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Abstract—We present a fast distributed gradient method for a
convex optimization problem with linear inequalities, with a par-
ticular focus on the network utility maximization (NUM) problem.
Most existing works in the literature use (sub)gradient methods for
solving the dual of this problem which can be implemented in a
distributed manner. However, these (sub)gradient methods suffer
from an rate of convergence (where is the number of
iterations). In this paper, we assume that the utility functions are
strongly concave, an assumption satisfied by most standard utility
functions considered in the literature. We develop a completely
distributed fast gradient method for solving the dual of the NUM
problem.We show that the generated primal sequences converge to
the unique optimal solution of the NUM problem at rate .

Index Terms—Gradient methods, convex functions, network
utility maximization.

I. INTRODUCTION

T HE unprecedented growth in the scale of communication
networks has increased the importance and urgency of

efficient scalable and decentralized algorithms for the allocation
of resources in such networks. Optimization formulations of the
corresponding resource allocation problem provide a powerful
approach as exemplified by the canonical network utility maxi-
mization (NUM) problem proposed in [7] (see also [4], [11], and
[24]). NUM problems are characterized by a fixed network and a
set of sources, which send information over the network along a
predetermined set of links. Each source has a local utility
function of the rate at which it sends information. The goal is
to determine the source rates that maximize the sum of utilities
subject to link capacity constraints.

Existing work has exploited the convexity of the NUM
formulation, resulting from the concavity of the utility functions
and the linearity of the capacity constraints, to derive a decen-
tralized algorithm using a dual-based (sub)gradient method with
convergence rate of , where is the number of

iterations. Although this approach has proved to be rich and
useful both in theory and practice, our starting point in this paper
is that in most practically relevant cases, a significant improve-
ment is possible. The reason for this is that in most such
applications, utility functions are not just concave but also
strongly concave. An important implication of this property is
that the dual function is not only differentiable but also has a
Lipschitz continuous gradient enabling the use of fast gradient
methods (FGMs) with much improved convergence rate. For
some very recent works in that direction, see, e.g., [13] and [22].

In this paper, we derive a decentralized fast dual gradient
algorithm for the NUM problem and investigate its implications
for the resulting generated primal solutions. Our analysis con-
siders a more general convex optimization problem with linear
constraints given by

where is an matrix, R is a closed convex set, and
is a strongly concave function over with a parameter > .

Under the assumption that each utility function is strongly
concave over a compact interval (where is the
maximum allowed rate for source ), the NUM problem is a
special case of this problem with S , where S
is the set of sources and S . Standard utility functions
considered in the literature such as the -fair utility functions (see
[12]) satisfy the strong concavity assumption over the compact
interval .

Under a mild condition, i.e., Slater’s condition, strong duality
holds and we can solve problem ( ) through the use of its dual.
We first show that the dual problem of problem ( ) can be
expressed in terms of conjugate function of the primal objective
function . We then use an important equivalence relation
between the differentiability of a convex function and the strong
convexity of its conjugate. The equivalence relation enables us to
establish that the gradient mapping of the dual function is
Lipschitz continuous, thus allowing us to apply an FGM [17]
with rate to the dual problem. We show that the primal
sequence generated by the method converge to the unique
optimal solution of problem ( ) at rate of . We also
show that the primal infeasibility converges to 0, and that the
objective function value converges to the optimal value at a rate
of . Our algorithm and results are different from those
obtained in a recent paper [13], where more general nonlinear
(convex) constraints have been considered. In particular, in [13],
a different fast gradient method has been proposed with the
convergence rate of for a given target level of accuracy
in computing the optimal function value, and the primal
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infeasibility decrease rate of . In contrast, our conver-
gence rate result for the primal infeasibility is .

We demonstrate that a direct application of the fast method to
theNUMproblemwill require acentralized implementation since
the stepsize needed to ensure convergence (which is a function of
the Lipschitz constant of the gradient mapping of the dual
function) relies on global information. We therefore develop a
scaled version of the FGM inwhich each variable uses a different
stepsize that depends on local information only, enabling the
method tobe implemented in adistributedmannerwhile retaining
the rate of convergence of the dual sequence.

