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1. Introduction.

1.1. Problem formulation. Sparse optimization problems have been a major research topic across different
disciplines in recent years, such as compressed sensing. Since the sparsity constraint induces a combinatorial
constraint into the problem, it is generally hard to reach an optimal solution efficiently, even if the objective
function is convex or if no other constraints are imposed. Residing on the border between continuous and
discrete optimization, methods addressing the problem appear in the literature of both fields. Yet, the theory of
optimality conditions in the sparse optimization literature is lacking. One of the objectives of this paper will be
to rectify this situation. We discuss the following sparsity-constrained minimization problem:

4P5
min f 4x5
s.t. x ∈Cs ∩B1

(1)

where the set Cs comprises all vectors with at most s nonzero elements:

Cs = 8x ∈�n2 �x�0 ≤ s91 (2)

where s ∈ 81121 : : : 1 n9 and � · �0 is the so-called l0 norm, which counts the number of nonzero elements in the
vector:

�x�0 ≡ #8i2 xi 6= 090

The following standing assumptions are made from now on in the paper.
[A] f 2 �n →� is a lower-bounded continuously differentiable function.
[B] B is a closed and convex set.

In some cases, which will be explicitly noted, we will extend Assumption A to:
[A+] f ∈C111

L4f 5, meaning that f has a Lipschitz-continuous gradient with constant L4f 5 (see §2.2).
When additional assumptions will be imposed, they will be explicitly stated.

1.2. Literature review. The sparse optimization literature is dominated by compressed sensing-oriented
papers, which mostly focus on the problem of recovering a sparse signal x with a sampling matrix A and a
measurements vector b, see, for example, the comprehensive reviews Bruckstein et al. [9], Davenport et al. [14],
Duarte and Eldar [16], and Tropp and Wright [30]. Exact recovery properties are known when the sampling
matrix is assumed to have some properties such as the restricted isometry property (RIP) (Candes and Tao [11])
or conditions based on the mutual coherence (David and Elad [15]), see also Cartis and Thompson [12] for a
different type of condition warranting exact recovery.
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We roughly distinguish between two types of methods: those who relax the sparsity constraint and those who
do not. Relaxation methods usually involve the l1 norm, such as the famous basis pursuit (BP) (Chen et al. [13]),
the Dantzing selector (Candes and Tao [10]), or regularization techniques such as l1 regularization (Tropp and
Wright [30], Beck and Teboulle [4]). Our main interest is in methods, which address the sparsity-constrained
problem directly. These usually attempt to solve the minimization of the function �Ax − b�2 subject to the
sparsity constraint. Two such methods are the IHT (Blumensath and Davies [5, 6], Blumensath [7]) and CoSaMP
(Needell and Tropp [24]); see also Lu [19] and Lu and Zhang [20] for further extensions and analysis of IHT-type
methods, as well as Attouch et al. [1] for an analysis of the convergence under semialgebraic assumptions on the
feasible set and the objective function. For a general objective function, the Gradient Support Pursuit (GraSP)
method was introduced and studied in Bahmani et al. [2].

As was already noted in this paper, we are interested in deriving necessary optimality conditions for the
problem of minimizing a continuously differentiable function over B∩Cs . Such a study was carried out in Beck
and Eldar [3] on the problem with B =�n, where several necessary optimality conditions related to the classical
notions of stationarity and coordinatewise optimality were presented and analyzed. It was shown in Beck and
Eldar [3] that coordinatewise optimality conditions are more restrictive (that is, stronger) than those, which are
based on the notion of stationarity.

This hierarchy of the optimality conditions also implied a hierarchy between algorithms. In particular, the
IHT method was shown to be inferior to coordinate descent-type methods.

The results of Beck and Eldar [3] are limited to the case where only a sparsity constraint is present, and
the natural question, which is the main motivation for this paper, is whether we can generalize the results
when additional constraints are imposed. We will answer this question affirmatively when certain symmetry
assumptions (in addition to convexity and closedness) will be imposed on the set B. An important aspect of
the theory on optimality conditions that will be developed is that it is naturally accompanied with appropriate
algorithms that converge to the devised optimality conditions. Our insights on the optimality conditions will
assist in qualifying the derived algorithms. In addition, the derivation of the conditions is made possible due
to a development of a unified theory encompassing properties and algorithms related to the computation of the
orthogonal projection operator onto sets with various symmetry properties.

1.3. Paper layout. Mathematical preliminaries that are required for the analysis of constrained sparse prob-
lems are defined and studied in §2. Section 3 is devoted to the study of properties of the orthogonal projection
operator over symmetric sets. The two main results in this context are the monotonicity lemma and the order
preservation property. Based on the results on the orthogonal projection operator onto sparse symmetric sets,
we develop, in §4, a unified theory for efficiently computing sparse projections onto sparse sets. The theory
on sparse orthogonal projections is the basis for the development of the stationarity-based optimality conditions
presented and analyzed in §5. We continue with defining coordinatewise optimality conditions in §6, and explore
their relation to the stationary-based ones, concluding with a hierarchy between all of the devised conditions and
several results on the representation of the conditions. Section 7 presents several methods that are guaranteed to
converge to the conceived optimality conditions, and finally, §8 illustrates the validity of the theoretical hierarchy
by two sets of numerical experiments on problems over the sparse unit simplex—one on randomly generated
data and the other on the sparse index tracking problem with real sampled data.

1.4. Notation. The complement of a set A is denoted by Ac. Matrices and vectors are denoted by boldface
letters. The n-length vector of all zeros is denoted by 0n and the n-length vector of all ones is denoted by 1n.
When the dimensions are clear from the context, we will frequenly omit the subscripts and just write 0 and 1.
The vector ei has 1 in the i-th component and zeros elsewhere. For a vector x ∈ �n, we define 6x7+ and �x� to
be the vectors whose i-th component is 6xi7+ = max8xi109 and �xi�, respectively. For any p ≥ 1, the lp ball in
the space �n is denoted by

Bn
p60117= 8x ∈�n2 �x�p ≤ 190

The n dimensional unit simplex is given by

ãn = 8x ∈�n2 1T x = 11x ≥ 091

and the unit-sum set is the set
ã′

n = 8x ∈�n2 1T x = 190
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The sign vector of a given x ∈�n is denoted by sign4x5, and its i-th component is

sign4x5i ≡

{

1 xi ≥ 01

−1 xi < 00

For two vectors x1y ∈�n, the Hadmard product is defined by x � y ≡ 4xiyi5
n
i=1. Given a set S ⊆�n and a vector

x ∈�n, the orthogonal projection of x onto S is defined as the set

PS4x5= argmin
{

�y − x�
22 y ∈ S

}

1

where here and elsewhere in the paper � · � denotes the l2 norm on �n. If S is closed, the set PS4x5 is nonempty,
and if, in addition, S is also convex, then PS4x5 is a singleton and we associate PS4x5 with the vector that it
comprises. The gradient of a given function h2 �n → � at a point x ∈ �n, given that it exists, is denoted by
ïh4x5. The ith partial derivative is denoted by ïih4x5 and given two different indices i1 j ∈ 81121 : : : 1 n91 i 6= j ,
the vector ïi1 jh4x5 is the two-dimensional column vector 4ïih4x51ïjh4x55

T .

2. Mathematical preliminaries.

2.1. Stationarity in smooth problems over convex sets. We begin by recalling the notion of stationarity
in smooth problems over closed and convex sets. Consider the problem

min8h4x52 x ∈C91 (3)

where h2 �n →� is a continuously differentiable function and C ⊆�n is a closed and convex set. A vector x∗

is called a stationary point of (3) if

ïh4x∗5T 4x − x∗5≥ 0 for any x ∈C0 (4)

This necessary optimality condition means that there are no feasible descent directions at x∗. It is well known
that the condition can be rewritten as

x∗
= PC

(

x∗
−

1
L
ïh4x∗5

)

(5)

for some L > 0. Interestingly, although condition (5) is expressed in terms of the parameter L, it is actually
independent of L by its equivalence to condition (4). For many special cases of the set C, there are more explicit
expressions of the stationarity condition that are easier to handle. We recall in Table 1 some of the examples
that will be used later on in the paper.

When the objective function h is convex, then stationarity is a necessary and sufficient condition for optimality.

Table 1. Explicit stationarity conditions for simple sets.

Feasible set Explicit stationarity condition

�n ïf 4x∗5= 0

�n
+

¡f

¡xi
4x∗5

{

= 01 x∗

i > 01

≥ 01 x∗

i = 00

ãn ∃� ∈�2
¡f

¡xi
4x∗5

{

=�1 xi > 01

≥�1 xi = 00

ã′

n, ∃� ∈�2
¡f

¡xi
4x∗5=�1 i = 1121 : : : 1 n.

Bn
2 60117 ïf 4x∗5= 0 or �x∗� = 1 and ∃�≤ 02 ïf 4x∗5= �x∗.

6`1 u7n 4` < u5
¡f

¡xi
4x∗5











= 01 ` < xi <u1

≥ 01 xi = `1

≤ 01 xi = ui0
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2.2. The class of C111
L functions. A function h2 �n → � is said to belong to C111

L if it is continuously
differentiable and its gradient is Lipschitz continuous with parameter L> 0, meaning that

�ïh4x5−ïh4y5� ≤ L�x − y� for all x1y ∈�n0

An important property of C111
L functions is described in the well-known descent lemma.

Lemma 2.1 (Descent Lemma). Suppose that h ∈C111
L4h5. Then, for any x1d ∈�n and L≥ L4h5, the following

inequality is satisfied:

h4x + d5≤ h4x5+ïh4x5T d +
L

2
�d�

20

We will also be interested in a more refined version of the descent lemma, called the block descent lemma
in which the perturbation vector d has at most two nonzero components. For that, we will define the block
Lipschiz constant. Let h ∈C111

L4h5. Then, for any i 6= j , there exists a constant Li1 j4h5 for which

�ïi1 jh4x5−ïi1 jh4x + d5� ≤ Li1 j4h5�d� (6)

for any x ∈�n and any d ∈�n, which has at most two nonzero components. Here, ïi1 jh4x5 denotes a vector of
length-2 whose elements are the i-th and j-th elements of ïh4x5. The block Lipschitz constants are defined as

L24h5≡ max
i 6=j

Li1 j4h50

Clearly, L24h5≤ L4h5 and, in general, the block Lipschitz constant L24h5 can be much smaller than the global
Lipschitz constant L4h5. The block Lipschitz constant is used in a “block” version of the descent lemma.

Lemma 2.2 (Block Descent Lemma). Suppose that h ∈C111
L and that L≥ L24h5. Then,

h4x + d5≤ h4x5+ïh4x5T d +
L

2
�d�

2

for any vector d ∈�n with at most two nonzero components.

