convergence analysis of generalized conditional
gradient, proximal gradient, greedy coordinate descent for separable constraints and
working set methods for linear equality constraints with bounds. For each of these
methods, the analysis is based on the same concept of predicted decrease leading to
explicit sublinear rates.

As a second step we focus on the partially strongly convex, nonsmooth problem

min
x∈Rn

{ f (Ax) + g(Bx)} ,

where f is strongly convex, g is convex and globally Lipschitz, A and B are matri-
ces where A has full row rank. We consider the application of a predicted decrease
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approximation method to the dual of this problem. Our analysis yields an O(1/k) rate
of convergence in terms of both primal and dual sequences. These results are original
up to our knowledge.

As for practical applications in data analysis, we show that our results translate
into improved convergence guaranties in term of primal sequence for the application
of SMO-type working set methods [18,28,29] to the training of a Support Vector
Machine (SVM) [11]. These algorithms take advantage of the structure of the SVM
dual quadratic program and allow to perform iterative search with extremely sparse
updates—only two coordinates are updated at each iteration. This results in extremely
cheap iterations, linear of the size of the dataset, and constitutes one of themost widely
used algorithm for SVM training. Convergence rates for these types of algorithms are
very scarce in the literature. We provide an O(1/k) rate of convergence rate for the
primal sequence which is the quantity of interest in practice. This improves upon the
O(1/

√
k) rate which is, up to our knowledge, the best known rate in term of primal

suboptimality for these types of working set methods [16].

1.3 Relations with previous works

SMO-typeworking setmethods for SVM training See [35, Section 6.2] for an overview
and [9] for implementation details and extensions to broader machine learning set-
tings [13,32,37]. Typical convergence results for the dual SVM problem rely on a
concept that is directly related to our predicted decrease [16,33] and yields an O(1/k)
convergence rate estimate in terms of the dual SVM objective. Interestingly, primal
convergence guaranties for these approaches are very scarce in the literature. In this
respect, our result improves upon available results given in [16,25,26]. On the prac-
tical side, we specify a new working set selection rule for the dual SVM problem
which is completely explicit and whose complexity is linear in the number of training
examples.

Box plus linear equality constraints This model generalizes that of the dual SVM to
larger number of linear equality constraints [2,26,35]. A byproduct of our analysis
provides a working set selection based on the fundamental theorem of linear program-
ming. The additional computational cost compared to a single call to the linear oracle
of the conditional gradient method is proportional to the dimension. This leads to a
search direction which has the same sparsity level as the number of linear equali-
ties while retaining a multiplicative error inversely proportional to the dimension. A
similar but less explicit construction was proposed in [26] for the same model.

Approximate linear oraclemethods Aswe consider linear oracle basedmethods as our
basic analytical tool, someparts of the technicalmachinery involved in the convergence
analysis is inspired by known results for such methods. In particular, our convergence
analysis utilizes the artificial introduction of the stepsize proposed in [22], and non-
uniform averaging schemes for primal sequence computation [1,22,23]. The analysis
that we propose extends to more general models and allows to treat partially strongly
convex primal problems.
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1.4 Organization of the paper

We introduce the “predicted decrease approximation” (PDA) framework in Sect. 2
where we show that this scheme encompasses many algorithms as special cases
including the proximal gradient method and working set methods for linear equality
constrainedmodels.We also give a first sublinear convergence rate estimate. In Sect. 3,
we introduce our partially strongly convex primal model and investigate the applica-
tion of our PDA framework to the Lagrangian dual. This yields sublinear convergence
rates in terms of primal and dual objective function sequences.We demonstrate numer-
ically in Sect. 4 the efficiency of the proposed approach to a synthetic 1D inpainting
problem and SVM training.

1.5 Notation

For any two vectors x, y ∈ R
n , [x, y] denotes the line segment between them, which

is defined by [x, y] = {λx + (1 − λ)y : 0 ≤ λ ≤ 1}. For a given vector x, xi denotes
its i th entry. For a vector v ∈ R

K , the norm ‖v‖ is the l2 norm, while for a given
matrix A ∈ R

m×n , ‖A‖ stands for the spectral norm of A. The column vectors of all
ones and all zeros are denoted by 1 and 0 respectively, where the dimension of the
vectors will be clear from the context. The vector ei is i th vector of the canonical
basis, meaning that its i th component is one, while all other components are zeros.
The n × n identity matrix is denoted by In , where the subscript will be omitted
whenever the dimension is clear from the context. For any two vectors x and y of the
same dimension, x ◦ y denotes their componentwise product (or Hadmard product),
which can also be expressed as diag(y)x where for a vector y, diag(y) denotes the
square diagonal matrix whose diagonal elements are the entries of y. We denote by
y† the vector for which y†i = 1/yi whenever yi �= 0 and y†i = 0 otherwise. For
a matrix A, im(A) denotes its image space (the subspace spanned by its columns).
The l0 norm of a vector (which is actually not a norm) is the number of nonzero
elements in x, that is, ‖x‖0 = #{i : xi �= 0}. A function h : R

K → R is called
M-smooth if it is continuously differentiable and its gradient is Lipschitz continuous
with constant M :

‖∇h(x) − ∇h(y)‖ ≤ M‖x − y‖ for all x, y ∈ R
K .

An extended real-valued function h : R
K → (−∞,∞] is called μ-strongly con-

vex (μ > 0 being a parameter) if h(·) − μ
2 ‖ · ‖2 is convex. Given a function

f : Rn → (−∞,∞], the convex conjugate is the function

f ∗(y) = max
x∈Rn

{〈x, y〉 − f (x)} .

We also use standard notations from convex analysis as in [30].
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2 The predicted decrease approximation (PDA) method

Consider the composite model

min
y∈Rd

{H(y) ≡ F(y) + G(y)}, (2.1)

where the following assumption is made throughout this section

Assumption 1

• F : Rd → R is L-smooth and convex over Rd .
• G : Rd → (−∞,∞] is a proper closed convex function with a compact domain.

It follows from Assumption 1 that problem (2.1) consists of minimizing a proper
convex closed function over a compact domain and thus has a finite optimal value,
denoted by H∗, which is attained. When G is an indicator of a compact convex
set, problem (2.1) amounts to minimize a smooth function over a compact set. The
optimization model (2.1) allows for more general nonsmooth convex functions G. We
will denote the diameter of domG by

diam(domG) = max
x,y∈domG

‖x − y‖. (2.2)

An important mathematical quantity that will be used throughout the analysis of the
method is the optimality measure defined by

S(y) ≡ max
p

{〈∇F(y), y − p〉 + G(y) − G(p)} .

Using the definition of the convex conjugate of a function, the optimality measure can
be rewritten as

S(y) = G(y) + G∗(−∇F(y)) + 〈∇F(y), y〉. (2.3)

ByFenchel’s inequality S(y) ≥ 0 for any y ∈ domG, and by the conjugate subgradient
theorem [30, Theorem 23.5], we have that S(y) = 0 holds if and only if −∇F(y) ∈
∂G(y), that is, if and only if y is an optimal solution of problem (2.1). It is also known
(see e.g., [4]) that

H(y) − H∗ ≤ S(y) (2.4)

for any y ∈ domG, hence the name “optimality measure”. We will also use the
notation

p(y) ∈ argminp {〈∇F(y),p〉 + G(p)} , (2.5)

where we will assume throughout the paper that when the optimum is attained at
multiple points, there is an arbitrary but fixed choicep(y) for each y.With this notation,
we can write

S(y) = 〈∇F(y), y − p(y)〉 + G(y) − G(p(y)).
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We can interpret S(y) = 〈∇F(y), y〉 + G(y) − [〈∇F(y),p(y)〉 + G(p(y))
]
as the

predicted decrease at y by the approximate function z �→ 〈∇F(y), z〉 + G(z). The
vector p(y) is important and is being used for example in the so-called generalized
conditional gradient method in which at each iteration k, the vector p(yk) is computed
and the next iteration is defined by the update rule yk+1 = yk + tk(p(yk) − yk) for an
appropriate stepsize tk (see [1,4]). In this section we will define a much broader class
of methods that is related to a different vector whose predicted decrease is at least a
certain portion of the predicted decrease of p(y).

Definition 2.1 ( 1
γ
-predicted decrease approximation). For γ ≥ 1 and ȳ ∈ domG,

we say that a vector u(ȳ) ∈ domG is a 1
γ
-predicted decrease approximation (PDA)

vector of H at ȳ if

1

γ
S(ȳ) ≤ 〈∇F(ȳ), ȳ − u(ȳ)〉 + G(ȳ) − G(u(ȳ)). (2.6)

Note that for any γ ′ ≥ γ ≥ 1, any 1
γ
-PDA vector is also a 1

γ ′ -PDA vector.

We will sometimes refer to a 1
γ
-PDA vector of H as a 1

γ
-PDA vector of problem (2.1).