Our paper is also related to the recent literature on distributed
second-order methods for solving network flow and NUM
problems (see [6] and [25]–[29]). Similar to the stepsize rule
used by the fast weighted gradient projectionmethod used in this
paper, the recent paper [29] has presented a distributed back-
tracking stepsize rule that involves each variable using a different
stepsize that can be computed using local information. Although
these methods provide superlinear convergence in outer itera-
tions, they involve inexact computations in the inner loop at each
iteration and, therefore, can only guarantee convergence to a
neighborhood of the optimal solution. This is in contrast with the
exact convergence results presented in this paper.

The paper is organized as follows. Section II contains the
formulations of the NUM problem and its dual, and presents a
dual-based gradient method for this problem. An FGM is dis-
cussed in Section III, together with its fully distributed imple-
mentation. Section IV presents our simulation setting and reports
our numerical results, and Section V provides some concluding
remarks.

A. Notation, Terminology, and Basics

We view a vector as a column vector, and we denote by
the inner product of two vectors and .We use to denote

the standard Euclidean norm (or norm), (we
drop the subscript and refer to it as whenever it is clear from
the context). Occasionally, we also use the standard norm and

norm denoted, respectively, by and , i.e.,
and . For an matrix

, we use the following induced matrix norm: given any vector
norm , the corresponding inducedmatrix norm, also denoted
by , is defined by

We next list some standard properties of the induced normwhich
will be used in our analysis (see [5, Sec. V-F] for more details).

Lemma I.1: Given any vector norm and the induced
matrix norm, we have: 1) for all
matrices and all vectors R , and
for all matrices and (with proper dimensions); and 2)

, where is the spectral radius
of matrix (i.e., the maximum of the magnitudes of the
eigenvalues of ).

Moreover, , , and
.

For a concave function R , we denote the
domain of by , where

R >

We say that R is a subgradient of a concave function
at a given vector if the following relation holds:

The set of all subgradients of at is denoted by .
Given a nonempty convex set R , a function R

is said to be strongly concave over with a parameter > (in a
norm ) if for all and all

We will use the following equivalent characterization of a
strongly concave function in our analysis: a function

R is strongly concave over with parameter > if
and only if for all and all

For a continuously differentiable function R R with
Lipschitz gradients , we have the so-called descent Lemma
(see, e.g., [3]): for all R

II. NUM PROBLEM

Consider a network consisting of a finite set S of sources and a
finite set L of undirected capacitated links, where a link has
capacity . Let L L denote the set of links used by
source , and let S S L denote the set of
sources that use link .

Each source is associated with a utility function
, i.e., each source gains a utility

when it sends data at rate . We further assume that the rate is
constrained to lie in the interval for all S, where
the scalar denotes themaximum allowed rate for source .We
adopt the following assumption on the source utility functions.

Assumption 1: For each , the function is
continuous, increasing, and strongly concave over the interval

.
The goal of the network utility maximization problem (abbre-

viated NUM), first proposed in [7] (see also [11] and [24]), is to
allocate the source rates as the optimal solution of the following
problem:

S

S L

S
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Let us consider the L S network matrix with entries
given by

L

By letting S and L , the prob-
lem can be compactly represented as

S
S

In our analysis, wewill also consider amore generalmodel of a
linearly constrained maximization problem

where is an matrix, the set R is closed and
convex, and the function is a strongly concave over with a
parameter > in the Euclidean norm.

Problem (P), as a problem of maximizing a concave function
over a convex set, is a convex problem. Moreover, by the strong
concavity assumption on the function , problem (P), whenever
feasible, has a unique solution, denoted by . Problem (N-P)
obviously fits into the general model (P) with

S and S and a strongly
concave function over with the constant S .

A. The Dual of (P) and Its Properties

We will assume that Slater’s condition is satisfied.
Assumption 2:There exists a vector in the relative interior of

set such that .
It is well-known (see [19]) that, under Assumption 2, strong

duality holds for problem (P). We let denote the extended-
valued function associated with the objective function and the
set , which is given by

In what follows, we also use the notion of the conjugate of an
extended-valued function given by

Equipped with the above notations, we can write the dual
objective function of (P) as

� �

� �

for every � R L . The dual problem is given by

� �

�

By the strong duality property that holds for the pair (P) and (D),
we have .

