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Abstract This paper considers the problem of minimizing a continuously differen-
tiable function with a Lipschitz continuous gradient subject to a single linear equal-
ity constraint and additional bound constraints on the decision variables. We intro-
duce and analyze several variants of a 2-coordinate descent method: a block descent
method that performs an optimization step with respect to only two variables at each
iteration. Based on two new optimality measures, we establish convergence to station-
arity points for general nonconvex objective functions. In the convex case, when all
the variables are lower bounded but not upper bounded, we show that the sequence of
function values converges at a sublinear rate. Several illustrative numerical examples
demonstrate the effectiveness of the method.

Keywords Nonconvex optimization · Simplex-type constraints · Block descent
method · Rate of convergence

1 Introduction

Block descent algorithms are methods in which an optimization problem is solved by
performing at each iteration a minimization step with respect to a small number of de-
cision variables while keeping all other variables fixed. This kind of approach is also
referred to in the literature as a “decomposition” approach. One of the first variable
decomposition methods for solving general minimization problems was the so-called
alternating minimization method [1, 2], which is based on successive global mini-
mization with respect to each component vector in a cyclic order. This fundamental
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method appears in the literature under various names such as the block-nonlinear
Gauss-Seidel method or the block coordinate descent method (see, e.g., [3–11]). The
convergence of the method was extensively studied in the aforementioned papers un-
der various assumptions such as the existence of error bounds, strict/strong convexity
with respect to each block, or uniqueness of minimizers with respect to each block.

Other block descent methods, that do not require a full minimization step at each
iteration, are for example those who employ at each iteration a gradient projection
step with respect to the chosen indices subset. These methods have a clear advantage
over alternating minimization when exact minimization with respect to each of the
component blocks is not an easy task. In [12] Luo and Tseng studied the convergence
of such a block gradient descent method for specially structured convex problems
with strict convexity assumptions on some of the elements of the objective function
and with box constraints. More general descent directions were studied by Polak et
al. in [13] and also by Sargent and Sebastian in [14]. Convergence to stationary points
was established by Tseng and Yun [15] for the nonconvex case when the objective
function has separable nonsmooth components. There seem to be only a few results
in the literature on the rate of convergence of the sequence of function values in the
absence of assumptions such as strong/strict convexity or the existence of an error
bound. One such result was obtained by Nesterov in [16], where he showed that if
the blocks are randomly chosen, then a sublinear rate of convergence of the expected
sequence of function values can be derived. Later on in [17] it was shown that if the
block selection is done in a cyclic manner, a sublinear rate of convergence can be
derived.

All the mentioned works assume that the problem is either unconstrained or con-
sists of block-wise constraints. When additional linear constraints are imposed, the
block-wise structure collapses and a different line of analysis is required. The first
algorithms for this class of problems were proposed for solving the dual of the sup-
port vector machine (SVM) optimization problem [18]. Hence, they are defined for
the subclass of quadratic convex functions. In the quadratic case, part of the strength
of 2-coordinate descent methods is in the fact that exact minimization can be ana-
lytically performed. Platt’s sequential minimal optimization (SMO) algorithm [19]
was the first 2-coordinate descent method with exact minimization. The simplicity
and practical efficiency of the method motivated a vast amount of theoretical and
practical research on the convergence of the method, as well as modifications and
improvements. Later, Keerthi et al. in [20, 21] proposed a modified SMO method
based on a kind of “most descent” choice of the coordinates. The so-called SVMlight

method proposed in [22] uses the same index selection strategy; in fact, it is more gen-
eral in the sense that the method performs the optimization with respect to q chosen
variables—q being an even positive integer. Convergence was proved in [23, 24] for
the quadratic convex problem. A decomposition method based on the same selection
rule for a block of variables was defined for more general smooth functions in [25],
also allowing inexact minimization of the subproblems and odd values of q . Later
methods for the more general (and even nonconvex) smooth problem were proposed;
these methods are based on different selection rules and use either first order infor-
mation [25–27], and might not require any ordering (e.g., cyclic selection rule) [28],
or second order rules [29, 30]. All these methods are proved to have asymptotic con-
vergence under quite mild assumptions. In [31–33], methods based on the projected
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gradient (PG) direction have been proposed. Later, Tseng and Yun [34] studied the
convergence of a coordinate (projected) gradient descent method for solving the gen-
eral model of linearly constrained smooth minimization problems, which includes the
dual SVM problem as a special case. A possible distributed version of a block-type
method has also been proposed in [35].

In this paper, we consider the problem of minimizing a continuously differentiable
function subject to a single linear constraint with additional bound constraints on the
decision variables; a precise definition of the problem is presented in Sect. 2. We con-
sider several variations of a block descent method, which we call the 2-coordinate
descent method, that involves at each iteration the (possible approximated) solution
of the optimization problem with respect to only two variables while keeping all
other variables fixed; the two-dimensional minimization subproblems can also be
reduced into one-dimensional optimization problems. After discussing several nec-
essary mathematical preliminaries in Sect. 3, that lay the ground for the basic ter-
minology in the paper, we present and analyze in Sect. 4 two “optimality measures”
which will be the basis for the construction and analysis of the 2-coordinate descent
methods devised in Sect. 5. The different variants of the method are dictated by the
index selection strategy (i.e., which indices are chosen at iteration) and by the step-
size selection strategy (full or partial). We show the convergence of the corresponding
optimality measures in the nonconvex case. In the convex case, when all the variables
are lower bounded but not upper bounded (as in the case of the unit simplex), we
show in Sect. 6 a sublinear rate of convergence of the sequence of function values.
The paper ends in Sect. 7, where several numerical experiments demonstrate the po-
tential of the method.

2 Problem Formulation and Setting

We begin by describing some of the notation that will be used throughout the paper.
For a positive integer i, the vector ei denotes the i-th canonical basis vector, that is, it
consists of zeros except for the i-th entry which is equal to one. For a differentiable
function f , the gradient is denoted by ∇f and we use the notation ∇if for the i-th
partial derivative. For a closed and convex set X, the orthogonal projection onto the
set X is denoted by PX(·) and defined by PX(y) := argmin{‖x − y‖ : x ∈ X}. Vectors
are denoted by boldface lowercase letters, and matrices by boldface uppercase letters.

The main problem we consider in this paper is

(P) min
{
f (x) : x ∈ �K,l,u

n

}
,

where the feasible set is given by:

�K,l,u
n :=

{

x ∈ R
n :

n∑

i=1

xi = K, li ≤ xi ≤ ui

}

.

Here K ∈R and for each i, ui ∈R∪ {∞} and li ∈R∪ {−∞}. We will call such a set
a double-sided simplex set. We assume that li < ui for all i and, in order to ensure
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feasibility, we also assume that
∑n

i=1 li ≤ K ≤ ∑n
i=1 ui . Note that we do allow some

or all of the upper and lower bounds to be infinite, and we will use the usual arithmetic
of infinite numbers (e.g., ∞ + a = ∞ for all a ∈R).

We will also be interested in the special case when there are no finite upper bounds,
that is, ui = ∞ for all i = 1,2, . . . , n. In this case, the set will be called a one-sided
simplex set and is given by (the superscript u can be omitted in this case):

�K,l
n :=

{

x ∈R
n :

n∑

i=1

xi = K,xi ≥ li , i = 1, . . . , n

}

.