The constant 1
γ
will be called the approximation factor. For the classical conditional

gradient method (in the special case where G is the indicator function of a compact
convex set), this definition appeared under the name “approximate linear oracle” with
multiplicative error [21,22] or “rate certifyingmethods” in the context of SVM training
[8,16].Although the definition is a simple generalization of the concept of approximate
linear oracles to composite models, the point of view is different—the approximation
does not necessarily comes from approximation errors, but from the fact that it allows
to ensure additional structure in the form of the update while maintaining desirable
convergence properties. For example it might be reasonable to construct u(·) requiring
more computations than p(·) if it ensures additional structural features. One trivial
example of a PDA vector is the choice u(ȳ) = p(ȳ), which is obviously a 1-PDA
vector. However, in cases where additional properties are required from the vector
u(ȳ), other choices should be considered. For example, in some applications (such
as support vector machines [29,35]), it is important to choose a vector u(ȳ) which is
different from ȳ by only a few coordinates, namely that u(ȳ) − ȳ is sparse. The next
example shows that when G is block-separable, we can always construct a 1

m -PDA
vector (m being the number of blocks) at any given vector ȳ, which is different from
ȳ by only one coordinate.

Example 2.2 (separable nonsmooth parts). Consider a partition of the decision vari-
ables vector y to m blocks:

y =

⎛

⎜
⎜⎜
⎝

y1
y2
...

ym

⎞

⎟
⎟⎟
⎠

,
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where yi ∈ R
di and d1 + d2 + · · · + dm = d. We define the matrices Ui ∈ R

d×di ,

i = 1, 2, . . . ,m for which

(U1,U2, . . . ,Um) = Id .

Suppose that

G(y) =
m∑

i=1

Gi (yi ), (2.7)

where by the properties of G given in Assumption 1, it follows that G1,G2, . . . ,Gm

are closed proper and convex with compact domain. Let us define the following i th
partial optimality measure for any i = 1, 2, . . . ,m:

Si (y) = max
pi

{〈∇i F(y), yi − pi 〉 + Gi (yi ) − Gi (pi )}

with ∇i F being the vector of partial derivatives of F corresponding to the i th block.
Obviously, S(y) = ∑m

i=1 Si (y) for any y ∈ domG. Now, suppose that ȳ ∈ domG,
and let

ī ∈ argmaxi=1,2,...,mSi (ȳ). (2.8)

With this definition we have

S(ȳ) =
m∑

i=1

Si (ȳ) ≤ mSī (ȳ). (2.9)

Let zī ∈ dom (Gī ) be given by

zī ∈ argminpī {〈∇ī F(y),pī 〉 + Gi (pī )},

so that in particular

Sī (ȳ) = 〈∇ī F(ȳ), ȳī − zī 〉 + Gī (ȳī ) − Gī (zī ). (2.10)

Define u(ȳ) = ȳ + Uī (zī − ȳī ). Then u(ȳ) ∈ domG and

〈∇F(ȳ), ȳ − u(ȳ)〉 + G(ȳ) − G(u(ȳ)) = 〈∇ī F(ȳ), ȳī − zī 〉 + Gī (ȳī ) − Gī (zī )

= Sī (ȳ) ≥ 1

m
S(ȳ),

where the first equality uses (2.7) and the inequality follows from (2.9), establishing
the fact that u(ȳ) is indeed a 1

m -PDA vector.
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2.1 The method

We will require the following standard notation (see e.g., [6]):

QL(y, x) ≡ F(x) + 〈∇F(x), y − x〉 + L

2
‖y − x‖2.

Below we describe the general form of the 1
γ
-predicted decrease approximation ( 1

γ
-

PDA) method (for some given γ ≥ 1). At each iteration k, the method constructs
yk+1 out of the current iterate yk by minimization of the exact original objective or
the quadratic model QL over a set that contains the line segment [yk,u(yk)], where
u(yk) is a 1

γ
-predicted decrease approximation vector of H at yk .

1
γ
-predicted decrease approximation ( 1

γ
-PDA) method:

Initialization. y0 ∈ domG.
General Step. For k = 0, 1, . . .,

(i) – Choose u(yk)- a 1
γ
-PDA vector of H at yk .

– Choose a compact set Xk for which [yk,u(yk)] ⊆ Xk .
(ii) Perform one of the following:

Local model update: yk+1 = argminy∈Xk QLk (y, y
k) + G(y); (2.11)

Exact update: yk+1 = argminy∈Xk F(y) + G(y). (2.12)

Remark 2.3 The description that has been made so far is formal and highlights the
important mechanisms of the PDA framework. Therefore, the steps that have been
described in the algorithm may not reflect exactly the computational effort for each
specific instance of the method. Two comments are in order.

• Only Xk , and not u(yk), is required for the computation in step (ii) and the only
important property of this set is the second condition in (i). In some settings (e.g.,
greedy coordinate descent), the computation of u(yk) is also required but this is
not necessarily the case and u(yk) could be implicit and not computed in practice
(e.g., proximal gradient algorithm). See also Sect. 2.2 for more details.

• In general, there is a tradeoff between steps (i) and (ii). Step (i) can be seen as a
reduction step which aims at decreasing the complexity of computing step (ii) or
increasing its efficiency in term of reaching the global minimum. In many PDA-
methods, the separation between steps (i) and (ii) is not that clear and both steps
can be mixed. The current presentation highlights the different roles of each step,
but does not necessarily reflect the practical implementation of the algorithm.

We will sometimes refer to a 1
γ
-PDAmethod as a PDAmethod with approximation

factor 1
γ
. Note that from Definition 2.1 if γ ′ ≥ γ ≥ 1, then a 1

γ
-PDA method is
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also a 1
γ ′ -PDA method. The local model update step can be equivalently written as a

proximal gradient step:

yk+1 = prox 1
Lk

G+δXk

(
yk − 1

Lk
∇F(yk)

)
, (2.13)

where for a given proper closed convex function h : Rn → (−∞,∞], the proximal
operator is defined by [27]

proxh(x) = argminu

{
h(u) + 1

2
‖u − x‖2

}
.

One element that is missing in the above description of the 1
γ
-PDA method when

local model updates are chosen is the way the constants Lk are chosen. When the
step involves an exact update, only for the purpose of analytical proofs, we will arti-
ficially define Lk = L . When a local model update is employed, then the underlying
assumption on Lk is that

F(yk+1) ≤ QLk (y
k+1, yk). (2.14)

Two choices of Lk that warrant inequality (2.14) are

1. Lk ≡ L , where L is the global Lipschitz constant of ∇F (which exists thanks to
Assumption 1).

2. Lk is chosen by a backtracking procedure. Specifically (see [6, FISTA with back-
tracking]), we take η > 1 and L̄ > 0 (initial estimate of Lk) and at each iteration
we pick the smallest nonnegative integer ik for which (2.14) is satisfied with
Lk = ηik L̄ and yk+1 given by (2.13).

Since (2.14) is satisfied with Lk ≥ L , we obtain that if the kth step uses the local
model update with backtracking, then

Lk ≤ max{ηL , L̄}. (2.15)

2.2 Special cases of the PDA method

The PDA method is actually a very general scheme and different choices of PDA
vectors u(·) and sets Xk can result in quite different methods—some are well known.

2.2.1 Generalized conditional gradient method

Taking u(y) ≡ p(y), Xk = [yk,u(yk)] and using the exact update scheme, we obtain
that the PDA method reduces to the generalized conditional gradient method with
exact line search [1].
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generalized conditional gradient
Initialization: y0 ∈ domG.
General step (k=0,1,…):

• Compute p(yk) ∈ argminp
{〈∇ f (yk),p〉 + G(p)

}
.

• Set yk+1 = yk + tk(p(yk) − yk) where

tk ∈ argmint∈[0,1]H(yk + t (p(yk) − yk)).

The above method is a PDA method with approximation factor 1. Note that if we
change the choice of Xk to Xk = {yk + t (p(yk) − yk) : t ≥ 0}, then the PDA method
amounts to a variation of the generalized conditional gradient method in which larger
stepsizes can be taken. Specifically, the stepsize in this setting is given by

tk ∈ argmint≥0{H(yk + t (p(yk) − yk)) : yk + t (p(yk) − yk) ∈ domG}.

Obviously, since Xk still contains p(yk), it follows that the approximation factor is
still 1.

2.2.2 Proximal gradient method

Taking u(y) ≡ p(y), Xk = R
d and using the local model update, we obtain the

proximal gradient method [6,10].

proximal gradient
Initialization: y0 ∈ domG.
General step (k=0,1,…):

• Compute

yk+1 = prox 1
Lk

G

(
yk − 1

Lk
∇F(yk)

)
,

where Lk satisfies the condition (2.14).

The above description of the proximal gradientmethod encompasses both a constant
stepsize scheme where Lk = L for any k, as well as a backtracking scheme that
guarantees the validity of the inequality (2.14). The approximation factor of themethod
is 1.