2.3. Supports, super supports, and restriction on index sets. The support set of a vector x ∈�n is denoted
by

I14x5≡ 8i ∈ 811 : : : 1 n92 xi 6= 090

The off-support set of a vector x ∈�n is denoted by

I04x5≡ 8i ∈ 811 : : : 1 n92 xi = 090

Of course, I04x5 is the complement of I14x5. A vector is said to have a full support if �x�0 = s, and to have
an incomplete support if �x�0 < s. A set T is a super support of a vector y ∈ Cs ∩B if I14y5 ⊆ T and �T � = s.
Of course, if y has a full support, then the only super support set is the support set itself. However, if y
does not have a full support, then there are

(

n−�y�0
s−�y�0

)

possible super supports. For example, if s = 31 n = 5, and
y = 4−3141010105T . Then, the three super supports of y are

81121391 81121491 81121590

Given a vector x ∈ �n, the vector composed of the components of x whose indices are in a given subset
T ⊆ 811 : : : 1 n9 is denoted by xT ∈ ��T �, the matrix UT denotes the submatrix of the n × n identity matrix
In constructed from the columns corresponding to the index set T . In this notation, xT = UT

T x (note that the
superscript stands for the transpose operation). In addition, if T is a super support of a vector x ∈ �n, then
x = UT xT . We use the notation

BT = 8x ∈��T �2 UT x ∈ B91

and the set BT will be called “the restriction of B to T .” For example, if

B =
{

4x11 x21 x31 x45
T 2 x1 + 2x2 + 3x3 + 4x4 = 1

}

1

then
B81129 =

{

4x11 x25
T 2 x1 + 2x2 = 1

}

1 B82149 =
{

4x21 x45
T 2 2x2 + 4x4 = 1

}

0

In a similar manner, given a continuously differentiable function f , we denote “the restriction of the vector
ïf 4x5 to T ” by ïT f 4x5= UT

Tïf 4x5. For example, if f 4x5= x1x2 + x2
2 + x3

3 and T = 81139, then

ïT f 4x5=

(

x2

3x2
3

)

0
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Table 2. Simple sets and their symmetry properties.

Set Description Type-1 Nonneg. type-1 Type-2

�n Entire space Ø Ø
�n

+
Nonnegative orthant Ø Ø

ãn Unit simplex Ø Ø
ã′

n Unit sum Ø
Bp60117 4p ≥ 15 p-ball Ø Ø
6`1 u7n 4` < u5 Box Ø

3. Projection onto symmetric sets. In this section, we present two types of set symmetries that will be
discussed in the paper, and study some key properties related to the orthogonal projection operator onto these
types of sets. We will show later on, that the derived properties of the orthogonal projection operator will be
important in the derivation and study of various optimality conditions and algorithms for sparsity-constrained
problems.

3.1. Type-1 and type-2 symmetries. The permutation group of the set of indices 811 : : : 1 n9 will be denoted
by èn, and for a given vector x ∈�n and a permutation � ∈èn, the vector x� is the vector defined by

4x�5i = x�4i51

that is, the vector that is a reordering of x according to � . For example, if x = 4415165T , and � is the permutation
given by

�415= 31 �425= 21 �435= 11

then
x�

=
(

61 51 4
)T

0

In this example, � reordered the elements of x in a nonascending order. Because such permutations will be
important in our analysis, we will define them formally.

Definition 3.1 (Sorting Permutations). Let x ∈�n. Then, a permutation that sorts the elements of x in
a nonascending order will be called a sorting permutation. The set of all the sorting permutations of x is a
subset of èn and will be denoted by è̃4x5. Explicitly, � ∈ è̃4x5 if and only if

x�415 ≥ x�425 ≥ · · · ≥ x�4n−15 ≥ x�4n50

Definition 3.2 (Swap Permutations). The swap permutation1 �i1 j ∈èn, which swaps between two indices
i1 j ∈ 81121 : : : 1 n9 is defined for any i 6= j by

�i1 j4l5=











l l 6= i1 j1

i l = j1

j l = i0

We will consider the following classes of sets, and most of the analysis in this paper will be based on assuming
that the underlying set belongs to at least one of these classes.

Definition 3.3 (Type-1 Symmetric Sets). Let D ⊆�n. Then, D is a type-1 symmetric set if for any vector
x ∈D and � ∈èn, we have x� ∈D.

Definition 3.4 (Nonnegative Sets). A set D ⊆�n is nonnegative if x ≥ 0 for any x ∈D.

Definition 3.5 (Type-2 Symmetric Sets). Let D ⊆ �n be a type-1 symmetric set. Then, D is a type-2
symmetric set if for any x ∈D1� ∈èn, and y ∈ 8−1119n, the vector x � y = 4xiyi5

n
i=1 is in D.

Type-1 and type-2 symmetric sets appear quite often like feasibility sets in optimization problems. Some
frequently appearing examples, as well as their affiliation to the different symmetry types are summarized in
Table 2.

1 Swap permutations are also called “transpositions” in the literature.
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3.2. Basic properties of projections on symmetric sets. Our objective is to show that for symmetric type-1
sets, the orthogonal projection operator satisfies an order preservation property. This property will be the basis
for the detection of a super support in the problem of projecting onto Cs ∩B.

We introduce the following lemma, describing an important monotonicity property associated with projections
onto type-1 symmetric sets that will play an important role in the derivation of the order preservation property.

Lemma 3.1 (Symmetric Projection Monotonicity Lemma). Let D be a symmetric type-1 set. Let x ∈�n

and y ∈ PD4x5 . Then, for any permutation � ∈èn, it holds that

yT 4x − x�5≥ 00 (7)

In particular,
4yi − yj54xi − xj5≥ 0 (8)

for any i1 j ∈ 81121 : : : 1 n9.

Proof. Since y ∈ PD4x5 and D is type-1 symmetric, for any permutation � ∈èn, we have

�x − y�
2
≤ �x − y�−1

�
21 (9)

where �−1 denotes the inverse permutation of � . The inequality (9) is equivalent to (omitting the term �x�2)

�y�
2
− 2yT x ≤ �y�−1

�
2
− 24y�−1

5T x0

Hence, using the fact that �y�2 = �y�−1
�2, it follows that

yT x − 4y�−1
5T x ≥ 00

Finally, by the obvious identity 4a�−1
5T b = aT b� for any a1b ∈�n, we obtain that

yT 4x − x�5≥ 00

Plugging the swap permuation � = �i1 j into the latter inequality yields

4yi − yj54xi − xj5≥ 00 � (10)

Definition 3.6. Let x ∈ �n. Then, a permutation � ∈ èn will be called a value-preserving permutation of
x if x = x� . The set of all of value-preserving permutations of x is denoted by èv4x5.

Example 3.1. If x = 421112115T , then

èv4x5=

{(

1 2 3 4
1 2 3 4

)

1

(

1 2 3 4
3 2 1 4

)

1

(

1 2 3 4
3 4 1 2

)

1

(

1 2 3 4
1 4 3 2

)}

1

where a permutation � ∈è4 is denoted here as
(

1 2 3 4
�415 �425 �435 �445

)

0

The next lemma shows that if y ∈ PD4x5 for some type-1 symmetric set D, then y� ∈ PD4x5 for each value
preservation permutation � of x.

Lemma 3.2. Let D be a type-1 symmetric set, x ∈�n and y ∈ PD4x5. Then, for any � ∈èv4x5, it holds that
y� ∈ PD4x5.

Proof. Suppose that y ∈ PD4x5. Then, by the symmetry of D, y� ∈D. Since minimizing the function f 4y5=

�x −y�2 is equivalent to minimizing the function g4y5= �y�2 −2yT x, all we need to show is that g4y5= g4y�5,
and indeed,

g4y�5= �y�
�

2
− 24y�5T x = �y�

2
− 24y�5T x�

= �y�
2
− 2yT x = g4y51

where we used the facts that �y�� = �y�1x� = x and 4y�5T x� = yT x. �
We now turn to prove a key property of the projection set PD4x5 in the case of type-1 symmetric sets—there

always exists a vector in the projection set whose components are in the same order as x.
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Theorem 3.1 (Order Preservation Property). Let D be a type-1 symmetric set, x ∈ �n and � ∈ è̃4x5.
Suppose that PD4x5 is nonempty. Then, there exists y ∈ PD4x5 such that � ∈ è̃4y5.

Proof. Let y ∈ PD4x5, and suppose that there exist indices i1 < i2 such that y�4i15 < y�4i25 (otherwise, the
proof is complete). By Lemma 3.1,

4y�4i15 − y�4i2554x�4i15 − x�4i255≥ 01

which in turn, implies that x�4i15 ≤ x�4i25. Since � ∈ è̃4x5, it follows that x�4i15 ≥ x�4i25, and hence x�4i15 = x�4i25.
Therefore, the swap permutation �̂ = ��4i151�4i25 in which �4i15 is swapped with �4i25, is a value-preserving
permutation of x. By Lemma 3.2, y�̂ ∈ PD4x5, and we set y ← y�̂ . This procedure can be repeated as long
as there are indices i < j , which violate the order (y�4i5 < y�4j5). Since at each iteration of the procedure, the
number of pairs of indices which violate the order is strictly reduced, the process is finite and ends with a vector
y for which � ∈ è̃4y5. �

Example 3.2. Consider the type-1 symmetric set D =ã′
4 ∩C2 (for a definition of Cs , see (2)), and consider

the problem of finding PD4x5, where x = 4−413111−45T . A sorting permutation of x is

� =

(

1 2 3 4
2 3 1 4

)

0

This is, of course, not the only sorting permutation. A simple computation shows that the projection set of x is

Pã′
4∩C2

4x5=
{

v1 = 4−41310105T 1v2 = 4013101−45T
}

0

Since ã′
4 ∩C2 is a type-1 symmetric set, then by Theorem 3.1, it follows that � is a sorting permutation of at

least one of the projection vectors, and indeed, � ∈ è̃4v25.

3.3. From type-2 to nonnegative type-1 symmetric sets. The analysis of type-2 symmetric sets will be
frequently done by using the following lemma that connects the projection operator on the two types of sets.
In many cases, the analysis of type-1 symmetric sets along with Lemma 3.3 will immediately imply the corre-
sponding results for nonnegative type-1 symmetric sets.

Lemma 3.3. Let D ⊆�n be a type-2 symmetric set. Then, the relation

ỹ ∈ PD4x5

holds if and only if
sign4x5 � ỹ ∈ PD∩�n

+
4�x�50

Proof. Denote E = diag4sign4x55. We have for any y ∈�n,

�y − x�
2
= �Ey − Ex�

2
= �Ey − �x��

20

Hence the projection problem
min

y
8�y − x�

22 y ∈D9 (11)

is the same as
min

y
8�Ey − �x��

22 y ∈D90 (12)

By the type-2 symmetry property of D, we conclude that (11) is equivalent to

min
y
8�Ey − �x��

22 Ey ∈D91

and by making the change of variables z = Ey, we arrive at the following equivalent formulation:

min
z
8�z − �x��

22 z ∈D90 (13)

Now, all the optimal solutions of (13) must be nonnegative. Otherwise, if z is an optimal solution for which
zi < 0 for some i, then the vector z̃ ∈Cs ∩B defined by

z̃j =

{

zj1 j 6= i1

−zi1 j = i1
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has a smaller objective function value, which is a contradiction to the assumed optimality of z w.r.t. (13).
Therefore, we can add (redundant) nonnegativity constraints, and conclude that ỹ is an optimal solution of (11)
if and only if Eỹ is an optimal solution of

min
z

{

�z − �x��
22 z ∈D∩�n

+

}

1 (14)

that is, if and only if sign4x5 � ỹ = Eỹ ∈ PD∩�n
+
4�x�5. �

The following is a direct consequence of the latter lemma.

