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a b s t r a c t

We consider the convex composite problem of minimizing the sum of a strongly convex function and a
general extended valued convex function. We present a dual-based proximal gradient scheme for solv-
ing this problem. We show that although the rate of convergence of the dual objective function sequence
converges to the optimal value with the rate O(1/k2), the rate of convergence of the primal sequence is
of the order O(1/k).

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we focus on the nonasymptotic global rate of con-
vergence and efficiency of a dual based proximal gradient method
forminimizing the composite problemwhich consists of the sumof
two nonsmooth convex functions, with one assumed to be strongly
convex. This problem is rich enough to model many applications
from diverse areas, and this will be discussed in the next section.

The literature covering both the theory and algorithms rely-
ing on the proximal technology was already vast over the last few
decades and has led to fundamental algorithms, such as proximal
minimization, augmented Lagrangians, splitting methods for the
sum of operators, alternating direction of multipliers, and varia-
tional inequalities; see e.g., [5,11,16,18,12] for a few earlier rep-
resentative works. Nowadays, the volume of research works in a
wide array of new engineering applications have clearly intensi-
fied a renewed interest in proximal-based methods; see e.g., [6,9]
which include several of these new applications and a comprehen-
sive list of references.

This paper is another manifestation of the alluded current
trends. Our method is a blend of old ideas combined with a very
recent algorithm, demonstrating the power of Moreau proximal
theory [13]when applied to optimization problemswith particular
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structures and specific information on the problem’s data. Exploit-
ing data information, here the strong convexity of one function, we
devise a novel algorithm which combines duality with the recent
fast proximal gradient scheme, popularized under the name FISTA,
that we recently introduced in [4]. The resulting method we ob-
tain is called fast dual proximal gradient (FDPG). The idea of tack-
ling the dual problem is not new andwas developed by Tseng [20],
who derived what he called the alternating minimization method,
and which was obtained as a dual application of an algorithm in-
troduced earlier by Gabay [11] for finding the zero of the sum of
twomaximal monotone operators, with one being strongly mono-
tone. Here, by applying FISTA on the dual problem, andwith essen-
tially no extra computational cost,wederive the newmethod FDPG
which is proven to enjoy faster global convergence rates properties
than both the alternating minimization scheme as well as the clas-
sical subgradient projection algorithm when applied to the primal
nonsmooth strongly convex problem, and for which we establish
an improved rate of convergence over the well known O(1/

√
k)

rate. Furthermore, as a by-product of our analysis, we can easily
derive new global rate of convergence results for both the classical
alternating minimization method, and the so-called dual gradient
method of Uzawa [21].
Outline. Our analysis and results are developed in Sections 3 and 4,
after presenting in Section 2 the optimization model we propose
to study together with some interesting motivating examples. Our
notations are quite standard and can be found in any convex anal-
ysis text.
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2. The optimization model and examples

Consider the optimization problem
(P) min f (x) + g(Ax)
where f : E → (−∞, +∞] is a proper, closed and strongly convex
extended real-valued function with strong convexity parameter
σ > 0 and g : V → (−∞, +∞] is a proper, closed and convex
extended real-valued function. The operator A : E → V is a linear
operator. The spacesE, V are Euclidean spaceswith inner products
⟨·, ·⟩E, ⟨·, ·⟩V and norms ∥ · ∥E, ∥ · ∥V. The indices will usually
be omitted since the identity of the relevant space will be clear
from the context. Under the properties of f and g just mentioned,
problem (P) has a unique optimal solution denoted by x∗.

Problem (P) is quite general and can model many applications
from diverse areas. Following are three representatives of these
applications.

Example 2.1 (Denoising). In the denoising problem we are given
a signal d ∈ E which is contaminated by noise and we seek to
find another vector x ∈ E, which on the one hand is close to d
in the sense that the squared norm ∥x − d∥

2 is small, and on the
other hand, yields a small regularization term R(Lx), where L is a
linear transformation which in many applications accounts for the
so-called ‘‘smoothness’’ of the signal and R : V → R+ is a given
convex function that measures themagnitude of its argument. The
denoising problem is then defined to be

min
x∈E

∥x − d∥
2
+ λR(Lx), (2.1)

whereλ > 0 is a regularization parameter. It can be seen that prob-
lem (2.1) fits into the general model (P) by taking f (x) = ∥x−d∥

2,
g(z) = λR(z) and A = L.

