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Abstract. We consider nonconvex quadratic optimization problems with binary constraints.
Our main result identifies a class of quadratic problems for which a given feasible point is global
optimal. We also establish a necessary global optimality condition. These conditions are expressed
in a simple way in terms of the problem’s data. We also study the relations between optimal solutions
of the nonconvex binary quadratic problem versus the associated relaxed and convex problem defined
over the l∞ norm. Our approach uses elementary arguments based on convex duality.
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1. Introduction. This work is concerned with quadratic optimization problems
with binary constraints of the form

(D) min{q(x) : x ∈ D := {−1, 1}n},(1.1)

where q is the quadratic function q(x) = 1
2x

tQx+ btx, where Q is an n×n symmetric
matrix, and where b ∈ R

n are the given data. Problems of the above type arise
naturally in several important combinatorial optimization problems, such as the max-
cut problem. These problems are known to be NP hard; see, e.g., Garey and Johnson
[2]. One typical approach to solve these problems is to construct lower bounds for
approximating the optimal value. The classical technique to obtain bounds is either
via a continuous relaxation or via the dual problem, which is usually followed by
branch and bound type algorithms for refining it. This kind of approach was used,
e.g., by Shor [5], and several variants of this technique, including various relaxations
of the constraint set can be found in several works; see, e.g., the recent survey paper of
[1] and references therein. More recently, semidefinite programming relaxations of (D)
have been studied and proven to be quite powerful for finding approximate optimal
solutions; see, e.g., [3] and references therein.

1.1. Motivation. This paper is not concerned with computation of bounds for
problem (D). Our main goal here is to exploit the peculiar structure of problem (D)
in order to characterize global optimal solutions of problem (D), as well as to study
the relations between the optimal solutions of (D) and the optimal solutions of its
continuous relaxation (C) defined by

(C) min{q(x) : x ∈ C := {x : −1 ≤ xi ≤ 1, i = 1, . . . , n}}.
We derive a sufficient optimality condition which guarantees that a given feasible
point in D is a global optimal for problem (D) as well as a necessary global optimality
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180 AMIR BECK AND MARC TEBOULLE

condition. An interesting fact about these conditions is that they are simply expressed
in terms of the problem’s data [Q,b] involving only primal variables and do not involve
any dual variables. To motivate the kind of conditions we are looking at, consider the
following trivial example. Let Q be the diagonal matrix Q = diag(λj)

n
j=1, where

λ1 ≥ λ2 ≥ · · ·λn > 0, and let b ∈ R
n be the given data. We then ask under which

conditions on the data [Q, b] we can write

min{q(x) : x ∈ D} = min{q(x) : x ∈ C}.

In this example, the function q is separable and can be written as

q(x) =
1

2
xtQx+ btx =

n∑
j=1

1

2
λjx

2
j + bjxj .

It is easy to verify that for any a, b ∈ R we have

min

{
1

2
ax2 + bx : −1 ≤ x ≤ 1

}
=




−b2(2a)−1 if |ba−1| < 1,
(2a)−1 + b if |ba−1| ≥ 1, b ≤ 0,
(2a)−1 − b if |ba−1| ≥ 1, b ≥ 0.

From the above computation, we thus have that a sufficient (and in this case necessary)
condition to have the optimal value of the continuous minimum (C) equal to the
optimal value of the discrete one (D) is simply

λj ≤ |bj | ∀j = 1, . . . , n.(1.2)

This condition shows that for this particular example, we need to ask that the matrix
Q is in the sense of inequality (1.2) smaller than the vector b. Another way to look
at (1.2) is that when Q is in some sense smaller than b, then we can disregard the
quadratic term and solve the trivial problem minx∈D b

tx.
In the next section, using simple convex duality arguments, we derive the suffi-

cient global optimality condition for the general problem (D). This condition, like the
condition derived for the trivial example above, also requires that Q is in some sense
“smaller” than b. We also derive a necessary global optimality condition which is sim-
ilar in form to the sufficient condition. Both conditions are simply expressed in terms
of the problem’s data [Q, b] and do not involve any dual variables. In section 3 we
treat the special case of (D), when the matrix Q is positive semidefinite. In that case,
problem (D) remains nonconvex due to the constraints set; however, its continuous
relaxation (C) becomes a convex problem. Applying the results of section 2, we then
establish relations between the optimal solutions of (C) and (D). In particular, we
find necessary and sufficient conditions for a vector x ∈ D to be the solution of both
(C) and (D). Furthermore, we characterize a global optimal solution of (D), whenever
it is close enough to an optimal solution of the corresponding relaxed convex problem
(C). We conclude the paper in section 4 with a simple application.