Corollary 3.1. Let D be a type-2 symmetric set. If y ∈ PD4x5, then �y� ∈ PD∩�n
+
4�x�50

Proof. By Lemma 3.3, it follows that sign4x5 � y ∈ PD∩�n
+
4�x�5. Since D ∩�n

+
is obviously a nonnegative

set, it follows that sign4x5�y = � sign4x5�y� = �y�, from which the desired relation �y� ∈ PD∩�n
+
4�x�5 follows. �

4. Sparse projection over symmetric sets.

4.1. The problem. So far, we have studied several properties of projection onto symmetric sets. Building
on the results of the previous section, this section studies the properties of the orthogonal projection operator
onto the intersection of a symmetric closed and convex set B and the set of s-sparse vectors. As a by-product of
this theoretical study, we show how the operator can be efficiently computed under various symmetry properties.
Later on, the derived properties will play a key role in characterizing various optimality conditions of problem (P)
(see §5).

The following is the exact problem we consider:

The sparse projection problem

Given a closed and convex set B, and a vector x ∈ �n, find an element in the orthogonal projection set
of x onto B ∩Cs:

PCs∩B
4x5= argmin

{

�z − x�
22 z ∈ B ∩Cs

}

0 (15)

We will refer to PCs∩B
as “the s-sparse projection set onto B,” and an element of the latter set is called

“an s-sparse projection vector onto B,” or just “a sparse projection vector.” By the closedness of B ∩ Cs , it
follows that PCs∩B

4x5 is a nonempty set. However, Cs ∩ B is nonconvex, and hence the set PCs∩B
4x5 is not

always a singleton. For example, when B =�n, PCs∩B
4x5= PCs

4x5 is comprised of all vectors consisting of the s
components of x with the largest absolute values, and with zeros elsewhere. In general, there can be more than
one choice to the s largest components in absolute value, and each of these choices gives rise to another vector
in the set PCs

4x5. For example,

PC2
44211115T 5=

{

4211105T 1 4210115T
}

0

Finding the set PCs∩B
4x5, or even just a vector in the set, is, in general, a difficult task since the corresponding

optimization problem is nonconvex. However, we will show that under several symmetry properties, finding
such a vector is a tractable mission. We would like to stress that, as shown in the sequel, the orthogonal
projection plays a key role in the sparse optimization problem. There are very few examples in the literature
of computations of sparse projections. One such paper is Kyrillidis et al. [18], which presents an algorithm
for finding sparse projections onto the unit-simplex and unit-sum sets, and also covers the case where the sum
of variables is not necessarily one. Another paper in which the sparse projection operator was mentioned is
Luss and Teboulle [21], where as part of a study of an algorithm for sparse PCA, the authors computed the
sparse projection operator onto the l2-norm ball. In Bolte et al. [8, Proposition 4], a formula for the sparse
projection operator onto the nonnegative orthant was derived. We will present a unified theory that will enable
us to compute sparse projections onto closed and convex and symmetric sets. The mentioned examples will be
special cases of the general theory.

We begin with a simple lemma, which shows that the s-sparse projection onto B can be done in two phases:
finding a super support at a first stage, and then finding the projection onto the restriction of B to the super
support.

Lemma 4.1. Let x ∈�n. Suppose that y ∈ PCs∩B
4x5. Then, for any super support set T of y, it holds that

yT = PBT
4xT 50
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Proof. Suppose on the contrary that y ∈ PCs∩B
4x5, but yT 6= PBT

4xT 5. The relation y ∈ PCs∩B
4x5 explicitly

means that y is a solution of the minimization problem

min
z∈Cs∩B

�z − x�
20 (16)

The objective function in the latter minimization problem, evaluated at z = y, can be decomposed into two terms:
one comprised of the elements in T c, which are all nonsupport elements, and the other comprised of elements
corresponding to the set T :

�y − x�
2
= �yT − xT �

2
+ �xT c�

20

Denote by u 6= y, the vector for which it holds that uT = PBT
4xT 5 and uT c = 0. Then, uT 6= yT , and by the

uniqueness of the orthogonal projection operator onto closed and convex sets, it follows that �uT − xT �2 <
�yT − xT �2, and hence

�y − x�
2
= �yT − xT �

2
+ �xT c�

2 > �uT − xT �
2
+ �xT c�

2
= �u − x�

21

thus contradicting the optimality of y w.r.t. (16). �
The latter lemma implies that if a super support T of a sparse projection vector is known, then the vector

v = PBT
4x5 induces a sparse projection vector in the sense that UT v ∈ PCs∩B

4x5. Therefore, an inefficient method
to find a vector in PCs∩B

4x5 is to go over all the potential
(

n

s

)

super supports T ⊆ 81121 : : : 1 n91 �T � = s, compute
the corresponding projections PBT

4xT 5, and finally, choose the support corresponding to the minimal distance
�x − UT PBT

4xT 5�0

4.2. Sparse projections onto type-1 symmetric sets. It is important to note when B is nonnegative/type-1
symmetric/type-2 symmetric, then so is the set D = Cs ∩ B, so all the results of §3 can be employed. Using
these results, we will show that under general symmetry properties, a super support set of a sparse projection
vector can be evaluated efficiently in advance, without the need of the exhaustive search procedure described
above. We will show how the order preservation property (Theorem 3.1) leads to the insight that there are at
most s+1 possible support sets. For that, we first define the set S�

6j11 j27
as the set of indices from �4j15 to �4j25.

Definition 4.1. For any permutation � ∈èn, the set S�
6j11j27

is defined as

S�
6j11 j27

=

{

8�4j151�4j1 + 151 : : : 1�4j2591 0 < j1 ≤ j2 ≤ n1

�1 otherwise0

Now, the s-sparse projection onto a symmetric type-1 set can be evaluated efficiently in s + 1 steps, by
searching for a super support among s + 1 possibilities, stated in the following theorem.

Theorem 4.1 (Symmetric Type-1 Projection Theorem). Let B be a closed and convex type-1 symmetric
set, x ∈�n, and � ∈ è̃4x5. Then, there exists y ∈ PCs∩B

4x5 for which

I14y5⊆ S�
611 k7 ∪ S�

6n+k−4s−151 n7 (17)

for some k ∈ 801 : : : 1 s9.

Proof. Note that by the closedness of Cs ∩B, it follows that PCs∩B
4x5 is nonempty, and hence by the order

preservation property (Theorem 3.1), there exists y ∈ PCs∩B
4x5 such that � ∈ è̃4y5. Define

imax =

{

01 y ≤ 01
max8i2 y�4i5 > 091 otherwise1

imin =

{

n+ 11 y ≥ 01
min8i2 y�4i5 < 091 otherwise0

Evidently,
I14y5= S�

611 imax7
∪ S�

6imin1 n7
0

Since the number of nonzero elements in y is at most s, we have that

imax + 4n− imin + 15≤ s0 (18)
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Define k = imax, then by (18), it follows that imin ≥ n+ k− 4s − 15, and hence

S�
6imin1 n7

⊆ S�
6n+k−4s−151 n71

and we conclude (recalling that k = imax) that

I14y5= S�
611 imax7

∪ S�
6imin1 n7

⊆ S�
611 k7 ∪ S�

6n+k−4s−151 n71

establishing the desired result. �
The type-1 symmetric projection theorem readily implies that a super support of a sparse projection vector

can be found by going over s + 1 possible super support sets, computing the orthogonal projections over the
restriction of B to the corresponding index set, and choosing the vector associated with the minimal distance.
This method is described in details below.

Algorithm 1 (Projection onto a type-1 symmetric set).
Input: x ∈�n.
Output: u ∈ PCs∩B

4x5.
1. Find � ∈ è̃4x5.
2. For any k = s1 s − 11 : : : 10 do:

(a) Set Tk = S�
611 k7 ∪ S�

6n+k−4s−151 n7.
(b) Compute gk = PBTk

4xTk
5 and define zk = UTk

gk.
3. Return u = argmin8�z − x�22 z ∈ 8zk2 k = s1 s − 11 : : : 10990

Remark 4.1. Note that it is not really necessary to compute a sorting permutation � ∈ è̃4x5, as described
in step 1, and it is actually enough to be able to compute the sets Tk, which can be done in linear time.

4.3. Sparse projection onto nonnegative type-1 symmetric sets. For nonnegative type-1 symmetric sets,
a super support of a vector in PCs∩B

4x5 can be found instantly: a set containing the indices corresponding to the
s largest values of x.

Theorem 4.2 (Nonnegative Type-1 Symmetric Projection Theorem). Let B be a closed and convex
nonnegative type-1 symmetric set. Let x ∈�n and � ∈ è̃4x5. Then, there exists y ∈ PCs∩B

4x5 for which S�
611 s7 is a

super support.

Proof. Since PCs∩B
4x5 is nonempty, it follows by the order preservation property (Theorem 3.1) that there

exists y ∈ PCs∩B
4x5 such that � ∈ è̃4y5. Therefore, since y ≥ 0 and �I14y5� ≤ s, it follows that I14y5⊆ S�

611 s7. �
Using Theorem 4.2, we can write explicitly the algorithm for finding a sparse projection vector onto a closed

and convex nonnegative type-1 symmetric set.

Algorithm 2 (Projection onto a nonnegative type-1 symmetric set).
Input: x ∈�n.
Output: u ∈ PB∩Cs

4x5.
1. Compute T = S�

611 s7 for � ∈ è̃4x5.
2. Return u = UT PBT

4xT 5.

4.4. Sparse projection onto type-2 symmetric sets. When the underlying set B is a type-2 symmetric
set, a super support of a sparse projection vector onto B can also be instantly detected—the set of indices
corresponding to s indices with the largest absolute value.

Theorem 4.3 (Type-2 Symmetric Projection Theorem). Let B be a closed and convex type-2 symmetric
set and for x ∈�n, let � ∈ è̃4�x�5. Then, there exists y ∈ PCs∩B

4x5 for which S�
611 s7 is a super support.