Example 2.2 (Projection Onto the Intersection of Convex Sets).Given
m closed and convex sets C1, C2, . . . , Cm ⊆ E with a nonempty in-
tersection, and a point d ∈ E, the objective is to find the orthogonal
projection ofd onto the intersection of the sets, that is, the problem
we consider here is

min
x

{∥x − d∥
2

: x ∈ ∩
m
i=1Ci}, (2.2)

which ismodel (P) with f (x) = ∥x−d∥
2 and g : Em

→ R (i.e.,V =

Em) defined by g(z1, . . . , zm) =
m

i=1 δCi(zi) (δC (·) being the indi-
cator function of the set C). The linear operator A : E → Em is
defined by A(x) = (x, x, . . . , x)  

m blocks

.

Example 2.3 (Resource Allocation Problems). In many resource al-
location problems we are given one-dimensional concave utility
functions uj(xj) defined over a certain interval [mi,Mi]. A general
model of the resource allocation problem is then

max
n

j=1

uj(xj)

s.t. Ax ≤ b,
xj ∈ Ij ≡ [mj,Mj], j = 1, 2, . . . , n,

(2.3)

where A ∈ Rm×n and b ∈ Rm. We will further assume that the
one-dimensional functions uj, j = 1, 2, . . . , n, are all strongly con-
cave over Ij. Problem (2.3) can be cast as model (P) with f (x) =

−
n

j=1 uj(xj) when xj ∈ Ij, j = 1, 2, . . . , n, and f (x) = ∞ other-
wise, A(x) = Ax, and with g defined as g(z) = δ(−∞,b](z).

3. A fast dual-based proximal gradient method

As explained in the introduction, our method is dual based and
exploits the data information. We first present the dual problem
and its properties.We then derive the promised algorithm in terms
of the problems’ data f , g, A.

3.1. The dual problem and its properties

Problem (P) can also be written in the following constrained
form:
(P′) min{f (x) + g(z) : Ax − z = 0}.
Associating a Lagrange dual variables vector y ∈ V to the set of
equality constraints in (P′), we can construct the Lagrangian of the
problem
L(x, z, y) = f (x) + g(z) − ⟨y, Ax − z⟩

= f (x) + g(z) − ⟨ATy, x⟩ + ⟨y, z⟩. (3.1)
Minimizing the Lagrangian with respect to x and z we obtain that
the dual problem is

(D) max
y

{q(y) ≡ −f ∗(ATy) − g∗(−y)}, (3.2)

where f ∗ and g∗ are the conjugates of f and g respectively:
f ∗(y) = max

x
{⟨y, x⟩ − f (x)} , g∗(y) = max

x
{⟨y, x⟩ − g(x)} .

We know by the strong duality theorem for convex problems (see
e.g., [17]) that if there exists x ∈ ri(dom f ), z ∈ ri(dom g) such
that Ax = z, then strong duality holds, meaning that
val(D) = val(P),
and the optimal solution of the dual problem is attained. The strong
convexity of f implies a Lipschitz gradient property of the function
f ∗(ATx)—a property that will be critical to our analysis. The Lip-
schitz constant of the gradient of f ∗(ATx) can be easily computed
using a well known lemma connecting the strong convexity pa-
rameter of a convex function and the Lipschitz constant of the gra-
dient of its conjugate [19, Proposition 12.60, p. 565].

Lemma 3.1. The function F(y) ≡ f ∗(ATy) is continuously differen-
tiable and has a Lipschitz continuous gradient with constant ∥A∥

2

σ
.

Proof. By Proposition 12.60 from [19] it follows that f ∗ is contin-
uously differentiable with a Lipschitz gradient with constant 1

σ
.

Therefore, for any x, y ∈ E:

∥∇F(x) − ∇F(y)∥ = ∥A∇f ∗(ATx) − A∇f ∗(ATy)∥

≤
1
σ

∥A∥ · ∥ATx − ATy∥

≤
∥A∥ · ∥AT

∥

σ
∥x − y∥ =

∥A∥
2

σ
∥x − y∥. �

We have established that the dual problem can be written as
(for convenience, we consider here the equivalent minimization
problem):
(D′) min F(y) + G(y),
where

F(y) := f ∗(ATy), G(y) := g∗(−y). (3.3)
By Lemma 3.1 it follows that ∇F is Lipschitz continuous with
constant ∥A∥

2

σ
. Thus, problem (D′) consists of minimizing the sum

of a smooth function F with a closed proper function G. This paves
the way to apply first order proximal gradient methods on (D′)
which precisely address problems of such form. This is developed
in the next section where we also introduce our main scheme: a
fast dual based proximal gradient.