When K = 1 and l = 0, the one-sided simplex �
1,0
n is called the unit simplex:

�n :=
{

x ∈ R
n :

n∑

i=1

xi = 1, x1, . . . , xn ≥ 0

}

.

Despite the fact that a one-sided simplex set is also a two-sided simplex set, we will
see that in some parts of the analysis it is worthwhile to take special care for this
subclass of problems, since the results for the one-sided setting are sometimes simpler
and stronger than those that can be obtained in the more general two-sided setting.

The following set of assumptions is made throughout the paper.

Assumption 1

• The objective function f : �K,l,u
n → R is continuously differentiable with Lipschitz

continuous gradient with constant L over �
K,l,u
n , that is,

‖∇f (x) − ∇f (y)‖ ≤ L‖x − y‖ for all x,y ∈ �K,l,u
n .

• Problem (P) is solvable, that is, it has a nonempty optimal solution set denoted by
X∗. The optimal value will be denoted by f ∗.

There are numerous minimization problems over two-sided simplex domains.
Among them is the dual problem associated with the problem of training an SVM,
which is a convex quadratic programming problem [18]. Another problem of type
(P) is the standard quadratic programming problem (StQP), which requires the mini-
mization of a quadratic function over the unit simplex, which arises, for example, in
the Markowitz portfolio optimization problem [36] and as the continuous formula-
tion of combinatorial problems [37]. Another interesting problem is the dual of the
Chebyshev center problem [38]. Some of these examples will be discussed in detail
in Sect. 7.

2.1 General Linear Constraint

A seemingly more general problem than (P) is

min

{

g(y) :
n∑

i=1

aiyi = K,mi ≤ yi ≤ Mi, i = 1,2, . . . , n

}

, (1)
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where ai �= 0 for all i = 1,2, . . . , n and mi,Mi, i = 1,2, . . . , n are such that the
feasible set is nonempty. However, problem (1) is not actually more general since
we can easily recast it in the form of model (P) by making the change of variables
xi = aiyi, i = 1,2, . . . , n, resulting in the problem:

min

{

g

(
x1

a1
, . . . ,

xn

an

)
:

n∑

i=1

xi = K,m̃i ≤ xi ≤ M̃i, i = 1,2, . . . , n

}

, (2)

where

m̃i =
{ mi

ai
ai > 0

Mi

ai
ai < 0,

M̃i =
{

Mi

ai
ai > 0

mi

ai
ai < 0.

Problem (2) fits model (P) with li = m̃i, ui = M̃i and f (x) := g(x1
a1

, . . . , xn

an
). For

simplicity of presentation we will analyze the model (P); however, as will be shown
in the sequel, the results and algorithms can be described also for the more general
model (1) by using the simple transformation just described.

3 Mathematical Preliminaries

Our main objective is to construct a block descent method that performs a minimiza-
tion step with respect to two variables at each iteration. The coupling constraint (that
is, the constant sum constraint) prevents the development of an algorithm that per-
forms a minimization with respect to only one variable at each iteration. We will
therefore be interested in the restriction of the objective function f on feasible direc-
tions consisting of only two nonzero components.

Since we are interested in the feasible directions with two nonzero components,
we will define for any z ∈ �

K,l,u
n and any two different indices the following function:

φi,j,z(t) := f
(
z + t (ei − ej )

)
, t ∈ Ii,j,z,

where the interval Ii,j,z comprises the feasible steps, that is,

Ii,j,z := {
t : z + t (ei − ej ) ∈ �K,l,u

n

}
.

A simple computation shows that Ii,j,z can be written explicitly as

Ii,j,z = [
max{li − zi, zj − uj },min{ui − zi, zj − lj }

]
.

The derivative of φi,j,z(t) is given by

φ′
i,j,z(t) = ∇if

(
z + t (ei − ej )

) − ∇j f
(
z + t (ei − ej )

)
. (3)

The Lipschitz continuity of ∇f implies the Lipschitz continuity of φ′
i,j,z(t) over

Ii,j,z, and for any i, j we will denote by Li,j the constant for which:

∣∣φ′
i,j,z(t) − φ′

i,j,z(s)
∣∣ ≤ Li,j |t − s|, for all z ∈ �K,l,u

n , t, s ∈ Ii,j,z.
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The constants Li,j will be called the local Lipschitz constants, and they satisfy the
following bound:

Li,j ≤ 2L.

Indeed, note that by (3) we have that

∣∣φ′
i,j,z(t) − φ′

i,j,z(s)
∣∣ = ∣∣(ei − ej )∇f (z + t (ei − ej ) − (ei − ej )∇f (z + s(ei − ej )

∣∣

≤ ‖ei − ej‖
∥∥∇f (z + t (ei − ej ) − ∇f (z + s(ei − ej )

∥∥

≤ ‖ei − ej‖ · L|t − s| · ‖ei − ej‖ = L‖ei − ej‖2 · |t − s|
= 2L|t − s|.

Example 3.1 Suppose that the objective function is a quadratic function of the form

f (x) = 1

2
xT Qx + bT x,

where b ∈R
n and Q = QT ∈R

n×n. Then denoting d = ei −ej , after some rearrange-
ment of terms, we have that

φi,j,z(t) = f (z + td)

= 1

2

(
dT Qd

)
t2 + dT (Qz + b)t + 1

2
zT Qz + bT z.

Therefore,

φ′
i,j,z(t) = (

dT Qd
)
t + dT (Qz + b) = (Qii + Qjj − 2Qij )t + dT (Qz + b),

and thus

Li,j = Qii + Qjj − 2Qij . (4)

4 Optimality Conditions and Measures

4.1 Conditions for Stationarity

We recall some well-known elementary concepts on optimality conditions for linearly
constrained differentiable problems; for more details see, e.g., [6]. A vector x∗ ∈
�

K,l,u
n is called stationary if

〈∇f
(
x∗),x − x∗〉 ≥ 0 for all x ∈ �K,l,u

n .

If x∗ is an optimal solution of (P), then it is also stationary. Therefore, stationarity is
a necessary condition for optimality. When f is in addition convex, then stationarity
is a necessary and sufficient condition for optimality. Since the problem at hand is
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linearly constrained, it follows that x∗ is a stationary point if and only if the Karush-
Kuhn-Tucker (KKT) conditions are satisfied, meaning that x∗ ∈ �

K,l,u
n is a stationary

point of (P) if and only if there exists λ ∈R for which

∇if
(
x∗) =

⎧
⎨

⎩

= λ li < x∗
i < ui,

≤ λ x∗
i = ui,

≥ λ x∗
i = li ,

i = 1,2, . . . , n.