Recall that by duality theory (see, e.g., [3]), the dual objective
function is in fact differentiable (by the strong concavity of the
primal) and its gradient is given by

� �

where the unique maximizer � is given by

� �

We use the important equivalence between the differentiability
of a convex function and the strong convexity of its conjugate, see
[20, Proposition 12.60, p. 565].

Lemma II.1: Let E be a proper, lower
semicontinuous, and convex function, and let > . The
following statements are equivalent.

1) The function is differentiable and its gradient mapping
is Lipschitz continuous in some norm E with

constant .
2) The conjugate function E is -strongly

convex with respect to the dual norm E.
We work with the Euclidean norm, which coincides with its

dual norm, and the function is -strongly convex in this norm,
since is -strongly convex. Coming back to the NUM
problem (N-P), we can exploit the special structure of the
objective function to obtain

�
S

�

S

�

where � L and is the extended-valued function
associated with the function and the set

Consequently, the dual problem of the NUM problem (N–P) is
given by

� S � �
�

Moreover, as recorded before, with this special choice of , the
resulting dual objective function is differentiable and its
gradient is given by

� �

where

� � S

Since we assume that the functions S are not only strictly
concave, but also, in fact, strongly concave over the gradient
of the objective function is Lipschitz continuous by
Lemma II.1.
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B. A Dual-Based Gradient Method

One approach for constructing a solution method for (D) [and
thus also for (P)] is to disregard the Lipschitz continuity of the
gradient and employ a gradient projectionmethod for solving
the dual problem with a constant stepsize . The method
generates dual variables � according to the following rule:

Gradient Method with Constant Stepsize

Step 0: Choose � .

Step

�

� �

where is the projection on the non-negative orthant in R .

For theNUMproblem (i.e., and ), the constraint
set and the objective function are separable in components of
the variables vector since S and

. This allows decoupling step (7) as

L

for all S. Moreover, step (8) can be written as

S

for all L. Thus, a link can update its dual variable in step
(10) by using the aggregated rates S of users that
utilize the link and its own link capacity value .Moreover, each
source can update its rate in step (9) by using its own utility
function and the aggregated dual variables L for
the links that serve the source. Hence, as long as there is a
feedback mechanism that sends the aggregated information
(along the links used by a source) back to the source (which is
the case in practical flow control protocols), the preceding
updates can be implemented using local information available
to each source and destination.

The decomposition properties of these two steps have been
observed in [7], which motivated interest in using dual decom-
position and subgradient projection methods to solve network
resource allocation problems (see, e.g., [4], [7], [11], [21], and
[24]). To address the rate of convergence of such dual methods, a
subgradient method with averaging has been considered in [14]
and [15], which is motivated by a primal-recovery approach
proposed in [16], see also [8]–[10] and [23]. The primal recovery
approach constructs the primal sequence, denoted by , as a
running average of the iterate sequence

As seen in [14], the averages of the iterates generated by the
method with a constant stepsize do not necessarily converge.
However, the function values approach the optimal value within
an error depending on the stepsize, while the feasibility violation
diminishes at rate .

None of the aforementioned works makes use of the strong
concavity of the utility functions and, thus, the results there
remain within the domain of non-smooth convex optimization.
The major disadvantages of such an approach are: 1) it suffers
from the slow rate of convergence of subgradient
methods1; and 2) the distributed implementation dictates a
constant stepsize choice which essentially does not guarantee
convergence to the optimal value but rather to a value in an
interval surrounding the optimal value. In Section III, we will
show how to overcome the mentioned disadvantages by exploit-
ing the Lipschitz continuity of the gradient of the dual objective
function. Indeed, it is well-known that when the objective
function of a concave program is strongly concave, then the
resulting dual objective is differentiable with Lipschitz gradient,
see, e.g., [18, Ch. 9]. Lemma II.2 records this fact and provides an
explicit computation of the Lipschitz gradient constant for our
specific dual objective given in (5).

Lemma II.2: The dual objective function �
� � defined in (5) has a Lipschitz continuous

gradient with constant , where is the spectral
radius of the matrix .