Proof. Since B∩�n
+

is obviously a nonnegative type-1 symmetric set, it follows by Theorem 4.2 that there
exists z ∈ PCs∩B∩�n

+
4�x�5 such that I14z5⊆ S�

611 s7. By Lemma 3.3, it follows that sign4x5 � z ∈ PCs∩B
4x5, and hence

taking y = sign4x5 � z, we obtain that y ∈ PCs∩B
4x5 and that I14y5= I14z5⊆ S�

611 s7. �
The corresponding algorithm for computing a sparse projection vector onto a type-2 symmetric set is stated

explicitly below.
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Algorithm 3 (Projection onto a type-2 symmetric set).
Input: x ∈�n.
Output: u ∈ PCs∩B

4x5.
1. Compute T = S�

611 s7 for � ∈ è̃4�x�5.
2. Return u = UT PBT

4xT 5.

4.5. Unifying the analysis. Since we will investigate nonnegative type-1 and type-2 symmetric sets, we
would like to unify the analysis of the two settings as much as possible. This is done by defining the following
symmetry function p2 �n →�n:

p4x5≡

{

x1 B is nonnegative type-11

�x�1 B is type-2 symmetric0
(19)

Using the definition of the symmetry function, we can combine Theorems 4.2 and 4.3, to obtain the following
result.

Theorem 4.4 (Unified Symmetric Projection Theorem). Let B ⊆�n be a closed and convex set, which
is additionally either a nonnegative type-1 or type-2 symmetric set. Let x ∈�n and � ∈ è̃4p4x55, where p4 · 5 is
defined in (19). Then, there exists y ∈ PCs∩B

4x5 for which S�
611 s7 is a super support.

4.6. Examples. Using the results obtained so far, we can now go back to the symmetric sets considered in
§3.1 and write in details how to compute a sparse projection vector onto each of them. This is done in Table 3.

Some comments related to Table 3 are in order:
• When there are s + 1 candidates for the sparse projection vector zk = UTk

PBTk
4xTk

51 k = 0111 : : : 1 s, the
sparse projection vector is chosen to be the one for which �zk − x�2 is minimal.

• Performing the orthogonal projection onto the unit-simplex ãs amounts to finding a root of a one-
dimensional strictly decreasing function (see, e.g., Kiwiel [17]).

• The projection of a vector y ∈�s onto the unit-sum set ã′
s is given by

Pã′
s
4y5= y +�1s1

where �= 41 − 1T
s y5/s.

• The projection onto the unit lp-ball can be done via a one-dimensional root finding procedure.
• For general `1u, the set 6`1 u7n is a type-1 symmetric set, and hence s + 1 possible super sets should be

explored. However, if `≥ 0, then the set is, in addition, nonnegative and hence a super support set is T = S�
611 s7,

where � ∈ è̃4x5. If ` = −u, then the set is a type-2 symmetric set and hence a super support set is T = S�
611 s7,

where � ∈ è̃4�x�5.
We also note that in some cases, the search of the correct super support among the s + 1 possibilities can be

done more efficiently than just performing s + 1 projections on the restrictions of the underlying set B. As an
illustration, let us consider the sparse projection onto the unit-sum set. A naïve implementation of the procedure
will consist of the computation of the s + 1 vectors

vk = UTk
4xTk

+�k1s51

Table 3. Super supports for sparse projection onto simple sets.

Candidates for sparse Restriction of B
B projection vectors Super support set(s) on the support

�n UT xT T = S�
611 s71� ∈ è̃4�x�5 BT =�s

�n
+

UT 6xT 7+ T = S�
611 s71� ∈ è̃4x5 BT =�s

+

ãn UT PBT
4xT 5 T = S�

611 s71� ∈ è̃4x5 BT =ãs

ã′

n UTk
PBTk

4xTk
5 Tk = S�

611 k7 ∪ S�
6n+k−4s−151 n7 BTk

=ã′

s

k = 0111 : : : 1 s1 � ∈ è̃4x5
Bn

p60117 4p ≥ 15 UT PBT
4xT 5 T = S�

611 s71� ∈ è̃4�x�5 BT = Bs
p60117

6`1 u7n 4` < u5 UTk
PBTk

4xTk
5 Tk = S�

611 k7 ∪ S�
6n+k−4s−151 n7 BTk

= 6`1 u7s

k = 0111 : : : 1 s, � ∈ è̃4x5
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where

�k =
1 − 1T

s xTk

s
1

and Tk = S�
611 k7 ∪S�

6n+k−4s−151 n71 k = 0111 : : : 1 s. The sparse projection vector is vk with k chosen to minimize the
expression

fk ≡ �x − vk�
2
= s�2

k + �xT c
k
�

20

Since the evaluation of fk requires O4n5 operations, the described process needs O4ns5 operations. We can
decrease the number of operations by noting that �k and fk can be computed recursively. Indeed, for any
k = 1121 : : : 1 s,

�k =
1
s

(

1 −

k
∑

j=1

x�4j5 −
n
∑

j=n+k+1−s

x�4j5

)

0

Thus

�k =
1
s

(

1 − x�4k5 + x�4n+k−s5 −

k−1
∑

j=1

x�4j5 −
n
∑

j=n+k−s

x�4j5

)

=
1
s
4−x�4k5 + x�4n+k−s55+�k−10

Therefore the recurrence relation for the sequence 8�k9 is

�k−1 = �k +
1
s
4x�4k5 − x�4n+k−s550

A similar argument shows how to computed fk−1 out of fk:

fk−1 = s�2
k−1 +

n+k−1+s
∑

j=k

x2
�4j5

= s�2
k +

n+k−s
∑

j=k+1

x2
�4j5 + x2

�4k5 − x2
�4n+k−s5 + s4�2

k−1 −�2
k5

= fk + s4�2
k−1 −�2

k5+ x2
�4k5 − x2

�4n+k−s50

The recurrence-based algorithm for computing a sparse projection vector on the unit-sum set is described
below.

Algorithm 4 (Projection onto the sparse unit-sum set)
Input: x ∈�n.
Output: u ∈ PCs∩ã

′
n
4x5.

1. Compute S�
611 s7 and S�

6n−4s−151 n7 for � ∈ è̃4x5.
2. Sort the elements of x corresponding to the indices S�

611 s7 ∪ S�
6n−4s−151 n7.

3. Set �s =
1
s

(

1 −

s
∑

j=1

x�4j5

)

.

4. fs = s�2
s +

∑n
j=s+1 x

2
�4j5.

5. For any k = s1 s − 11 : : : 11 compute the following:

(a) �k−1 = �k +
1
s
4x�4k5 − x�4n+k−s+155.

(b) fk−1 = fk + s4�2
k−1 −�2

k5+ x2
�4k5 − x2

�4n+k−s5.
6. m ∈ argmin

k=0111 : : : 1 s
8fk9

7. Return

ui =

{

xi +�m1 i ∈ S�
611m7 ∪ S�

6n+m−4s−151 n701

01 else0

Overall, the number of operations required in the above implementation is o4n+ s log4s55 for the initial com-
putation and sorting of S�

611 s7 ∪S�
6n−4s−151 n7, and s ·O415 operations for the evaluation of the s values f01 f11 : : : 1 fs ,

resulting with a total (reduced) complexity of O4n+ s log4s55.
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5. Optimality conditions I: Stationarity-based conditions. So far, we have studied properties and compu-
tational methods of orthogonal projections onto symmetric sets and sparse symmetric sets (§§3 and 4, respec-
tively). The importance of this study is twofold: first, some algorithms that attempt to find an optimal solution
of problem (1) actually require the computation of the orthogonal projection (e.g., the IHT method—see §8).
Second, the orthogonal projection plays a key role in the development of necessary optimality conditions
for sparsity-constrained problems. In particular, in this section, two of the optimality conditions that we will
consider—basic feasibility (BF) and L-stationarity—heavily rely on orthogonal projections.

5.1. Basic feasibility (BF). The most elementary stationarity-based optimality condition is basic feasibility.
For problem (1), loosely speaking, it states that a basic feasible point is a point that satisfies the first-order
optimality conditions over any possible super support set.

Definition 5.1 (Basic Feasibility). A vector x ∈Cs ∩B is called a basic feasible 4BF5 point of (P) if for
any super support set S of x, it holds that for some L> 0:

xS = PBS

(

xS −
1
L
ïSf 4x5

)

0 (20)

Remark 5.1. We note the following:
(a) If �I14x5� = s, then the only super support set is the support itself, and hence basic feasibility is the same

as the condition

xI14x5
= PBI14x5

(

xI14x5
−

1
L
ïI14x5

f 4x5
)

0 (21)

The above condition is always satisfied for BF points (but is not sufficient when the support is incomplete).
(b) The BF condition is equivalent to the condition that for any super support set S of x, xS is a stationary

point of the convex-constrained problem

min8f 4USd52 d ∈ BS90

The stationarity condition (20) is actually independent of L, although it is expressed in terms of L, and it can
also be written alternatively as (see §2.1)

〈

ïSf 4x51yS − xS

〉

≥ 0 for any y ∈ B s.t. I14y5⊆ S0

The fact that BF is a necessary optimality condition is shown next.

Theorem 5.1. Let x∗ be an optimal solution of problem (1). Then, x∗ is a basic feasible point of (P).

Proof. Let S be a super support set of x∗. Since x∗ is an optimal solution of (P), we have, in particular, that
x∗
S is an optimal solution of

min
d∈BS

f 4USd51 (22)

and thus, x∗
S is a stationary point of (22). We conclude that for any L> 0,

x∗

S = PBS

(

x∗

S −
1
L

UT
Sïf 4USx∗

S5

)

0

By noting the equality UT
Sïf 4USx∗

S5= ïSf 4x
∗5, we conclude that x∗ is a basic feasible point. �

Note that when the support of x is not full, verifying whether it is a basic feasible point requires in principle
checking the condition (20) for each of the

(

n−�x�0
s−�x�0

)

choices of the super support set. We will see in §5.2.3 that
when the underlying set B is either a nonnegative type-1 symmetric set or a type-2 symmetric set, there are
simple ways to verify that a point without a full support is a basic feasible point by checking that condition (20)
holds for a specific super support set. In the meantime, using the explicit stationarity conditions for the examples
that appear in Table 1, we can write the BF conditions for the full support case. For all these examples, when
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the support is not full, the condition for BF is exactly the stationarity condition for the problem of minimizing
f over B (without the sparsity constraint).

B BF conditions (full support)

�n ïI14x∗5f 4x
∗5= 0

�n
+

ïI14x∗5f 4x
∗5= 0

ãn ∃� ∈�2 ïif 4x
∗5=�1 i ∈ I14x

∗5

ã′
n ∃� ∈�2 ïif 4x

∗5=�1 i ∈ I14x
∗5

Bn
2 60117 ïI14x∗5f 4x

∗5= 0 or �x∗� = 1 and ∃�≤ 02 ïI14x∗5f 4x
∗5= �x∗

I14x∗5

6`1 u7n 4` < u5
¡f

¡xi
4x∗5











= 01 ` < xi <u1

≥ 01 xi = `1

≤ 01 xi = ui1

i ∈ I14x
∗50

We end this section with a general property of basic feasible points that will be useful later on. This property
holds when B is a type-2 symmetric set.

