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Abstract In 1937, the 16-years-old Hungarian mathematician Endre Weiszfeld, in a
seminal paper, devised a method for solving the Fermat–Weber location problem—a
problem whose origins can be traced back to the seventeenth century. Weiszfeld’s
method stirred up an enormous amount of research in the optimization and location
communities, and is also being discussed and used till these days. In this paper, we
review both the past and the ongoing research on Weiszfed’s method. The existing
results are presented in a self-contained and concise manner—some are derived by
new and simplified techniques. We also establish two new results using modern tools
of optimization. First, we establish a non-asymptotic sublinear rate of convergence of
Weiszfeld’s method, and second, using an exact smoothing technique, we present a
modification of the method with a proven better rate of convergence.
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1 Introduction

One of the most fundamental location problems is the so-called Fermat–Weber prob-
lem, which consists of finding a point that minimizes the sum of its weighted distances
to a given finite set of anchor points. The problem is credited to the well-known French
mathematician Pierre de Fermat, who at the beginning of the seventeenth century posed
the following question:

Given three points in a plane, find a fourth point such that the sum of its distances
to the three given points is as small as possible.

The Italian physicist and mathematician Evangelista Torricelli (mostly known for
inventing the barometer) found a construction method of this point by ruler and com-
pass, and it is therefore also called “the Toricelli point”; see Fig. 1 for an illustration of
Torricelli’s construction for the case where the triangle has all angles less than 120◦.

At the beginning of the twentieth century, the German economist Alfred Weber
incorporated weights, and was able to treat facility location problems with more than
3 facilities, and the problem was consequently called “the Fermat–Weber problem.”
Other names for the problem are “the Fermat problem,” “the Weber problem,” “the
Fermat–Toricelli problem,” “the Steiner problem,” and many more variants. More
details on the history of the Fermat–Weber problem can be found, for example, in [1],
as well as in the survey papers [2] and the second part of the book [3]. More information
on the geometric aspects of the Fermat–Weber problem as well as variations and open
problems can be found in [4].

The purpose of this paper is not to present another review on the Fermat–Weber
problem but rather to focus on a very simple algorithm designed for solving it,
suggested in 1937 by the 16-years- old Hungarian mathematician Endre Vaszonyi

Fig. 1 Given a (proper)
triangle, formed by three points
a1, a2, and a3, construct three
equilateral triangles such that
each contains one of the edges
from the triangle a1a2a3. Then,
circumscribe each equilateral
triangle. The unique point of
intersection of these three circles
is the point, that yields the
minimum distance to the points
a1, a2, and a3; it is called “the
Torricelli Point” and denoted by
x∗

123



J Optim Theory Appl (2015) 164:1–40 3

Weiszfeld [5]. Quite interestingly, as indicated by Weiszfeld himself in [6], the focus
of Weiszfeld’s paper was not to design an algorithm for solving the Fermat–Weber
problem but rather to prove a mathematical theorem, and in fact the all notion of an
“algorithm” was unfamiliar to him, as he himself indicated in [6]: “the word algo-
rithm was unknown to me and to most mathematicians.” The theorem itself was not
new and was already established by Sturm [7] in 1884. Weiszfeld’s paper provided
three different proofs for this theorem and, in the first proof, he defined a sequence
that was supposed to converge to the optimal solution of the Fermat–Weber prob-
lem.

Weiszfeld’s method stirred up an enormous amount of research and had an impact
on researchers from the optimization, as well as the location fields. The contribution of
this paper is threefold. First, we will review the intriguing story of the algorithm ever
since its derivation in 1937 until today and present the current status of convergence
analysis. The presentation is self-contained, so the main convergence results will be
presented with proofs—some of them are new and simplified. Our second contribution
is to provide—using modern tools of optimization—a nonasymptotic sublinear rate
of convergence analysis of the method. Finally, noting that Weiszfeld’s method is
essentially a gradient method, our third contribution will be to present an accelerated
version of the method, based on a combination of an exact smoothing technique and
an optimal gradient method; the resulting method is shown to have an improved rate
of convergence.

The paper is organized as follows. The next section is devoted to the descrip-
tion of the problem and of Weiszfeld’s method. In Sect. 3, we present the original
paper of Weiszfeld and describe what was actually proven in that seminal paper
(monotonicity of the sequence of function values), as well as pinpoint the critical
mistake in the analysis. The method remained mainly unknown until 1962; in Sect. 4,
we describe several papers that reinvented the method as well as tell the story of
how the original Weiszfeld’s paper was discovered by Harold Kuhn. In Sect. 5 we
discuss the paper of Kuhn from 1973; we provide a different and simplified proof
of its convergence theorem without requiring the usual assumption of noncollinear-
ity of the anchors. We also present Kuhn’s example on why the method can poten-
tially “get stuck” at nonoptimal anchor points and recall his incorrect statement: the
number of “bad” starting points (those leading to anchor points) is denumerable.
Beginning from Kuhn’s statement in 1973 on the number of “bad” starting points,
we present in Sect. 6 the attempts of resolving this issue until its final closure in
2002. Several modifications of Weiszfeld’s method, in which the only difference is
the way the method operates on anchor points, are presented in Sect. 7, along with
a method to pick the starting point in a way that ensures avoiding anchor points; a
review of more elaborate modifications of the method concludes the section. Section
8 uses the simplified analysis of the previous sections, as well as modern analysis of
gradient-based methods, to establish a nonasymptotic sublinear rate of convergence
of the sequence of function values generated by Weiszfeld’s method. In Sect. 9, we
develop an accelerated version of the method, which is based on a combination of
an exact smoothing technique, and the employment of an optimal gradient method.
The new method is an accelerated version with an improved rate of convergence. The
paper ends in Sect. 10, where the impact of Weiszfeld’s method on other problems,
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different than the Fermat–Weber problem, is explored. For the convenience of the
reader, Appendix A contains a list of the most frequent notations used throughout the
paper.

2 Problem Formulation and Weiszfeld’s Method

The Fermat–Weber problem, described verbally at the beginning of the paper, can be
formulated mathematically as the problem of seeking x ∈ R

d that solves

min
x

{
f (x) =

m∑
i=1

ωi ‖x − ai‖
}

, (FW)

where ωi > 0, i = 1, 2, . . . , m, are given weights and the vectors a1, a2, . . . , am ∈ R
d

are given anchors.
To understand the result that Weiszfeld aimed to prove, let us first write down the

expression of the gradient of the objective function of problem (FW):

∇ f (x) =
m∑

i=1

ωi
x − ai

‖x − ai‖ , x /∈ A,

where A = {a1, a2, . . . , am} denotes the set of anchors. Note that the gradient is only
defined on points different from the anchors. The theorem that Weiszfeld re-established
was the following (see [5,7]).

Theorem 2.1 (Weiszfeld’s original result) Suppose that the anchors are not collinear.
Then,

(a) Problem (FW) has a unique optimal solution.
(b) Let x∗ be the optimal solution of problem (FW). If x∗ /∈ A, then

∇ f
(
x∗) =

m∑
i=1

ωi
x∗ − ai

‖x∗ − ai‖ = 0. (1)

If x∗ = ai , for some i ∈ {1, 2, . . . , m}, then the following inequality holds:∥∥∥∥∥∥
m∑

j=1, j �=i

ω j
x∗ − a j∥∥x∗ − a j

∥∥
∥∥∥∥∥∥ ≤ ωi . (2)

As was noted in the introduction, the theorem was not new and was already established
by Sturm [7] in 1884. Some comments about this theorem are required. The anchors
a1, a2, . . . , am are said to be collinear iff they reside on the same line, i.e., there exist
y, d ∈ R

d and t1, t2, . . . , tm ∈ R such that ai = y + ti d, i = 1, 2, . . . , m. In the
collinear case, it can be shown that the optimal solution of problem (FW) is a median
of the anchors, meaning that the optimal solution is attained at (at least) one of the
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anchor points; see [8] for further details. It is important to note that Weiszfeld did not
analyze the weighted problem, but rather assumed that all the weights are equal to
1. We present the method and results in the weighted case, whose analysis is almost
identical. Nowadays, this theorem seems like an elementary result and is a direct con-
sequence of basic convex analysis. Indeed, when the anchors a1, a2, . . . , am are not
collinear, the objective function f is strictly convex, and thus the optimal solution
is unique [9, Theorem 3.4.2]. The optimality condition (1) is just the necessary and
sufficient optimality condition ∇ f (x∗) = 0 for unconstrained convex minimization
problems at points, for which the objective function is differentiable, and the condition
(2) is the necessary and sufficient optimality condition 0 ∈ ∂ f (ai ) at points of non-
differentiability. These optimality conditions are satisfied also in the collinear case.
More on the proof of the theorem, as well as extensions to more general settings, can
be found in the paper [10] and in Chapter II of [3].

To present the method, assume that the anchors are not collinear and that x∗ is
the unique optimal solution. We begin by writing explicitly the optimality condition
∇ f (x∗) = 0 under the assumption that x∗ �∈ A:

∇ f
(
x∗) =

m∑
i=1

ωi
x∗ − ai

‖x∗ − ai‖ = 0.

The next step is to “extract” x∗ (disregarding the dependency in ‖x∗ − ai‖ from x∗,
i = 1, 2, . . . , m) and to obtain the relation

x∗ = 1∑m
i=1

ωi‖x∗−ai ‖

m∑
i=1

ωi ai

‖x∗ − ai‖ (3)

or
x∗ = T

(
x∗) ,

where the operator T : R
d\A → R

d is defined by

T (x) := 1∑m
i=1

ωi‖x−ai ‖

m∑
i=1

ωi ai

‖x − ai‖ . (4)

We have thus shown that, for any y ∈ R
d\A,

y = T (y) if and only if ∇ f (y) = 0. (5)

Weiszfeld’s method is just a fixed point method for solving the relation (3).
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3 The Original Paper of Weiszfeld

Weiszfeld’s paper [5] was originally written in French; an English translation of the
paper can be found in the recent paper [11]. The translation made by Frank Plastria
contains, in addition, many interesting comments and observations. Taking a close
look at the algorithm, one apparent fault is the fact that it is actually not well defined.
Weiszfeld assumed that the initial vector x0 is different from any anchor point, that is,
x0 /∈ A. However, this is not enough to ensure that the sequence {xk}k≥0 generated by
the method is well defined, since it might happen that a certain iterate xk will belong
to the anchor set A, resulting with a division by zero in the computation of the next
iterate xk+1. This situation can occur even if the optimal solution does not belong to
A. This error was recognized later by Kuhn and Kuenne [12] in 1962 (see also the
discussion in Sect. 4).