The above characterization of optimality is stated in terms of a dual variable. It is also
possible to rewrite the exact same condition solely in terms of the primal decision
variables vector: x∗ is a stationary point of (P) if and only if

min
j :x∗

j <uj

∇j f
(
x∗) ≥ max

i:x∗
i >li

∇if
(
x∗). (5)

Remark 4.1 When the feasible set is the unit simplex (K = 1, l = 0, ui = ∞, i =
1, . . . , n), condition (5) takes the form

min
j=1,...,n

∇j f
(
x∗) ≥ max

i:x∗
i >0

∇if
(
x∗), (6)

and when there are no finite bounds, that is, when li = −∞ and ui = ∞ for all
i = 1, . . . , n, condition (5) takes the form

min
j=1,...,n

∇j f
(
x∗) ≥ max

i=1,...,n
∇if

(
x∗), (7)

which of course just means that all the partial derivatives ∇if (x∗) have the same
value.

4.2 The Double-Sided Optimality Measure

The optimality condition (5) naturally calls for the following “optimality measure”
(see also [39]):

R(x) = max
{

max
i:x∗

i >li

∇if
(
x∗) − min

j :x∗
j <uj

∇j f
(
x∗),0

}
.

The above quantity is an optimality measure in the sense that it is positive for all
nonstationary feasible points and zero for stationary points. However, it is actually
a rather poor optimality measure because it is not even continuous, as the following
example illustrates.

Example 4.1 Consider the problem

min
{
(x1 + 2x2)

2 : x1 + x2 = 1, x1, x2 ≥ 0
}
. (8)

The optimal solution of problem (8) is x∗ = (1,0)T with corresponding gra-
dient ∇f (x∗) = (2,4)T . The optimality condition is satisfied since R(x∗) =
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max{∇1f (x∗) − ∇2f (x∗),0} = max{−2,0} = 0. Now, for any α ∈ (0,0.5) consider
the perturbed optimal solution

x∗
α = (1 − α,α).

Obviously x∗
α → x∗ as α → 0. Since

∇f (x∗
α) =

(
2(1 + α)

4(1 + α)

)
,

it follows that

R
(
x∗
α

) = max
{
4(1 + α) − 2(1 + α),0

} = 2(1 + α),

which immediately implies that R(x∗
α) → 2 (�= R(x∗)) as α → 0.

The discontinuity of R(·) is an evident drawback. Despite this, the optimality mea-
sure R(·) is essentially the basis of SMO methods for solving SVM training prob-
lems; see, e.g., [19, 20, 22, 25–28, 40], where at iteration k the two indices chosen
are related to those that cause the worst violation of optimality in terms of the value
of R, namely,

j̃ ∈ argmin
j :xk

j <uj

∇j f
(
xk

)
, ĩ ∈ argmax

i:xk
i >li

∇if
(
xk

)
. (9)

In this paper, we will consider the following optimality measure, which we will
call the double-sided optimality measure (the subscript 2 and the “mysterious” square
root will be clarified later on):

S2(x) = max
i �=j

{√
L̄i,j min

{
1

L̄i,j

[∇if (x) − ∇j f (x)
]
, xi − li , uj − xj

}}
, (10)

where for any i �= j , L̄i,j is an upper bound on the local Lipschitz constant Li,j . Note
that, as opposed to R(x), the double-sided optimality measure is continuous, which
is a clear advantage.

We will now show two basic properties associated to S2(·): (a) it is nonnegative
and equal to zero only at stationary points, and (b) it can be computed by restricting
the pairs of indices (i, j) to those for which ∇if (x) ≥ ∇j f (x).

Lemma 4.1 For any i �= j let L̄i,j be an upper bound on Li,j . Then

(a) For any x ∈ �
K,l,u
n we have S2(x) ≥ 0 and S2(x) = 0 if and only if x is a station-

ary point of (P).
(b) For any x ∈ �

K,l,u
n

S2(x) = max
i �=j :∇if (x)≥∇j f (x)

{√
L̄i,j min

{
1

L̄i,j

[∇if (x) − ∇j f (x)
]
, xi − li , uj − xj

}}
.

(11)
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Proof (a) Let i0, j0 be two arbitrary different indices for which ∇i0f (x) ≥ ∇j0f (x)

(of course, such indices exist since for any i �= j , either (i, j) or (j, i) satisfy the
inequality between the partial derivatives). Then since x ∈ �

K,l,u
n , we also have that

xi0 ≥ li0 and xj0 ≤ uj0 , so that

min
{∇i0f (x) − ∇j0f (x), xi0 − li0, uj0 − xj0

} ≥ 0,

which immediately implies that S2(x) ≥ 0. Therefore, S2(x) = 0 if and only if
S2(x) ≤ 0, which by the definition of S2 is the same as the statement

min

{
1

L̄i,j

[∇if (x) − ∇j f (x)
]
, xi − li , uj − xj

}
≤ 0, for all i �= j.

If either xi = li or xj = uj , then the latter inequality is obvious. We can therefore
rewrite the condition as:

min

{
1

L̄i,j

[∇if (x) − ∇j f (x)
]
, xi − li , uj − xj

}
≤ 0,

for all i : xi > li and j : xj < uj ,

which is the same as

∇if (x) − ∇j f (x) ≤ 0, for all i : xi > li and j : xj < uj ,

that is,

max
i:xi>li

∇if (x) ≤ min
j :xj <uj

∇j f (x),

meaning that x is a stationary point.
(b) If for some i0, j0 the inequality ∇i0f (x) < ∇j0f (x) is satisfied, then

min

{
1

L̄i0,j0

[∇i0f (x) − ∇j0f (x)
]
, xi0 − li0, uj0 − xj0

}
< 0. (12)

Since S2(x) ≥ 0, inequality (12) implies that the maximum in the definition (10)
of the optimality measure S2(·) is not attained at (i0, j0), and therefore this pair of
indices can be discarded in the maximization. The consequence is that the identity
(11) is valid. �

4.3 The One-Sided Optimality Measure

Since one-sided simplex sets are special cases of two-sided simplex sets, we can also
use S2(·) as a measure for optimality for one-sided simplex sets. However, in this case
we can also define a different optimality measure, which will be called the one-sided
measure and is given by:

S1(x) = max
i=1,...,n

{√
L̄i,J (x) min

{
1

L̄i,J (x)

[∇if (x) − ∇J (x)f (x)
]
, xi − li

}}
, (13)
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where here again L̄i,j (i �= j) is an upper bound on Li,j . The index J (·) is defined by
the relation

J (x) ∈ argmin
j=1,2,...,n

∇j f (x). (14)

The measure S1, similarly to S2, is nonnegative and equal to zero only at stationary
points, as the following lemma states.

Lemma 4.2 Consider the one-sided simplex set �
K,l
n . For any x ∈ �

K,l
n the inequal-

ity S1(x) ≥ 0 is satisfied and S1(x) = 0 if and only if x is a stationary point of (P).

Proof By the definition of J (relation (14)), it follows that ∇if (x) ≥ ∇J (x)f (x) for
any i ∈ {1,2, . . . , n}, which readily establishes the nonnegativity of S1. Therefore,
for any x ∈ �

K,l
n , we have S1(x) = 0 if and only if S1(x) ≤ 0, which is equivalent to

the relation

∇if (x) ≤ ∇J (x)f (x)

for all i satisfying xi > li . That is, S1(x) = 0 if and only if

max
i:xi>li

∇if (x) ≤ min
j=1,2,...,n

∇j f (x),

meaning that x is a stationary point of (P). �

Note that despite the fact that the optimal i was not chosen a priori in the definition
of S1 to be different from J (x), the optimal i will be different than J (x) whenever x
is not a stationary point.