Lemma 5.1. Suppose that B is a type-2 symmetric set, and let x∗ be a basic feasible solution of (P). Then,

x∗

i ïif 4x
∗5≤ 0 for all i ∈ I14x

∗50

Proof. Since x∗ satisfies (21) with x = x∗, it is a stationary point of the problem

min
d∈BS

f 4USd51

where S = I14x
∗5. Thus

UT
Sïf 4USx∗

S5
T 4yS − x∗

S5≥ 0 for any y ∈ B s.t. I14y5⊆ S0 (23)

Since B is type-2 symmetric, it follows that the vector x̃ defined by

x̃j =

{

x∗
j 1 j 6= i1

−x∗
i 1 j = i0

is in B and obviously I14x̃5= I14x
∗5. Plugging y = x̃ into (23) yields the inequality ïif 4x

∗5x∗
i ≤ 00 �

5.2. L-stationarity.

5.2.1. Definition and basic properties. As was already noted, BF is a notion related to stationarity over
a restriction of B to super support sets of the vector. It does not say anything about the “optimality” of the
support, and in that respect, it is a rather weak condition. A stronger condition is the L-stationarity condition
that we introduce now.

Definition 5.2 (L-Stationarity). Let L> 0. A vector x ∈Cs ∩B is an L-stationary point of (P) if

x ∈ PCs∩B

(

x −
1
L
ïf 4x5

)

0

The fact that L-stationarity is a more restrictive condition than BF is now stated and proved.

Lemma 5.2. Let x∗ ∈Cs ∩B be an L-stationary point of (P). Then, x∗ is a basic feasible point of (P).

Proof. Let S be a super support of x. Plugging T = S1 x = x∗ − 41/L5ïf 4x∗5 and y = x∗ in Lemma 4.1,
implies that

x∗

S = PBS

(

x∗

S −
1
L
ïSf 4x

∗5

)

showing the required result. �
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We have thus shown that any L-stationary point is a basic feasible point. We continue to show that L-
stationarity is a more restrictive condition as L becomes smaller. For that, we use the following trivial fact.

Lemma 5.3. Let L> 0. Then, x ∈Cs ∩B is an L-stationary point of (P) if and only if

x ∈ argmin
y∈Cs∩B

{

hL4y1x5≡ ïf 4x5T y +
L

2
�y − x�

2

}

0 (24)

Proof. Note that
∥

∥

∥

∥

y −

(

x −
1
L
ïf 4x5

)

∥

∥

∥

∥

2

=

(

1
L2

�ïf 4x5�2
−

2
L
ïf 4x5T x

)

+
2
L

[

ïf 4x5T y +
L

2
�y − x�

2

]

0

Therefore x is an L-stationary point, meaning that x satisfies

x ∈ argmin
y∈Cs∩B

∥

∥

∥

∥

y −

(

x −
1
L
ïf 4x5

)

∥

∥

∥

∥

2

if and only if (24) holds. �

Theorem 5.2. Suppose that L1 ≥ L2 ≥ 0. Then, if x ∈ Cs ∩ B is an L2-stationary point, then it is also an
L1-stationary point.

Proof. Since x is an L2-stationary point, then by Lemma 5.3, it satisfies

x ∈ argmin
y∈Cs∩B

hL2
4y1x51

which means that hL2
4y1x5≥ hL2

4x1x5 for any y ∈Cs ∩B, and hence for any such y:

hL1
4y1x5= hL2

4y1x5+
L1 −L2

2
�y − x�

2
≥ hL2

4x1x5+ 0 = hL1
4x1x5

showing that x ∈ argminy∈Cs∩B
hL1

4y1x5, which by Lemma 5.3, implies that x is an L1-stationary point. �

Another result that can be proved without any symmetry assumptions on B is that if ïf has a Lipschitz
constant L4f 5, then L-stationarity is a necessary optimality condition for any L>L4f 5. Later on, in §3, we will
show how the result can be improved, that is, can be shown for smaller values of L when symmetry conditions
are assumed.

Theorem 5.3. Suppose that Assumption [A+] is satisfied. Then, if x∗ is an optimal solution of (P), then it
is an L-stationary point for any L>L4f 5.

Proof. Let x∗ be an optimal solution of (P), and let L satisfy L>L4f 5. By the descent lemma (Lemma 2.1),
it follows that for any y ∈Cs ∩B, the following inequality holds:

f 4y5≤ f 4x∗5+ïf 4x∗5T 4y − x∗5+
L

2
�y − x∗

�
21

which by the fact that f 4y5≥ f 4x∗5, implies that for any y ∈Cs ∩B:

g4y5≡ ïf 4x∗5T 4y − x∗5+
L

2
�y − x∗

�
2
≥ 00

Therefore g4y5≥ g4x∗5 for any y ∈Cs ∩B, and hence

x∗
∈ argmin

y∈Cs∩B

{

ïf 4x∗5T 4y − x∗5+
L

2
�y − x∗

�
2

}

= argmin
y∈Cs∩B

hL4y1x∗50

Finally, by Lemma 5.3, we conclude that x∗ is an L-stationary point of (P). �
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5.2.2. L-stationarity under symmetry assumptions. We now continue to write more explicit conditions
for L-stationarity under the assumption that the underlying set is either nonnegative type-1 or type-2 symmetric.

Theorem 5.4 (L-Stationarity Characterization). Let B be either a nonnegative type-1 or a type-2 sym-
metric set. A vector x∗ ∈Cs ∩B is an L-stationary point of (P) if and only if

x∗ is a BF point and p4Lx∗

i −ïif 4x
∗55≥ p4−ïjf 4x

∗55 for any i ∈ I14x
∗5 and j ∈ I04x

∗51

where p4 · 5 is given by

p4x5≡

{

x B is nonnegative type-11

�x� B is type-2 symmetric0

Proof. Assume that x∗ ∈ Cs ∩ B is an L-stationary point, that is, x∗ ∈ PCs∩B
4x∗ − 41/L5ïf 4x∗55. By

Lemma 5.2, it is also a basic feasible point. In addition,

p4x∗5 ∈ PCs∩B∩�n
+

(

p

(

x∗
−

1
L
ïf 4x∗5

))

0 (25)

Relation (25) is valid since when p4x∗5 ≡ x∗, it is actually a tautology, and when p4x∗5 = �x∗�, it holds by
Corollary 3.1. Now, let i ∈ I14x

∗5 and j ∈ I04x
∗5. By (25) and Lemma 3.1, we have

(

p

(

x∗

i −
1
L
ïif 4x

∗5

)

−p

(

x∗

j −
1
L
ïjf 4x

∗5

))

4p4x∗

i 5−p4x∗

j 55≥ 01

which by the fact that p4x∗
i 5 > p4x∗

j 5 (i ∈ I14x
∗51 j ∈ I04x

∗5), implies that

p

(

x∗

i −
1
L
ïif 4x

∗5

)

≥ p

(

x∗

j −
1
L
ïjf 4x

∗5

)

0

Hence, since x∗
j = 0, we have that p4Lx∗

i −ïif 4x
∗55≥ p4−ïjf 4x

∗55.
To prove the reverse direction, assume that x∗ is a basic feasible point, and that for any i ∈ I14x

∗5 and
j ∈ I04x

∗5, the inequality
p4Lx∗

i −ïif 4x
∗55≥ p4−ïjf 4x

∗55 (26)

holds. Since x∗
j = 0 4j ∈ I04x

∗55, we have that

p

(

x∗

i −
1
L
ïif 4x

∗5

)

≥ p

(

x∗

j −
1
L
ïjf 4x

∗5

)

for any i ∈ I14x
∗5 and j ∈ I04x

∗5. Therefore, there exists a sorting permutation

� ∈ è̃

(

p

[

x∗
−

1
L
ïf 4x∗5

])

for which I14x
∗5 ⊆ S�

611 s7. By Theorem 4.4, there exists z ∈ PCs∩B
4x∗ − 41/L5ïf 4x∗55 such that I14z5 ⊆ S�

611 s7.
Since z ∈ PCs∩B

4x∗ − 41/L5ïf 4x∗55, by Lemma 4.1,

zS�611 s7 = PBS�
611 s7

(

p

[

x∗

S�611 s7
−

1
L
ïS�611 s7

f 4x∗5

])

0

Since x∗ is a basic feasible point of (P), and S�
611 s7 is a super support of x∗, then

x∗

S�611 s7
= PBS�

611 s7

(

p

[

x∗

S�611 s7
−

1
L
ïS�611 s7

f 4x∗5

])

0

Therefore, by the uniqueness of the projection operator onto closed and convex sets (in particular here, on BS�611 s7
),

and since I14x
∗5∪ I14z5⊆ S�

611 s7, it follows that z = x∗, which is the desired result. �
Remark 5.2. When B =�n, it can be shown that the conditions of Theorem 5.4 reduce to

�ïif 4x
∗5�

{

≤ LMs4x
∗51 if i ∈ I04x

∗51

= 01 if i ∈ I14x
∗51

where Ms4x
∗5 is the s-th largest absolute value component in x∗. This result was established in Beck and

Eldar [3] for general objective functions, and in Blumensath and Davies [6] for the case of a least squares
objective function.
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5.2.3. Characterization of BF points with incomplete support. In Lemma 5.2, we showed that an
L-stationary point is necessarily a basic feasible point. We will now show that the reverse implication also holds
if the point does not have a full support and B is either a nonnegative type-1 or a type-2 symmetric set. There-
fore, checking BF of a point in Cs ∩B is equivalent to checking L-stationarity, and in any case, there is no need
to go over all the possible super support sets. Before proving the result, we will establish a technical lemma.