1.2. Notations and definitions. Throughout this paper we will use the
following notations and definitions. The n-dimensional Euclidean space is denoted
by R

n, and R
n
+,R

n
++ stand for the nonnegative and positive orthant, respectively.

For a vector x ∈ R
n, the Euclidean norm (l2-norm) and l∞- norm are denoted, re-

spectively, by ||x|| := (
∑n

i=1 x
2
i )1/2 and ||x||∞ := max1≤i≤n |xi|. Let {ej}nj=1 be the

canonical basis of R
n, and let the vector of all 1’s be denoted by e, i.e., e = (1, . . . , 1)T .
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GLOBAL OPTIMALITY FOR QUADRATIC PROBLEMS 181

Given an n × n matrix Q, Diag(Q) denotes the n × n diagonal matrix with entries
qii. For x ∈ R

n, the corresponding capital letter will define the diagonal n×n matrix
X := diag(x) with ith diagonal element xi, i = 1, . . . , n, and thus we will also write
x = Xe.

The feasible set {−1, 1}n of problem (D) can be written in a continuous form
equivalently as:

D := {x ∈ R
n : x2

i = 1, i = 1, . . . , n}.

The following three equivalent formulations of the convex relaxation of D will be
useful to us:

C = {x ∈ R
n : ||x||∞ ≤ 1}

= {x ∈ R
n : −1 ≤ xi ≤ 1, i = 1, . . . , n}

= {x ∈ R
n : x2

i ≤ 1, i = 1, . . . , n}.

Clearly, the following relation holds: D ⊂ C.
We will denote the optimization problem of minimizing the quadratic function

q(x) over the set D by (D) and its global optimal value by qD(x). A similar notation
is used when optimizing q(x) over the set C.

For a symmetric n× n real matrix Q with elements qij = qji, i, j = 1, . . . , n, we
denote by λi(Q) ≡ λi, i = 1, . . . , n its eigenvalues ordered as

λ1 ≥ λ2 ≥ · · · ≥ λn.

We also use λn ≡ λmin(Q) = min{xTQx, ||x|| = 1}. The matrix Q is positive semidef-
inite, denoted by Q  0 (positive definite, denoted by Q � 0) if and only if λn ≥ 0
(λn > 0). The trace of Q is defined by tr(Q) =

∑n
i=1 qii =

∑n
i=1 λi and it holds that

nλmin(Q) ≤ tr(Q).

2. Global optimality conditions. Consider the nonconvex quadratic problem

(D) min{q(x) : x2
i = 1, i = 1, . . . , n}.

This section is divided in two parts in which we first derive the sufficient globally
optimality conditions and then the necessary one.

Sufficient conditions. Let y ∈ R
n be the multiplier associated with the constraints

of (D) and form the Lagrangian

L(x, y) = q(x) +

n∑
i=1

yi(x
2
i − 1).

Defining the diagonal matrix Y = diag(y), L can be written as

L(x, y) =
1

2
xT (Q+ Y )x+ bTx− e

T y

2
.(2.1)

The dual problem corresponding to (D) is then defined by the concave maximization
problem

(DD) sup{h(y) : y ∈ R
n ∩ domh},
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182 AMIR BECK AND MARC TEBOULLE

where here h is the dual functional

h(y) := inf{L(x, y) : x ∈ R
n},(2.2)

and domh = {y ∈ R
n : h(y) > −∞}.

From standard duality we always have the weak duality relation

q(x) ≥ h(y) ∀x ∈ D, ∀y ∈ R
n ∩ domh.

Strong duality here of course does not hold since problem (D) is nonconvex. However,
we recall the following useful result, which follows from basic duality theory [4].

Lemma 2.1. If there exists x̄ ∈ D and ȳ ∈ R
n ∩ domh such that q(x̄) = h(ȳ) =

infx L(x, ȳ), then x̄ is a global optimal solution of (D).
Thus, if we are lucky enough to guess such a pair (x̄, ȳ) satisfying the conditions

of Lemma 2.1, we can conclude that x̄ globally solves (D). The special structure of
problem (D) precisely allows us to identify such a pair. First we need to recall an
elementary result on quadratic functions which will be helpful to make explicit the
feasible set of the dual problem (DD).