2.2.3 Hybrid proximal gradient/generalized conditional gradient

Since the strategy for choosing u(yk) and Xk at each iteration can be different, one can
construct a 1-PDAmethod that chooses at each iteration to either employ a generalized
conditional gradient step or a proximal gradient step.
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2.2.4 Greedy coordinate descent for separable problems

Back to the setting of Example 2.2, assume that G is separable and has the form (2.7).
Let us consider the following two choices for the set Xk :

X̄ k = {ȳ1} × {ȳ2} × · · · {ȳī−1} × [yk
ī
,pī (y

k)] × {ȳī+1} × · · · × {ȳm},
X̃ k = {ȳ1} × {ȳ2} × · · · {ȳī−1} × domGī × {ȳī+1} × · · · × {ȳm}.

The general form of the resulting method, which uses a greedy-type index selection
strategy is now described.

greedy coordinate descent
Initialization: y0 ∈ domG.
General step (k=0,1,…):

• Compute

ī ∈ argmaxi=1,2,...,mSi (y
k),

where

Si (yk) = 〈∇Fi (yk), yki − pi (yk)〉 + Gi (yki ) − Gi (pi (yk))

with

pi (yk) ∈ argminpi {〈∇Fi (yk),pi 〉 + Gi (pi )}.

• Core step: Compute yk+1.

The update formula of yk+1 (“core step”) depends on the specific choice of Xk and
the type of update rule (exact/local model). Some options are given below.

• greedy block conditional gradient (Xk = X̄ k , exact update)

yk+1 = yk + tkUī (pī (y
k) − yk

ī
),

where tk ∈ argmin0≤t≤1H
(
yk + tUī (pī (y

k) − yk
ī
)
)
.

• greedy block minimization (Xk = X̃ k , exact update)

yk+1
i

{ = yki , i �= ī,

∈ argminyī

{
F(yk + Uī (yī − yk

ī
)) + Gī (yī ) : yī ∈ domGī

}
, i = ī .

(2.16)
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• greedy block projected-gradient (Xk = X̃ k, local model step)

yk+1
i =

{
yki , i �= ī,

prox 1
Lk

Gī

(
yk
ī

− 1
Lk

∇ī F(yk)
)

, i = ī .

As shown in Example 2.2, all these methods are 1
m -PDA methods.

2.2.5 Block descent method for linearly constrained problems

In this sectionwe consider instances of the generalmodel (2.1) inwhich the constraints
are the intersection of linear equalities and bound constraints, see also [2,26,35]. These
models admit extensions of the working set methods originally developed for the dual
of the SVM training problem (“SMO-type methods”) [18,28,29], see also [9] and
references therein. We present a new working set selection rule based on the 1

γ
-PDA

framework and then comment on the application to the dual SVM problem.

Model and construction of PDA Suppose that G(y) ≡ δC (y), where

C = {y ∈ R
d : Dy = b, � ≤ y ≤ u},

with D ∈ R
m×d ,b ∈ R

m and �,u ∈ R
d are two vectors satisfying � ≤ u (inequalities

between vectors are understood coordinatewise). In this case, problem (2.1) takes the
form

min F(y)
s.t. Dy = b,

� ≤ y ≤ u.

(2.17)

The vector p(y) is obviously a 1-PDA vector of the problem at y. The question is
whether we can find a PDA vector with an appropriate approximation factor, which
is different from y by only a few components, thus enabling sparse updates. For that,
we introduce below a procedure, termed sparseDir, which, for a given point ȳ ∈ C ,
finds a direction vector ds(ȳ) ∈ R

d that will be shown in Lemma 2.5 to satisfy that (i)
it has at mostm+1 nonzero elements and (ii) ȳ+ds(ȳ) is a 1

d -PDA vector of problem
(2.17) at ȳ.

sparseDir has three main steps. The first is based on a regular general conditional
gradient step which allows to find a dense 1-PDA vector. The second one is a reduction
step. It consists in finding basic feasible solution of a certain linear program while not
decreasing a given objective function (this is standard in linear programming). The
linear program is designed such that the resulting basic feasible solutions are sparse.
The last step is the construction of a sparse PDA vector from the solution of the linear
program.
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spraseDir
Input: ȳ ∈ C .
Output: ds(ȳ) ∈ R

d .
Algorithm:

(i) Set

r = p(ȳ) − ȳ, (2.18)

D̃ = Ddiag(r),

c = r ◦ ∇F(ȳ).

(ii) Compute v̄, a basic feasible solution of the linear system

D̃v = 0, (2.19)

〈1, v〉 ≤ ‖r‖0,
v ≥ 0

such that

〈c, v̄〉 ≤ 〈c, r† ◦ r〉. (2.20)

(iii) If ‖r‖0 = 0, set ds(ȳ) := 0. Otherwise set

ds(ȳ) := 1

‖r‖0 r ◦ v̄. (2.21)

Remark 2.4 (Validity of the procedure) The set of solutions of (2.19) is nonempty and
bounded. The boundedness follows from the constraints 〈1, v〉 ≤ ‖r‖0 and v ≥ 0. The
feasibility of (2.19) follows by the fact that the vector v = r† ◦ r is feasible. Indeed,
since Dp(ȳ) = Dȳ = b, we have

D̃(r† ◦ r) = Ddiag(r)(r† ◦ r) = Dr = D(p(ȳ) − ȳ) = 0.

Furthermore, it canbe easily checked that
〈
1, r† ◦ r

〉 = ‖r‖0 and r†◦r ≥ 0, establishing
the feasibility of r† ◦ r. The fundamental theorem of linear programming [19] (with
objective 〈c, ·〉 and constraints (2.19)) ensures that there exists a basic feasible solution
of system (2.19) for which (2.20) is satisfied.

Given a vector y, define
us(y) = y + ds(y). (2.22)

We will now show that us(y) is a 1
d -PDA vector of problem (2.17) at y, which is

different from y by at most m + 1 elements.
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Lemma 2.5 Fix y ∈ C. Then us(y) given by (2.22) satisfies

(a) ‖us(y) − y‖0 ≤ m + 1.
(b) us(y) is a 1

d -PDA vector of problem (2.17) at y.

Proof By (2.22), us(y) − y = ds(y), where ds(y) is either 0, or given by (2.21):

ds(y) = 1

‖r‖0 r ◦ v̄ (2.23)

with r = p(y) − y and v̄ being a basic feasible solution of (2.19) satisfying

〈c, v̄〉 ≤ 〈c, r† ◦ r〉,

where
c = r ◦ ∇F(y). (2.24)

The case where ‖r‖0 = 0 is trivial since in this case y is an optimal solution of problem
(2.17), and hence S(y) = 0, implying that the PDA condition (2.6) is satisfied. Assume
then that ds(y) is given by (2.23). Since v̄ is a basic feasible solution of (2.19), it has
at mostm+1 nonzero elements. Hence, us(y)−y = ds(y) has at mostm+1 nonzero
elements, proving (a).
To prove (b), we begin by establishing the feasibility of us(y) with respect to problem
(2.17). We have 〈1, v̄〉 ≤ ‖r‖0, v̄ ≥ 0, and therefore, 0 ≤ v̄

‖r‖0 ≤ 1. Combining this
with the obvious inequalities � ≤ p(y) ≤ u and � − y ≤ 0 ≤ u − y, it follows that

� − y ≤ v̄
‖r‖0 ◦ (� − y) ≤ v̄

‖r‖0 ◦ (p(y) − y)
︸ ︷︷ ︸

ds (y)

≤ v̄
‖r‖0 ◦ (u − y) ≤ u − y, (2.25)

and thus
� ≤ us(y) = y + ds(y) ≤ u. (2.26)

In addition,

Dus(y) = Dy + Dds(y) = b + 1

‖r‖0D(v̄ ◦ r) = b + 1

‖r‖0Ddiag(r)v̄

= b + 1

‖r‖0 D̃v̄ = b + 0 = b,

which combined with (2.26) implies that us(y) ∈ C . We are left with the task of
showing that inequality (2.6) is satisfied with γ = d and G = δC . For that, note that
(recalling (2.24))

〈c, v̄〉 ≤ 〈c, r†◦r〉 = 〈r◦∇F(y), r†◦r〉 = 〈∇F(y), r〉 = 〈∇F(y),p(y)−y〉 = −S(y).
(2.27)
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Finally,

〈∇F(y), y − us(y)〉 = −〈∇F(y),ds(y)〉 by (2.22)
= − 1

‖r‖0 〈∇F(y), r ◦ v̄〉 by (2.23)

= − 1
‖r‖0 〈r ◦ ∇F(y), v̄〉

= − 1
‖r‖0 〈c, v̄〉 by (2.24)

≥ 1
‖r‖0 S(y) by (2.27)

≥ 1
d S(y), ‖r‖0 ≤ d

establishing the fact that us(y) is a 1
d -PDA vector of problem (2.17) at y. ��

PDA-based algorithms Based on the 1
d -PDA vector us(y), we can define a variety of

1
d -PDA methods depending on the choice of (i) the sets Xk and (ii) the update step
(exact/local model). Below we describe four options. At iteration k, all the methods
begin by computing us(yk). The first two possibilities fully exploit us(yk), and they
actually resort to line search. The last two options only use the information on the
support of ds(yk), and utilize the set of indices

Jk = {i : us(yk)i = yki }.