4.4 S2 Versus S1

From now on, we will assume that there are two possible settings which correspond
to a parameter M that takes the values 1 and 2.

The Two Settings:

– One-sided setting (M = 1): The feasible set is �
K,l
n (ui = ∞ ∀i)

– Two-sided setting (M = 2): The feasible set is �
K,l,u
n .

The measure S2 is also relevant in the one-sided case, in which it takes the form:

max
i �=j :∇if (x)≥∇j f (x)

{√
L̄i,j min

{
1

L̄i,j

[∇if (x) − ∇j f (x)
]
, xi − li

}}
.

However, in the one-sided case we will be more interested in the measure S1 for two
reasons. First of all, it is easier to compute—it requires only O(n) computations and
not O(n2) as is required by S2. In addition, as will be clarified later on, some results
on the one-sided setting can be obtained only when exploiting the measure S1 rather
than S2 (cf. Sect. 6). At this point, we also note that the idea of reducing the cost of
indices selection from O(n2) to O(n) by choosing jk = J (xk) can be traced back to
[29].



902 J Optim Theory Appl (2014) 162:892–919

5 The 2-Coordinate Descent Method for Solving (P)

5.1 Description of the Method

Motivated by the definition of the new optimality measures S1(·) and S2(·), we now
define a schematic coordinate descent method where at each iteration a descent step is
performed with respect to only two variables while keeping all other variables fixed.

The 2-Coordinate Descent Method

Input: L̄i,j —an upper bound on Li,j (i, j ∈ {1,2, . . . , n}, i �= j)

Initialization: x0 ∈ �
K,l,u
n .

General Step (k = 0,1, . . .):

(a) Choose two different indices (ik, jk) for which ∇ik f (xk) − ∇jk
f (xk) ≥ 0.

(b) Set

xk+1 = xk + Tk(eik − ejk
),

where Tk ∈ [max{lik − xk
ik
, xk

jk
− ujk

},0].
There are two important details that are missing in the above description. First, the

index selection strategy of (ik, jk) was not given, and second, the choice of stepsize Tk

should be made precise. The index selection strategy depends on the specific setting
(i.e., M = 1 or M = 2), and the two chosen indices are those that cause the largest
violation of optimality in terms of the optimality measures S1 and S2:

– Double-sided index selection strategy (M = 2):

(ik, jk) ∈ argmax
i �=j :∇if (x)≥∇j f (x)

{√
L̄i,j min

{
1

L̄i,j

[∇if
(
xk

)−∇j f
(
xk

)]
, xk

i − li , uj −xk
j

}}
.

(15)
– One-sided index selection strategy (M = 1):

jk = J
(
xk

) ∈ argmin
j=1,...,n

∇j f
(
xk

)
, (16)

ik ∈ argmax
i=1,...,n

{√
L̄i,jk

min

{
1

L̄i,jk

[∇if
(
xk

) − ∇jk
f

(
xk

)]
, xk

i − li

}}
. (17)

As for the stepsize Tk , note that since ∇ik f (xk) − ∇jk
f (xk) ≥ 0, it follows that

φ′
ik,jk,xk (0) ≥ 0, which means that the directional derivative of f at xk in the di-

rection eik − ejk
is nonnegative. This enforces (to ensure the nonincreasing property

of the objective function values sequence) that Tk is nonpositive. In addition, in or-
der to guarantee feasibility of the next iterate, we also assume that Tk ∈ Iik,jk,xk ,
which combined with the nonpositivity of Tk implies that Tk resides in the interval
[max{lik − xk

ik
, xk

jk
− ujk

},0]. Two specific choices of stepsize selection methods that
we will consider are:
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– Full Minimization Step. In this case Tk is chosen to minimize the objective func-
tion in the direction d = −(eik − ejk

):

Tk ∈ argmin
t

{
f

(
xk + t (eik − ejk

)
) : t ∈ [

max
{
lik − xk

ik
, xk

jk
− ujk

}
,0

]}
.

– Partial Minimization Step. In this case Tk is chosen as

Tk = max

{
− 1

L̄ik,jk

(∇ik f
(
xk

) − ∇jk
f

(
xk

))
, lik − xk

ik
, xk

jk
− ujk

}
. (18)

In general, given the k-th iterate xk and the gradient ∇f (xk), the determination of
the two indices ik and jk in the double-sided setting requires O(n2) computations.
This is in contrast to the one-sided setting in which only O(n) computations are
required. A reduction of computations when M = 2 can be made by noting that we
can restrict ourselves only to indices (i, j) for which xi > li and xj < uj :

(ik, jk) ∈ argmax
i �=j :∇if (x)≥∇j f (x),xk

i >li ,x
k
j <uj

{√
L̄i,j min

{
1

L̄i,j

[∇if
(
xk

) − ∇j f
(
xk

)]
,

xk
i − li , uj − xk

j

}}
.

Therefore, it is enough to perform O(pr) computations, where p = #{i : xk
i > li}

and r = #{j : xk
j < uj }. This observation is the basis of a significant reduction in the

amount of computations required to find the two indices (ik, jk), for example when
the lower bounds are all zero (li = 0) and the iterates are sparse. This is the typical
situation in the SVM problem which will be described in Sect. 7.3.

Since we deal with two different settings (M = 1 and M = 2), and each setting has
two possibilities for the stepsize selection strategy (full or partial), it follows that we
actually consider four different algorithms. However, the basic convergence results
for the four algorithms are derived in a unified manner.

5.2 Convergence

We begin the convergence analysis by first recalling the following fundamental result
which is frequently used in order to establish convergence of gradient-based methods
[41, 42].

Lemma 5.1 Consider the problem

min
{
g(x) : x ∈ X

}
,

where X ⊆ R
d is a closed and convex set and g : Rd → R is continuously differen-

tiable with a Lipschitz gradient. Let Lg be an upper bound on the Lipschitz constant
of ∇g. Then

g(x) − g

(
PX

[
x − 1

Lg

∇g(x)

])
≥ Lg

2

∥∥∥∥x − PX

[
x − 1

Lg

∇g(x)

]∥∥∥∥

2

(19)

for any x ∈ X.



904 J Optim Theory Appl (2014) 162:892–919

Relying on Lemma 5.1, we will now show that the 2-coordinate descent method
is guaranteed to achieve at each iteration a decrease of the objective function which
is at least half of the squared optimality measure.

Theorem 5.1 Let {xk} be the sequence generated by the 2-coordinate descent method
with either full or partial stepsize selection strategies. Then the following relation
holds for every k = 0,1, . . .:

f
(
xk

) − f
(
xk+1) ≥ 1

2
S2

M

(
xk

)
. (20)

Proof The partial minimization stepsize now denoted by T
p
k is given by (see (18)):

T
p
k = −min

{
1

L̄ik,jk

(∇ik f
(
xk

) − ∇jk
f

(
xk

))
, xk

ik
− lik , ujk

− xk
jk

}
.