Lemma 5.4. Let B be either a nonnegative type-1 or a type-2 symmetric set and let x ∈ Cs ∩ B satisfy
�I14x5�< s. Let S be a super support set of x, and assume that for some L> 0,

xS = PBS

(

xS −
1
L
ïSf 4x5

)

0 (27)

Then,

p

(

xi −
1
L
ïif 4x5

)

≥ p

(

xj −
1
L
ïfj4x5

)

1 for any i ∈ I14x51 j ∈ S ∩ I04x50

Proof. Since x satisfies (27), it is a stationary point of the problem

min
d∈BS

f 4USd5

. Thus
UT

Sïf 4USxS5
T 4yS − xS5≥ 01 for any y ∈ B s.t. I14y5⊆ S1

which is the same as
ïSf 4x5

T 4yS − xS5≥ 01 for any y ∈ B s.t. I14y5⊆ S0 (28)

Let i ∈ I14x5 and j ∈ I04x5 ∩ S. Since B is type-1 symmetric, we have that x�i1 j ∈ B, where �i1 j is the swap
permutation of the indices i1 j . In addition, since i1 j ∈ S, it follows that I14x

�i1 j 5 ⊆ S, and hence we can plug
y = x�i1 j into the inequality in (28) and obtain

xi4ïjf 4x5−ïif 4x55≥ 00 (29)

At this point, we split the analysis between the nonnegative type-1 and type-2 settings.
• B is nonnegative type-1 symmetric. Since i ∈ I14x5, we have xi > 0, and hence by (29),

ïjf 4x5≥ ïif 4x51 (30)

which combined with the fact xi > 0 (i ∈ I14x5) and xj = 0 (j ∈ I04x5) implies the following relation:

xi −
1
L
ïif 4x5 > xj −

1
L
ïif 4x50

• B is type-2 symmetric. By Lemma 5.1, it follows that

ïif 4x5xi ≤ 00 (31)

Plugging y = −x�i1 j into inequality (28) results in

− xi4ïjf 4x5+ïif 4x55≥ 00 (32)

Multiplying inequalities (29) and (32), implies that the following holds:

�ïif 4x5� ≥ �ïjf 4x5�1 (33)

which combined with (31), yields
∣

∣

∣

∣

xi −
1
L
ïif 4x5

∣

∣

∣

∣

≥
1
L

�ïfj4x5�0

Hence, using (33) and the fact that xj = 0, we obtain that
∣

∣

∣

∣

xi −
1
L
ïif 4x5

∣

∣

∣

∣

≥

∣

∣

∣

∣

xj −
1
L
ïfj4x5

∣

∣

∣

∣

0
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Combining the two cases, we conclude that

p

(

xi −
1
L
ïif 4x5

)

≥ p

(

xj −
1
L
ïfi4x5

)

for any i ∈ I14x51 j ∈ S ∩ I04x51

which is the desired result. �
We are now ready to prove that BF and L-stationarity are equivalent when the vector has an incomplete

support.

Theorem 5.5. Let B be either a nonnegative type-1 or type-2 symmetric set and x ∈ Cs ∩ B such that
�I14x5�< s. Then, the following claims are equivalent:

(a) x is a basic feasible point of (P).
(b) x is an L-stationary point of (P) over Cs ∩B for any L> 0.

Proof. The implication 4b5⇒ 4a5 follows by Lemma 5.2. To prove the reverse implication, assume that x
is a basic feasible point. Let i ∈ I14x51 j ∈ I04x5, and let S be a super support set of x for which j ∈ S (such a
set exists since �I14x5�< s). Then, employing Lemma 5.4, it follows that

p

(

xi −
1
L
ïif 4x5

)

≥ p

(

xj −
1
L
ïfi4x5

)

0

Since the above inequality is valid for all i ∈ I14x51 j ∈ I04x5, we conclude that there exists a sorting permutation

� ∈ è̃

(

p

[

x −
1
L
ïf 4x5

])

for which I14x5⊆ S�
611 s7. By Theorem 4.4, there exists

z ∈ PCs∩B

(

x −
1
L
ïf 4x5

)

(34)

such that I14z5⊆ S�
611 s7. Consequently,

I14x5∪ I14z5⊆ S�
611 s70 (35)

Since z ∈ PCs∩B
4x − 41/L5ïf 4x55 and I14z5⊆ S�

611 s7, by Lemma 4.1,

zS�611 s7 = PBS�
611 s7

(

xS�611 s7
−

1
L
ïS�611 s7

f 4x5
)

0

Since x is a basic feasible point of (P), and I14x5⊆ S�
611 s7, then

xS�611 s7
= PBS�

611 s7

(

xS�611 s7
−

1
L
ïS�611 s7

f 4x5
)

0

Finally, we have from the uniqueness of the projection operator onto closed and convex sets, that xS�611 s7
= zS�611 s7 ,

which combined with (35), implies that x = z, and hence (see (34)) that

x ∈ PCs∩B

(

x −
1
L
ïf 4x5

)

0 �

Theorem 5.5 states that when the support is incomplete, BF is equivalent to L-stationarity (for any L > 0).
We will now prove a different characterization of basic feasible points with an incomplete support that will be
extremely useful in the algorithmic part. Particularly, we show that in order to check BF of a vector with an
incomplete support, only one super support set should be checked to satisfy (20).

Theorem 5.6. Suppose that B is either a nonnegative type-1 or a type-2 symmetric set. Let x ∈Cs ∩B and
� ∈ è̃4−p4−ïf 4x555. Let i ∈ 811 : : : 1 n+ 19 be such that �S�

6i1 n7 ∪ I14x5� = s, and let T = I14x5∪ S�
6i1 n7. If

xT = PBT

(

xT −
1
L
ïT f 4x5

)

1 (36)

then x is a basic feasible point of (P).
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Proof. If �I14x5� = s, then i = n+ 1. That is, S�
6i1 n7 = �1 T = I14x5 and

xI14x5
= PBI14x5

(

xI14x5
−

1
L
ïI14x5

f 4x5
)

1

which is exactly the condition for BF for points with a full support, see Remark 5.1(a). If �I14x5�< s, then i ≤ n.
That is, the set S�

6i1 n7 is nonempty and T = I14x5∪ S�
6i1n7. Since (36) holds, we have by Lemma 5.4 that

p

(

xi −
1
L
ïif 4x5

)

≥ p

(

xj −
1
L
ïfj4x5

)

1 for any i ∈ I14x51 j ∈ T ∩ I04x50 (37)

In addition, by the definition of T , for any j ∈ T ∩ I04x5 and k ∈ I04x5\T , we have (recalling that xj = xk = 0):

p

(

xj −
1
L
ïjf 4x5

)

≥ p

(

xk −
1
L
ïkf 4x5

)

1

which combined with (37) implies that

p

(

xi −
1
L
ïif 4x5

)

≥ p

(

xj −
1
L
ïfj4x5

)

1 for any i ∈ I14x51 j ∈ I04x50

Therefore, by Theorem 5.4, it follows that x is an L-stationary point, which readily implies that it is a basic
feasible point. �

Remark 5.3. We note that the approach for deriving optimality conditions in this paper is a departure from
the classical derivation of optimality conditions for nonconvex programming that usually use characterizations
based on normal cones and subdifferentials (Rockafellar [26], Rockafellar and Wets [27], Bolte et al. [8]).
Recently, in the work of Pan et al. [25], explicit expressions for sparsity-constrained problems were derived by
using normal cones that correspond to either Clarke or Bouligand tangent cones. It was shown in Pan et al. [25]
that L-stationarity is a more restrictive condition than the derived optimality conditions. In fact, when the only
constraint is the sparsity constraint, the conditions obtained in Pan et al. [25] are equivalent to BF (see Pan et al.
[25, Tables 1 and 2]).

6. Optimality conditions II: Coordinatewise-based conditions. So far, we presented and studied opti-
mality conditions, which are based on stationarity notions. For example, BF is a type of stationarity on the
underlying set restricted to the support, and L-stationarity is a natural extension of the standard stationarity
condition for smooth problems on convex sets. In any case, these types of conditions are related to standard
optimality conditions in continuous optimization. Another type of optimality conditions that will be the subject
of this section are coordinatewise optimality conditions. Loosely speaking, points satisfying such conditions
are required to have a function value, which is better (or no worse) than function values of a certain set of
points whose support is only slightly different from the current support. These types of conditions are of a more
combinatorial flavor, and we will see that they are, in fact, superior to the stationarity-based conditions.

6.1. Simple coordinatewise (simple-CW) optimality. We begin by defining an unrestrictive optimality
condition and proving its optimality.

Definition 6.1 (Simple-CW Optimality in Nonnegative Type-1 or Type-2 Symmetric Sets). Suppose
that B is either a nonnegative type-1 or type-2 symmetric set. Let x ∈ Cs ∩ B be a basic feasible point of (P).
Let

i ∈ argmin
`∈D4x5

{

p4−ï`f 4x55
}

1 with D4x5= argmin
k∈I14x5

p4xk5 (38)

j ∈ argmin
`∈I04x5

{

−p4−ï`f 4x55
}

1 (39)

where p4 · 5 is defined in (19). Then, x is a simple-CW point of (P) if

f 4x5≤

{

min
{

f 4x − xiei + xiej51 f 4x − xiei − xiej5
}

1 B type-21

f 4x − xiei + xiej51 B nonneg. type-1.
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Note that there might be several choices for the indices i and j in the above definition. We will make the
convention that in such a case, we will always pick the smallest index among the possible choices. In addition,
note that the condition is independent of any Lipschitz constant.

When B is a type-2 (nonnegative type-1) symmetric set, then the variable entering the support corresponds
to the maximal absolute value partial derivative (minimal partial derivative), whereas the choice of the variable
leaving the support is made in two stages: first, we consider all the indices corresponding to the variables
with minimal absolute value (value) among the support indices, and from this set of indices, we pick an index
corresponding to the minimal absolute value (maximal value) of the partial derivative.

Obviously, simple-CW optimality is a necessary optimality condition.

Lemma 6.1. Let B be either nonnegative type-1 set or a type-2 symmetric set, and let x∗ be an optimal
solution of problem (1). Then, x∗ is a simple-CW point of (P).

Simple-CW optimality seems like a rather unrestrictive condition, and yet, it turns out that when Assump-
tion [A+] holds, it is better (i.e., more restrictive) than L24f 5-stationarity. For that, we first need to show the
following result.

Lemma 6.2. Let B be either a nonnegative type-1 or a type-2 symmetric set, and let x ∈ Cs ∩B be a basic
feasible solution of (P). Assume that i is an index chosen according to (38). Then, for any L> 0,

i ∈ argmin
`∈I14x5

p4Lx` −ï`f 4x550

Proof. Let L> 0. Since x is a BF point of (P), it follows that

xI14x5
= PBI14x5

(

xI14x5
−

1
L
ïI14x5

f 4x5
)

1

and hence, by Corollary 3.1 with D = BI14x5
(for nonnegative type-1 sets, the implication is trivial),

p4xI14x5
5= P

BI14x5
∩�

�I14x5�
+

(

p

[

xI14x5
−

1
L
ïI14x5

f 4x5
])

0

Since BI14x5
∩��I14x5�

+ is a nonnegative type-1 symmetric set, it follows by Theorem 3.1, and the uniqueness
of the projection onto closed and convex sets, that there is a permutation that sorts 8p4xk59k∈I14x5

and 8p4Lxk −

ïkf 4x559k∈I14x5
. Consequently, there exists an index minimizing p4Lxk −ïkf 4x55 among the indices minimizing

of p4xk5. Hence,
min
k∈I14x5

p4Lxk −ïkf 4x55= min
k∈D4x5

p4Lxk −ïkf 4x550 (40)

Obviously, p4xk5 has the same value for all k ∈D4x5, which we will denote by p∗. In addition, since p4x5≡ x
when B is type-1 symmetric and xkïkf 4x5 ≤ 0 (by Lemma 5.1), p4x5 = �x� when B is type-2 symmetric, it
follows that for any k ∈D4x5

p4Lxk −ïkf 4x55= Lp∗
+p4−ïkf 4x551

which combined with (40) implies that the index i, which is the index corresponding to the minimal value of
p4−ïkf 4x55 over D4x5, also corresponds to the minimal value of p4Lxk −ïkf 4x55 over k ∈ I14x5. �

We can now show that under Assumption [A+], any simple-CW point is also an L24f 5-stationary point. In
a sense, this is a rather surprising result since the simple-CW condition only checks that the point has a better
value than one or two points, which are slightly different than the current point.