• line segment minimization (Xk = [yk,us(yk)], exact update)

yk+1 = yk + tk(us(yk) − yk),

where tk ∈ argmin0≤t≤1F(yk + t (us(yk) − yk)).
• ray minimization (Xk = {yk + t (us(yk) − yk) : t ≥ 0}, exact update)

yk+1 = yk + tk(us(yk) − yk),

where tk ∈ argmint≥0 {F(yk + t (us(yk) − yk)) : � ≤ yk + t (us(yk) − yk) ≤ u}.
• block exact minimization (Xk = {y ∈ C : yi = yki , i ∈ Jk}, exact update)

yk+1 ∈ argmin{F(y) : y ∈ C, yi = yki , i ∈ Jk}.

• block projected gradient (Xk = {y ∈ C : yi = yki , i ∈ Jk}, local model update)

yk+1 = PXk

(
yk − 1

Lk
∇F(yk)

)
.

Rank reduction Given p(ȳ), computing v̄ as given by step (ii) of sparseDir can be
done by finding a basic feasible optimal solution of the auxiliary linear program (2.19).
This may be a prohibitive additional cost in many settings. Alternatively, it is possible
to compute v̄ by a classical rank reduction technique. As outlined in Remark 2.4,
v = r† ◦ r is always feasible for the auxiliary linear program. Starting with v, it is
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possible to find s �= 0 with support included in that of v, such that D̃s = 0, 〈s, 1〉 = 0
and 〈s, c〉 ≤ 0 using Gaussian elimination in O(m3) operations. One can then preform
a step in the direction s to remove a coordinate from the support of v. After at most
d iterations of this procedure, a basic feasible solution for the auxiliary program is
found. The total cost for this rank reduction is O(dm3) which remains linear in the
dimension of the problem.

Application to the dual SVM One important motivation for this type of working set
techniques is that they provide scalable algorithms for solving the SVM dual problem
(see Sect. 4.2). In this case, the dimension of the problem is equal to the number of
examples in the training set and we have only one linear equality constraint in C .
This motivates the use of SMO-type working set methods which update only pairs of
variables at each iterations. The 1

d -PDAconstruction thatwe propose in this section can
be used here. The most costly steps of the working set selection rule that we propose
here are the computation of p(ȳ) and the computation of a basic feasible solution of the
auxiliary linear program. As we have seen in the previous paragraph, the latter can be
done, given p(ȳ), in linear time in d, the dimension of the problem. For the dual SVM,
the computation of p(ȳ) is a fractional knapsack problem which can be solved in a
number of operations which is linear in the dimension (see Sect. 4.2). This, combined
with the previous rank reduction scheme, gives a completely explicit construction of a
1
d -PDA vector for the dual SVMwhose construction has complexity which is linear in
the number of examples. A similar but much less explicit construction was proposed
in [26] for the same model.

2.3 Sublinear rate of convergence analysis

In this section we prove a sublinear rate of convergence of the 1
γ
-PDA method. The

analysis is based on the artificial introduction of the diminishing stepsize, tk = 2γ /(k+
2γ ), which is due to [22]. We begin with the following recursion that characterizes
sequences produced by the 1

γ
-PDA algorithm. The arguments behind the proof of

the lemma have become fairly standard in the analysis of conditional gradient-type
methods.

Lemma 2.6 Let {yk}k≥0 be the sequence generated by the 1
γ
-PDA method. Fix an

arbitrary sequence {tk}k≥0 such that for any k ≥ 0, we have 0 ≤ tk ≤ 1. Then for any
k ≥ 0, we have

H(yk+1) ≤ H(yk) − tk
γ
S(yk) + LkD2

2
t2k ,

where D = diam(domG).
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Proof Using Definition 2.1, for any k ≥ 0, define uk = u(yk) ∈ Xk as the 1
γ
-PDA

vector that satisfies

[yk,uk] ⊆ Xk,

1

γ
S(yk) ≤ 〈∇F(yk), yk − uk〉 + G(yk) − G(uk). (2.28)

We have

min
y∈Xk

{
QLk (y, y

k) + G(y)
}

≤ min
y∈[yk ,uk ]

{
QLk (y, y

k) + G(y)
}

= min
0≤t≤1

{
QLk (tu

k + (1 − t)yk, yk) + G(tuk + (1 − t)yk)
}

≤ QLk (tku
k + (1 − tk)yk, yk) + G(tkuk + (1 − tk)yk)

= F(yk) + tk〈∇F(yk),uk − yk〉 + t2k
Lk

2
‖yk − uk‖2 + G(tkuk + (1 − tk)yk)

≤ F(yk) + G(yk) + tk
(
〈∇F(yk),uk − yk〉 + G(uk) − G(yk)

)
(2.29)

+ t2k
Lk‖yk − uk‖2

2
≤ F(yk) + G(yk) − tk

γ
S(yk) + t2k

Lk D2

2
, (2.30)

where the convexity of G was used in (2.29), and (2.30) follows by (2.28) and the
definition of the diameter. Finally, note that for both rules (2.11) or (2.12) we have

F(yk+1) + G(yk+1) ≤ min
y∈Xk

{
QLk (y, y

k) + G(y)
}

. (2.31)

Indeed, since in the exact minimization step we have Lk ≡ L , it follows that in this
case

F(y) ≤ QLk (y, y
k) for any y ∈ Xk,

and hence also that

F(y) + G(y) ≤ QLk (y, y
k) + G(y) for any y ∈ Xk . (2.32)

Taking the minimum of both sides over y ∈ Xk will yield (2.31). In the local model
update setting, using (2.14), we can write

F(yk+1) + G(yk+1) ≤ QLk (y
k+1, yk) + G(yk+1) = min

y∈Xk

{
QLk (y, y

k) + G(y)
}

,

which is the same as (2.31). Finally, combining (2.30) and (2.31), the desired result
follows. ��

We now need one technical lemma in order to prove the sublinear convergence rate.
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Lemma 2.7 Suppose thatγ ≥ 1andC ≥ 0. Let {ak}k≥0 and {bk}k≥0 be two sequences
such that 0 ≤ ak ≤ bk for any k ≥ 0. Set tk = 2γ

k+2γ , and assume in addition that

ak+1 ≤ ak − tk
γ
bk + C

2
t2k . (2.33)

Then for any k ≥ 0,

∑k
i=0 (bi − ai ) (i + 2γ − 1)

∑k
i=0(i + 2γ − 1)

+ ak+1 ≤ 2γ

k + 2γ

(
2γ − 2

k + 1
a0 + Cγ

)
. (2.34)

Proof From inequality (2.33) and the definition of tk , we get that for any i ≥ 0

bi −ai ≤
(

γ

ti
− 1

)
ai − γ

ti
ai+1 + Cγ

2
ti = i + 2γ − 2

2
ai − i + 2γ

2
ai+1+ Cγ 2

i + 2γ
.

(2.35)

Multiplying inequality (2.35) by i + 2γ − 1 ≥ 0, we get

(bi − ai )(i + 2γ − 1) ≤ (i + 2γ − 2)(i + 2γ − 1)

2
ai − (i + 2γ )(i + 2γ − 1)

2
ai+1

+ Cγ 2 i + 2γ − 1

i + 2γ

≤ (i + 2γ − 2)(i + 2γ − 1)

2
ai − (i + 2γ )(i + 2γ − 1)

2
ai+1

+ Cγ 2. (2.36)

Summing inequality (2.36) for i = 0, 1, . . . , k gives

k∑

i=0

(bi − ai )(i + 2γ − 1) ≤ (2γ − 2)(2γ − 1)

2
a0 − (k + 2γ )(k + 2γ − 1)

2
ak+1

+ Cγ 2(k + 1). (2.37)

Dividing both sides of (2.37) by k+1
2 (k + 2γ ) ≥ 0, yields for any k ≥ 0,

∑k
i=0(bi − ai )(i + 2γ − 1)

k+1
2 (k + 2γ )

+ k + 2γ − 1

k + 1
ak+1

≤ 2γ

k + 2γ

(
(2γ − 2)(2γ − 1)

2γ (k + 1)
a0 + Cγ

)
≤ 2γ

k + 2γ

(
2γ − 2

k + 1
a0 + Cγ

)
.

(2.38)
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Inequality (2.34) now follows by the fact that k+2γ−1
k+1 ≥ 1 (since γ ≥ 1), and the

relation

k∑

i=0

(i + 2γ − 1) = k + 1

2
(k + 4γ − 2) ≥ k + 1

2
(k + 2γ ),

where the inequality also follows by the fact that γ ≥ 1. ��
We will now utilize Lemma 2.7 to show the sublinear rate of convergence of the

sequence of function values generated by the 1
γ
-PDA method. By Lemma 2.6 and

(2.15) it follows that relation (2.33) holds with ak = H(yk) − H∗, bk = S(yk) and
C = K , where K is chosen as follows:

K =
⎧
⎨

⎩

L · diam(domG)2, exact minimization, or local model with
constant stepsize,

max{ηL , L̄} · diam(domG)2, local model with backtracking.
(2.39)

By (2.4) we also have that ak ≤ bk for all k ≥ 0. We can thus invoke Lemma 2.7
and obtain the following result.