Putting aside the issue of “getting stuck” at nonoptimal anchor points, Weiszfeld
was able to prove the monotonicity of the sequence of function values. We will repeat
his arguments but will use the notation used by Beck and Teboulle in [13] that will
serve us later on in the new analysis of the method. We begin by providing a different
presentation of Weiszfeld’s method. Define the auxiliary function h : R

d×R
d\A → R

by

h (x, y) :=
m∑

i=1

ωi
‖x − ai‖2

‖y − ai‖ , x ∈ R
d , y ∈ R

d\A. (7)

Given an iteration xk , it is not difficult to show that next iterate xk+1 = T (xk) is
determined as the minimizer of the function

sk (x) = h (x, xk) =
m∑

i=1

ωi
‖x − ai‖2

‖xk − ai‖

over R
d . Indeed, sk(·) is a strongly convex function, and its unique minimizer is

determined by the optimality condition

∇sk (x) = 0.

That is,
m∑

i=1

ωi
x − ai

‖xk − ai‖ = 0,

which, after some simple algebraic manipulation, can be seen to be equivalent to the
relation x = T (xk). In other words, what we have shown is that, for any y ∈ R

d\A,

T (y) = argminx∈Rd h (x, y).

We will now recall a technical lemma containing the latter property along with several
other properties connecting the function f and the auxiliary function h, which will
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be the key in proving the monotonicity of the sequence of function values (see [13,
Lemma 1.1]).

Lemma 3.1 (Properties of the auxiliary function h) The following properties hold.

(i) For any y ∈ R
d\A,

h (y, y) = f (y) .

(ii) For any x ∈ R
d and all y ∈ R

d\A,

h (x, y) ≥ 2 f (x) − f (y) .

(iii) For any y ∈ R
d\A,

T (y) = argminx∈Rd h (x, y) .

Proof (i) Follows by simple substitution.
(ii) First, note that, for every two real numbers a ∈ R and b > 0, the inequality

a2

b
≥ 2a − b

holds true. Therefore, for every i = 1, 2, . . . , m, we have

‖x − ai‖2

‖y − ai‖ ≥ 2 ‖x − ai‖ − ‖y − ai‖ .

Multiplying the latter inequality by ωi and summing over i = 1, 2, . . . , m, the
result follows.

(iii) Follows by the discussion prior to the lemma.
��

Using Lemma 3.1, we are now able to prove the monotonicity property of the
operator T with respect to f . The proof here relies on the same arguments of Weiszfeld
[5] and of Kuhn [14].

Lemma 3.2 (Monotonicity property of T ) For every y ∈ R
d\A, we have

f (T (y)) ≤ f (y), (8)

and equality holds if and only if T (y) = y.

Proof From Lemma 3.1(iii), we have that T (y) = argminx∈Rd h(x, y), and by the
strict convexity of the function x → h(x, y), one has

h (T (y) , y) < h (x, y) (9)
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for every x �= T (y). In particular, if T (y) �= y, then

h (T (y) , y) < h (y, y) = f (y) , (10)

where the last equality follows from Lemma 3.1(i). Now, from Lemma 3.1(ii), we
have

h (T (y) , y) ≥ 2 f (T (y)) − f (y) ,

which, combined with (10), establishes the desired strict monotonicity. ��
Since the general step of Weiszfeld’s method is defined by xk+1 = T (xk), and since

∇ f (x∗) = 0 if and only if x∗ = T (x∗) (see (5)), we can immediately conclude that,
under the condition that the iterates of Weiszfeld’s method do not belong to the anchor
set A, the method is nonincreasing and “gets stuck” only at optimal points.

Corollary 3.1 (Monotonicity of the sequence of function values) Let {xk}k≥0 be the
sequence generated by Weiszfeld’s method and assume that xk /∈ A for any k ≥ 0.
Then, f (xk+1) ≤ f (xk) for any k ≥ 0, and equality holds if and only if xk is an
optimal solution of problem (FW).

4 Reinventing the Wheel

Weiszfeld’s method remained unknown until 1962. One evidence for this is the fact that
the algorithm was rediscovered several times without any knowledge of Weiszfeld’s
earlier work. As far as we know, the first to rediscover the method was Miehle in 1958
[15], who studied an even more general problem, where the location of several points
is to be determined. The paper is formulated in the two-dimensional plane, but the
extension to R

d is obvious. The derivation of the method in [15] is identical to the
isolation process described in Sect. 1. Miehle, like Weiszfeld, did not treat the situation
in which the method reaches an anchor point.

Four years later, in 1962, Kuhn and Kuenne rediscovered Weiszfeld’s method for
solving problem (FW) in the plane [12]. At the time of the writing of the paper, Kuhn
and Kuenne were not aware of Weiszfeld’s work, but an appendix called “added in
proof” was added reading as follows.

[12, p. 33]: Added in proof: In the period between the submission of this paper
and its publication by the journal, the results have been extended and further
literature bearing on the problem has been discovered. We shall sketch the nature
of the extensions and list only those references that bear directly on the material
developed in the body of the paper. First of all, the algorithm of the paper has been
considered, independently of the present account, at least three times. The first
published version seems to be that of E. Weiszfeld in the Tohoku Mathematical
Journal...

The story of how the authors were made aware of Weiszfeld’s method is known to us
since in 2002, Weiszfeld (who changed his name to Andrew Vazsonyi) recalled the
following story from the 1960s.
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[6, p. 12]: After reading more, I discovered that a well-known mathematician,
Harold W. Kuhn of Princeton University, had given a talk in Budapest on his
discovery of an algorithm to solve the location problem. After the talk, a former
colleague of mine walked to the blackboard and wrote in big letters: “VAZ-
SONYI.”
“Who is that?” Kuhn asked.
“The name of the Hungarian mathematician who discovered your algorithm
thirty years ago”, my old friend said. “He lives in the United States but published
his revolutionary approach under the name Weiszfeld.”

In the “Added in proof” section of [12], Kuhn and Kuenne mention that the convergence
proof of Weiszfeld contains an error, since the iterates may belong to the anchor set
A. They continue to claim that it can be proven that either xk /∈ A for all k ≥ 0, and
convergence to the optimal solution can be guaranteed, or that the method gets stuck
at an anchor point (xk ∈ A for some k ≥ 0). In addition, they hypothesize that the
latter case may only occur in “at most a denumerable number of (starting) points in
the convex hull of A”. Later on, we will return to these claims and check their validity
(see Sect. 6).

Another observation, which appears in Kuhn and Kuenne [12], is that Weiszfeld’s
method is, in fact, a gradient method. Indeed, a simple computation shows that an
alternative representation of the operator T is given by

T (x) = x − 1

L (x)
∇ f (x) (x /∈ A), (11)

where the operator L : R
d\A → R++ is defined by

L (x) :=
m∑

i=1

ωi

‖x − ai‖ . (12)

Therefore, Weiszfeld’s method can be written as

xk+1 = xk − 1

L (xk)
∇ f (xk) . (13)

One year later, in 1963, unaware of Weiszfeld’s contribution, Cooper [16] also rein-
vented the method, but again for the more general problem of multiple locations in
R

2. Cooper did not provide a convergence analysis, but mentioned that in his numer-
ical tests, the method works very well in comparison to other methods. It seems that
after 1963, researchers from the optimization, as well as the location communities,
were very well aware of the method, and Weiszfeld’s original paper [5] got its rightful
credit.
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5 The Paper of Kuhn from 1973: The Beginning of a (Correct) Convergence
Analysis

The 1973 paper of Kuhn [14] is a continuation of his joint paper with Kuenne from 1962
[12]. Besides re-establishing the monotonicity property of the sequence of objective
function values (see Corollary 3.1), he was concerned with two theoretical questions—
both mentioned in his “added in proof” section of the previous paper [12].

A. Assuming that all the iterates do not belong to the anchor set A, i.e., xk /∈ A for
all k ≥ 0, can the convergence to the optimal solution be proven?

B. Is the number of starting points of the method, for which the method “gets stuck”
at nonoptimal anchor points, denumerable?

Kuhn’s answer to both questions was yes. Unfortunately, as we will see later on, the
answer to the second question was wrong. We will now explore in details each of the
two theoretical questions A and B.

5.1 The Convergence of the Sequence

The theorem that Kuhn proved in [14] is now recalled.

Theorem 5.1 (Convergence of Weiszfeld’s method) Let {xk}k≥0 be a sequence gen-
erated by the Weiszfeld’s method. If xk /∈ A for all k ≥ 0, then the sequence {xk}k≥0
converges to an optimal solution of problem (FW).

Kuhn proved this theorem under the assumption that the anchors are not collinear. The
assumption in the statement of Theorem 5.1, namely that the iterates do not belong to
the anchor set A, is a bit problematic since it is not clear how to guarantee that such
a condition will hold. Probably the reason for such an assumption is the empirical
observation that the method practically does not “get stuck” at nonoptimal anchor
points. The arguments used in [14] for proving Theorem 5.1 are quite lengthy and
technical. We will provide here a different proof that utilizes the relations between
the objective function f and the auxiliary function h. This approach will be also
rather beneficial since it will be the basis for the rate of convergence analysis, which
will be discussed in Sect. 8. In addition, the proof does not require the assumption
of collinearity of the anchors. Before proving the theorem, we will establish another
property of the objective function f . This result is very similar to the so-called “descent
lemma” for continuously differentiable functions (see, e.g., [17]). However, its validity
for the nonsmooth function f is far from being obvious.

Lemma 5.1 (Descent lemma for the Fermat–Weber objective function) Suppose that
y /∈ A. Then,

f (T (y)) ≤ f (y) + 〈∇ f (y), T (y) − y〉 + L (y)

2
‖T (y) − y‖2 . (14)
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Proof Note that the function x �→ h(x, y) is quadratic with associated matrix L(y)I.
Therefore, its second-order taylor expansion around y is exact and can be written as

h (x, y) = h (y, y) + 〈∇xh (y, y) , x − y〉 + L (y) ‖x − y‖2 .

Since h(y, y) = f (y) (see Lemma 3.1(i)) and ∇xh(y, y) = 2∇ f (y) (simple compu-
tation), we have that

h (x, y) = f (y) + 2 〈∇ f (y) , x − y〉 + L (y) ‖x − y‖2 .