Lemma 2.2. Let A be an n × n symmetric matrix, and let f : R
n → R be the

quadratic function f(x) = 1
2x

TAx+ bTx, where b ∈ R
n. Then, inf{f(x) : x ∈ R

n} >
−∞ if and only if the following two conditions hold:

(i) ∃x ∈ R
n : Ax+ b = 0.

(ii) The matrix A is positive semidefinite.
We can now establish the following sufficient global optimality condition.
Theorem 2.3. Consider problem (D) with the data [Q, b], with Q a real symmet-

ric matrix. Let x = Xe ∈ D. If
[SC] λn(Q)e ≥ XQXe+Xb,

then x is a global optimal solution for (D).
Proof. Applying Lemma 2.2 on the dual objective h defined via (2.1)–(2.2), we

have inf{L(x, y) : x ∈ R
n} > −∞ if and only if the following conditions hold:

∃x ∈ R
n : (Q+ Y )x+ b = 0,(2.3)

Q+ Y  0.(2.4)

Let x be any feasible point of (D). Then, since x = Xe with X = diag(x), from
x2
i = 1, i = 1, . . . , n, we also have X2 = I. Now, let

y := −(Xb+XQXe).(2.5)

We first show that the pair (x, y) just defined above satisfies (2.3). Indeed with x = Xe
and y defined in (2.5),

(Q+ Y )x+ b = QXe+ Y Xe+ b

= QXe+Xy + b

= QXe−X2b−X2QXe+ b

= 0 (since X2 = I).

Now using (2.3) we can rewrite the dual objective h as

h(y) = inf
x∈Rn

{
1

2
xT (Q+ Y )x+ bTx− eT y

}

= −1

2
xT (Q+ Y )x− e

T y

2
,
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GLOBAL OPTIMALITY FOR QUADRATIC PROBLEMS 183

with x satisfying (2.3) and such that Q + Y  0. Using the above expression for h,
we now compute for the pair (x = Xe, y = −XQXe−Xb):

h(y) = −1

2
eTX(Q+ Y )Xe− 1

2
eT y

= −1

2
eTXQXe− eT y

=
1

2
eTXQXe+ bTXe = q(Xe) = q(x).

To complete the proof it thus remains to show that y defined in (2.5) is feasible for
(DD), i.e., that Q+ Y  0, and the result will follow from Lemma 2.1. For that, note
that we always have

λn(Q+ Y ) ≥ λn(Q) + λn(Y ),

and hence Q+Y is positive semidefinite if λn(Q) ≥ −λn(Y ). But since Y is diagonal,
from (2.5) we have −λn(Y ) = maxi(Xb+XQXe)i and the later inequality can thus
be written as λn(Q)e ≥ XQXe+Xb, and the proof is completed.

Necessary conditions. We now derive global necessary optimality conditions which
resemble the sufficient conditions derived in Theorem 2.3.

Theorem 2.4. Consider problem (D) with the data [Q, b], where Q is a real
symmetric matrix. If x ∈ D is a global minimum for (D), then

[NC] XQXe+Xb ≤ Diag(Q)e.

Proof. If x ∈ D is a global minimum for (D), then

q(x) ≤ q(z) ∀z ∈ D.
In particular, for z = z1 := −2x1e1 + x = (−x1, x2, . . . , xn)T ∈ D, where e1 =
(1, 0, . . . 0)T , we obtain

1

2
xTQx+ bTx ≤ 1

2
(x− 2x1e1)TQ(x− 2x1e1) + bT (x− 2x1e1)

=
1

2
xTQx+ 2x2

1e
T
1Qe1 − 2x1e

T
1Qx− 2x1b

T e1 + bTx.

Since x2
i = 1, et1Qe1 = q11, the later inequality reduces to

x1e
T
1Qx+ x1b

T e1 ≤ q11.
In a similar way we can show that for any j = 1, . . . , n

xje
T
j Qx+ xjb

T ej ≤ qjj ,
which proves the relation [NC].