Lemma 2.8 Let {yk}k≥0 be the sequence generated by
1
γ
-PDA method. Then for any

k ≥ 0

∑k
i=0

(
S(yi ) − [H(yi ) − H∗]) (i + 2γ − 1)

∑k
i=0(i + 2γ − 1)

+ H(yk+1) − H∗

≤ 2γ

k + 2γ

(
2γ − 2

k + 1
(H(y0) − H∗) + Kγ

)
, (2.40)

where K is given in (2.39).

Since S(yi ) ≥ H(yi ) − H∗, we can deduce the sublinear rate of convergence of the
sequence of function values generated by 1

γ
-PDA method.

Theorem 2.9 Let {yk}k≥0 be the sequence generated by the
1
γ
-PDA method. Then for

any k ≥ 0

H(yk+1) − H∗ ≤ 2γ

k + 2γ

(
2γ − 2

k + 1
(H(y0) − H∗) + Kγ

)
,

where K is given in (2.39).

Remark 2.10 (Dependancy in γ ) It can be seen that the rate given in Theorem 2.9 is
increasing as a function of γ . This is consistent with the fact that a 1

γ
-PDA method is

also a 1
γ ′ -PDA method for any γ ′ ≥ γ ≥ 1 and highlights the influence of the degree

of approximation of the method.
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3 The dual-based 1
γ
-PDA method

3.1 Model, duality and basic properties

In this section we will present and analyze a method that employs the 1
γ
-PDA frame-

work on a dual problem. The primal optimization model that will be analyzed has the
form

p̄ ≡ min
x∈Rn

{ f (Ax) + g(Bx)} , (3.1)

where A ∈ R
r×n and B ∈ R

q×n . We will make the following standing assumption on
the problem’s data.

Assumption 2 (A) A has full row rank
(B) f : Rr → R ∪ (−∞,∞] is proper closed and μ-strongly convex.
(C) g : Rq → R is closed, convex and has a Lipschitz constant Lg .
(D) dom g∗ is closed.
(E) One of the following holds:

(i) g is polyhedral and im(AT ) ∩ BT dom(g∗) is nonempty.
(ii) im(AT ) ∩ BT ridom(g∗) is nonempty, where ridom(g∗) is the relative interior

of the domain of g∗.
Several properties can be readily deduced from Assumption 2:

• f ∗ : Rr → R is convex and 1
μ
-smooth (by (B)) ([31, Section 12H]).

• g∗ : Rq → (∞,∞] is proper closed and convex and its domain is contained in a
ball of radius Lg centered at the origin (by (C)) ([30, Corollary 13.3.3]).

• If (E.i) is satisfied, then g∗ is also polyhedral and dom g∗ is a polytope ([30,
Theorem 19.2]).

Under Assumption 2, problem (3.1) does not fit the general model (2.1) that can be
tackled using PDA methods. We will tackle problem (3.1) through duality, and at the
same time explore primal–dual properties of PDA methods. The Lagrangian dual of
problem (3.1) can be written as

q̄ ≡ max − f ∗(w) − g∗(z)
s.t. ATw + BT z = 0,

w ∈ R
r , z ∈ R

q .

(3.2)

Remark 3.1 (Derivation of the dual) We artificially introduce additional variables and
equality constraints x1 = Ax and x2 = Bx in problem (3.1). The Lagrangian function
then has the form

L(x, x1, x2;w, z) = f (x1) + g(x2) + 〈w,Ax − x1〉 + 〈z,Bx − x2〉
= f (x1) − 〈w, x1〉 + g(x2) − 〈z, x2〉 +

〈
ATw + BT z, x

〉
.

Expression (3.2) follows by partial minimization of the Lagrangian with respect to x1,
x2 and x.
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We will denote the feasible set of problem (3.2) by X :

X ≡
{
(w, z) : z ∈ dom(g∗), ATw + BT z = 0

}
.

Some elementary arguments can be used to show the compactness of X .

Lemma 3.2 X is compact.

Proof The closedness of X follows by the closedness of dom g∗. Moreover, for any
(w, z) ∈ X , we have z ∈ dom g∗ and hence in particular

‖z‖ ≤ Lg. (3.3)

In addition, by the relation ATw = −BT z, it follows that

wTAATw = ‖ATw‖2 = ‖BT z‖2 ≤ ‖B‖2L2
g,

which implies that

‖w‖2 ≤ ‖B‖2L2
g

λmin(AAT )
.

Combining this with (3.3) implies that X is bounded, and the compactness is estab-
lished. ��
The next lemma shows, using general duality theory, that the optimal values of the
primal–dual pair of problems (3.1) and (3.2) are the same, and the optimal values of
both problems are attained.

Lemma 3.3 The optimal values, p̄ and q̄, of problems (3.1) and (3.2) are finite,
attained and equal.

Proof Problem (3.2) consists of maximizing an upper semicontinuous function over
a nonempty compact set (Lemma 3.2), and hence its optimal value is attained. In
addition, by duality theory [30], it follows that under the regularity condition (E) in
Assumption 2, the optimal value of problem (3.1) is the same as the optimal value of
problem (3.2), and that the minimum is attained. ��
We will also consider in our analysis the matrix

P ≡ AT (AAT )−1A. (3.4)

This matrix is associated with the orthogonal projection operator on the row space of
A in the sense that (see [34, Section 3.3])

Px = argminy
{
‖x − y‖ : y ∈ im(AT )

}
.

A useful property of the matrix P is described in the following lemma.
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Lemma 3.4 For any v ∈ R
n and w ∈ R

r , v = ATw if and only if v = Pv and
w = (AAT )−1Av.

Proof If v = ATw, then Pv = AT (AAT )−1AATw = ATw = v. In addition, since
v = ATw, then w is the solution of the least squares problem minu ‖v − ATu‖2,
meaning that w = (AAT )−1Av. Conversely, if v = Pv and w = (AAT )−1Av, then
ATw = AT (AAT )−1Av = Pv = v. ��

By Lemma 3.4, the equality BT z+ATw = 0 holds if and only if (I − P)BT z = 0
and w = −(AAT )−1ABT z, and thus the dual problem can be recast as

max − f ∗(−(AAT )−1ABT z) − g∗(z)
s.t. (I − P)BT z = 0,

z ∈ R
q ,

(3.5)

or in minimization form:

min f ∗(−(AAT )−1ABT z) + g∗(z)
s.t. (I − P)BT z = 0,

z ∈ R
q .

(3.6)

By the fact that the optimal value of the dual problem (3.2) is finite and attained, it
follows that this is also the case for problem (3.6). In addition, since we passed from
a maximum to a minimum problem by multiplying the objective function by −1, it
follows that the optimal value of problem (3.6) is −q̄ .

Problem (3.6) fits the general model (2.1) with

F(z) = F1(z) ≡ f ∗(−(AAT )−1ABT z),

G(z) = G1(z) ≡ g∗(z) + δ{p:(I−P)BT p=0}(z).

Thus, problem (3.6) can be written as

min
z∈Rq

{H1(z) ≡ F1(z) + G1(z)}. (3.7)

The optimality measure associated with (3.7) is given by

S1(z) = max
p

{〈∇F1(z), z − p〉 + G1(z) − G1(p)} . (3.8)

3.2 The dual-based 1
γ
-PDA method

The specific choice F = F1 and G = G1 satisfies the assertions in Assumption 1 with

L = ‖(AAT )−1ABT ‖2
μ

, (3.9)
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and we can thus invoke the 1
γ
-PDAmethod to solve problem (3.6). Below we describe

the dual-based 1
γ
-PDA method, along with a specification of the primal sequence

{xk}k≥0.

Dual-Based 1
γ
-PDA Method:

Initialization. Pick z0 satisfying (I − P)BT z0 = 0, z0 ∈ dom g∗.
General Step. For k = 0, 1, 2 . . .,

(i) – Choose u(zk)- a 1
γ
-PDA vector of H1 at zk .