Proof: By the definition of , we have

� �

The function is proper, convex lower-semicontinuous, and
hence it conicides with its bi-conjugate (see, e.g., [19, Th. 12.2,
p. 104]). Since is also strongly convex with parameter ,
applying Lemma II.1, with , we have that has a
Lipschitz continuous gradient with the constant . Combining
this with the properties of induced norms given in Lemma I.1, we
obtain for all � � R L

� � � �

� � � �

proving the stated Lipschitz gradient property for . ◽

III. AN FGM FOR THE DUAL

Our approach is to utilize the Lipschitz gradient property of the
dual objective function by applying an FGM to the dual
problem. We will show in Section III-A, an rate of
convergence of the primal sequence can be established without
the need of any primal averaging.

1Despite the fact that the dual objective function is differentiable, if we do not
assume that it has a Lipschitz gradient, the convergence results are no better than
those known for the nonsmooth case.
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A. The Method

Since the objective function of the dual problem (D) has a
Lipschitz gradient, in order to solve the problem (D), we can
invoke an FGM, such as the one devised by Nesterov in 1983
[17] (see also [2]). At this point, we will not concern ourselves
with the exact FGM, i.e., or can be used, and instead we will
assume that there exists an algorithm that generates a sequence
� satisfying

�

where > is some constant. The above inequality is quite often
interpreted as follows: in order to obtain an -optimal solution of
the dual problem (D), one requires at most iterations.
Of course, we can also define a corresponding primal sequence
for ,

�

The primal iterates are not necessarily feasible [in fact, if is
feasible for some , then it coincides with the optimal solution of
(P)] and the natural question is whether the sequence con-
verges to the unique optimal solution and, if so, at what rate?
These questions are answered in Theorem 1.

Theorem 1: Suppose that � R is a sequence satisfying
(11) and let be the sequence defined by (12). Then, for all

we have:
1) ;
2) , where is the -

dimensional vector with all entries equal to 1 and
;

3) If is Lipschitz continuous over with a constant , then

.

Proof: For an arbitrary � and any , let

� �

� � , with � � . Since
is a strongly concave function with parameter , so is the

function � , and thus, it follows that for every

� � � �

On the other hand, let be the optimal solution of (P) and
� an optimal solution of the dual problem (D). Then, by the
definition of we have for any �

� � � � � �

�

� � �

� �

where the second equality uses � [which holds by
strong duality for the primal problem (P)], and where the last

inequality follows from the facts and � .
Therefore, with (13) we thus obtain

� � � �

1) Using the later with� � and � , together with
(11), we thus obtain for all ,

� �

establishing the first part of the theorem.
2) We have

and in particular

Since , it follows that , thus
implying that

and the stated result for the feasibility violation follows.
3) A direct consequence of first part of the theorem. ◽

We have thus shown that with a rate of , and
that the constraint violation measured by is also of
the order . Therefore, we obtain the interesting fact that
although the convergence rate of the sequence of dual objective
functions is of the rate , the convergence rate of the
primal sequence and its corresponding objective function values,
is of the order .Next, wewill showhow such a dual-based
method can be implemented for the NUM problem.

As an example, in order to solve the NUM problem, we can
use the FGM of Nesterov [17] (see also [2]) for solving problem
(N–D) and obtain the following method:

Fast Gradient Method

Input: —a Lipschitz constant of .

Step 0. Take � � R L .

Step k. ( ) Compute

� � �

� � � �

Then, the following convergence result holds [2], [17].
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Theorem 2: Let � be the sequence generated by the FGM.
Then, for all

�
� �

The main problem in applying such a scheme in a distributed
way is that a backtracking procedure for determining the stepsize
is not possible. It turns out that utilization of a constant stepsize
that ensures convergence requires the knowledge of the Lipschitz
constant of , which regretfully depends on the information
from all the sources. An illustration of this fact is shown in
Lemma III.1 that derives a Lipschitz constant.