It is interesting to note that both the necessary and optimality conditions are
expressed only in terms of the primal variables and do not involve any dual variables.
Moreover, rewriting the optimality conditions in the form

[SC] −Xb ≥ X(Q− λmin(Q)I)Xe,

[NC] −Xb ≥ X(Q− Diag(Q)I)Xe,
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184 AMIR BECK AND MARC TEBOULLE

we can interpret these as mentioned in the introduction by saying that a global optimal
solution of (D) can be identified when the matrix Q is “smaller” than the vector b in
the sense of the inequalities above. Several remarks are now in order regarding the
derived optimality conditions.

Remark 2.5. In the case of pure quadratic optimization problems, i.e., when b ≡ 0,
then the sufficient condition [SC] becomes λmin(Q)e ≥ XQXe, which forces Xe to
be the minimum eigenvector of Q. Thus, in the case of pure quadratic optimization
problems, the sufficient condition becomes less informative. However, this difficulty
can be handled by converting the pure quadratic problem into an equivalent one with
a nonzero linear term in the objective. A standard and simple way to do this is just to
observe that when in problem (D) q(x) := 1/2xTQx, then since q(x) = q(−x), we can
just fix the value of an arbitrary component of x, say xk = 1, and immediately get
a nonhomogeneous quadratic objective, which has the same objective function value
(see section 4 for an application).

Remark 2.6. Recall that qjj ≥ λmin(Q) ∀j = 1,. . . , n, i.e., Diag(Q)e ≥ λmin(Q)e.
Thus, using the sufficient optimality condition [SC] derived in Theorem 2.3, we have
the natural implication

λmin(Q)e ≥ XQXe+Xb =⇒ Diag(Q)e ≥ XQXe+Xb.

Remark 2.7. Let x̄ := Xe ∈ D. Then [NC] implies

tr(Q) ≥ x̄TQx̄+ bT x̄,

where tr(Q) =
∑n

i=1 qii. On the other hand, [SC] implies

nλmin(Q) ≥ x̄TQx̄+ bT x̄.

Since tr(Q) ≥ nλmin(Q), one could be tempted to conjecture that nλmin(Q) ≥ x̄TQx̄+
bT x̄ could be considered as a potentially “better” sufficient condition for x̄ ∈ D to be
a global minimum. This is, however, not true as illustrated by the following simple
example.

Example 2.8. Consider problem (D) in R
2 with q(x) := x2

1 − 1
2x

2
2 + 6x1 + 2x2.

The optimal solution is obtained at x∗ = (−1,−1)T . Now, let x̄ = (−1, 1)T . Since here
λmin(Q) = −1 and n = 2, one can easily verify that nλmin(Q) = −2 ≥ x̄TQx̄+ bT x̄ =
−3, yet x̄ is not global optimal.

Remark 2.9. Let x = (σ(bi))
n
i=1, where σ(bi) = 1 if bi ≥ 0 and −1 otherwise.

Then [SC] reduces to XQXe ≤ |b| + λmin(Q)e. Thus, if the later inequality holds
with X = diag(σ(b)), the optimal solution of problem (D) is given by x = (σ(bi))

n
i=1,

namely, as the solution of the trivial problem min{bTx : x ∈ D}; i.e., problem (D)
can be solved by removing the quadratic term from the objective function.

We end this section by mentioning that we can state global optimality conditions
for more general quadratic problems (and in particular for {0, 1} quadratic programs)
of the form

min{q(x) : x ∈ {a, c}n},(2.6)

where a < c are given real numbers. Using the linear transformation

x =
c− a

2
y +

c+ a

2
e,
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GLOBAL OPTIMALITY FOR QUADRATIC PROBLEMS 185

the above problem is transformed to min{q′(y) : y ∈ D}, where q′(y) can be explicitly
written in terms of Q, b, a, c. A straightforward computation shows that [SC] and [NC]
become, respectively,

c− a
2
λmin(Q)e ≥ a+ c

2
Y QY e+ Y b+

a+ c

2
Y Qe,(2.7)

c− a
2

Diag(Q)e ≥ a+ c

2
Y QY e+ Y b+

a+ c

2
Y Qe,(2.8)

and the optimal solution x of problem (2.6) can be recovered from the optimal solution
y via the linear transformation given above.