Substituting x = T (y) in the latter identity yields

h (T (y) , y) = f (y) + 2 〈∇ f (y), T (y) − y〉 + L (y) ‖T (y) − y‖2 .

Hence, from Lemma 3.1(ii), we obtain

2 f (T (y)) − f (y) ≤ f (y) + 2 〈∇ f (y), T (y) − y〉 + L (y) ‖T (y) − y‖2 .

Therefore

2 f (T (y)) ≤ 2 f (y) + 2 〈∇ f (y), T (y) − y〉 + L (y) ‖T (y) − y‖2 ,

which readily implies (14). ��
Remark 5.1 It is interesting to note that, in a way, the latter result mimics known
results on continuously differentiable functions. Suppose that g is a continuously
differentiable function over R

d , and assume that its gradient∇g is Lipschitz continuous
with parameter Lg , meaning that

‖∇g (x) − ∇g (y)‖ ≤ Lg ‖x − y‖ , ∀x, y ∈ R
d .

Then, the “descent lemma” for such function states that, for any x, y ∈ R
d :

g (y) ≤ g (x) + 〈∇g (x) , y − x〉 + Lg

2
‖x − y‖2 .

This is one of the key inequalities used to analyze the convergence properties of
gradient-based methods, see, for example, [13,18]. Of course, in our case, f is not
differentiable, but nonetheless a version of the descent lemma still holds when x is
specifically chosen as T (y), and when L(y) takes the role of the Lipschitz constant.
Note also that as was already mentioned, Weiszfeld’s method is a gradient method
with stepsize 1/L(xk), which is also an indication that L(xk) serves as a substitute
for the Lipschitz constant since the gradient method for finding the minimizer of g is
known to converge when the stepsize is chosen as 1/Lg .
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Using the descent lemma for the function f , we can now prove the following lemma,
stating an inequality that will be the basis for the convergence of the sequence, as well
as for the rate of convergence analysis that will be derived in Sect. 8. Note that we
do not require the assumption on the collinearity of the anchor points, and hence the
optimal set is not necessarily a singleton, and it will be denoted from now on by X∗.
The optimal value will be denoted by f ∗.

Lemma 5.2 Let {xk}k≥0 be a sequence generated by Weiszfeld’s method and assume
that xk /∈ A for all k ≥ 0. Then, for any x ∈ R

d , the following inequality holds:

f (xk+1) − f (x) ≤ L (xk)

2

(
‖xk − x‖2 − ‖xk+1 − x‖2

)
. (15)

Proof Substituting y = xk in (14) and using the fact that xk+1 = T (xk), we obtain

f (xk+1) ≤ f (xk) + 〈∇ f (xk), xk+1 − xk〉 + L (xk)

2
‖xk+1 − xk‖2 . (16)

By the gradient inequality we have that f (xk) ≤ f (x) + 〈∇ f (xk), xk − x〉 for any
x ∈ R

d , which combined with (16) yields

f (xk+1)≤ f (x)+〈∇ f (xk), xk −x〉+〈∇ f (xk), xk+1 − xk〉 + L (xk)

2
‖xk+1 − xk‖2

= f (x) + 〈∇ f (xk), xk+1 − x〉 + L (xk)

2
‖xk+1 − xk‖2

= f (x) + L (xk) 〈xk − xk+1, xk+1 − x〉 + L (xk)

2
‖xk+1 − xk‖2

= f (x) + L (xk)

2

(
‖xk − x‖2 − ‖xk+1 − x‖2

)
,

where the second equality follows from (13), and the last equality follows from the
identity that

2 〈w − v, u − v〉 = ‖w − v‖2 − ‖w − u‖2 + ‖u − v‖2 ,

for any u, v, w ∈ R
d . This completes the proof. ��

Let {xk}k≥0 be the sequence generated by Weiszfeld’s method with initial point x0.
In those cases that the left-hand side of (15) is nonnegative, that is, when f (x) ≤
f (xk) for all k ≥ 0, we get as a direct result of the latter lemma the so-called Fejér
monotonicity of {xk}k≥0—a result which seems to be unknown in the literature.

Corollary 5.1 (Fejér monotonicity) Let {xk}k≥0 be a sequence generated by
Weiszfeld’s method and assume that xk /∈ A for all k ≥ 0. Then, for any x ∈ R

d

which satisfies f (x) ≤ f (xk) for all k ≥ 0, the following inequality holds:

‖xk+1 − x‖ ≤ ‖xk − x‖ .

Hence the sequence {xk}k≥0 is bounded.
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Proof Follows directly from (15) along with the fact that f (xk+1) ≥ f (x). The
boundedness of the sequence then readily follows by the fact that ‖xk − x‖ ≤ ‖x0 − x‖
for any k ≥ 0. ��

The convergence result of Kuhn, namely Theorem 5.1, can now be easily deduced
from the Fejér monotonicity property of the sequence {xk}k≥0.

Proof of Theorem 5.1 We will prove this result in two steps. First, we will prove that
{xk}k≥0 converges, and then we will show that its limit point is an optimal solution of
problem (FW).

The sequence {xk}k≥0 is bounded by Corollary 5.1. To prove the convergence of
{xk}k≥0, it only remains to show that all converging subsequences have the same limit.
Suppose in contradiction that there exist two subsequences {xk j } j≥0 and {xn j } j≥0
converging to different limits x̃ and x, respectively.

From Corollary 3.1, it follows that f (̃x) ≤ f (xk) for all k ≥ 0, and thus from
Corollary 5.1, we get that the sequence {‖xk − x̃‖}k≥0 is nonincreasing. Since this
sequence is also bounded from below, it converges to some l1 ∈ R. Clearly

lim
k→∞ ‖xk − x̃‖ = lim

j→∞
∥∥xk j − x̃

∥∥ = 0.

However, on the other hand,

lim
k→∞ ‖xk − x̃‖ = lim

j→∞
∥∥xn j − x̃

∥∥ = ‖x − x̃‖ .

Hence l1 = 0 = ‖x − x̃‖, which is obviously a contradiction. This proves that {xk}k≥0
converges.

We denote by x̃ the limit of {xk}k≥0. Now we will prove that x̃ is an optimal solution
of problem (FW). It is clear that, if x̃ /∈ A, then, taking the limit as k → ∞ in the
equation xk+1 = T (xk), and using the continuity of the operator T at nonanchor
points, we obtain that x̃ = T (̃x). The optimality of x̃ now follows immediately from
(5). On the other hand, if x̃ ∈ A, then there exists j ∈ {1, 2, . . . , m} such that x̃ = a j .
From Lemma 3.1(iii) we have

∇xh (xk+1, xk) = 0,

which can be written explicitly as follows:

m∑
i=1

ωi
xk+1 − ai

‖xk − ai‖ = 0.

Thus,
m∑

i=1,i �= j

ωi
xk+1 − ai

‖xk − ai‖ = −ω j
xk+1 − a j∥∥xk − a j

∥∥ ,
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and, after taking the norm on both sides, we get∥∥∥∥∥∥
m∑

i=1,i �= j

ωi
xk+1 − ai

‖xk − ai‖

∥∥∥∥∥∥ = ω j

∥∥xk+1 − a j
∥∥∥∥xk − a j

∥∥ ≤ ω j , (17)

where the inequality follows from the fact that the sequence {∥∥xk − a j
∥∥}k≥0 is non-

increasing (see Corollary 5.1 using the fact that f (a j ) ≤ f (xk) for all k ≥ 0 from
Corollary 3.1). Taking the limit in (17) as k → ∞ yields the inequality∥∥∥∥∥∥

m∑
i=1,i �= j

ωi
x̃ − ai

‖̃x − ai‖

∥∥∥∥∥∥ ≤ ω j ,

which, by Theorem 2.1, shows that x̃ = a j is an optimal solution of (FW). ��

5.2 “Bad” Starting Points

As was already mentioned, even in the earlier paper of Kuhn and Kuenne [12] from
1962, it was obvious that Weiszfeld’s method can reach a nonoptimal anchor point.
This situation is described in the literature as “getting stuck”, and starting points of
the method leading to this situation are called “bad” starting points. In his 1973 paper,
Kuhn gave an example of such a case, as we recall now.

Example 5.1 (Kuhn’s counterexample) The example is in the 2-dimensional space,
and the anchors are a1 = (−2, 0)T , a2 = (−1, 0)T , a3 = (1, 0)T , a4 = (2, 0)T ,
a5 = (0, 1)T , and a6 = (0,−1)T . All the weights are one. It is easy to see that
∇ f (0, 0) = 0, so that the optimal solution of the problem is x∗ = 0. Kuhn then
studied the behavior of the operator T on points on the x-axis given by (x, 0)T :

T
(
(x, 0)T

)
= 1∑6

i=1
1∥∥(x,0)T −ai

∥∥
6∑

i=1

ai∥∥(x, 0)T − ai
∥∥

=

( −2
|x+2| + −1

|x+1| + 1
|x−1| + 2

|x−2|
0

)
1

|x+2| + 1
|x+1| + 1

|x−1| + 1
|x−2| + 2√

x2+1

:=
(

g (x)

0

)
,

and then Kuhn found a value α ∈ [0, 2] such that g(α) = 1. This shows that
T ((α, 0)T ) = a3. The plot of g over the interval [0, 2] can be found in Fig. 2, where
the solution, which is α = 1.6213 (up to three digits of accuracy), is described.

Kuhn claimed that the number of “bad” starting points is always denumerable. The
key argument used to show this result is quoted here.

[14, p. 107]: If we insert T from a vertex ai , we must solve algebraic equations.
Thus we obtain a finite number of x0 such that T (x0) = ai .
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Fig. 2 Kuhn’s construction of a “bad” starting point. T ((α, 0)T ) = a3, where α is the solution of the
equation g(α) = 1

However, this argument is incorrect, as will be explained in the following section.

6 Counting the “Bad” Starting Points

The flaw in Kuhn’s argument is that, actually, algebraic system of equations can have
a continuum number of solutions. This was shown by Chandrasekaran and Tamir in
their 1989 paper [19], where the following counterexample to Kuhn’s claim in R

3 was
given.

Example 6.1 (Chandrasekaran and Tamir’s counterexample to Kuhn) Consider the
problem in R

3 with anchors a1 = (1, 0, 0)T , a2 = (−1, 0, 0)T , a3 = (0, 0, 0)T ,
a4 = (0, 2, 0)T , and a5 = (0,−2, 0)T . Let ω1 = ω2 = ω3 = ω5 = 1, and ω4 = 3.
Consider the point a3, which is not optimal since

f (a3) = 10 > f (0, 1, 0) = 7 + 2
√

2.