– Choose a compact set Zk for which [zk,u(zk)] ⊆ Zk .
(ii) Perform one of the following:

Local model update: zk+1 = prox 1
Lk

G1+δZk

(
zk − 1

Lk
∇F1(zk)

)

Exact update: zk+1 = argminz∈Zk F1(z) + G1(z)

(iii) Set wk = −(AAT )−1ABT zk and compute sk by one of the following formulas:

Averaging: sk = 1
∑k

i=0 (i + 2γ − 1)

k∑

i=0

(i + 2γ − 1)∇ f ∗(wi )

Best iterate: sk = ∇ f ∗(wk0), k0 ∈ argmini=0,1,...k{S1(zi ) − H1(zi )}

(iv) Compute

xk ∈ argminx
{
g(Bx) : Ax = sk

}
. (3.10)

Remark 3.5 (Primal sequence) Steps (iii) and (iv) are only required if we are interested
in estimating a primal sequence, {xk}k≥0. In this case, step (iv) needs to be preformed
only at the last iteration. The second option in step (iii) requires the evaluation of S1
which is given in (3.8).Many examples of PDAmethods rely on this evaluation in order
to compute predicted decrease directions (generalized conditional gradient, greedy
coordinate descent and block descent for linearly constrained problems). Therefore,
in these cases the computation of S1 can be reused in this step.

Remark 3.6 (Primal feasibility) Note that since∇ f ∗(v) ∈ dom f for any v, it follows
by the definition of sk and the convexity of f that sk ∈ dom f for any k. By the
definition of xk , we have Axk ∈ dom f , implying that the dual-based 1

γ
-PDA method

is a primal feasible method, which is actually not a common situation in dual-based
methods.

Remark 3.7 (Online computation) In the case of averaging, sk satisfies the recurrence
relation sk = (1− wk)sk−1 + wk∇ f ∗(wk) for any k ≥ 1, where wk = 2(k+2γ−1)

(k+1)(k+4γ−2)
and is therefore amenable to efficient online computation.
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3.3 Convergence analysis

Convergence of the dual objective function evaluated at the sequence of dual variables
can be deduced by Theorem 2.9. However, in many cases (like in the examples to be
discussed in Sect. 4), we are interested in the rate of convergence of the sequence of
primal function values, { f (Axk)+ g(Bxk)}k≥0 to the optimal value p̄. To accomplish
this task, we will investigate the optimality measure given in (3.8). The following key
theorem shows a representation of the optimality measure that will enable us later on
to obtain a rate of convergence of the dual-based 1

γ
-PDA method.

Theorem 3.8 For any z ∈ dom g∗

S1(z) = min
Ax=∇ f ∗(w)

g(Bx) + f (∇ f ∗(w)) + g∗(z) + f ∗(w)

with w = −(AAT )−1ABT z.

In order to prove the theorem, we will need the following strong duality result.

Lemma 3.9 For any s ∈ R
r , we have

min
x∈Rn

g(Bx) = max
p∈Rq

〈
(AAT )−1s,ABTp

〉 − g∗(p)

s.t. Ax = s s.t. (I − P)BTp = 0
(3.11)

and both optimal values are finite and attained.

Proof We begin by rewriting the left-hand problem in (3.11) as

min
u∈Rq ,x∈Rn

{g(u) : Bx = u,Ax = s}. (3.12)

The Lagrangian of the problem is

L(u, x;p,w) = g(u) + 〈p,Bx − u〉 + 〈w, s − Ax〉.

Minimizing with respect to u and x, we obtain the following dual problem:

max
p

{−g∗(p) + 〈w, s〉 : BTp − ATw = 0}. (3.13)

The feasible set of problem (3.13) is compact since dom g∗ is compact and the fact
that the matrix A has full row rank (see also the argument in the proof of Lemma
3.2). Therefore, since −g∗ is upper semicontinuous, it follows that the maximum in
problem (3.13) is attained. By the regularity condition (E) in Assumption 2, it follows
that strong duality holds meaning that the optimal values of problems (3.12) and
(3.13) are equal and the optimal value of (3.12) is attained. Invoking Lemma 3.4 with
v = BTp, we obtain that the equalityBTp−ATw = 0 is equivalent to (I−P)BTp = 0
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and w = (AAT )−1ABTp, which readily implies that problem (3.13) can be reduced
to

max
p

{−g∗(p) + 〈ABTp, (AAT )−1s〉 : (I − P)BTp = 0},

which proves the desired result. ��
Equipped with Lemma 3.9, we can now prove Theorem 3.8.

Proof of Theorem 3.8 Since

∇F1(z) = −(AAT )−1ABT∇ f ∗(−(AAT )−1ABT z),

it follows that S1 given by (3.8) can rewritten as

S1(z) = max
p:(I−P)BT p=0

{〈
−BAT (AAT )−1∇ f ∗(−(AAT )−1ABT z), z − p

〉

+ g∗(z) − g∗(p)
}

= max
p:(I−P)BT p=0

{〈
(AAT )−1∇ f ∗(−(AAT )−1ABT z),ABT (p − z)

〉

+ g∗(z) − g∗(p)
}
.

Invoking Lemma 3.9 with s = ∇ f ∗(−(AAT )−1ABT z), we obtain that S1 can be
written as

S1(z) =
[

min
Ax=∇ f ∗(−(AAT )−1ABT z)

g(Bx)
]

+ g∗(z)

−
〈
(AAT )−1∇ f ∗(−(AAT )−1ABT z),ABT z

〉

= min
Ax=∇ f ∗(w)

g(Bx) + g∗(z) + 〈∇ f ∗(w),w
〉
,

where w = −(AAT )−1ABT z. Since f is proper closed and convex,

〈∇ f ∗(w),w〉 = f (∇ f ∗(w)) + f ∗(w).

Thus,

S1(z) = min
Ax=∇ f ∗(w)

g(Bx) + f (∇ f ∗(w)) + g∗(z) + f ∗(w),

as asserted. ��
Theorem 3.10 (Primal–dual convergence) Let {xk}k≥0 and {zk}k≥0 be the sequences
generated by the 1

γ
-PDA method employed on problem (3.6). Then for any k, zk is

dual feasible, xk is primal feasible and
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f (Axk) + g(Bxk) + H1(zk+1) ≤ 2γ

k + 2γ

(
2γ − 2

k + 1
(H1(z0) + p̄) + 4K̃γ

)
, (3.14)

where

K̃ =

⎧
⎪⎨

⎪⎩

‖(AAT )−1ABT ‖2
μ

L2
g, exact minimization or local model with

constant stepsize,

max
{
η

‖(AAT )−1ABT ‖2
μ

, L̄
}
L2
g, local model with backtracking.

(3.15)

Proof For any k ≥ 0 the vector zk is dual feasible by its construction and xk is primal
feasible as stated in Remark 3.6. Invoking Lemma 2.8, using the expression for L
given in (3.9), the fact that diam(dom (g∗)) ≤ 2Lg and the fact that H∗ = −q̄ = − p̄
(where H∗ is the optimal value of (3.7)), we obtain for any k ≥ 0 (after cancelation
of the constant term p̄, or H∗ in Lemma 2.8)

∑k
i=0

(
S1(zi ) − H1(zi )

)
(i + 2γ − 1)

∑k
i=0(i + 2γ − 1)

+ H1(zk+1)

≤ 2γ

k + 2γ

(
(2γ − 2)

k + 1
(H1(z0) + p̄) + 4K̃γ

)
. (3.16)

Using Theorem 3.8, settingwi = −(AAT )−1ABT zi , we have for any i = 0, 1, . . . , k

S1(zi ) − H1(zi ) = S1(zi ) −
(
f ∗(wi ) + g∗(zi )

)

= min
Ax=∇ f ∗(wi )

g(Bx) + f (∇ f ∗(wi )) + f ∗(wi ) + g∗(zi )

−
[
f ∗(wi ) + g∗(zi )

]

= min
Ax=∇ f ∗(wi )

g(Bx) + f (∇ f ∗(wi )). (3.17)

We now split the proof into two cases according to the construction of sk .
First assume that we use the averaging construction. In this case, we have
sk = 1∑k

i=0(i+2γ−1)

∑k
i=0 (i + 2γ − 1) ∇ f ∗(wi ). We note that the function s �→

minAx=s g(Bx) + f (s) is convex and hence, using (3.17),

∑k
i=0

(
S1(zi ) − H1(zi )

)
(i + 2γ − 1)

∑k
i=0(i + 2γ − 1)

=
∑k

i=0

(
minAx=∇ f ∗(wi ) g(Bx) + f (∇ f ∗(wi ))

)
(i + 2γ − 1)

∑k
i=0(i + 2γ − 1)

≥ min
Ax=sk

g(Bx) + f (sk)

= f (Axk) + g(Bxk).
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This concludes the proof for the case where sk is given by averaging. Suppose now
that sk is given by keeping the best iterate, that is, sk = ∇ f ∗(wk0) where k0 ∈
argmini=0,1,...k

{
S1(zi ) − H1(zi )

}
. In this case, using again (3.17),

∑k
i=0

(
S1(zi ) − H1(zi )

)
(i + 2γ − 1)

∑k
i=0(i + 2γ − 1)

≥ S1(zk0) − H1(zk0)

= min
Ax=sk

g(Bx) + f (sk)

= f (Axk) + g(Bxk),

and the proof is complete. ��
Remark 3.11 Recall that H1 is the opposite of the dual objective of problem (3.2).
Thus, the left-hand side of (3.14) is the difference between the objective of problem
(3.1) evaluated at xk and the objective of its dual problem (3.2) evaluated at (wk, zk),
and can thus be considered as a duality gap. In addition, the term H1(z0)+ p̄ appearing
in the right-hand side of (3.14) is the initial dual suboptimality in (3.2).