3.2. The fast dual proximal gradient algorithm

We begin by recalling that the Moreau proximal map [13] of
a proper closed and convex function h : E → (−∞, ∞] is
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defined by

proxh(z) = argmin
u∈E


h(u) +

1
2
∥u − z∥2


.

Under the latter assumptions on hwe also have the following well
known decomposition identity (see [13, Proposition 4a, p. 280]):

proxh(z) + proxh∗(z) = z for any z ∈ E. (3.4)

Consider the dual problem (D′). It consists of minimizing a con-
vex objective which is the sum of a smooth function with a non-
smooth one, which is precisely the optimization model on which
we can invoke the fast proximal gradient method, called FISTA [4],
which has a faster rate of convergence guarantee.

This method, when applied to problem (D′), reads as follows:

• Initialization: L ≥
∥A∥

2

σ
,w1 = y0 ∈ V, t1 = 1.

• General step (k ≥ 1):

yk = prox 1
L G


wk −

1
L
∇F(wk)


(3.5)

tk+1 =

1 +


1 + 4t2k
2

, (3.6)

wk+1 = yk +


tk − 1
tk+1


(yk − yk−1). (3.7)

Note that with the choice tk = 1 for all k, this method reduces to
the original proximal gradient scheme, but which is known to be
significantly slower; see [4].

The rate of convergence of O(1/k2) for the dual objective
function q(·) given in (D) is now recalled.

Theorem 3.1 ([4, Theorem 4.4]). Let {yk} be the sequence generated
by (3.5)–(3.7) with L ≥

∥A∥
2

σ
and w1 = y0 ∈ V, t1 = 1, and let y∗

be any optimal dual solution of problem (D). Then for any k ≥ 1,

q(y∗) − q(yk) ≤
2L∥y0 − y∗

∥
2

k2
.

Our objective is now to rewrite the iterations (3.5) in terms of
the data of the problem (f , g, A) which will lead to the fast dual
proximal gradient method for solving (P).

Lemma 3.2. The iteration given in (3.5) by yk = prox 1
L G


wk −

1
L∇F

(wk)) is equivalent to yk = wk −
1
L (Auk − vk), with

uk = argmax
x


⟨x, ATwk⟩ − f (x)


, (3.8)

vk = proxLg(Auk − Lwk). (3.9)

Proof. By the definition of F (Eq. (3.3)), it follows that

∇F(wk) = A∇f ∗(ATwk). (3.10)

Since f is strongly convex, its conjugate is continuously differen-
tiable, and hence u ∈ ∂ f (v) if and only if v = ∇f ∗(u) (see e.g., [17,
Corollary 23.5.1]). As a consequence, we thus obtain

∇f ∗(ATwk) = argmax
x∈E


⟨x, ATwk⟩ − f (x)


. (3.11)

Let dk := wk −
1
L∇F(wk). Then by (3.10) and (3.11) the computa-

tion of dk can be written as

uk = argmax
x∈E


⟨x, ATwk⟩ − f (x)


, (3.12)

dk = wk −
1
L
Auk (3.13)
and the iteration (3.5) reads as yk = prox 1
L G

(dk). Then invoking the

identity (3.4) with h(y) :=
1
LG(y) we obtain

yk = dk − proxh∗(dk). (3.14)

To complete the proof, we need to compute proxh∗ . Now, by (3.3)
we have h(y) =

1
L g

∗(−y). Using the definition of the conjugate
(recalling that here g = g∗∗), and of the proximal map, an easy
computation shows that h∗(v) = 1/Lg(−Lv) for any v ∈ E and that

proxh∗(d) = −
1
L
proxLg(−Ld) for any d ∈ V. (3.15)

Therefore, using (3.15) in (3.14) we obtain

yk = dk +
1
L
proxLg(−Ldk)

= wk −
1
L
Auk +

1
L
proxLg(Auk − Lwk) using (3.13)

= wk −
1
L
(Auk − vk),

with vk = proxLg(Auk − Lwk). �

Thanks to Lemma 3.2, we are ready to rewrite the method in
terms of the data of the problem, meaning (f , g, A).

The Fast Dual-Based Proximal Gradient Method (FDPG)

Input: L ≥
∥A∥

2

σ
- an upper bound on the Lipschitz constant

of ∇F
Step 0. Take w1 = y0 ∈ V, t1 = 1.
Step k. (k ≥ 0) Compute

uk = argmax
x


⟨x, ATwk⟩ − f (x)


(3.16)

vk = proxLg(Auk − Lwk) (3.17)

yk = wk −
1
L
(Auk − vk).

tk+1 =

1 +


1 + 4t2k
2

wk+1 = yk +


tk − 1
tk+1


(yk − yk−1).