To show that the algebraic system T (x) = a3 has an infinite number of solutions,
consider the points of the form x = (0, y, z)T . Then, T (x) = a3 is equivalent to the
system

3a4

‖x − a4‖ + a5

‖x − a5‖ = 0.
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That is,

1√
(y − 2)2 + z2

(0, 6, 0)T + 1√
(y + 2)2 + z2

(0,−2, 0)T = (0, 0, 0)T ,

which is the same as

36 (y + 2)2 + 36z2 − 4
(
(y − 2)2 + z2

)
= 0.

After some simple algebraic manipulation, we conclude that all the points on the circle
(y + 2.5)2 + z2 = 2.25 solve the system T (x) = a3.

The latter example is special in the sense that the anchors, although not collinear,
reside in a lower dimensional affine subspace. Chandrasekaran and Tamir conjectured
that such a situation is the only one in which a continuum of “bad” starting points can
occur.

[19, p. 295]: ”In view of the above examples we conjecture that, if the non-
collinearity is replaced by the stronger assumption that the convex hull of the
points a1, a2, . . . , am is of full dimension, then the algebraic system T (x) = ai

has a finite number of solutions for i = 1, 2, . . . , m. Phrased differently, the
conjecture is that, for each i = 1, 2, . . . , m, there is a finite number of solutions
to T (x) = ai in the minimal affine set containing the points a1, a2, . . . , am .”

To write it explicitly, the first conjecture of Chandrasekaran and Tamir is formulated
as follows.

Conjecture 6.1 (Chandrasekaran and Tamir conjecture) When the affine hull of the
anchor set A is the entire space R

d , the number of solutions of the system T (x) = ai ,
for any i = 1, 2, . . . , m, is finite, and hence there is a denumerable number of “bad”
starting points.

As quoted above, Chandrasekaran and Tamir also had a more general conjecture that
the number of “bad” starting points is denumerable when the starting point is restricted
a priori to be in the affine hull of the anchor set A. Conjecture 6.1 was resolved in
1995 by Brimberg [20]. More precisely, Brimberg proved the following result (written
in this paper’s terminology).

Theorem 6.1 (cf. [20, Theorem 1, p. 75]) The set of starting points x0, which will
terminate the sequence generated by Weiszfeld’s method at some anchor point ai ,
i = 1, 2, . . . , m, after a finite number of iterations is denumerable if the affine hull of
A is R

d .

At this point, one would think that the issue of “counting” the number of bad starting
points was resolved. However, Brimberg also claimed that, in fact, the number of
“bad” starting points is denumerable if and only if the affine hull of A is R

d . The
“only if” claim is not part of Chandrasekaran and Tamir’s conjecture. Later on, in
2002, Cánovas, Cañavate, and Marín showed in [21] that the “only if” claim is not
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correct by providing two counterexamples. We will present the first counterexample
which shows a setting in which the number of “bad” starting points is denumerable
(in fact zero), even though the affine hull of A is not the entire space R

d .

Example 6.2 (Counterexample to Brimberg’s “only if” part) Consider the unweighted
Fermat–Weber problem with m = n = 3 given by the anchors a1 = (1, 0, 0)T ,
a2 = (0, 1, 0)T and a3 = (0, 0, 0). Note that a1, a2, and a3 are the extreme points of
conv(A), and that, for any x /∈ A,

T (x) = 1∑3
i=1

1
‖x−ai ‖

3∑
i=1

1

‖x − ai‖ai .

Hence, T (x) is a convex combination of a1, a2 and a3 with positive coefficients.
However, this means that T (x) cannot be equal to any of the extreme points, that is, to
an anchor point. Therefore, the system T (x) = ai has no solutions for any i = 1, 2, 3,
and in this case, Weiszfeld’s method is well defined for any starting point which is not
in A.

7 Bypassing the Anchor Points: Modifying the Method

7.1 The Modified Weiszfeld’s Method

Since the issue of bumping into anchor points is an important issue in the convergence
analysis of the method, these instances should be treated. In this section, we will
begin by reviewing a modification of the method in which the problem of reaching an
anchor point is treated in a “surgical” manner. Specifically, the class of methods that
we consider coincides with Weiszfeld’s method when the current iterate xk , for some
k ≥ 0, is not an anchor point; and when the iterate is equal to some ai , then the next
iterate will be equal to ai if ai is optimal, and equal to another point, with a smaller
function value when ai is not optimal. To test the optimality of the anchor points,
we are required to define the following quantities (see the optimality conditions in
Theorem 2.1):

R j :=
m∑

i=1,i �= j

ωi
a j − ai∥∥ai − a j

∥∥ , j = 1, 2, . . . , m.

The anchor point a j , j = 1, 2, . . . , m, is optimal if and only if

∥∥R j
∥∥ ≤ w j .

The general scheme for the modified approach can be written as follows.
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The new operator T̃ coincides with the usual Weiszfeld’s operator T at nonanchor
points. At nonoptimal anchor points, another operator, which is denoted by S, is
invoked. The question that arises is of course how to define the operator S on a
specific nonoptimal anchor point a j , j = 1, 2, . . . , m. However, at this point, we will
just require that, for a nonoptimal anchor point a j , the point S(a j ) will have a smaller
function value than a j . Under this condition, based on Kuhn’s convergence result (see
Theorem 5.1), we can prove convergence of the sequence generated by the modified
Weiszfeld’s method. Note that we do not require the assumption of noncollinearity
that is always assumed in the literature.

Theorem 7.1 (Convergence of the modified Weiszfeld’s method) Let {xk}k≥0 be a
sequence generated by the modified Weiszfeld’s method. Assume that f (S(a j )) <

f (a j ) for any a j ∈ A for which
∥∥R j

∥∥ > ω j . Then, the sequence {xk}k≥0 converges
to an optimal solution of problem (FW).

Proof There are two options. Either the sequence “gets stuck” at a fixed point of the
method, i.e., at a point x̃ for which T̃ (x̃) = x̃. If x̃ /∈ A, then by (5), it follows that
∇ f (x̃) = 0, and hence the method converges to an optimal solution x̃. If x̃ = a j for
some j ∈ {1, 2, . . . , m}, then, since S(a j ) �= a j if a j is not optimal, it follows that
a j must be optimal, and we conclude that once again the sequence generated by the
method converges to an optimal solution x̃. The second option is when the sequence
does not get stuck at a fixed point. In this case, the sequence generated by the method
is strictly monotone: f (xk+1) < f (xk) for all k ≥ 0 (this follows from Corollary 3.1
and the assumption that f (S(a j )) < f (a j ) for any a j ∈ A for which

∥∥R j
∥∥ > ω j ).

Therefore, the iterates are different from each other and thus, since there are only a
finite number of anchor points, it follows that there exists a positive integer K such that
xk /∈ A for all k ≥ K . The sequence {xk}k≥K is the sequence generated by Weiszfeld’s
method with initial point xK , and since none of its elements is in A, it follows from
Theorem 5.1 that it converges to an optimal solution of problem (FW). ��

Note that since, in practice, Weiszfeld’s method does not actually reach anchor
points, the modified method is actually the same as Weiszfeld’s method for all practical
purposes.
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7.2 Choosing the Operator S

The most natural way to define S on an anchor point a j , j = 1, 2, . . . , m, is to find a
descent direction of f at a j , and take a step along this direction. To find such a descent
direction, note that the objective function f can be written as

f (x) = ω j
∥∥x − a j

∥∥ + f j (x) ,
where

f j (x) :=
m∑

i=1,i �= j

ωi ‖x − ai‖ .

Therefore, taking a direction d ∈ R
d satisfying ‖d‖ = 1, we can define the function

α (t) = f
(
a j + td

) = ω j t ‖d‖ + f j
(
a j + td

) = ω j t + f j
(
a j + td

)
.

The directional derivative of f at a j in the direction of d is given by (note that f j is
differentiable at a j ):

f ′ (a j ; d
) = α′ (0) = ω j + f ′

j

(
a j ; d

) = ω j + 〈∇ f j
(
a j

)
, d

〉
.

The smallest directional derivative is attained at d = d j , where d j = −∇ f j (a j )/∥∥∇ f j (a j )
∥∥, which is the steepest descent direction. Since ∇ f j (a j ) = R j , we can

summarize by writing that the steepest descent direction of f at a j is

d j = − R j∥∥R j
∥∥ .

In all of the papers that deal with this slightly modified Weiszfeld’s method, the
operator S is chosen as

S
(
a j

) = a j + t j d j ,

where t j is some well chosen stepsize. Several choices of the stepsize were discussed
in the literature. Ostresh [8] (1978) considered the following stepsize:

t j = tO := c

∥∥R j
∥∥ − ω j

L
(
a j

) , [Ostresh [8]]

where c ∈ [1, 2], and the definition of the operator L (originally given in (12)) is
extended to include also anchor points:

L (x) =
{∑m

i=1
ωi‖x−ai ‖ , x /∈ A,∑

i=1,i �= j
ωi‖a j −ai‖ , x = a j (1 ≤ j ≤ m) .

(19)

A totally different analysis of Vardi and Zhang [22] (2001) results with the stepsize

t j = tV Z :=
∥∥R j

∥∥ − ω j

L
(
a j

) , [Vardi and Zhang [22]]
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meaning that this is the stepsize of Ostresh with c = 1. The following different stepsize
was considered by Rautenbach et. al. [23] (2004),

t j = tR := min

{
s j

2
,

∥∥R j
∥∥ − ω j

4L
(
a j

)
}

, [Rautenbach et. al. [23]]

where s j := min
{∥∥a j − ai

∥∥ : i �= j, 1 ≤ i ≤ m
}
. Obviously, the largest step is the

one given by Ostresh when c is taken to be 2, and the smallest step is the one given by
Rautenbach. We will now give a proof that, indeed, the stepsize given by Vardi and
Zhang results with a decrease in the function value. We also give an explicit expression
for a lower bound on the amount of decrease resulting from taking the Vardi-Zhang
stepsize. This new result will be important later on in establishing the complexity
results of the method (see Sect. 8). The technical and lengthy proof of the lemma can
be found in Appendix B.