Remark 3.12 (Constant refinement) The constantsμ, Lg andmatrix norms that appear
in (3.15) canbe refined in specific instances. Indeed, theProof ofTheorem3.10 requires
to consider the smoothnessmodulus of f ∗ and the diameter of dom (g∗) only restricted
to functions of the form G1 + δZk , which for some specific choices of Zk can yield
much better constants than μ and Lg (as for example in Sect. 4.2). It is possible to
propose even finer refinements using curvature constants that take into account the
geometry of the problem [17].

4 Applications and numerical illustration

We illustrate the relevance of the primal model (3.1) with two examples. The first one
is a toy one-dimensional inpainting problem, for which we would like to recover a
piecewise constant signal from partial noisy measurements. In the second example
we consider binary classification with offset and binary SVM with offset. For each
of the problems we explicitly write the corresponding dual 1

γ
-PDA method and show

numerical results.

4.1 1D inpainting

4.1.1 Description of the problem

In the 1D inpainting problem, we assume that we are given noisy measurements of
a subset of components of a vector x̃ ∈ R

n . Specifically, we are given a function
I : {1, 2, . . . , p} → {1, 2, . . . , n} satisfying

1 = I (1) < I (2) < · · · < I (p) = n.
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Note that we consider that the first and last entries of x̃ are measured. Indeed, we will
use the canonical order on coordinates and focus on interpolation, and in particular
on entries between the two extreme measurements which we denote by 1 and n. The
indices I (1), I (2), . . . , I (p) are exactly the indices for which the noisymeasurements
of x̃ are given:

y j = x̃ I ( j) + ε j , j = 1, 2, . . . , p, (4.1)

where ε j can be viewed as noise or errors. The vector y ∈ R
p is given and we

would like to recover x̃ based on additional prior structure. We will denote the set of
known indices by I = {I (1), I (2), . . . , I (p)}. A different way to represent (4.1) is
by defining a matrix A ∈ R

p×n by

Ai, j =
{
1, j = I (i),
0, else.

, i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , n}.

Using the matrixA, (4.1) becomes y ≈ Ax̃. In order to recover the lost measurements,
we assume that the original vector x̃ is piecewise constant.Wecanuse the total variation
norm as a structure inducing prior to recover x̃. We consider the following penalized
least-squares problem

min
x∈Rn

1

2
‖Ax − y‖2 + λ

n−1∑

i=1

|xi − xi+1|, (4.2)

which can be rewritten as

min
x∈Rn

1

2
‖Ax − y‖2 + λ‖Bx‖1, (4.3)

where B ∈ R
(n−1)×n , is such that for all i = 1, 2, . . . , n − 1, Bi,i = 1, Bi,i+1 = −1,

and all other entries are zeros. Problem (4.3) is of the general form of the main model
(3.1) with f (·) = 1

2‖ · −y‖2 and g(·) = λ‖ · ‖1. Thus, the dual problem as given in
(3.6) takes the form

min 1
2‖ABT z + y‖2

s.t. (I − ATA)BT z = 0,
‖z‖∞ ≤ λ,

(4.4)

where here we used the fact that AAT = I (since the rows of A are different unit
vectors). Furthermore,ATA is a diagonal matrix whose i th diagonal entry is 1 if i ∈ I
(hence including 1 and n) and 0 otherwise. In addition, BT is of size n × (n − 1) with
BT
i,i−1 = −1 and BT

i,i = 1 for i = 2, 3, . . . , (n − 1). Combining these two facts, we
have that the system of equality constraints in (4.4) is equivalent to the system

zi = zi−1, ∀i /∈ I. (4.5)

The specific form of these constraints makes it easy to construct a basis for the null
space. We assume that all elements of this basis are given by the columns of a matrix
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U and perform the change of variables z = Uz̃. The matrix U can be chosen to be of
the following form

U =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,

where columns that contain several ones account for constraints of the form of (4.5)
for several consecutive indices not in I . The special example given here corresponds to
I = {1, 2, 3, 7, 8, 9, 10} and n = 10. The construction of U ensures that its columns
form a basis of the null space of (I − ATA)BT and that for any z̃, ‖Uz̃‖∞ = ‖z̃‖∞.
Therefore, problem (4.4) is equivalent to the problem

min
z̃

1

2

∥∥
∥ABTUz̃ + y

∥∥
∥
2

s.t. ‖z̃‖∞ ≤ λ, (4.6)

which is a box constrained problem that can be solved by various methods such as
the conditional gradient method or the proximal gradient method (which are 1-PDA
methods) or one of the variants of greedy coordinate descent method as explained in
Sect. 2.2.4. We focus on methods which yields primal convergence rates as described
in Sect. 3.

4.1.2 Numerical simulation

We compare the conditional gradient, greedy block conditional gradient and projected
gradient on problem (4.6). All these methods can be viewed as 1

γ
-PDA methods. The

numerical criterion of interest is the duality gap. Theorem 3.10 provides a primal
dual convergence rate estimate of O(1/k) for the three methods. The analysis allows
to reconstruct sequences of estimates for the primal problem (4.2). We simulate a
piecewise constant signal, remove some of its entries and add gaussian noise. The
simulation setting is illustrated in Fig. 1. The comparative primal–dual convergence
is given in Fig. 2. The sparse version of the conditional gradient method performs
significantly better than the traditional conditional gradient and slightly better than the
traditional projected gradient method. Furthermore, the averaging rule to reconstruct
the primal sequence seems to help a bit for the traditional conditional gradient while it
tends to degradeperformances for bothgreedyblock conditional gradient andprojected
gradient.
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Fig. 1 Numerical simulation setting. The original one dimensional signal is in red. The observations consist
in removing some part of the signal and adding noise (in green). The signal recovered by the greedy block
conditional gradient method is given in blue. Note that the fact that the gaps in the recovered signal are
smaller than in the original signal is an unavoidable effect of total variation regularization (color figure
online)
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Fig. 2 Comparative performances of the full conditional gradient, its greedy block version and the projected
gradient algorithm on the simplified dual problem (4.6). The comparison is in terms of duality gap with
(gap AVG) and without (gap) using the averaging rule for primal reconstruction

4.2 Binary classification with offset

4.2.1 Setting

Structural risk minimization is the process of estimating a decision function by mini-
mizing a risk term evaluated on an empirical dataset with a capacity control term [36].
Wewill focus on binary classificationwith affine predictors.We have q datapoints, that
is, for each i = 1, 2, . . . , q, we have a vector of features si ∈ R

n and a binary output
ti ∈ {−1, 1}. We are looking for a decision boundary given by a pair (x, b) ∈ R

n ×R

of the form {a ∈ R
n : 〈x, a〉 = b}. This is done by minimizing a penalized empirical

risk.

min
x,b

1

2
‖x‖2 + C

q

q∑

i=1

l(ti (〈x, si 〉 − b)), (4.7)
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whereC > 0 is a given regularization parameter and l is a convex Lipschitz continuous
and nonincreasing loss function from R to R with a nonzero derivative at the origin.
Let S be the matrix whose columns are the vectors ti si , i = 1, 2, . . . , q, and t be the
vector whose entries are ti , i = 1, 2, . . . , q. It is clear that problem (4.7) fits model
(3.1) with f : Rn → R and g : Rq → R defined by

f (w) ≡ 1

2
‖w‖2, g(u) ≡ C

q

q∑

i=1

l(ui ),

where A ∈ R
n×(n+1) and B ∈ R

q×(n+1) are given by

A = (
In 0n×1

)
, B = (

ST −t
)
, (4.8)

where 0a×b is the a×b zeros matrix for a, b ∈ N. To write explicitly the dual problem
(3.6), we will first compute the matrix P

P = AT (AAT )−1A =
(

In 0n×1
01×n 0

)
.

Therefore, we have the following equivalence:

(I − P)BT z = 0 iff tT z = 0. (4.9)

Also, since AAT = I, we have

− (AAT )−1ABT z = −ABT z = − (
In 0n×1

) ( S
−tT

)
z = −Sz. (4.10)

The conjugates of f and g are

f ∗(y) = 1

2
‖y‖2, g∗(r) = C

q

q∑

i=1

l∗
(qri
C

)
. (4.11)

Therefore, plugging (4.9), (4.10) and (4.11) into the general form of the dual problem
(3.6), we obtain that a dual of problem (4.7) in minimization form is

min 1
2z

TSTSz + C
q

∑q
i=1 l

∗ ( qzi
C

)

s.t. tT z = 0.
(4.12)

4.2.2 Support vector machine and SMO type algorithms

We will be particularly interested in the case of the SVM [11] for which l is the hinge
loss, meaning that l : z → max {1 − z, 0}. In this case, l∗(z) ≡ z + δ[−1,0](z), and
thus (4.12) can be written as
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min 1
2z

TSTSz + 1T z,
s.t. −C

q ≤ zi ≤ 0, i = 1, 2, . . . , q
tT z = 0,

(4.13)

which corresponds to the usual expression of the dual SVM problem (after making the
change of variables z ← −z) that consists of minimizing smooth objective function
over a box with one additional linear equality constraint. Active set methods rely on
updates of pairs of variables in the dual [18,28,29]. These algorithms are among the
most popular for SVM training with offset because the updates are very cheap and
allow to consider large numbers of training points [9]. Since the method we propose
falls in this category of approaches, we restrict ourselves to this class of methods in
the theoretical discussion (Sect. 4.2.3) and numerical experiments (Sect. 4.2.4).