As noted earlier, in the special case tk ≡ 1 for all k, the method
corresponds to the usual proximal gradient when applied to the
dual (D′), and in that case the three last steps of FDPG collapse to
(after performing an index shift) yk = yk−1−

1
L (Auk−vk), wk+1 =

yk, and the resulting main steps of the algorithm read as follows:

uk = argmax
x


⟨x, ATyk⟩ − f (x)


(3.18)

vk = proxLg(Auk − Lyk) (3.19)

yk+1 = yk −
1
L
(Auk − vk). (3.20)

This recovers the alternating minimization algorithm of Tseng
[20] which was obtained as a dual application of an algorithm in-
troduced earlier by Gabay [11] for finding the zero of the sum of
twomaximal monotone operators, with one being strongly mono-
tone. Thus, through the FDPG method we obtain a natural fast
version of the alternating minimization scheme which not only
allows us to derive the global convergence rate results for the
classical alternating minimization, but more importantly will be
shown to enjoy significantly better convergence rate properties.
We note that one of the main advantages of the alternating mini-
mization scheme, and hence of the fast version, is that it can bene-
ficially exploit the separability of a given function f , thanks to the
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maximization step (3.16) which can decompose accordingly. This
is in sharp contrast with augmented Lagrangian-based schemes
and related Alternating Direction of Multipliers whereby the pres-
ence of a coupling quadratic termprevents to exploit such a refined
decomposition for given separable function; see e.g., [12,6].

Remark 3.1. Note that in the special case g(z) = δ{b}(z), the prob-
lem (P) reduces to minimizing a strongly convex function f over
linear constraints Ax = b (similarly for inequality), and thus
the FDPG yields naturally a fast version of the so-called Uzawa
method [21].

Remark 3.2. The non-accelerated method was employed in the
context of total variation-based image denoising in [7], and the
corresponding realization of the FDPG method was considered
in [3].

Remark 3.3. A different non-accelerated dual proximal-based
method was considered in [8], and where the convergence of the
sequencewas derived. The problem studied in [8] is essentially the
same besides the fact the strongly convex function f was given as
a sum of convex function and a squared Euclidean term.

Remark 3.4. The algorithm FDGP assumes that the strong convex-
ity parameter σ is known or can be well approximated. If σ is un-
known, it is still possible to apply the algorithm and preserves its
convergence properties by using a sort of backtracking procedure
which is very similar to the one described in [4], and thus we omit
the details.

4. Rate of convergence analysis

In this section we establish two different types of global rate of
convergence results. First, we consider a primal sequence gener-
ated by the fast dual gradient proximal algorithm FDPG and we
prove that this sequence converges at the rate O(1/k). We then
compare our algorithm versus the subgradient projection method
which is direct scheme applied to the original primal formulation
of the problem (P). We show that even when taking into account
the strong convexity of the objective function, ourmethod achieves
the superior rate of convergence both in function values and in the
sequences.

4.1. Rate of convergence of the primal sequence

Let {yk} be the sequence generated by the fast dual proximal
gradient method. Then we know by Theorem 3.1 that q(yk) con-
verges to q(y∗) in a rate of O(1/k2). Given as input a dual sequence
{yk} generated by FDPG, a primal sequence can be defined naturally
as

xk = argmax
x


⟨x, ATyk⟩ − f (x)


. (4.1)

The sequence {xk} is contained in dom(f ), but is not necessarily
feasible since Axk might not belong to dom g . This infeasibility is
a common property of dual-basedmethods. Wewill now establish
a rate of convergence of the primal sequence {xk} to the optimal
solution x∗.

Theorem 4.1. Let {yk} be the sequence generated by the fast dual
proximal gradient method and let {xk} be the corresponding primal
sequence defined by (4.1). Then

∥xk − x∗
∥ ≤ 2


L
σ

∥y0 − y∗
∥

k
. (4.2)

Proof. Let yk be the output of FDPG at iteration k. Let us define an
additional sequence {zk} given by

zk ∈ argmin
z∈V

{⟨yk, z⟩ + g(z)}. (4.3)
Let k ≥ 1. Define

h1(x) = f (x) − ⟨ATyk, x⟩, h2(z) = g(z) + ⟨yk, z⟩.