Lemma 7.1 Suppose that a j , for some j ∈ {1, 2, . . . , m}, is not an optimal solution
of problem (FW), meaning that

∥∥R j
∥∥ > ω j . Then

f
(
a j

) − f
(
a j + t j d j

) ≥
(∥∥R j

∥∥ − ω j
)2

2L
(
a j

) ,

where t j = tV Z = (∥∥R j
∥∥ − ω j

)
/L

(
a j

)
.

7.3 Choosing the Starting Point

The modified method was devised in order to relax the assumption that xk /∈ A for all
k ≥ 0 in Kuhn’s convergence result. However, we can use the operator S to carefully
pick a starting point that will guarantee that the iterates will not coincide with anchor
points. The simple procedure for choosing the starting point, which we call “the SP
method”, is now described.

The SP method

(a) Let

p ∈ argmin {f (ai) : 1 ≤ i ≤ m} .

(b) If ap is optimal (easily checked by verifying that Rp ωp), then the output is ap with an

indication that it is the optimal solution. Otherwise, if ap is not optimal, the output is the point

S (ap).

The important property of the SP method is that, if there is no optimal anchor point,
then the output of the method is a starting point x0 which satisfies

f (x0) < min { f (a1) , f (a2) , . . . , f (am)} .

The latter inequality, along with the monotonicity property of the sequence of function
values (see Corollary 3.1) implies that xk /∈ A for all k ≥ 0, and hence the convergence
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of the sequence to an optimal solution is assured by Theorem 5.1. We summarize this
discussion in the following corollary. The underlying assumption is that there are no
optimal anchor points (otherwise, the SP method will produce the optimal solution).
In addition, under this assumption the anchors are necessarily not collinear, implying
that the optimal solution is unique.

Corollary 7.1 Suppose that there is no optimal anchor point for problem (FW). Let
{xk}k≥0 be the sequence generated by Weiszfeld’s method with starting point x0 pro-
duced by the SP method. Then, xk /∈ A for all k ≥ 0 and xk → x∗ as k → ∞.

7.4 Further Modifications of Weiszfeld’s Method

Aside of the rather local modifications of Weiszfeld’s method mentioned in the pre-
vious subsections, many more modifications were suggested in the literature. In the
1978 paper [8], Ostresh suggested to accelerate the Weiszfeld’s method by using the
following idea. Let λ ∈ [1, 2] and consider the operator

Tλ (y) = y + λ (T (y) − y) .

Ostresh proved the convergence of the modified method defined by xk+1 = Tλ(xk)

for any choice of λ ∈ [1, 2], and under a suitable treatment of the anchor points. The
use of a stepsize can also be found in [24] (1984). In [25] (1992), Drezner uses an
adaptive method in order to choose a different λ at each iteration, so that the method
reads as xk+1 = Tλk (xk). Another acceleration technique was proposed by Drezner in
[26] (1995), where Steffensen’s method, which is a general acceleration scheme for
fixed point method, was tested numerically against Weiszfeld’s method with several
stepsize strategies for choosing λ.

Deviating from the main focus of this paper, which is Weiszfel’d method, we note
that the Fermat–Weber problem can also be solved by more sophisticated methods than
Weiszfeld’s method. For example, Calamai and Conn [27] and Overton [28] solved the
more general problem of minimizing a sum of norms of affine functions by Newton
methods combined with an active set approach. In addition, the problem can be recast
as a second-order cone programming and solved via interior point methods [29,30].
A specially devised primal-dual interior point method for the minimization of the sum
of Euclidean norms was analyzed by Andersen el. at. in [31].

There are, of course, many variations of Weiszfeld’s method when the problem to
be solved is not the Fermat–Weber problem, but this will be the subject of Sect. 10.

8 Rate of Convergence of Weiszfeld’s Method

Local and asymptotic rate of convergence of Weiszfeld’s method was discussed in the
1974 paper of Katz [32]. However, there does not seem to be a global nonasymptotic
rate of convergence analysis of Weiszfeld’s method in the literature. The main objective
of this section is to derive such rate of convergence, but before, we would like to recall
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several related results on global nonasymptotic rate of convergence for gradient-based
methods. This type of results is usually of the form

f (xk) − f ∗ ≤ C

kθ
,

where C, θ > 0 are constants. For example, for nonsmooth convex problems we can
employ, under some unrestrictive conditions, the subgradient method to solve problem
(FW). This will result with a rate of convergence of O(1/

√
k) (that is, θ = 1/2),

see e.g., [18,33]. In this case, since the method is not monotone, the bound is on
min

n=1,2,...,k
f (xn) − f ∗, rather than on f (xk) − f ∗. If the problem is smooth, then

the gradient method can be employed, and the convergence rate will accelerate to
O(1/k) (corresponding to θ = 1). Another option is to use an “optimal” gradient
method, which uses the memory of the last two iterations. These methods have a rate
of convergence of O(1/k2) (corresponding to θ = 2). For a wealth of fundamental
results on these issues, see for instance, [13,18,34,35].

In principal, since problem (FW) is nonsmooth, and since Weiszfeld’s method is a
type of gradient method, it seems logical to assume that only the inferior O(1/

√
k) can

be established. However, as we shall see, when choosing the starting point carefully,
we can actually prove a rate of convergence of O(1/k) even though the problem
is nonsmooth. Later on, we will even show that, by modifying the method, we can
establish the fast O(1/k2) rate of convergence.

Throughout this section, we assume that the starting point is chosen according to
the SP method with the Vardi-Zhang stepsize strategy. That is,

x0 = ap + tpdp, (20)

where p ∈ argmin { f (ai ) : 1 ≤ i ≤ m} , (21)

and dp = − Rp∥∥Rp
∥∥ , tp =

∥∥Rp
∥∥ − ωp

L
(
ap

) . (22)

The only assumption on the data is that there is no optimal anchor point. Otherwise,
the SP method will produce an optimal solution. Note also that, in this setting, the
anchors are necessarily not collinear, and hence there exists a unique optimal solution
x∗. Note that in the premise of the following theorem, which will be the basis for
the main convergence analysis, we assume that the sequence {L (xk)}k≥0 is upper
bounded. Later on, in Lemma 8.2, we will show the validity of this assumption, as
well as find an explicit expression for the upper bound.

Theorem 8.1 (Sublinear rate of convergence of Weiszfeld’s method) Let {xk}k≥0 be
the sequence generated by Weiszfeld’s method with x0 chosen by (20)–(22). Then, for
any k ≥ 0, we have

f (xk) − f ∗ ≤ L̄

2k

∥∥x0 − x∗∥∥2
, (23)

where L̄ is an upper bound of the sequence {L(xk)}k≥0.
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Proof From (15) with k = n, we have

f (xn+1) − f ∗ ≤ L (xn)

2

(∥∥xn − x∗∥∥2 − ∥∥xn+1 − x∗∥∥2
)

.

Therefore, by the Fejér monotonicity of the sequence {xk}k≥0 (see Corollary 5.1) and
the boundedness of the sequence {L(xk)}k≥0, we get

f (xn+1) − f ∗ ≤ L̄

2

(∥∥xn − x∗∥∥2 − ∥∥xn+1 − x∗∥∥2
)

.

Summing this inequality over n = 0, . . . , k − 1 gives

k−1∑
n=0

(
f (xn+1) − f ∗) ≤ L̄

2

k−1∑
n=0

(∥∥xn − x∗∥∥2 − ∥∥xn+1 − x∗∥∥2
)

= L̄

2

(∥∥x0 − x∗∥∥2 − ∥∥xn − x∗∥∥2
)

≤ L̄

2

∥∥x0 − x∗∥∥2
.

Since the sequence { f (xk)}k≥0 is nonincreasing (see Corollary 3.1) we have

k
(

f (xk) − f ∗) ≤
k−1∑
n=0

(
f (xn+1) − f ∗) ≤ L̄

2

∥∥x0 − x∗∥∥2
,

that is,

f (xk) − f ∗ ≤ L̄

2k

∥∥x0 − x∗∥∥2
.

This proves the desired result. ��
All that is left is to find an explicit upper bound of the sequence {L(xk)}k≥0. For

that, we will use the following result, which establishes a lower bound on the distance
between the anchor points to those points with smaller function values than f (x0),
where x0 is chosen by (20)–(22).

Lemma 8.1 (Lower bound on ‖ai − x‖) Let x0 be chosen by (20)–(22). Then, for any
i = 1, 2, . . . , m and any x satisfying f (x) ≤ f (x0), the inequality

‖x − ai‖ ≥ f (ai ) − f (x0)

ω

holds with ω = ∑m
i=1 ωi .

Proof From the fact that f (x) ≤ f (x0), the convexity of f and the Cauchy-Schwarz
inequality it follows, for any i = 1, 2, . . . , m and any x, that
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f (ai ) − f (x0) ≤ f (ai ) − f (x) ≤ 〈vi , ai − x〉 ≤ ‖vi‖ ‖ai − x‖ , (24)

where vi ∈ ∂ f (ai ). Note that the subdifferential set ∂ f (ai ) can be written as

∂ f (ai ) =
⎧⎨
⎩

m∑
j=1, j �=i

ω j
ai − a j∥∥ai − a j

∥∥ + ωi zi : ‖zi‖ ≤ 1

⎫⎬
⎭ .

Therefore, there exists z̃i such that ‖z̃i‖ ≤ 1 and

vi =
m∑

j=1, j �=i

ω j
ai − a j∥∥ai − a j

∥∥ + ωi z̃i .

Hence, from the triangle inequality we get

‖vi‖ =
∥∥∥∥∥∥

m∑
j=1, j �=i

ω j
ai − a j∥∥ai − a j

∥∥ + ωi z̃i

∥∥∥∥∥∥ ≤
m∑

j=1, j �=i

ω j

∥∥∥∥∥ ai − a j∥∥ai − a j
∥∥
∥∥∥∥∥

+ωi ‖z̃i‖ ≤
m∑

i=1

ωi = ω,

which combined with (24), yields the inequality

f (ai ) − f (x0) ≤ ω ‖ai − x‖ .

The desired result now follows by dividing the last inequality by ω. ��
We can now find an upper bound of the sequence {L(xk)}k≥0. This is done in next

lemma.

Lemma 8.2 (Upper bound of the sequence {L(xk)}k≥0) Let {xk}k≥0 be the sequence
generated by Weiszfeld’s method with x0 chosen by (20)–(22). Then, for any k ≥ 0,
we have

L (xk) ≤ 2L
(
ap

)
ω2(∥∥Rp

∥∥ − ωp
)2 , (25)

where ω = ∑m
i=1 ωi .