Theorem 6.1 (Simple-CW ⇒ L24f 5-Stationarity). Let f satisfy Assumption [A+] and let B be either a
nonnegative type-1 or a type-2 symmetric set. Then, any simple-CW point of (P) is an L-stationary point of (P)
for any L≥ L24f 5.

Proof. Let x ∈Cs ∩B be a simple-CW point, and let L≥ L24f 5. By definition, x is a BF-point, and therefore
if �I14x5� < s, then by Theorem 5.5, x is an L-stationarity point of (P) (actually, for any L), and the result is
proven.

Suppose then that �I14x5� = s, then by the definition of simple-CW optimality and Lemma 6.2, for

j ∈ argmin
`∈I04x5

8−p4−ï`f 4x559 and i ∈ argmin
`∈I14x5

8p4Lx` −ï`f 4x5591 (41)
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it holds that
f 4x5≤ f 4x + xi4ej − ei550 (42)

By the block descent lemma (Lemma 2.2), for any y ∈�n satisfying �y − x�0 ≤ 2,

f 4y5− f 4x5≤ ïf 4x5T 4y − x5+
L

2
�y − x�

20 (43)

In particular, for y = x�i1 j = x − xiei + xiej , (43) reduces to

ïjf 4x54xi − xj5+ïif 4x54xj − xi5+L�xi − xj�
2
≥ f 4y5− f 4x50

Using (42) and the fact that xj = 0, we obtain

xi4ïjf 4x5−ïif 4x5+Lxi5≥ 00 (44)

We now split the analysis between the two types of symmetries.
• If B is nonnegative type-1 symmetric, then using the fact that i ∈ I14x5, we have

Lxi −ïif 4x5≥ −ïjf 4x50

• If B is type-2 symmetric, then using the same argument as above on the condition

f 4x5≤ f 4x − xiei − xjej51

yields the inequality
xi4−ïjf 4x5−ïif 4x5+Lxi5≥ 00

Multiplying the latter inequality with (44), and using the fact that i ∈ I14x5, implies

4Lxi −ïif 4x55
2
≥ ïjf 4x5

21

and consequently
�Lxi −ïif 4x5� ≥ �ïjf 4x5�0

We have thus shown that in both cases

p4Lxi −ïif 4x55≥ p4−ïjf 4x550

By the definitions of the indices i and j given in (42), it follows that

p4Lx` −ï`f 4x55≥ p4−ïmf 4x55

for any ` ∈ I14x5 and m ∈ I04x5, which by Theorem 5.4, implies that x is an L-stationarity point. �

A direct consequence of Theorem 6.1 is that when B is either a nonnegative-type 1 or a type-2 symmetric
set, L24f 5-stationarity is a necessary optimality condition. This is a stronger result than the one shown in
Theorem 5.3, where L-stationarity was shown for L>L4f 5 (without any symmetry assumption).

Theorem 6.2. Suppose that Assumption [A+] is satisfied. Then, if x∗ is an optimal solution of (P), then it
is an L-stationary point for any L≥ L24f 5.

6.2. Zero-CW and full-CW optimal points. We will now present two additional CW-type optimality con-
ditions whose validation requires the ability to minimize the objective function over a given super support. This
assumption holds, for example, when the objective function is convex, but there are other scenarios when it
is possible, such as the case when B is the l2 unit ball and the objective function is a (possibly nonconvex)
quadratic function. The minimization in this case reduces to the solution of a trust region subproblem (More and
Sorensen [23]). The zero-CW optimality condition is similar to simple-CW optimality, but requires the point to
be of a smaller or equal value than the points with a super support set constructed by swapping the indices i
and j defined in (38) and (39), and adding (if the support is not full) indices corresponding to the largest values
of p4−ïjf 4x55.
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Definition 6.2 (Zero-CW Optimal Point). Let x be a basic feasible point of (P), and assume that � ∈

è̃4−p4−ïf 4x555. Let k ∈ 81121 : : : 1 n9 satisfy

∣

∣4S�
6k1n7 ∪ I14x5∪ 8j95\8i9

∣

∣= s1

where i and j are defined in (38) and (39), respectively. Let

T =
(

S�
6k1n7 ∪ I14x5∪ 8j9

)

\8i90

Then, x is called a zero-CW optimal point if

f 4x5≤ min
{

f 4y52 y ∈ B1 I14y5⊆ T
}

0

Similarly, a full-CW optimal point is a point in which any possible swap between support and nonsupport
indices does not result with a better (i.e., smaller) function value.

Definition 6.3 (Full-CW Optimal Point). Let x be a basic feasible point of (P), and assume that � ∈

è̃4−p4−ïf 4x555. For each i ∈ I14x51 j ∈ I04x5, define ki1j as an index satisfying

∣

∣4S�
6ki1 j 1 n7 ∪ I14x5∪ 8j95\8i9

∣

∣= s0

Let

Ti1 j =
(

S�
6ki1 j 1 n7 ∪ I14x5∪ 8j9

)

\8i90

Then, x is called a full-CW optimal point if for any i ∈ I14x51 j ∈ I04x5, it holds that

f 4x5≤ min
{

f 4y52 y ∈ B1 I14y5⊆ Ti1 j
}

0

We will now state formally some obvious facts on zero- and full-CW optimal points. First, by their definition,
zero- and full-CW optimal points are also simple optimal points, and consequently, by Theorem 6.1, also L24f 5-
stationary points.

Theorem 6.3. Let B be either a nonnegative type-1 or a type-2 symmetric set. If x is a zero- or full-CW
optimal point, then it is also a simple-CW optimal point, and consequently, they are also L24f 5-stationary points.

Another quite obvious fact is that zero and full-CW optimality are necessary optimality conditions for prob-
lem (P). This fact does not require any symmetry assumption.

Theorem 6.4. Let x be an optimal solution of problem (P). Then, it is a zero-CW as well as full-CW
optimal point.

6.3. Examples. The following examples demonstrate the hierarchy between the various optimality conditions.

Example 6.1. Consider the problem

max
{

f 4x11 x21 x35≡ d1x
2
1 +d2x

2
2 +d3x

2
32 − 1 ≤ x11 x21 x3 ≤ −11�x�0 ≤ 2

}

1

where d1 >d2 >d3 > 0. It is not difficult to show that there are actually 12 BF points: 4±11±11051 401±11±151
4±1101±15. In this example L4f 5 = L24f 5 = 2d1. By Theorem 5.4, a BF point whose off support consists of
the index i1 ∈ 8112139 is an L4f 5-stationary point if and only if (recalling that we are actually minimizing −f ):

�L4f 5xi +ïif 4x5� ≥ �ïi1
f 4x5�1 for all i ∈ 8112139\8i190

This condition is satisfied for all BF points since in this example ïi1
f 4x5 = 2di1

xi1 = 0. Therefore, all 12 BF
points are actually L4f 5-stationary points. On the other hand, it is to see that only the four optimal points
4111105, 4−111105, 411−1105, 4−11−1105 are simple-CW points, and hence also zero and full-CW points.
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Table 4. Hierarchy between optimality condition in problem (45).

Support 81129 81139 81149 82139 82149 83149 6

Values 0.003 0.003 0.002 0
0.997 0 0 0.910

0 0.997 0 0.090
0 0 0.998 0 Total

BF Ø Ø Ø Ø 4
L4f 5-stationary Ø Ø 2
Simple CW Ø Ø 2
Zero CW Ø 1
Full CW Ø 1

Example 6.2. Consider the following 2-sparse least squares problem over the unit `1-norm ball:

min











∥

∥

∥

∥

∥

∥





11000 0 0 1
0 1 0 1
0 0 0001 1



x −





3
1
9





∥

∥

∥

∥

∥

∥

2

2

2 x ∈C2 ∩B4
160117











0 (45)

Table 4 depicts the different BF points (with three digits of accuracy) per corresponding super support, with a
check mark indicating which conditions are satisfied by each point. The blank cells for the super supports 82149,
83149 indicate that there is no point satisfying an optimality condition having one of these super supports. This
situation arises when a stationary point of the restricted problem over a specific super support has an incomplete
support. For example, the stationary point corresponding to the restriction of the problem to the super support
82149 is 401010115T . By definition, for the former point to be a BF point, it must be stationary over any super
support. Although it is stationary for 82149, it is not for 81149, implying that there is no BF point with the
super support 82149. In this example, the two BF points v = 40000210101009985T 1w = 4010091010009105T are
the only L4f 5-stationary points as well as simple-CW points. This means that the nonoptimal point w satisfies
both optimality conditions. However, the only point that is either a zero of full-CW point is the optimal point v.

7. Algorithms. The hierarchy between the optimality conditions established in the previous section suggests
that there is also a hierarchy of algorithms with respect to the quality of the points to which they are guaranteed
to converge. Thus, for example, methods that are guaranteed to converge to L4f 5-stationary points are worse
than algorithms that are guaranteed to converge to simple-CW points in the sense that they produce points
that satisfy relatively weak optimality conditions. Later on, in §8, we will show by empirical experiments that
methods, which are guaranteed to converge to points satisfying strong optimality conditions, tend to outperform
methods that are only guaranteed to converge points satisfying weaker optimality conditions. The algorithms
that we will present here require the ability to minimize the function over a given super support set. Thus, given
a set T ⊆ 81121 : : : 1 n9 such that �T � = s, we will assume that the following problem is solvable:

vT ≡ min
{

f 4x52 x ∈ B1 I14x5⊆ T
}

0 (46)

The above problem can be solved, for example, when the objective function is convex, or when f is a (possibly
nonconvex) quadratic function and B is an l2 ball (More and Sorensen [23]). A solution x of problem (46) is
called a support optimal point. It is important to note that since there are

(

n

s

)

possible choices for the set T ,
there is only a finite number of values vT .

7.1. BFS search. The first algorithm that we need to define is an algorithm that, given a specific feasible
point, seeks a basic feasible point with a lower or equal function value. The method receives a feasible point
(x ∈Cs ∩B) as an input. If the support of x is full, the method finds the minimizer of the objective function over
its support. If the support of x is incomplete, the method adds the indices corresponding to the largest elements
in p4−ïf 4x55 to the support set, and optimizes the function over the constructed index set. If the support of the
obtained vector is full, the process is terminated; otherwise, it continues until either a full support is reached or
no decrease in the function value is achieved.
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Algorithm 5 (Basic feasible search (BFS)).
Initialization: x0 ∈Cs ∩B1k = 0.
Output: u ∈Cs ∩B, which is a basic feasible point.