Substituting X = [max{lij − xk
ik
, xjk

− ujk
},0], g := φik,jk,xk ,x = 0 and Lg = L̄ik,jk

into (19), we obtain that

φik,jk,xk (0) − φik,jk,xk

(
0 − PX

(
0 − 1

L̄ik,jk

φ′
ik,jk,xk (0)

))

≥ L̄ik,jk

2

∣∣∣∣0 − PX

(
0 − 1

L̄ik,jk

φ′
ik,jk,xk (0)

)∣∣∣∣

2

. (21)

Recall that by (3)

φ′
ik,jk,xk (0) = ∇ik f

(
xk

) − ∇jk
f

(
xk

) ≥ 0, (22)

φik,jk,xk (0) = f
(
xk

)
. (23)

Also, since φ′
ik,jk,xk (0) ≥ 0, it follows that

PX

(
0 − 1

L̄ik,jk

φ′
ik,jk,xk (0)

)

= max

{
− 1

L̄ik,jk

φ′
ik,jk,xk (0),max

{
lij − xk

ik
, xjk

− ujk

}}

= −min

{
1

L̄ik,jk

(∇ik f
(
xk

) − ∇jk
f

(
xk

))
, xk

ik
− lik , ujk

− xk
jk

}

= T
p
k . (24)

Using (22), (23), and (24), the inequality (21) becomes

φik,jk,xk (0) − φik,jk,xk

(
T

p
k

)

≥ L̄ik,jk

2
min

{
1

L̄ik,jk

(∇ik f
(
xk

) − ∇jk
f

(
xk

))
, xk

ik
− lik , ujk

− xk
jk

}2

= 1

2
S2

M

(
xk

)
,
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where the last equality follows from the relations (15), (16), and (17) defining (ik, jk).
Therefore,

f
(
xk

) − f
(
xk + T

p
k (eik − ejk

)
) ≥ 1

2
S2

M

(
xk

)
, (25)

which is exactly inequality (20) for the partial minimization stepsize case. When the
stepsize is chosen via the full minimization strategy, (20) follows by combining the
obvious relation f (xk+1) ≤ f (xk + T

p
k (eik − ejk

)) with (25). �

We can now establish the main convergence result of the 2-coordinate descent
method in the nonconvex case.

Theorem 5.2 Let {xk} be the sequence generated by the 2-coordinate descent method
with either full or partial minimization stepsize. Then

a. SM(xk) → 0 as k → ∞.
b. For every n = 0,1,2, . . . ,

min
k=0,1,...,n

SM

(
xk

) ≤
√

2
(
f

(
x0

) − f ∗) 1√
n + 1

. (26)

c. Any accumulation point of the sequence {xk} is a stationary point.
d. If the objective function is convex and the level set

L(f,f
(
x0) = {

x ∈ �K,l,u
n : f (x) ≤ f

(
x0)}

is bounded, then f (xk) → f ∗ where f ∗ is the optimal value of problem (P).

Proof a. The sequence {f (xk)} is nonincreasing and bounded below and thus con-
verges. Therefore, by inequality (20), it follows that SM(xk) → 0 as k → ∞.

b. Summing inequality (20) over k = 0,1, . . . , n, we obtain that

n∑

k=0

(
f

(
xk

) − f
(
xk+1)) ≥ 1

2

n∑

k=0

S2
M

(
xk

) ≥ n + 1

2
min

k=0,1,...,n
S2

M

(
xk

)
.

Thus,

f
(
x0) − f

(
xn+1) ≥ n + 1

2
min

k=0,1,...,n
S2

M

(
xk

)
,

which combined with the inequality f (xn+1) ≥ f ∗, establishes the desired result
(26).

c. By part a, and the continuity of the optimality measure SM(·), it follows that if x̃
is an accumulation point of the sequence, then SM(x̃) = 0, which implies by Lemma
4.2 and by part a of Lemma 4.1 that x̃ is a stationary point of (P).

d. Since the sequence {f (xk)} is nonincreasing, it follows that it is bounded as it is
contained in the bounded level set L(f,f (x0)). Therefore, it has a subsequence {xkn}
that converges to an accumulation point x∗, which by part c is a stationary point. The
convexity of f implies that x∗ is an optimal solution of (P). Finally, the continuity
of f yields that f (x∗) = f ∗, meaning that {f (xk)} converges to the optimal value of
the problem. �
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Remark 5.1 Asymptotic results such as the one established in part c of Theorem 5.2
were obtained for other decomposition methods designed to solve the general prob-
lem (P) in the works [24, 25, 27–31]; see the introduction for further details. The Lip-
schitz continuity of the gradient is not assumed in these works, and the key property
used in the latter works is that the objective function is continuously differentiable.

6 The Convex Case: Rate of Convergence in the One-Sided Setting

In this section, we consider the one-sided setting (M = 1) in the case when the
objective function is convex and the lower bounds are finite (li > −∞ for all
i = 1,2, . . . , n). In this case the feasible set �

K,l
n is bounded, and the following soon-

to-be useful notation is well defined:

B = max
x∈�

K,l
n

‖∇f (x)‖∞. (27)

Our main objective is to establish a nonasymptotic sublinear rate of convergence
of the sequence of function values. We begin with the following useful lemma.

Lemma 6.1 Suppose that f is convex and M = 1. Let {xk} be the sequence gener-
ated by the 2-coordinate descent method with either full or partial stepsize selection
strategies. Then

f
(
xk

) − f ∗ ≤ A(n − 1)S1
(
xk

)
, (28)

where

A = max

{√
L̄maxR,

2B
√

L̄min

}
, (29)

and R, L̄min, L̄max are defined by

L̄max = max
i �=j

L̄ij , L̄min = min
i �=j

L̄ij , (30)

R = K − min
i=1,...,n

{li}. (31)

Proof To simplify the presentation of the proof, we will assume without loss of gen-
erality that jk = J (xk) = n, so that

S1(x) = max
i=1,...,n

{√
L̄i,n min

{
1

L̄i,n

[∇if (x) − ∇nf (x)
]
, xi − li

}}
.

Consider the n × (n − 1) matrix defined by

L =
(

In−1

−eT

)
.

By the definition of L we have that

�K,l
n = {

xk + Lλ : λ ∈ R
n−1,xk + Lλ ≥ l

}
. (32)
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Consequently, problem (P) can be rewritten as

(P’) min
{
g(λ) : λ ∈ R

n−1,xk + Lλ ≥ l
}
,

where

g(λ) := f
(
xk + Lλ

)
for all λ : xk + Lλ ≥ l.