Proof By the monotonicity of the sequence { f (xk)}k≥0 (see Corollary 3.1) it follows
that f (xk) ≤ f (x0) for all k ≥ 0. Therefore, from Lemma 8.1 it follows that for any
i ∈ {1, 2, . . . , m}, we have

1

‖xk − ai‖ ≤ ω

f (ai ) − f (x0)
.
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Since f (x0) < f (ap) ≤ f (ai ) for all 1 ≤ i ≤ m, we deduce that

1

‖xk − ai‖ ≤ ω

f
(
ap

) − f (x0)
.

Thus,

L (xk) =
m∑

i=1

ωi

‖xk − ai‖ ≤
m∑

i=1

ωωi

f
(
ap

) − f (x0)
= ω2

f
(
ap

) − f (x0)
,

which, along with Lemma 7.1, implies the desired result. ��
Combining Theorem 8.1 and Lemma 8.2, we finally obtain the following rate of

convergence result of Weiszfeld’s method.

Theorem 8.2 (Sublinear rate of convergence of the Weiszfeld’s method - Explicit
version) Let {xk}k≥0 be the sequence generated by Weiszfeld’s method with x0 chosen
by (20)–(22). Then, for any k ≥ 0, we have

f (xk) − f ∗ ≤ M

2k

∥∥x0 − x∗∥∥2
, (26)

where M = 2L(ap)ω
2/(

∥∥Rp
∥∥ − ωp)

2.

9 Acceleration via Optimal Schemes

The question that now arises is whether we can find an acceleration of Weiszfeld’s
method with a better theoretical rate of convergence than that of the original
Weiszfeld’s method. Recall that, in Sect. 8, we showed that Weiszfeld’s method with a
specific choice of a starting point converges in terms of function values to the optimal
value in a rate of O(1/k). The natural idea is now to use an accelerated gradient-based
scheme in order to assure convergence with the faster rate of O(1/k2). Unfortunately,
accelerated schemes such as Nesterov’s optimal method [35] and FISTA [34] are not
monotone, meaning that the sequence of function values is not necessarily nonincreas-
ing. This causes a genuine theoretical difficulty to employ the accelerated schemes on
the Fermat–Weber problem, since the monotonicity was a crucial argument in showing
that Weiszfeld’s method does not get stuck in anchor points.

We are therefore led to consider an additional and different idea. Instead of bypass-
ing the anchor points, which are the points of nondifferentiability, we will simply
eliminate them, by using the idea of smoothing.

Given a minimization problem

min
{

q (x) : x ∈ R
d
}

, (M)

where the objective function q is nonsmooth, the idea of smoothing is to replace the
objective with a smooth approximation qμ and solve the problem

123



26 J Optim Theory Appl (2015) 164:1–40

min
{

qμ (x) : x ∈ R
d
}

, (Mμ)

where μ is the so-called “smoothing parameter” that controls the level of smoothness
and the proximity of the approximation qμ to q. A more precise definition can be
found, for example, in [36]. Some earlier works on smoothing techniques are [37–
40]. The more recent works [36,41] show that complexity results can be obtained
by employing a fast gradient-based method with a rate of O(1/k2) on the smooth
counterpart (Mμ). In these works, the smooth problem (Mμ) is not equivalent to the
original problem (M) but serves only as an approximation. The complexity result states
that, by employing a fast gradient-based method on the smooth problem with a special
choice of the smoothing parameter, an ε-optimal solution can be obtained after O(1/ε)

iterations, which corresponds to a method with an O(1/k) rate of convergence. This
result is not impressive in the context of the Fermat–Weber problem, for which we
have already shown in Sect. 8 that Weiszfeld’s method, with a specially chosen starting
point, shares this rate of convergence. The challenge is therefore to present a method
with an O(1/k2) rate of convergence. For that, we present here an exact smoothing
scheme, in which the original problem (FW) is replaced by a different problem that is
equivalent to problem (FW) in the sense that its minimizer is exactly the same as the
minimizer of the original problem.

We assume that there is no optimal anchor point (otherwise, as usual, it is trivial to
find it). In this case, anchors are necessarily not collinear, implying that the objective
function is strictly convex, and there exists a unique optimizer x∗.

We begin by combining two simple but essential results. First, from Lemma 8.1 we
can find a lower bound on the distance of x∗ from each of the anchor points:

∥∥x∗ − ai
∥∥ ≥ f (ai ) − f (w)

ω
, ∀i ∈ {1, 2, . . . , m} , (27)

where w chosen in the same way as the starting point (20)–(22) is picked. More
precisely, we take

w = ap + tpdp, (28)

where

p ∈ argmin { f (ai ) : 1 ≤ i ≤ m} , (29)

and

dp = − Rp∥∥Rp
∥∥ , tp =

∥∥Rp
∥∥ − ωp

L
(
ap

) . (30)

Second, we can find a smooth function upper bounding the norm function that coincides
with the norm function outside a specified ball. Indeed, let us denote the norm function
by g(x) := ‖x‖ and let r > 0. Then, we define the following function, which we refer
to as a smooth approximation

123



J Optim Theory Appl (2015) 164:1–40 27

gr (x) =
{

‖x‖ , ‖x‖ ≥ r,
‖x‖2

2r + r
2 , ‖x‖ < r.

The smooth approximation function gr enjoys two essential properties: (i) it is contin-
uously differentiable with Lipschitz gradient with constant 1/r , and (ii) it is an upper
bound on g.

Lemma 9.1 (Properties of gr ) Let r > 0. Then

(i) gr (x) ≥ g (x) for any x ∈ R
d .

(ii) gr is continuously differentiable, and its gradient is Lipschitz continuous with
constant 1/r .

Proof (i) Clearly from the definition of gr that we have to show the result only when
‖x‖ < r . Indeed, in this case we have the following identity:

gr (x) − g (x) = ‖x‖2

2r
+ r

2
− ‖x‖ =

( ‖x‖√
2r

−
√

r

2

)2

.

Hence gr (x) ≥ g(x) for any x ∈ R
d .

(ii) First, we will write the gradient of gr :

∇gr (x) =
{ x

‖x‖ , ‖x‖ ≥ r
x
r , ‖x‖ < r.

Thus, clearly that gr is continuously differentiable. In order to prove the Lipschitz
continuity of ∇gr , we will use the fact that ∇gr can be written as

∇gr = 1

r
PB,

where PB is the orthogonal projection operator onto the closed and convex ball
B = {x ∈ R

d : ‖x‖ ≤ r}. We can now use the fact the orthogonal projection
operator PB is nonexpansive, meaning that it is Lipschitz continuous with constant
1 (see [17, Proposition 2.1.3(c), p. 201]). This proves the desired result.

��
Remark 9.1 The function gr is closely related to the so-called Huber function [42],
given by

Hr (x) =
{

‖x‖ − r
2 , ‖x‖ ≥ r,

‖x‖2

2r , ‖x‖ < r.

In fact, gr (x) + r
2 = Hr (x). We can deduce part (ii) of Lemma 9.1 from the known

properties of the Huber function (see, e.g., [36,41]), but we have chosen to provide a
self-contained proof. In addition, since the Huber function is convex, the convexity of
gr follows.
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Now, motivated by the inequalities (27), we will define the following smooth
approximation of the Fermat–Weber objective function:

fs (x) :=
m∑

i=1

ωi gbi (x − ai ) ,

where

bi = f (ai ) − f (w)

ω
, i = 1, 2, . . . , m.

Now we have the following lemma stating that fs is an exact convex smoothing
counterpart of f .

Lemma 9.2 (Properties of the exact smoothing function fs) Let w be defined by (28)–
(30). The following properties hold:

(i) fs is convex over R
d .

(ii) fs (x) ≥ f (x) for any x ∈ R
d.

(iii) The optimal solution of the problem

min
x∈Rd

fs (x)

is x∗ - the optimal solution of problem (FW).
(iv) fs is continuously differentiable, and its gradient is Lipschitz continuous with

constant

Ls = ω

m∑
i=1

ωi

f (ai ) − f (w)
.

Moreover, the Lipschitz constant Ls can be bounded from above by

Ls ≤ 2L
(
ap

)
ω2(∥∥Rp

∥∥ − ωp
)2.

Proof (i) Follows by the fact that fs is the weighted sum of the convex functions
gbi , i = 1, 2, . . . , m.

(ii) First, from Lemma 9.1(i), it follows that gbi (x) ≥ g(x)(= ‖x‖) for all x ∈ R
d .

Hence, for any x ∈ R
d :

fs (x) =
m∑

i=1

ωi gbi (x − ai ) ≥
m∑

i=1

ωi g (x − ai ) =
m∑

i=1

ωi ‖x − ai‖ = f (x) .

(iii) From (27), the inequality ‖x∗ − ai‖ ≥ bi holds for any 1 ≤ i ≤ m and hence
gbi (x∗ − ai ) = ‖x∗ − ai‖ for any 1 ≤ i ≤ m. Consequently,

fs
(
x∗) =

m∑
i=1

ωi gbi

(
x∗ − ai

) =
m∑

i=1

ωi
∥∥x∗ − ai

∥∥ = f
(
x∗) .
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Let x ∈ R
d be different from than x∗. Since x∗ is the strict global minimum of f

over R
d , it follows that f (x∗) < f (x). Hence,

fs
(
x∗) = f

(
x∗) < f (x) ≤ fs (x) ,

where the last inequality follows from part (ii). We therefore conclude that x∗ is
also the unique minimizer of fs over R

d .
(iv) For each 1 ≤ i ≤ m, by Lemma 9.1(ii) it follows that gbi is continuously

differentiable with gradient which is Lipschitz with constant 1/bi . Therefore, by
its definition, the function fs is continuously differentiable with gradient which
is Lipschitz continuous with constant

m∑
i=1

ωi

bi
= ω

m∑
i=1

ωi

f (ai ) − f (w)
.

Since f (ai ) ≥ f (ap) for all 1 ≤ i ≤ m (follows from (29)), we can estimate the
Lipschitz constant by

ω

m∑
i=1

ωi

f (ai )− f (w)
≤ω

m∑
i=1

ωi

f
(
ap

)− f (w)
= ω2

f
(
ap

)− f (w)
≤ 2L

(
ap

)
ω2(∥∥Rp

∥∥−ωp
)2 ,

where the last inequality follows from Lemma 7.1.
��

The effect of the smoothing operation is illustrated in Fig. 3.
Now we know that the nonsmooth Fermat–Weber problem can be replaced by the

smooth counterpart

min
x∈Rd

fs (x) , (FWs)

which has the same optimal solution. We can invoke one of the optimal gradient-based
methods for solving smooth convex optimization problems. One of the simplest options
is Nesterov’s method from 1983 [35]. We begin by explicitly writing the accelerated
method with a constant stepsize version.