1. Repeat
(a) let � ∈ è̃4−p4−ïf 4xk555
(b) set i ∈ 811 : : : 1 n+ 19 such that �S�

6i1 n7 ∪ I14x
k5� = s

(c) set Tk = I14x
k5∪ S�

6i1 n7

(d) take xk+1 ∈ argmin8f 4y52 y ∈ B1 I14y5⊆ Tk9
(e) k ← k+ 1
Until f 4xk−15≤ f 4xk5

2. Set u = xk−1.

The process is obviously finite since the sequence of objective function values is strictly decreasing: vT1
>

vT2
> · · · , and there is a finite number of possible values vT . We only need to show that the output u = xk−1 is

indeed a basic feasible point (k being the last index in the process).

Lemma 7.1. Let B be either a nonnegative type-1 or a type-2 symmetric set. Let u = xk−1 be the output of
the BFS procedure. Then, u is a basic feasible point.

Proof. By the definition of the method, the point z defined as

z ∈ argmin
{

f 4y52 y ∈ B1 I14y5⊆ Tk−1

}

satisfies f 4xk−15≤ f 4z5. Since xk−1 ∈ B and I14x
k−15⊆ Tk−1, it follows that

xk−1
∈ argmin

{

f 4y52 y ∈ B1 I14y5⊆ Tk−1

}

1

which is the same as
xk−1
Tk−1

∈ argmin
{

f 4UTk−1
w52 w ∈ BTk−1

}

0

Hence xk−1
Tk−1

is a stationary point of the above problem, and therefore for any L> 0,

xk−1
Tk−1

= PBTk−1

(

xk−1
Tk−1

−
1
L
ïTk−1

f 4xk−15

)

1

which by Theorem 5.6 implies that xk−1 is a basic feasible point. �
We also note that all the methods that will be discussed in the sequel move from one basic feasible point,

which is also support optimal, using the BFS procedure, while maintaining a strictly decreasing sequence of
function values. Therefore, since there is a finite number of possible function values for the generated sequence
(as it is contained in the set 8vT 2 T ⊆ 81121 : : : 1 n91 �T � = s9), the algorithms are always finite.

7.2. The zero-CW search method. The zero-CW search method, as its name suggests, finds a zero-CW
point by swapping at each iteration the support and nonsupport indices i and j defined in (38) and (39). If this
swap induces a better basic feasible point in terms of the objective function, then the procedure proceeds with
the new point; otherwise, the process terminates with a zero-CW point.

Algorithm 6 (Zero-CW search method (ZCWS)).
Initialization: x0 ∈Cs ∩B a basic feasible point, k = 0.
Output: u ∈Cs ∩B, which is a zero-CW point.
General Step (k = 011121 : : : )

1. D4xk5= argmin
`∈I14xk5

p4xk
`5.

2. i ∈ argmin
`∈D4xk5

8p4−ï`f 4x
k559.

3. j ∈ argmin
`∈I04xk5

8−p4−ï`f 4x
k559.

4. Let � ∈ è̃4−p4−ïf 4xk555 and let ` be such that
∣

∣4S�
6`1n7 ∪ I14x

k5∪ 8j95\8i9
∣

∣= s.
5. Define Tk = 4S�

6`1n7 ∪ I14x
k5∪ 8j95\8i90
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6. Set x ∈ argmin8f 4y52 y ∈ B1 I14y5⊆ Tk90
7. xk+1 = BFS4x5
8. If f 4xk5≤ f 4xk+15, then STOP and the output is u = xk. Otherwise, k ← k+ 1 and go back to step 1.

Since the termination of the ZCWS method is exactly the validity of the zero-CW optimality conditions, it
follows that the procedure produces a zero-CW point.

7.3. The full-CW search method. The full-CW search method is a scheme aimed at finding full-CW points.
The process first executes the ZCWS method and then proceeds to check if the point is a full-CW point by
examining the objective function’s value for any possible swaps between indices in the support with indices in
the off support. If there is a swap which induces a reduction in the function value, then the procedure continues
with that point. Otherwise, a full-CW point is returned.

Algorithm 7 (Full-CW search method).
Initialization: x0 ∈Cs ∩B—a basic feasible point, k = 0.
Output: u ∈Cs ∩B, which is a full-CW point.
General Step (k = 011121 : : : )

1. wk = ZCWS4xk5.
2. Let � ∈ è̃4−p4−ïf 4xk555, and for any i ∈ I14w

k5, j ∈ I04w
k5, let `i1j be such that

�4S�
6`i1 j 1 n7

∪ I14w
k5∪ 8j95\8i9� = s

3. Define T
i1 j
k = 4S�

6`i1 j 1 n7
∪ I14w

k5∪ 8j95\8i9.
4. Take zi1j ∈ argmin8f 4y52 y ∈ B1 I14y5⊆ T

i1 j
k 90

5. Set 4i01 j05 ∈ argmin8f 4zi1j52 i ∈ I14w
k51 j ∈ I04w

k59.
6. Define xk+1 = BFS4zi01 j05.
7. If f 4xk5≤ f 4xk+15, then STOP and the output is u = xk. Otherwise, k ← k+ 1 and go back to step 1.

The full-CW search method obviously find a full-CW point in a finite number of steps.

8. Numerical experiments and applications. The objective of the simulations is to demonstrate how the
hierarchy between the optimality conditions can be observed in concrete problems. We will examine two appli-
cations. The first is sparse index tracking (Takeda et al. [29]), and the second is the compressed sensing problem
of retrieving a sparse signal from an underdetermined system of equations. We will compare four methods:

1. The zero-CW search method, which attains zero-CW points.
2. The full-CW search method, which attains full-CW points.
3. The IHT method, which attains L-stationary points (for L>L4f 5).
4. The TGA method, which greedily builds a super support set, and is a generalization of the greedy algorithm

defined in Takeda et al. [29].
We will use the acronyms given in Table 5.

Algorithm 8 (Iterative hard thresholding (IHT)).
Initialization: x0 ∈�n, k = 0.
Output: u ∈Cs ∩B.

1. Repeat
(a) xk+1 ∈ PCs∩B

(

xk
− 41/L5ïf 4xk5

)

.
(b) k ← k+ 1.

Until �xk−1 − xk� ≤ �.
2. Return u = xk.

Table 5. The acronyms of the four compared methods.

Acronym Method

ZCWS The zero-CW search method (Algorithm 6)
FCWS The full-CW search method (Algorithm 7)
IHT The IHT method (Algorithm 8)
TGA The greedy support pursuit method (Algorithm 9)
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Algorithm 9 (TGA).
Initialization: x = 0n, S = �.
Output: x ∈Cs ∩B.

1. While �S�< s, do:
(a) 4j1x5 ∈ argmin

4`∈Sc1 z∈B5
8f 4z52 I14z5⊆ S ∪ 8`99

(b) Set S ← S ∪ 8j9.
2. Return x.

The TGA algorithm starts from the zeros vector, and greedily adds indices until the super support contains
exactly s indices. Several remarks should be taken into account:

• Once an index enters the suggested super support set, it does not leave the set.
• The method is terminated once the super support is full, even if the support of the actual solution is not.
• The method always starts from the same point (zeros vector).
• The output might not satisfy any of the optimality conditions.
• If B = �n, then this method is exactly the orthogonal matching pursuit (OMP) method (Mallat and

Zhang [22]), and when B =ã′
n, the method is the same as the greedy method introduced in Takeda et al. [29].

8.1. Sparse index tracking. The index tracking problem is the problem of tracking an index using a set of
assets. Mathematically, it is defined as a minimization problem of a least squares term �Ax − b�2 where A is
the sample matrix, b is the so-called index vector, and the optimization is made over a set C, of all admissible
vectors. The problem was addressed in Takeda et al. [29], with C being the sparse unit-sum set. The authors in
Takeda et al. [29] offered to use sparsity as a tool for controlling the trade-off between the performance of the
tracker and the robustness of the model (overfitting).

We also note that the similar problem of portfolio optimization was presented in Kyrillidis et al. [18] as an
application. We will test the sparse index tracking problem with no “short” allowed. The problem formulation is

min �Ax − b�
2

s.t. x ∈Cs ∩ãn1

where the matrix A contains the daily returns of stocks traded in the New York Stock Exchange, and the vector b
consists of the daily returns of the S&P 500 index.

We created 180 random sets of 54 stocks and 72 days of trade, and tested three levels of sparsity: 9, 18, 27.
For each random problem, we executed each method from the output of the TGA method with s = 1. Then, we
ran each method (except for the TGA) from the output of each of the other methods and counted the number
of times the results were improved, which is the number of times these methods did not reach better optimality
than their worst-case theoretical guarantees. For example, if the output of the IHT method was improved by
the ZCWS method in all its runs, then we can conclude that the outputs of the IHT methods were always
L-stationary points that are not zero-CW point.

The results are summarized in Table 6. Each cell in the table indicates the number of times the output of the
algorithm in the first column improved the algorithm in the second column with the corresponding sparsity level.

Several conclusions can be deduced from the results:
1. The hierarchy between the optimality conditions is (unsurprisingly) validated.
2. The IHT method never reached a zero-CW or full-CW point.

Table 6. Number of improvements by sparsity level.

Improver Improved s = 9 s = 18 s = 27 Total

ZCWS FCWS 0 0 0 0
IHT 60 60 60 180
TGA 9 56 50 115

FCWS ZCWS 33 11 17 61
IHT 60 60 60 180
TGA 15 56 51 122

IHT ZCWS 0 0 0 0
FCWS 0 0 0 0
TGA 3 56 50 109
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Table 7. Number of improvements by sparsity level.

Improver Improved s = 9 s = 18 s = 27 Total

ZCWS FCWS 0 0 0 0
IHT 60 60 60 180
TGA 15 60 60 135

FCWS ZCWS 0 6 14 20
IHT 60 60 60 180
TGA 15 60 60 135

IHT ZCWS 0 0 0 0
FCWS 0 0 0 0
TGA 11 57 60 128

3. The ZCWS reached a full-CW point in two-thirds of the instances (66%).
4. The TGA was improved in most of the instances by all the methods when the sparsity level was greater

than 9.
We note that, in practice, it is quite rare to obtain a BF point with an incomplete support. In the index tracking

problem, however, there were a few cases where the algorithms did example BF points with an incomplete
support.

8.2. Compressed sensing with signals from the unit simplex. We will now consider randomly generated
compressed sensing problems of the form

min �Ax − b�
2

s.t. x ∈Cs ∩ãn0

We generated 180 random problems with a matrix A ∈ �63×91 whose components are independently generated
from a standard normal distribution. Then, we generated a sparse signal xtrue with a sparsity level s ∈ 891181279
from the unit-simplex set (see Smith and Tromble [28]). The vector b was then chosen as b = Axtrue + n, where
the components of n were generated by a normal distribution with zero mean and standard deviation � = 006.
The results are summarized in Table 7.

The conclusions that can be drawn from this set of results are almost the same as the ones seen in the previous
set of experiments: The ZCWS methods reached a full-CW point in many instances (89% of the instances), IHT
is strictly dominated by the CW-type methods, and the TGA methods were almost always improved by all the
methods when the sparsity level is greater than 9.
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