Let x∗ be an optimal solution of (P). By (32) it follows that there exists λ∗ ∈ R
n−1

satisfying xk + Lλ∗ ≥ l for which x∗ = xk + Lλ∗. We can therefore write:

f
(
xk

) − f ∗ = f
(
xk

) − f
(
x∗) = g(0) − g

(
λ∗) ≤ ∇g(0)T

(
0 − λ∗) = −∇g(0)T λ∗,

(33)
where the inequality follows from the convexity of g. Note that from the definition of
L we have

λ∗
i = x∗

i − xk
i , i = 1,2, . . . , n − 1. (34)

In addition,

∇g(0) = LT ∇f
(
xk

) = (∇if
(
xk

) − ∇nf
(
xk

))n−1
i=1 . (35)

Substituting (34) and (35) into (33), we obtain that

f
(
xk

) − f ∗ ≤
n−1∑

i=1

(∇if
(
xk

) − ∇nf
(
xk

))(
xk
i − x∗

i

)
. (36)

For every i ∈ {1,2, . . . , n − 1} satisfying xk
i = li we have (recalling that ∇if (xk) ≥

∇nf (xk)):

(∇if
(
xk

) − ∇nf
(
xk

))(
xk
i − x∗

i

) = (∇if
(
xk

) − ∇nf
(
xk

))(
li − x∗

i

) ≤ 0,

which combined with (36) implies that

f
(
xk

) − f ∗ ≤
∑

i∈{1,...,n−1}:xk
i >li

(∇if
(
xk

) − ∇nf
(
xk

))(
xk
i − x∗

i

)

≤
∑

i∈{1,...,n−1}:xk
i >li

(∇if
(
xk

) − ∇nf
(
xk

))(
xk
i − li

)
. (37)

Now, by using the definition of B (27) we have:

(∇if
(
xk

) − ∇nf
(
xk

))(
xk
i − li

) ≤ 2B
(
xk
i − li

)
,

(∇if
(
xk

) − ∇nf
(
xk

))(
xk
i − li

) ≤ (∇if
(
xk

) − ∇nf
(
xk

))
max

x∈�
K,l
n

‖x − l‖∞

= (∇if
(
xk

) − ∇nf
(
xk

))
R,

where R is defined in (31). We thus have for any i = 1,2, . . . , n − 1:
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(∇if
(
xk

) − ∇nf
(
xk

))(
xk
i − li

)

≤ min
{(∇if

(
xk

) − ∇nf
(
xk

))
R,2

(
xk
i − li

)
B

}

≤ min

{
RL̄in

1

L̄in

[∇if
(
xk

) − ∇nf
(
xk

)]
,2

(
xk
i − li

)
B

}

≤ max{RL̄in,2B} · min

{
1

L̄in

[∇if
(
xk

) − ∇nf
(
xk

)]
, xk

i − li

}

≤ max

{
R

√
L̄in,

2B
√

L̄in

}√
L̄in · min

{
1

L̄in

[∇if
(
xk

) − ∇nf
(
xk

)]
, xk

i − li

}

≤ A

√
L̄in · min

{
1

L̄in

[∇if
(
xk

) − ∇nf
(
xk

)]
, xk

i − li

}

≤ AS1
(
xk

)
,

where A is defined in (29). We can therefore conclude from (37) that

f
(
xk

) − f ∗ ≤ A(n − 1)S1
(
xk

)
,

which is the desired result. �

To establish the O(1/k) rate of convergence, we will use the following simple
and well-known lemma on sequences of nonnegative numbers (for a proof, see for
example [43]):

Lemma 6.2 Let {ak}k≥0 be a sequence of nonincreasing and nonnegative numbers
satisfying

ak − ak+1 ≥ γ a2
k , k = 0,1,2, . . .

for some positive number γ . Then

ak ≤ 1

γ k
, k = 1,2, . . .

We are now ready to prove our main result.

Theorem 6.1 Suppose that f is convex and M = 1. Let {xk} be the sequence gener-
ated by the 2-coordinate descent method. Then

f
(
xk

) − f ∗ ≤ 2A2(n − 1)2

k
,

where A is given in (29).

Proof By combining (20) and (28) we have

f
(
xk

) − f
(
xk+1) ≥ 1

2
S2

1

(
xk

) ≥ 1

2A2(n − 1)2

(
f

(
xk

) − f ∗)2
.
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Therefore,

(
f

(
xk

) − f ∗) − (
f

(
xk+1) − f ∗) ≥ 1

2A2(n − 1)2

(
f

(
xk

) − f ∗)2
.

Invoking Lemma 6.2 with ak := f (xk) − f ∗ and γ = 1
2A2(n−1)2 , the desired result

follows. �

Remark 6.1 It is not difficult to see that the proof of Lemma 6.1 can be refined and
the inequality (28) can be replaced with

f
(
xk

) − f ∗ ≤ A
(‖xk − l‖0 − 1

)
S1

(
xk

)
,

where for a vector y, ‖y‖0 stands for the number of nonzero elements in y. Therefore,
if for example the feasible set is the unit simplex and the sparsity of all the iterates
is bounded via ‖xk‖0 ≤ p, then f (xk) − f ∗ ≤ A(p − 1)S1(xk), and the complexity
result will be replaced by

f
(
xk

) − f ∗ ≤ 2A2(p − 1)2

k
,

which is a significant improvement when p � n. This sparsity property is rather
common in several applications such as the Chebyshev center problem, which will
be described in Sect. 7.1.

Remark 6.2 We note that for the dual SVM problem, an asymptotic linear rate of
convergence was established in [44] under the assumption that Q is positive definite
and that strict complementarity holds at the optimal primal-dual solution. This re-
sult was also used in order to show the asymptotic linear rate of convergence of the
decomposition method derived in [29], which exploits second order information in
the index selection strategy. Our objective here was to derive a nonasymptotic rate of
convergence result, i.e., establish the fact that the accuracy of an iterative optimiza-
tion algorithm can be guaranteed to hold from the first iteration and not only for a
large enough value of the iteration counter k.

6.1 Unknown Lipschitz Constants

When the Lipschitz constants are not known, the 2-coordinate descent method—
as described—cannot be employed. Specifically, the Lipschitz constants have two
roles: first, they are used in the index selection step, and second, when a partial mini-
mization step is employed, the knowledge of the corresponding Lipschitz constant is
required. However, as will be described now, it is possible to adjust the algorithm for
the case when the Lipschitz constants are not known by incorporating a backtracking
procedure for finding “estimates” of the Lipschitz constants. Specifically, suppose
that the initial estimates of the local Lipschitz constants are given by L̄

(−1)
ij (for all

i �= j ). For any k ≥ 1 the local Lipschitz constant estimates at iteration k, which are
denoted by L̄

(k)
ij , are generated from the estimates of the previous iteration L̄

(k−1)
ij by

the following backtracking procedure:
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Procedure LCE: Lipschitz Constants Estimates Generation:

Input: a constant η > 1.

– jk = J (xk) ∈ argminj=1,...,n ∇j f (xk).
– For any i ∈ {1,2, . . . , n} and j ∈ {1,2, . . . , n}/ {jk, i}:

L̄
(k)
i,j = L̄

(k−1)
i,j

– For any i �= jk for which xi = li :

L̄
(k)
i,jk

= L̄
(k−1)
i,jk

– For any i �= jk for which xi > li , let ik be the smallest nonnegative integer such
that with L̃k = ηik L̄

(k−1)
i,jk

the inequality

f
(
xk + T̃

L̃k

i,jk,k
(ei −ejk

)
) ≤ f

(
xk

)−(∇if
(
xk

)−∇jk
f

(
xk

))
T̃

L̃k

i,jk,k
+ L̃k

2

(
T̃

L̃k

i,jk,k

)2

is satisfied with T̃ M
i,j,k = max{− 1

M
(∇if (xk) − ∇j f (xk)), li − xk

i }.
Set L̄

(k)
i,jk

= ηik L̄
(k−1)
i,jk

.