Fast Weiszfeld Method (constant stepsize)

Initialization. y1 = x0 ∈ d and t1 = 1.

General Step (k = 1, 2, . . .) Compute

xk = yk − 1
Ls

∇fs (yk) ,

tk+1 =
1 + 1 + 4t2k

2
,

yk+1 = xk +
tk − 1
tk+1

(xk − xk−1) .
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FW function
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Fig. 3 The left image describes the contour lines of the unweighted Fermat–Weber function with anchors
a1 = (1, 2)T , a2 = (2, 1)T , and a3 = (5, 5)T . The anchors are denoted by the filled squares, while the
empty square stands for the optimal solution. In the right image, the contour lines of a smoothed function
are given. Here we have chosen to replace each of the norm functions g(x) = ‖x‖ by the smooth counterpart
g1/2(x)

A possible drawback of this basic fast scheme is that the Lipschitz constant Ls can be
too conservative (i.e., large). We therefore also consider a version with a backtracking
stepsize rule. This version was considered in the context of the more general composite
model [34].

Fast Weiszfeld Method (backtracking stepsize)

Initialization. L0 > 0, some η > 1, and x0 ∈ d. Set y1 = x0 and t1 = 1.

General Step (k = 1, 2, . . .) Find the smallest non-negative integer ik such that, with L̄ =

ηikLk−1,

fs yk − 1
L̄

∇fs (yk) ≤ fs (yk) − 1
2L̄

fs (yk) 2
.

Set Lk = ηikLk−1 and compute

xk = yk − 1
Lk

∇fs (yk) ,

tk+1 =
1 + 1 + 4t2k

2
,

yk+1 = xk +
tk − 1
tk+1

(xk − xk−1) .
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The following convergence result for both the constant stepsize scheme as well as
the backtracking version was proved in [34].

Theorem 9.1 (Convergence of the fast Weiszfeld method) Let {xk}k≥0 and {yk}k≥0
be two sequences which are generated by one of the fast Weiszfeld method. Then, for
any k ≥ 1, we have

fs (xk) − f ∗ ≤ 2αLs ‖x0 − x∗‖2

(k + 1)2 ,

where α = 1 for the constant stepsize setting and α = η for the backtracking stepsize
setting.

Since fs(x) ≥ f (x) for any x ∈ R
d , we can immediately conclude an O(1/k2)

rate of convergence result of the original objective function to the optimal value.

Corollary 9.1 (Convergence of the fast Weiszfeld’s method - original function values)
Let {xk}k≥0 and {yk}k≥0 be two sequences which are generated by one of the fast
Weiszfeld methods. Then, for any k ≥ 1, we have

f (xk) − f ∗ ≤ 2αLs ‖x0 − x∗‖2

(k + 1)2 ,

where α = 1 for the constant stepsize setting and α = η for the backtracking stepsize
setting.

10 Extensions, Open Questions and Perspectives

Weiszfeld’s method had an impact on the development of many numerical methods
for solving various problems, and its influence was not restricted to the Fermat–Weber
problem. Perhaps the most natural generalization of the Fermat–Weber problem (and
Weiszfeld’s method as well) is to the problem of multi-facility location. In fact, one of
the first papers that dealt with Weiszfeld’s method (without knowing it...), was Miehle’s
paper from 1958 [15], where he considered a problem of finding the locations of two
points in R

2. The general multi-facility location problem was considered by Radó in
[43] (1988), where the problem was formulated as

min
n∑

j=1

m∑
i=1

w j i
∥∥x j − ai

∥∥ +
n∑

j=1

n∑
	=1

v j	
∥∥x j − x	

∥∥ .

Here, a1, a2, . . . , am ∈ R
d are the fixed anchors, and x1, x2, . . . , xn ∈ R

d are the n
locations that we seek to find. The nonnegative numbers w j i and v jk are given weights.
Radó considered the following generalization of Weiszfeld’s method. To construct the
(k + 1)-th iterate from the k-th iterate, like in Weiszfeld’s method, each of the norm
expressions ‖x‖ is replaced by the term ‖x‖2 /

∥∥xk
∥∥. That is, at the k-th iteration the

following minimization problem is solved:
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min
x1,x2,...,xn

n∑
j=1

m∑
i=1

w j i

∥∥x j − ai
∥∥2∥∥xk

i − a j
∥∥ +

n∑
j=1

n∑
	=1

v j	

∥∥x j − x	

∥∥2∥∥∥xk
j − xk

	

∥∥∥ .

The solution to the above convex problem, which is next iterate xk+1
1 , xk+1

2 , . . . ,

xk+1
n , is attained at its unique stationary point, which is the solution of following linear

system of equations:
m∑

i=1

w j i
x j − ai∥∥xk

i − a j
∥∥ +

n∑
j=1

n∑
	=1

v j	
x j − x	∥∥∥xk

j − xk
	

∥∥∥ = 0, j = 1, 2, . . . , n.

Some convergence properties of this generalized Weiszfeld’s method were studied
in [43]. Another type of a multi-facility location problem that involves also clustering,
was considered by Iyigun and Ben-Israel in [44] (2010), and also by Teboulle in [45]
(2007). The authors constructed a generalization of Weiszfeld’s method and found
several properties such as monotonicity; of course, since the problem is nonconvex,
it does not seem possible to construct a method that is guaranteed to converge to the
global optimal solution.

Another type of generalizations of the Fermat–Weber problem leading to cor-
responding generalizations of Weiszfeld’s method is concerned with replacing the
Euclidean norm in the objective function by another norm. For example, in [46] (2010)
Katz and Vogl considered a Weiszfeld method which solves a version of the Fermat–
Weber problem in which the Euclidean norms are replaced with weighted Euclidean
norms. Cooper extended Weiszfeld method in [47] (1968) to consider a Fermat–Weber
type problem in which the objective is to minimize a weighted sum of powers of the
Euclidean norms:

min
x∈Rd

n∑
i=1

ωi ‖x − ai‖K ,

where K > 0. Of course, the problem is convex only when K ≥ 1. This extension
of the problem was also studied by Chen in [24] (1984). An extension of both the
Fermat–Weber problem and the Weiszfeld’s method for p-norms was considered by
Morris in [48] (1981).

We would also like to point out a known generalization of the Fermat–Weber prob-
lem which was suggested by Erdős in [49] for the case when m = d + 1 and when
a1, a2, . . . , ad+1 are affinely independent. The problem Erdős considered takes the
form

min

∑d+1
i=1 ‖x − ai‖∑d+1

i=1 dist(x, Fi )
,

where F1, F2, . . . , Fd+1 are the (d−1)-dimensional facets of the simplex conv{a1, a2,

. . . , ad+1}. As opposed to the Fermat–Weber problem, this generalization is a non-
convex problem and is therefore in principal difficult to solve.

A totally different location problem, in which Weiszfeld-type ideas were used, is
the source localization problem. In this problem we are given measurements of the
distances of a source in an unknown location x from the m anchors:
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‖x − ai‖ ≈ di , i = 1, 2, . . . , m.

One formulation of the problem consists in finding the x resulting with the minimum
sum of squared errors:

min
x∈Rd

m∑
i=1

(‖x − ai‖ − di )
2 . (SL)

Despite its apparent resemblance to Fermat–Weber, problem (SL) is quite different in
the sense that it is a difficult nonconvex problem. One of the methods studied by Beck
et al in [50] (2008) uses the idea of Weiszfeld to replace the norm terms of the form
‖x − ai‖ with the expressions ‖x − ai‖2 / ‖xk − ai‖, thus resulting with the following
iterative scheme:

xk+1 ∈ argminx∈Rd

m∑
i=1

(
‖x − ai‖2

‖xk − ai‖ − di

)2

.

The convergence of this scheme (to stationary points) was studied in [50]. An open
question in this context is whether this approach can be extended to the more gen-
eral sensor network localization problem where we are given a sensor network with
m anchors and n sensors. The locations of the anchors are given by the known
vectors a1, a2, . . . , am ∈ R

d ; the locations of the n sensors are decision variables
vectors x1, x2, . . . , xn ∈ R

d . We assume that we are given noisy measurements of
some of the distances between pairs of sensors and between pairs of sensors and
anchors: ∥∥x j − xt

∥∥ ≈ d jt , ( j, t) ∈ N , (31)

∥∥x j − ai
∥∥ ≈ w j i , ( j, i) ∈ M, (32)

where
N ⊆ {( j, t) : j �= t, j, t = 1, 2, . . . , n} ,

M ⊆ {( j, i) : i = 1, 2, . . . , m, j = 1, 2, . . . , n} ,

are the subsets of pairs of indices corresponding to the sensor/sensor and anchor/sensor
distance measurements. We assume that, if ( j, t) ∈ N for some j �= t , then (t, j) /∈ N .

A possible modeling of the problem (see e.g., Biswas et al [51]) is via the minimization
problem:

min
x1,x2,...,xn

⎧⎨
⎩ f (x1, x2, . . . , xn) ≡

∑
( j,t)∈M

(∥∥x j − xt
∥∥ − d jt

)2 (SNL)

+
∑

( j,i)∈N

(∥∥x j − ai
∥∥ − w j i

)2

⎫⎬
⎭ .
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Problem (SNL) is a nonconvex problem, and hence finding its global optimal solution is
generally speaking a difficult task. The question that arises is whether the Weiszfeld-
type techniques used in [50] can be used to construct an efficient solution method.
Obviously, since the problem is nonconvex, the main objective from a theoretical
point of view is to prove convergence or rate of convergence to a stationary point.

We also note that the iteratively reweighted least squares method, which is one of the
most popular optimization algorithms for solving a wide variety of problems involving
norms, is essentially based on ideas from Weiszfeld’s method. As an illustration of
the method, consider the problem of robust regression which consists of solving the
l1-norm problem

min
x∈Rd

{
‖Ax − b‖1 =

m∑
i=1

∣∣∣aT
i x − bi

∣∣∣
}

,

where A ∈ R
m×n , b ∈ R

m , and aT
1 , aT

2 , . . . , aT
m are the rows of the matrix A. At each

iteration, the absolute values
∣∣aT

i x − bi
∣∣ are replaced by

(
aT

i x − bi
)2

/
∣∣aT

i xk − bi
∣∣,

and the (k + 1)-th is determined from the k-th iteration by the update formulas:

xk+1 ∈ argmin

{
m∑

i=1

(
aT

i x − bi
)2∣∣aT

i xk − bi
∣∣
}

.