3. The positive semidefinite case. Let Q be a positive semidefinite matrix.
Then (D) is still nonconvex because of the constraints x ∈ D = {−1, 1}n = {x ∈ R

n :
x2
i = 1, i = 1, . . . , n}. However, the corresponding relaxed problem (C) becomes the
convex problem:

(C) min{q(x) : x2
i ≤ 1, i = 1, . . . ,m}.

Then the question of the relations between the solution of the “easy” convex problem
(C) versus the “hard” nonconvex problem (D) arises. Our first result shows that there
is a simple necessary and sufficient condition for a point in D to be the solution of
both the convex problem (C) and the nonconvex problem (D).

Theorem 3.1. Consider the nonconvex problem (D) with data [Q,b], with Q a
real symmetric positive semidefinite matrix. Let x = Xe ∈ D. Then x is a solution of
both (C) and (D) if and only if

XQXe+Xb ≤ 0.

Proof. First, suppose that XQXe + Xb ≤ 0. Since (C) is convex and satisfies
Slater’s condition, strong duality applies and we have min{q(x) : x ∈ C} = max{h(y) :
y ≥ 0}, where h is the dual objective function of (C), which is the same as the
one given in (2.2), except that here y ∈ R

n
+. As in the proof of Theorem 2.3 with

y = −(XQXe + Xb), which is nonnegative by our assumption, we obtain h(y) =
qC(Xe) = qC(x), showing that x is a solution of (C) and hence of (D). To prove the
converse, suppose x = Xe solves (C) and (D). From the KKT optimality conditions
for (C) we have (Q + Y )x + b = 0, Y  0, where y ∈ R

n
+ are the multipliers for the

constraints of (C). Therefore,

XQXe+Xb = X(Qx+ b)

= −XY x
= −Y, since x ∈ D,

and hence the result follows since y ∈ R
n
+.

Our next result characterizes an optimal solution of (D) whenever it is “close
enough” to an optimal solution of the relaxed convex problem (C).

Theorem 3.2. Consider the problem (D) with data [Q,b], with Q a real symmetric
positive semidefinite matrix. Let x be an optimal solution of the convex problem (C).
If y ∈ D satisfies the conditions

(i) yi = xi when x
2
i = 1,

(ii) Y Q(y − x) ≤ λmin(Q)e,
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186 AMIR BECK AND MARC TEBOULLE

then y is a global optimal solution for (D).

Proof. Since (C) is a convex problem and Slater’s condition holds, then x solves
(C) if and only if the KKT conditions hold, i.e., there exists λ ≥ 0 such that

(Q+ Λ)x+ b = 0,(3.1)

λi(x
2
i − 1) = 0, i = 1, . . . , n,(3.2)

where Λ := diag(λ). Set δ := y − x, and ∆ := diag(δ). Then

Y QY e+ Y b = Y (Qy + b)

= Y (Q(x+ δ) + b)

= Y (−Λx+Qδ) (using (3.1))

= (X + ∆)(−Λx+Qδ)

= −XΛx+ (X + ∆)Qδ − ∆Λx

= −λ+ Y Qδ − ∆Λx,

where in the last equality we use (3.2). Now, we claim that ∆Λx = 0. Indeed, if δi = 0,
then λiδi = 0, and if δi �= 0, then from the assumption of the theorem, this means
x2
i �= 1, and hence from (3.2) this implies λi = 0. Therefore, λiδi = 0 ∀i, and from the

above computations, together with the fact that λ ≥ 0, we have obtained

Y QY e+ Y b = −λ+ Y Qδ ≤ Y Qδ = Y Q(y − x).

Invoking Theorem 2.3 then completes the proof.

Note that when x2
i �= 1 for some i, then the corresponding binary value yi in

the theorem above can be chosen as yi = σ(xi), where σ(xi) = 1 if xi ≥ 0 and −1
otherwise.

Example 3.3. Consider the problem (D) with data [Q,b], where

Q =




4 2 0 2
2 4 0 2
0 0 4 2
2 2 2 4


 , b =




4
4
3
3


 .

Here, we have λmin(Q) = 1.036 so that Q is positive definite. The solution of the
relaxed convex problem (C) is obtained at the point x = (−0.875,−0.875,−1, 0.625)T

and thus we can take (by rounding as explained above) as a “closest” point y ∈ D to
x the vector y = (−1,−1,−1, 1)T . Now we compute Y Q(y − x) = (0, 0,−0.75, 1) so
that the inequality Y Q(y − x) ≤ λmin(Q)e is satisfied, and therefore from Theorem
3.2, y is the minimizing vector of (D).