Given the above procedure for the estimation of the Lipschitz constants, it is not
difficult to define a method that does not require the explicit knowledge of these
constants.

The 2-Coordinate Descent Method with Backtracking

Input: L̄
(−1)
i,j (i �= j)- initial estimates on the local Lipschitz constants.

Initialization: x0 ∈ �
K,l,u
n .

General Step (k = 0,1, . . .):

(a) Set jk = J (xk) ∈ argminj=1,...,n ∇j f (xk).

(b) Compute the local Lipschitz constant estimates L̄
(k)
i,j according to procedure

LCE.
(c) Define

ik ∈ argmax
i �=jk

{√
L̄

(k)
i,jk

min

{
1

L̄
(k)
i,j

[∇if
(
xk

) − ∇jk
f

(
xk

)]
, xk

i − li

}}
.

(d) Set

xk+1 = xk + Tk(eik − ejk
),

where Tk is either computed via a full minimization strategy or via the for-
mula Tk = max{− 1

L̄
(k)
ik ,jk

(∇ik f (xk) − ∇jk
f (xk)), lik − xk

ik
}
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The analysis of the above method is very technical, and is based on the analysis
employed in the known Lipschitz constants case. We will therefore state the main
convergence result without a proof.

Theorem 6.2 Suppose that f is convex and M = 1. Let {xk} be the sequence gener-
ated by the 2-coordinate descent method with backtracking. Then

f
(
xk

) − f ∗ ≤ max

{√
ηLmaxR,

2B
√

L̄
(−1)
min

}2

(n − 1)2 1

2k
, k = 1,2, . . .

where

Lmax = max
i �=j

Li,j ,

L̄
(−1)
min = min

i �=j
L̄

(−1)
i,j .

7 Examples and Numerical Illustrations

In order to demonstrate the potential of the 2-coordinate descent methods described in
the paper, we give two illustrative examples and report several experiments on some
SVM training problems. All the experiments are performed on the class of quadratic
convex objective functions for which the Lipschitz constant can be easily obtained
from the maximum eigenvalue of the Hessian matrix. We use the acronym 2cd for
the 2-coordinate descent method.

7.1 A Chebyshev Center Example

Given a set of points a1,a2, . . . ,am ∈ R
d , a known geometrical problem is to find

their Chebyshev center, which is the center of the minimum radius ball enclosing all
the points. There exist many algorithms for solving the Chebyshev center problem;
see for example the paper [38], which also contains an overview of the problem as
well as many relevant references. Mathematically, the problem can be directly formu-
lated as the following convex optimization problem (r stands for the squared radius
and x is the Chebyshev center):

min
r∈R,x∈Rd

{
r : ‖x − ai‖2 ≤ r, i = 1, . . . ,m

}
, (38)

which is of course not of the form (P). However, a standard computation shows that
the dual of (38) is of the form of problem (P) with a quadratic objective and a unit
simplex as the feasible set:

max

{

−‖Aλ‖2 +
m∑

i=1

‖ai‖2λi : λ ∈ �m

}

, (39)
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Fig. 1 Ten points in the plane
and their Chebyshev center
(denoted by a square) and
minimum-radius inscribing
circle

where the columns of A ∈ R
d×n are the m vectors a1,a2, . . . ,am. Given an optimal

solution λ∗ of the dual problem (39), the Chebyshev center is given by xche = Aλ∗
and the radius of the minimum enclosing ball is the square root of the optimal ob-

jective function
√

−‖Aλ∗‖2 + ∑m
i=1 ‖ai‖2λ∗

i . The solution of the dual problem (39)
tends to be sparse since the nonzero components of the optimal solution correspond
to points which are on the boundary of the optimal ball, and usually there are only a
few such points. For example, in Fig. 1 the optimal solution of the Chebyshev center
problem with d = 2 and m = 10 is given (the center is denoted by a square). Note that
there are only two points on the boundary of the circle, and these points correspond
to the only two nonzero components of the optimal solution λ∗, which is given by
λ = (0,0,0,0,0,0.5,0.5,0,0,0)T .

The dual problem can also be formulated as a minimization problem:

min

{

q(λ) := ‖Aλ‖2 −
m∑

i=1

‖ai‖2λi : λ ∈ �m

}

. (40)

In this set of runs we generated 2,000 points in R
2, where all the components of

the 2,000 points were independently and randomly generated from a standard normal
distribution. We then ran the 2-coordinate descent method (in the one-sided setting
of course) with a full minimization step (which in this case is equivalent to the partial
minimization step) and compared it to two other alternatives:

– 2R: the same as the 2-coordinate descent method, but with an index selection strat-
egy which is based on the optimality measure R, that is, jk ∈ argminj=1,...,m ∇j q(λk)

and ik ∈ argmaxi:λk
i >0 ∇iq(λk).

– GRAD: A gradient projection method defined by λk+1 = P�m(λk − 1
L
∇q(λk)).

Here L is the Lipschitz constant of the objective function and is given by L =
2λmax(AT A), where λmax(AT A) denotes the maximum eigenvalue of the matrix
AT A.
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Fig. 2 The resulting Chebyshev center and circle for different solvers

All the algorithms were initialized with the vector λ0 = e1 and ran for only 10
iterations. In addition, we present the result of 100 iterations of the gradient projection
method; this experiment was denoted by GRAD(100). The resulting circles can be
seen in Fig. 2.

We also ran CVX [45] with the SeDuMi solver [46] and found that the optimal
radius is 3.6848 and the solution is extremely sparse—it has only three nonzero com-
ponents in the optimal solution, which correspond to the three points on the boundary
of the resulting circle. As can be clearly seen in the four images, the best result was
obtained by the 2-coordinate descent method (top left image) with a radius of 3.7001.
It can be seen in this image that there are three points on the border of the circle. The
result of 2R is clearly worse (radius 3.9382), and the resulting circle is obviously not
the minimal one. The gradient projection method GRAD produced a circle which is
very far from the optimal one (radius 4.3819), and even when 100 iterations were
employed, the result was not satisfactory.

7.2 A Random Example

Consider the quadratic minimization problem

min

{
1

2
xT Qx + bT x : x ∈ �100

}
,
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Fig. 3 Objective function
values on log scale of the three
solvers

Table 1 Results for the three
methods 2cd, 2R, and GRAD Iter. 2cd 2R GRAD 2cd<2R 2cd<GRAD

10 0.9805 1.1236 1.1692 82 73

20 0.2761 0.5046 0.3589 98 73

100 0.0015 0.2036 0.0013 100 49

where Q = AAT ∈ R
100×100 with the components of A ∈ R

100×50 being indepen-
dently and randomly generated from a standard normal distribution. The components
of the linear coefficients vector b were also generated from a standard normal dis-
tribution. We employed the three algorithms (2-coordinate descent, 2R, and GRAD)
on the resulting problem and computed an exact solution via SeDuMi. The function
values of the 100 iterates of the three methods are plotted in Fig. 3.

Clearly, the 2-coordinate descent (2cd) method significantly outperforms 2R, that
is, the coordinate descent method with the SVM-type-like index selection strategy,
and it provides more accurate solutions than the gradient projection method GRAD.
We also ran 100 realizations of the same process, and the results are given in Table 1.