Lemma III.1: The following is a Lipschitz constant for the
mapping :

S S
L

L
S

Proof: First, let

�
S

� R S

so that � � � and �
� . Since for every S the function , and

hence also , is strongly concave with parameter > , it
follows that has a Lipschitz derivative with constant .
Therefore, for every � � R S

� �
S

� �

Thus, using the properties of the induced norm given in
Lemma I.1, for every � � R L , we have

� �

� �

S
� �

S
� �

S
� �

In addition,

With defined in (4) we have

S
L

L
S

establishing the desired result. ◽

Computation of a Lipschitz constant of , such as given
in (14), will require communication between all the sources in the
network, and this is not possible when only local communication
is permitted. We are therefore led to discuss scaled versions of
FGMs inwhich each variable has its own stepsize which depends
only on local information.

B. A Distributed Implementation of FGM for NUM

In this section, we will show how to exploit the special
structure of the dual problem (N–D) in order to establish a fully
distributed FGM for solving it. For ease of notation, we will
rewrite problem (N–D) as

S L � �

�

where . For an index set , the vector �
denotes the subvector of � consisting of the variables
[e.g., � ]. We can thus also rewrite (15) as

S �L �

�

where for an index set , � . Recall that
has a Lipschitz derivative with constant . Therefore, from its
definition, it follows that has a Lipschitz gradient with
constant L .

Now, for every S, we can write the descent lemma for the
function

�L �L �L �L �L

L
�L �L

Summing the above inequality over S and using the fact that
� S �L �, we obtain

� � � � �

� � � �

where is a positive definite diagonal matrix whose th
diagonal element is given by

S

L

It is well-known that the key ingredient in proving conver-
gence of gradient-type methods is the existence of a correspond-
ing descent lemma. The weighted descent lemma given by (17)
can also be used in order to prove the convergence of a
corresponding scaled gradient projection method. Indeed, it is
very easy to see that the analysis of [2] can be easily extended to
the weighted case and the resulting fast gradient projection
method will have the following form:
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Fast Weighted Gradient Projection Method

Step 0. Initialize � R L .

Step k. ( ) Compute

� �

� � � �

As already mentioned, the convergence analysis of [2] can be
easily extended to the weighted case when all the -norms
are replaced by the weighted norm , and the
convergence result will be the following.

Theorem 3: Let � � be generated by the fast weighted
gradient projection method. Then, for any

� �
� �

Note that even disregarding the issues of distributive optimi-
zation, the convergence result (21) is better than the one obtained
when the Lipschitz constant given in (14) since
implying that . The additional attribute of this
method is of course that it lends itself to a decentralized imple-
mentation. The method is described in details below.

Fast Dual-Based Method for Solving NUM

Initialization. For each link L, select and set . Let
and

S

L

Step k. For , execute the following steps:

(A) Source-Rate Update: for all S

L

(B) Link-Price Update: for all L

S

(C) Two-Step Network-Price Update:

(C.1)

(C.2) � � � � .

For each L, the step sizes only depend on the sources
that use link [i.e., S ] and it is assumed that at the beginning of
the process each source sends its strong convexity constant
and the number of links it uses L to all the links on its path
(i.e., all the links it uses). This is the only additional communi-
cation that is required for the fast method. By Theorems 1 and 3,
the sequence converges to the optimal allocation vector at
the rate of .

IV. NUMERICAL EXPERIMENTS

We compare the performance of the fast weighted gradient
method developed in Section III-B with two other distributed
algorithms commonly used in the literature for solving the
NUM problem: 1) (dual) gradient method explained in Sec-
tion II-B; and 2) Newton-type diagonally scaled (dual) gradient
method introduced in [1]. We have implemented all three
algorithms both on small deterministic networks and also on
a randomly generated collection of networks. Our simulation
results demonstrate that the proposed FGM significantly out-
performs the standard gradient methods in terms of the number
of iterations.