4. An application. We consider a simple application of our results to problems
with pure quadratic objectives, originally motivated from the max-cut problem. Given
an undirected weighted graph G = (V,E), V = {1, 2, . . . , n}, with weights wij = wji ≥
0 on the edges (i, j) ∈ E and with wij = 0 if (i, j) /∈ E, the max-cut problem is to
find the set of vertices S ⊂ V that maximizes the weight of the edges with one end
point in S and the other in its complement S̄, i.e., to maximize the total weight across
the cut (S, S̄). The cut can be defined by the integer variables xi ∈ {−1, 1} assigned
to each vertex i. Then, with xi = 1 if i ∈ S and −1 otherwise, the weight of the
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cut is
∑

i<j wij(1 − xixj)/2, and the max-cut problem is equivalent to the quadratic
optimization problem (see, e.g., [3]):

(MC) max



∑
i<j

wij
1 − xixj

2
: x2

i = 1, i = 1, . . . , n


 .

Problem (MC) can be reformulated equivalently as

(MC) min



∑
i=j

wijxixj : x2
i = 1, i = 1, . . . , n


 ,

with wii = 0. Defining the matrix W = 2(wij), i, j = 1, . . . , n, we then obtain the
formulation of (MC) as a pure quadratic problem fitting our generic formulation (D)
with data [W, 0], namely,

(MC) min

{
q(x) =

1

2
xTWx : x ∈ D

}
.

By elementary arguments we can obtain the following sufficient condition for a
vertex to define a max-cut.

Lemma 4.1. Let G = (V,E) be an undirected graph with V = {1, . . . , n} and with
weight matrix W . Let l be a vertex that satisfies the following condition:

∀k ∈ V \ l : wkl ≥
∑
i �=l

wik.(4.1)

Then l defines a max-cut; i.e., the max-cut is S = {l} and S̄ is the complementary
set with the remaining vertices.

In other words, Lemma 4.1 says that under a particular condition as given in (4.1)
on the matrix W, the vector (−1, . . . ,−1, 1︸︷︷︸

k

,−1, . . . ,−1)T (meaning xk = 1, xi =

−1∀i �= k) is the minimizing vector of the problem (MC). This result relies on the
fact that the matrix W in the max-cut problems satisfies the very special conditions
Diag(W ) = 0 and wij ≥ 0. This motivates us to ask if a similar type of result can
be established for an arbitrary pure quadratic problem, namely, when W is an n× n
arbitrary symmetric matrix. An application of Theorem 2.3 leads us to establish a
similar result for a class of matrices satisfying a sort of “eigenvalue-row-dominance”
condition akin to the concept of diagonally dominant matrices.

Proposition 4.2. LetW be an n×n symmetric matrix that satisfies the following
condition:

∀k �= l : wkl ≥
∑
i �=l

wik − λmin(W (k)),

where W (k) is the (n− 1)× (n− 1) matrix obtained from W by removing the kth row
and column. Then the vector (−1, . . . ,−1, 1︸︷︷︸

k

,−1, . . . ,−1)T is the minimizing point

of problem (D) with data [W,0].
Proof. Without loss of generality we prove the result only for k = 1. By Remark

2.5, we can substitute x1 = 1 and obtain a nonhomogeneous equivalent problem with
data [W ′, b′] defined by
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w
′
ij = wij if i �= 1, j �= 1; w

′
ij = 0 if i = 1 or j = 1,

b′ = (wj1)nj=1.

The above transformation obviously reduces the dimension of the original problem
with data [W, 0] posed in R

n to a nonhomogeneous problem which can now be defined
in R

n−1, with data [W (1), b(1)], where W (1) is obtained by removing the first row
and column of W and b(1) the first row of b′. Then, letting X := −In−1×n−1, in
Theorem 2.3 it follows that if

λmin(W (1))e ≥W ′e− b(1),

then (−1, . . . ,−1)T ∈ R
n−1 is the solution of problem (D) with data [W (1), b(1)] and

thus ( 1︸︷︷︸
1

,−1, . . . ,−1)T ∈ R
n is the solution of (D) with data [W, 0]. Similarly, the

above argument can be repeated for each k, and the proof is completed.
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