The mean values over 100 realizations of the objective function values of the three
methods after 10, 20, and 100 iterations are given in columns 2, 3, and 4. After 10
or 20 iterations the 2cd method is better on average than the other two methods and
is slightly inferior to GRAD after 100 iterations. The columns termed 2cd<2R and
2cd<GRAD contain the number of runs in which the objective function value ob-
tained by the 2-coordinate descent method was better (i.e., lower) than the objective
function value obtained by 2R and GRAD, respectively. Overall, 2cd seems to be
a better method than 2R, and its advantage grows when the number of iterations is
larger. On the other hand, the last column illustrates that, at least in this set of runs,
2cd is better than GRAD after a small number of iterations (10 or 20), but is not much
better after 100 iterations.
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7.3 Experiments on SVM Training Problems

A well-known problem in classification is the problem of training a support vector
machine (SVM) in which one seeks to separate two sets of vectors (or their transfor-
mations) by a hyperplane. The dual problem associated with the problem of training
an SVM is given by the following convex quadratic programming problem (see [18,
19, 21] for more details):

max

{
n∑

i=1

αi − 1

2

∑

i,j

αiαj yiyj k(xi ,xj ) :
n∑

i=1

αiyi = 0,0 ≤ αi ≤ C

}

, (41)

where the vectors x1, . . . ,xn ∈ R
d and their corresponding classes y1, . . . , yn ∈

{−1,1} are the given “training data” and k(·, ·) is called the kernel function; it is
assumed that the matrix (k(xi ,xj ))i,j is positive semidefinite. Obviously, problem
(41) is of the form of model (1), and indeed many of the methods developed to
solve it apply to this model, such as those in [19–24, 29, 40, 44]. In this section
we report the results of experiments conducted on some SVM training test problems.
The problem that we actually solve is the dual-SVM problem (41). Before applying
the algorithm, we transformed it into a problem over a double-sided simplex set by
the linear change of variables described in Sect. 2.1. Since the 2-coordinate descent
method in the double-sided setting cannot handle large-scale problems, we used an
implementable variant of the method, which we call 2cd-hybrid. The index selection
strategy in the hybrid method is defined as follows: the index j is predetermined to
be chosen as in the maximum violation criteria (9), while the index i is chosen to
maximize the same term as in S2. Explicitly, this can be written as:

jk ∈ argmin
j :xj <uj

∇j f
(
xk

)
, (42)

ik ∈ argmax
i=1,...,n

{√
L̄i,jk

min

{
1

L̄i,jk

[∇if
(
xk

) − ∇jk
f

(
xk

)]
, xk

i − li , ujk
− xk

jk

}}
. (43)

Note that the index selection strategy coincides with the one-sided index selection
strategy when the feasible set is indeed a one-sided simplex set. All the data sets have
been taken from the LIBSVM database [47]. The problems that were tested along
with their dimension are described below:

– a1a (n = 1605);
– a4a (n = 4781);
– mushrooms (n = 8124);
– w5a (n = 9888);
– w7a (n = 4692);

To evaluate the performance of the method cd-hybrid, we compared it to two other
2-coordinate descent type methods that differ only in their index selection strategy:
(1) the 2R method described in the Chebyshev center example, which is essentially
the same as the SVMlight method with q = 2, although our implementation is proba-
bly not as efficient as the implementation in LIBSVM [48], and (2) the method we call
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Table 2 Results for the three methods 2cd-hybrid, 2R and SOI on 5 data sets from LIBSVM

Problem Method f10 f100 f1000 f5000 f10000

a1a 2cd-hybrid −17.17 −230.20 −664.67 −683.41 −683.41

2R −11.02 −160.79 −658.23 −683.41 −683.41

SOI −17.06 −219.08 −663.26 −683.41 −683.41

a4a 2cd-hybrid −19.17 −272.40 −1791.65 −2358.51 −2358.75

2R −16.85 −185.64 −1612.24 −2358.34 −2358.75

SOI −21.42 −243.74 −1785.58 −2358.48 −2358.75

mushrooms 2cd-hybrid −10.01 −99.52 −675.38 −1035.54 −1071.64

2R −10.00 −99.47 −674.19 −1035.31 −1071.50

SOI −10.01 −99.52 −675.38 −1035.54 −1071.64

w5a 2cd-hybrid −91.00 −460.03 −729.68 −785.10 −789.37

2R −20.05 −247.14 −725.04 −785.18 −789.39

SOI −91.00 −459.53 −729.46 −785.10 −789.37

w7a 2cd-hybrid −45.70 −457.49 −1817.99 −2083.18 −2119.72

2R −21.01 −243.97 −1748.78 −2082.11 −2120.07

SOI −42.99 −492.99 −1820.47 −2083.51 −2119.83

SOI which is the method from [29] where the indices are chosen using additional sec-
ond order information. The specific index selection strategy is the one called WSS2
in [29].

All the methods were implemented in MATLAB. We used in (41) the Gaussian
kernel k(v,w) = e−γ ‖v−w‖2

, where γ was fixed to be 1, and the penalty parameter
C was set to 5—this is the same setting that was used in [27]. The three methods
are compared in Table 2, where the function values after 10,100,1,000,5,000, and
10,000, denoted by f10, f100, f1000, f5000, f10000, are given. Note that, from a com-
putational point of view, the three methods are very similar, since they all require
access to two columns of the matrix Q at each iteration, and in addition several op-
erations whose complexity is linear in the dimension. The best results for each of the
runs are emphasized in boldface.

Evidently, in the data sets a1a and a4a the 2cd-hybrid algorithm outperforms the
other two methods, and SOI seems to give better results, at least until 1,000 iterations,
than 2R. For the data set mushrooms, the methods 2cd-hybrid and SOI, give the same
results which are better than those obtained by 2R. For w5a, 2cd-hybrid gives the best
results at the beginning (at least until the 1,000th iteration), but at iterations 5,000
and 10,000 2R seems be the best option. For the data set w7a, the method SOI gives
the best results in iterations 100, 1,000, 5,000, while 2cd-hybrid gives the best results
after 10 iterations and 2R is slightly better than the other two approaches in iteration
10,000. To summarize, the hybrid 2-coordinate descent method produced improved
the results in most of the scenarios that were tested.
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8 Conclusions

In this paper, we considered the problem of minimizing a continuously differentiable
function with a Lipschitz continuous gradient over a single linear equality constraint
and bound constraints. Based on new optimality measures, we were able to derive
new block descent methods that perform at each iteration an optimization procedure
on two chosen decision variables. In the convex case, the main result is a nonasymp-
totic sublinear rate of convergence of the function values. There are still several open
and interesting research questions that can be investigated. First, can the analysis be
generalized to the interesting and general case, where the constraint set consists of an
arbitrary number of equality constraints? This will require a generalization of both
the optimality measures, the index selection strategies and the convergence analysis.
Second, the rate of convergence analysis is restricted to the one-sided setting, and a
generalization to the two-sided setting does not seem to be straightforward; therefore,
the question that arises is: Does there exist another proof technique that will enable us
to analyze this important setting as well? A final important open question is: Can the
dependency of the efficiency estimate in the dimension of the problem (Theorem 6.1)
be removed?
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