Since there is a single linear constraint in the dual, we can use the construction of
Sect. 2.2.5 to build such a working set method that updates only pairs of dual variables
at each iteration. The interesting additional property here is that this constitutes a
1
q -PDA method and our theory applies. Solving the linear oracle for the SVM can
be viewed as a fractional knapsack problem. A naive solution requires to sort a q
dimensional vector and perform an exhaustive search (linear in q). This problem can
also be solved in O(q) operations with a weighted medians algorithm [20, Section
17.1].

To compute the primal sequence {(xk, bk)}k≥0 from the dual sequence {zk}k≥0, we
use the formula (3.10). We will consider the following two possibilities:

sk =
{
(averaging) − 1∑k

i=0(i+2q−1)

∑k
i=0(i + 2q − 1)Szi ,

(last iterate) − Szk,

xk = sk,

bk ∈ argminb∈R
q∑

i=1

l(ti (〈ski , si 〉 − b)).

Note that, as outlined in Remark 3.7, the averaged sequence can be computed online
without storing thewhole sequence of iterates.We can invokeTheorem3.10 and obtain
O(1/k) rates of convergence for the averaging rule. For the other rule, we have the
same rate for the best primal point estimated so far. Note that we do not have primal
convergence guaranties concerning the last iterate. We still consider it here in order to
investigate the effect of averaging.

4.2.3 Implications of Theorem 3.10 for binary SVM and relation to the literature

Theorem 3.10 ensures that after k iterations of any dual 1
q -PDA method, we find

primal variables (xk, bk) and a dual variable zk such that the difference between the
primal objective evaluated at (xk, bk) with the dual objective evaluated at zk+1 is of
order O(1/k). In particular, (xk, bk) achieves a training accuracy of order O(1/k).
We emphasize that this training accuracy (or primal suboptimality) is very relevant
from a machine learning perspective. For the sake of clarity, we restrict the discussion
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to active set methods which are widely used for SVM training [9]. In this context, the
closest results we could find in the literature are [16, Theorem 2] and [25, Corollary
3] which we comment below.

• [16, Theorem 2] ensures that if zk is ε-suboptimal for problem (4.13), then the
corresponding primal variables as given by the last iterate rule is

√
ε-suboptimal

for problem (4.12). They show in addition that zk has dual suboptimality of order
O(1/k) resulting in a O(1/

√
k) convergence rate for the primal variable in (4.7).

Theorem 3.10 improves this result by showing a rate of O(1/k) for both (4.7) and
(4.13).

• [25, Corollary 3] ensures that if the duality gap is less than ε, then, the primal
variables corresponding to the last iterate are ε-optimal for the primal problem
(4.12). This is relevant since this quantity is often used as a stoping criterion.
However, this analysis is somehow incomplete since there is no explicit condition
on k ensuring that the duality gap is less than ε. Therefore the result cannot be
directly translated in a convergence rate for the primal variable sequence. Theorem
3.10 is stronger because it gives an explicit global rate of O(1/k) for both (4.7)
and (4.13).

The approximation factor of the method is 1
q where q is the number of datapoints.

This translates into a multiplicative constant of order of q2 in the rate of Theorem 3.10
which is a bit disappointing for large datasets. Note however that the squared diameter
of the feasible domain in problem (4.13) is not more than C2

q . Reading (3.14) with this
in mind, we obtain a bound of the form

2

2 + k
q

(
2d0
k
q

+ C2K1

)

,

where d0 is the dual suboptimality at iteration 0 and K1 only depends on the singular
values ofB. This shows that the global suboptimality is roughly inversely proportional
to the ratio k

q which is quite reasonable. Furthermore, as explained in Remark 3.12, it
is possible to further refine the constants appearing in (3.14), a process that will require
further discussions on finding tighter estimates on the scaling ofC and singular values
of S with increasing values of q. These specific considerations are beyond the scope
of this paper.

4.2.4 Numerical simulations

We consider training a linear SVM as given by (4.7) on a randomly generated dataset.
The setting is as follows

• The ambient dimension is p = 20.
• We consider two classes sampled from unit Gaussian random variables with a shift
in mean of magnitude 2 (in Euclidean norm).

• Wevary the number of datapoints q ∈ {100, 200}, evenly spread in the two classes.
• We vary the regularization parameter C ∈ {10, 100, 1000}.
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Fig. 3 Evolution of the primal and dual objectives with the number of iterations for the training of the SVM
on the toy dataset (see Sect. 4.2.4). PDA implements the update rule described in Sect. 2.2.5 and WSS1 is
the coordinate selection rule of LIBSVM [9]. q is the total number of datapoints and C is the regularization
parameter of the SVM. For both coordinate selection rules, we plot the value of the dual objective, the
primal objective and the primal objective with the averaging rule

The main purpose is to illustrate the behaviour of the PDA framework in view of
primal and dual suboptimality. We will use a coordinate selection rule that we call
WSS1, implemented in LIBSVM [9], one of the most widely used SVM solvers, as
a baseline. The only difference with PDA is the coordinate selection rule, the rest of
the algorithm being the same. Both selection rules are combined with an exact block
minimization step, which is a simple two-dimensional problem here. Note that in this
case, the cost of computing the PDA point of Sect. 2.2.5 is linear in q, the number
of training examples. Furthermore, Theorem 3.10 provides convergence guaranties
for both problems (4.7) and (4.13). For the WSS1 rule, the number of operations
required is of the order of q. Numerical results in term of evolution of the primal
and the dual objective values as a function of the iteration counter k are presented in
Fig. 3, which illustrate convergence of primal (with and without averaging) and dual
objective to the global optimum value. The main comment is that the working set
selection of the 1

q -PDA rule is competitive and at times superior to the WSS1 update
rule in terms of primal suboptimality on this specific problem. Another important
comment is that the absolute performances depend on the parameters of the problem.
The averaging rule for the primal sequence reconstruction does not seem to bring a
systematic practical advantage beyond smoother primal convergence. An interesting
remark is that the WSS1 rule provides in some cases a better dual convergence while
the primal convergence is worse compared to our PDA method. This highlights the
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idea that better convergence in terms of dual objective function does not necessarily
translates into faster convergence in the primal.

5 Conclusion

Thisworkbuilds upon the idea of predicted decrease approximation to provide a unified
convergence analysis for various existing decomposition algorithms for constrained
convex optimization. We have shown that a single result allows to treat as special
cases the generalized conditional gradient method, the proximal gradient method, the
greedy coordinate descent method and the working set method for smooth problems
with linear equality as well as bound constraints. Furthermore, we have shown that
the dual application of this approach leads to primal–dual convergence guaranties that
hold even if the primal model is only partially strongly convex. This lead to better
convergence analysis of SMO-type methods for the training of the SVM in terms of
primal sequence suboptimality. To conclude, we comment on the following aspects of
the proposed analysiswhich relates ourwork to broader considerations in optimization.

• The overall algorithmic recipe leads to block decomposition methods for models
involving non-separable constraints. The price to pay is the requirement to con-
sider larger blocks (larger subsets of coordinates), but the convergence remains.
Many questions are open in this respect. Could this benefit to parallel computing
architectures and distributed data settings? What would be the practical and theo-
retical impact of introducing randomness in the block selection process? Can we
extend these results to more general non-separable settings.

• A general rule of thumb for nonsmooth convex optimization is that the optimal
convergence speed of subgradient methods is O(1/

√
k) for convex models and

O(1/k) for strongly convex models. The algorithmic framework we proposed
takes advantage of partial strong convexity to retain the convergence speed of
strongly convex models while being only partially strongly convex.

• Themainmechanism in the proposed primal–dual analysis is to build a primal esti-
mate based on the knowledge of a dual feasible point. A property of the proposed
approach is that both primal and dual sequences are feasible. This is a difference
in comparison to Lagrangian based methods for which feasibility usually holds in
an asymptotic and ergodic sense. In our work, going from the dual to the primal
requires an additional optimization step in order to ensure primal dual convergence.
This occurs because there is a certain level of undetermination in the process of
going back to the primal which requires special care. The level of undetermination
can be interpreted to be the same as the level of “non-strong convexity” in the pri-
mal model. This draws an interesting connection between partial strong convexity
in the primal and easiness of switching from the dual to the primal.
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