This scheme was studied in the context of various types of models, and the literature
of this method covers hundreds of paper that were written in the past 60 years; the list
of references [52–57] is just a very small representative sample of works dealing with
various applications and theoretical properties.

We end this section by recalling that the Fermat–Weber problem is associated with
what is considered to be the oldest example of constrained extremum problems duality
in the literature (see the paper of Kuhn [58] for a historical account). Here we consider
the original problem of Fermat with three points in the plane, and without weights.
The primal and dual problems are

• Primal. Fermat–Weber problem: given three points in the plane, a1, a2, a3, find a
point x ∈ R

2 minimizing the sum of distances to a1, a2, a3.
• Dual. Find the equilateral triangle with maximal altitude circumscribing the tri-

angle with vertices a1, a2, a3.

The optimal values of the two problems are actually the same, that is, the altitude of
the largest equilateral triangle circumscribing the given triangle is equal to the sum
of the distances of the Fermat–Torricelli point from the three vertices. This duality is
also called Fasbender’s duality since it was discovered by Fasbender [59] in 1846. As
was pointed out in [58], this duality is essentially equivalent to Lagrangian duality.
For the general Fermat–Weber problem (FW), the Lagrangian dual problem is given
by

max
u1,...,um∈Rd

{
m∑

i=1

aT
i ui :

m∑
i=1

ui = 0, ‖u j‖ ≤ ω j , j = 1, 2 . . . , m

}
. (D)
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For the original Fermat–Torricelli problem (m = 3, ωi = 1, n = 2), when all
the angles are smaller than 120◦, the relation between the optimal dual variables
(u1, u2, u3) and the primal variables vector (x) is given by ui = ai −x

‖ai −x‖ . In addition,
the i-th side of the largest circumscribing equilateral triangle passes through ai and is
perpendicular to ui . An interesting line of research will be to understand the Weisz-
field’s method from the point of view duality. Thus, it will be interesting to derive a
dual form of Weiszfeld’s method, and to find generalizations of this dual method that
are able to cope with models different than (D).

11 Conclusions

In this paper we reviewed the intriguing story of Weiszfeld’s method beginning from
its development in 1937. All the convergence results were presented in a self-contained
manner, and some of the proofs are new and simplified. Two new results were derived:
the first is a nonasymptotic rate of convergence of the sequence of function values
generated by Weiszfeld’s method, and the second is an acceleration of the method
based on an exact smoothed formulation and an optimal gradient-based method.

Acknowledgments We would like to thank an anonymous reviewer and the editor in chief for their useful
comments which helped to improve the presentation of the paper. This work was partially supported by ISF
grant #25312.

12 Appendix A: Notations

Following is a list of notations that are used throughout the paper.

• A = {a1, a2, . . . , am}—the set of anchors.
• ω1, ω2, . . . , ωm—given positive weights.
• ω = ∑m

i=1 ωi —sum of weights.
• f (x) = ∑m

i=1 ωi ‖x − ai‖—the Fermat–Weber objective function.
• x∗—an optimal solution of the Fermat–Weber problem. If the anchors are not

collinear, then x∗ is the unique optimal solution.
• X∗—the optimal solution set of the Fermat–Weber problem. When the anchors

are not collinear, X∗ is the singleton {x∗}.
• f ∗—the optimal value of the Fermat–Weber problem.
• T (x) = 1∑m

i=1
ωi‖x−ai ‖

∑m
i=1

ωi ai‖x−ai ‖—the operator defining Weiszfeld’s method.

• h(x, y) := ∑m
i=1 ωi

‖x−ai ‖2

‖y−ai ‖ —an auxiliary function used to analyze Weiszfeld’s
method.

• L(x) = ∑m
i=1

ωi‖x−ai ‖—serves as a kind of “Lipschitz” constant, and the operator
T can be written as taking a gradient step with stepsize 1/L(x): T (x) = x −
1/L(x)∇ f (x).

• R j = ∑m
i=1,i �= j ωi

(
a j − ai

)
/
∥∥ai − a j

∥∥, j = 1, 2, . . . , m. An important prop-
erty related to R j is that a j is optimal if and only if

∥∥R j
∥∥ ≤ w j .

• d j = −R j/
∥∥R j

∥∥—the steepest descent direction of f at a j .
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13 Appendix B: Proof of Lemma 7.1

Let x := a j + t j d j . Then, from the definition of x, we have that d j = (1/t j )
(
x − a j

)
and hence

− 1

t j

∥∥x − a j
∥∥2 = 1

t j

∥∥x − a j
∥∥2 − 2

〈
x − a j ,

x − a j

t j

〉

= 1

t j

∥∥x − a j
∥∥2 − 2

〈
x − a j , d j

〉

= 1

t j

∥∥x − a j
∥∥2 − 2

〈
x − a j ,− R j∥∥R j

∥∥
〉

= 1

t j

∥∥x − a j
∥∥2 + 2∥∥R j

∥∥ 〈
x − a j , R j

〉
. (33)

Now, we will expand the first term of the right-hand side of (33)

1

t j

∥∥x − a j
∥∥2 = L

(
a j

)∥∥R j
∥∥ − ω j

∥∥x − a j
∥∥2

= 1∥∥R j
∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi∥∥a j − ai
∥∥
⎞
⎠∥∥x − a j

∥∥2

= 1∥∥R j
∥∥ − ω j

m∑
i=1,i �= j

ωi

∥∥x − a j
∥∥2∥∥a j − ai
∥∥

= 1∥∥R j
∥∥−ω j

m∑
i=1,i �= j

ωi

(
‖x−ai‖2∥∥a j −ai

∥∥+2

〈
x−ai , ai −a j

〉∥∥a j − ai
∥∥ +

∥∥ai −a j
∥∥2∥∥a j −ai
∥∥

)

= 1∥∥R j
∥∥−ω j

m∑
i=1,i �= j

ωi

(
‖x−ai‖2∥∥a j −ai

∥∥+2

〈
x−ai , ai −a j

〉∥∥a j −ai
∥∥ +∥∥a j −ai

∥∥) .

The middle term can be also written as follows

2

〈
x − ai , ai − a j

〉∥∥a j − ai
∥∥ = 2

〈
x − a j , ai − a j

〉∥∥a j − ai
∥∥ + 2

〈
a j − ai , ai − a j

〉∥∥a j − ai
∥∥

= 2

〈
x − a j , ai − a j

〉∥∥a j − ai
∥∥ − 2

∥∥a j − ai
∥∥ .

Thus, from the definition of R j , we have

1

t j

∥∥x − a j
∥∥2 = 1∥∥R j

∥∥−ω j

m∑
i=1,i �= j

ωi

(
‖x−ai‖2∥∥a j −ai

∥∥+2

〈
x−a j , ai −a j

〉∥∥a j −ai
∥∥ −∥∥a j −ai

∥∥)
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= 1∥∥R j
∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi
‖x − ai‖2∥∥a j − ai

∥∥
+ 2

〈
x − a j ,

m∑
i=1,i �= j

ωi
ai − a j∥∥a j − ai

∥∥
〉

− f
(
a j

)⎞⎠

= 1∥∥R j
∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi
‖x − ai‖2∥∥a j − ai

∥∥ − 2
〈
x − a j , R j

〉 − f
(
a j

)⎞⎠ .

Note that, by the fact that a2

b ≥ 2a − b for any a ∈ R and b ∈ R++ we have

‖x − ai‖2∥∥a j − ai
∥∥ ≥ 2 ‖x − ai‖ − ∥∥a j − ai

∥∥ .

Hence

1

t j

∥∥x − a j
∥∥2 ≥ 1∥∥R j

∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi
(
2 ‖x − ai‖ − ∥∥a j − ai

∥∥)
− 2

〈
x − a j , R j

〉 − f
(
a j

))
= 1∥∥R j

∥∥ − ω j

⎛
⎝2

m∑
i=1,i �= j

ωi ‖x − ai‖ − 2
〈
x − a j , R j

〉 − 2 f
(
a j

)⎞⎠

= 2∥∥R j
∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi ‖x − ai‖ − 〈
x − a j , R j

〉 − f
(
a j

)⎞⎠ .

Plugging the last inequality in (33) yields

− 1

t j

∥∥x − a j
∥∥2 = 1

t j

∥∥x − a j
∥∥2 + 2∥∥R j

∥∥ 〈
x − a j , R j

〉

≥ 2∥∥R j
∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi ‖x − ai‖ − 〈
x − a j , R j

〉 − f
(
a j

)⎞⎠
+ 2∥∥R j

∥∥ 〈
x − a j , R j

〉

= 2∥∥R j
∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi ‖x − ai‖ − f
(
a j

)⎞⎠

−
(

2∥∥R j
∥∥ − ω j

− 2∥∥R j
∥∥
) 〈

x − a j , R j
〉
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= 2∥∥R j
∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi ‖x − ai‖ − f
(
a j

)⎞⎠
− 2ω j∥∥R j

∥∥ (∥∥R j
∥∥ − ω j

) 〈
x − a j , R j

〉

= 2∥∥R j
∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi ‖x − ai‖ − f
(
a j

)⎞⎠
+ 2ω j∥∥R j

∥∥ − ω j

〈
x − a j , d j

〉

= 2∥∥R j
∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi ‖x − ai‖ − f
(
a j

) + ω j
〈
x − a j , d j

〉⎞⎠

= 2∥∥R j
∥∥ − ω j

⎛
⎝ m∑

i=1,i �= j

ωi ‖x − ai‖ − f
(
a j

) + ω j
∥∥x − a j

∥∥
⎞
⎠

= 2∥∥R j
∥∥ − ω j

(
f (x) − f

(
a j

))
,

where the second equality from below follows from the fact that 1 = ∥∥d j
∥∥ =∥∥x − a j

∥∥ /t j . Hence,

f
(
a j

) − f (x) ≥
∥∥R j

∥∥ − ω j

2t j

∥∥x − a j
∥∥2 = t j

∥∥R j
∥∥ − ω j

2
=

(∥∥R j
∥∥ − ω j

)2

2L
(
a j

) ,

where the first equality follows from the fact that
∥∥x − a j

∥∥ = t j , and the last equality
follows from the definition of t j . ��
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