We have assumed that all sources have identical utility func-
tions given by , where 0.1 is added to
the argument of the logarithmic function to prevent numerical
instability when is close to 0. We have also assumed that all
links have identical capacity given by 1. Thus, theNUMproblem
has the form

S

S

L

S

For all three algorithms, we used constant stepsize rules that can
guarantee convergence.More specifically, in the price update (8)
for the gradient method, we used a stepsize given by

where is a strong convexity constant for the utility functions
[taken to be for these experiments]. The scalars
and are defined, respectively, as the longest path length
among all sources and the maximum number of sources sharing
a particular link

S
L

L
S

Since in a distributed setting, we do not have information on
and , we use the total number of links and sources, i.e., L and
S , as upper bounds on and , respectively. For the
diagonally scaled gradient method, we used a stepsize that
satisfies

<
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where scalars , , and are defined as above and is a
positive scalar used to guarantee the Hessian approximation
which is positive definite, i.e., if < then we use for that
element to avoid singularity.2We set in our experiments,
which is the same value used in [1]. For the fastweighted gradient
method, we used the stepsize rule of Section III-B with

.

In our first experiment, we considered the network shown in
Fig. 1with two sources (and destinations determined by the set of
links used by the sources). The links used by the sources are
identified using the flows corresponding to each source. Fig. 2
illustrates a sample evolution of the objective function value for
each of the three algorithms. The iteration count on the horizontal
axis is log-scaled. The dotted horizontal lines indicate
interval around the optimal objective function value. The fast
weighted gradient method outperforms the standard gradient
method. In this particular example, it also converges faster than
the diagonally scaled gradient method.

To test the performance of the algorithms over general net-
works, we generated 50 random networks, with a random number
of links taking (integer) values in range and a random
number of sources taking values in the interval (generated
independently). Each routing matrix consists of L S Ber-
noulli randomvariables.3 All threemethods are implemented over
the 50 networks. The methods were terminated when all of the
following conditions are satisfied at an iteration :

1) primal objective function value satisfies
;

2) dual variable satisfies ;
3) primal feasibility satisfies for all

links .
To display the results properly, we capped the number of

iterations at 250000 (this cap was not exceeded in the trials,
except a few times with the gradient method). We record the
number of iterations upon termination for all three methods and
results are shown in Fig. 3 on a log scale. The mean number

of iterations to convergence from the 50 trials is 6584.2 for the
diagonally scaling gradient method, 17871.6 for the fast
weighted gradientmethod and 103265.9 for the gradientmethod.

To further study the scaling properties of the algorithm with
respect to the network size, we generated another set of 50
random networks, each with 20 sources and 50 links ( S
and L ). We repeated the same experiment as before and
recorded the results in Fig. 4. The average number of iterations is
91221 for the diagonally scaled gradient method, 61430 for the
fast weighted gradient method, and 247628.6 for the gradient
method. These results are qualitatively different from those in
Fig. 3, as the fast weighted gradient method is faster than
the diagonally scaled gradient method. This can be explained
by the difference in stepsize rules used in the twomethods. In the
diagonally scaled gradient method, the stepsize is proportional to
the global quantity L S , whereas in the fast weighted gradient
method, the stepsize is proportional to the local path lengths L .
The latter quantity, in general, results in larger stepsize values.

Fig. 1. Sample network. Each source–destination pair is displayed with the same
color. We use to denote the flow corresponding to the th source and to
denote the th link.

Fig. 2. Sample objective function value of all three methods against log-scaled
iteration count for network in Fig. 1. The dotted horizontal lines denote
interval of the optimal objective function value.

Fig. 3. Log-scaled iteration count for the three methods implemented over 50
randomly generated networks with random sizes.

2The Hessian approximation is given as

where is the flow on link and is the dual variable associated with link at
iteration . Hence depending on the initial conditions, the approximated value of

may be smaller than , even though the elements in the exactHessian are lower
bounded by the scalar .

3When a source does not use any link or a link is not used by any source, we
discard the routing matrix and generate another one.
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Thus, for large networks, the FGM tends to converge faster than
the diagonally scaled gradient method.

V. CONCLUSION

We have considered the NUM problem and proposed a fast
distributed dual-based gradient method for solving the problem.
Our focus was on the NUM problem with strongly concave
utility functions. We established the convergence rate of the
order for the primal iterate sequences, which demonstrates
the superiority of these methods over the standard dual-gradient
methods with convergence rate of the order . Furthermore,
we have proposed a fully distributed implementation of the
FGM. Our numerical results indicate that the proposed method
is a viable alternative to the standard gradient method, but also to
the Newton-type diagonally scaled dual-gradient method of [1].
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