Then by (3.1) it follows that

L(x, z, yk) = h1(x) + h2(z) for all x ∈ E, z ∈ V. (4.4)

By (4.1) and (4.3) it follows that

xk = argmin
x∈E

h1(x), (4.5)

zk ∈ argmin
z∈V

h2(z). (4.6)

By the strong convexity of f , it follows that the function h1(x) is
strongly convex with parameter σ > 0. Therefore, by (4.5), we
have that

h1(x) − h1(xk) ≥
σ

2
∥x − xk∥2, for all x ∈ E. (4.7)

By (4.6) we have for any z ∈ V,

h2(z) − h2(zk) ≥ 0. (4.8)

Summing inequalities (4.7), (4.8) and (4.4) we obtain

L(x, z, yk) − L(xk, zk, yk) ≥
σ

2
∥x − xk∥2, for all x ∈ E, z ∈ V.

In particular, substituting x = x∗ and z∗
= Ax∗ we have

L(x∗, z∗, yk) − L(xk, zk, yk) ≥
σ

2
∥x − xk∥2. (4.9)

Now, by from (4.1) and (4.3) and the definition of q given in (3.2)
we obtain

L(xk, zk, yk) = q(yk),
L(x∗, z∗, yk) = f (x∗) + g(z∗) − ⟨yk, Ax∗

− z∗
⟩

= f (x∗) + g(Ax∗) = q(y∗),

where the last equality follows fromstrongduality. Therefore, from
(4.9) and Theorem 3.1 we get

σ

2
∥xk − x∗

∥
2

≤ q(y∗) − q(yk) ≤
2L∥y0 − y∗

∥
2

k2
,

and hence

∥xk − x∗
∥ ≤ 2


L
σ

∥y0 − y∗
∥

k
. �

If L is chosen to be exactly ∥A∥
2

σ
, then result (4.2) will read as

∥xk − x∗
∥ ≤ 2

∥A∥

σ

∥y0 − y∗
∥

k
.

Remark 4.1. A similar rate of convergence for a different dual-
based method that uses Nesterov’s fast gradient method from [15]
was derived in [22,10] for the special case of total variation image
processing problems. The analysis techniques developed in these
works are rather intricate and completely different from ours,
and the resulting new fast version of the alternating minimization
FDPG we propose here was not derived and analyzed, since here
we rely on FISTA which is simpler than the more computationally
demanding scheme of [15] which involves an accumulated history
of the past iterates and two prox operations per iteration.

As a byproduct of this analysis, for the special case tk ≡ 1, we
can immediately derive the global rate of convergence of the alter-
nating minimization algorithm for the sequence xk, a result which
does not seem to have been established in the literature, showing
that this method is slower than FDPG by an order of magnitude.
With the same proof as the one of Theorem 4.1, but now invok-
ing instead the rate of convergence for the usual proximal gradient
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(c.f. [4, Theorem 3.1, p. 10], instead of Theorem 3.1) we obtain the
following corollary.

Corollary 4.1. Let {yk} be the sequence generated by the alternat-
ing minimization method and let {xk} be the corresponding primal
sequence defined by (4.1). Then

∥xk − x∗
∥ ≤


L
2σ

∥y0 − y∗
∥

√
k

.

4.2. Comparison to subgradient projection

Defining H(x) := f (x) + g(Ax), we can rewrite problem (P) as
min{H(x) : x ∈ X}, (4.10)
where the closed and convex feasibility set X is given by
X = {x ∈ E : x ∈ dom(f ), Ax ∈ dom(g)}.
The optimal value of problem (4.10) is denoted by H∗

= H(x∗),
where x∗

∈ X is the optimal solution of (4.10). An alternative ap-
proach for solving this primal formulation (4.10) of (P) is to use a
subgradient projection method. For that we will make the usual
assumptions needed to analyze the rate of convergence of the sub-
gradient projection algorithm, namely that
• H is subdifferentiable over X .
• γ := maxx∈X maxd∈∂H(x) ∥d∥ < ∞.

The subgradient projection method can be written as

xk+1 = PX (xk − tkH ′(xk)), H ′(xk) ∈ ∂H(xk), k ≥ 0 (4.11)
where tk > 0 are appropriately chosen stepsizes.

Before comparing the two approaches, we note that the sub-
gradient projectionmethod requires the ability to compute the or-
thogonal projection onto the feasible set X , which in some cases,
such as the one described in Example 2.2, is as difficult as the solu-
tion of (P) itself. In addition, the convergence results of themethod
rely on an additional assumption that the feasible set X is bounded.

By choosing the stepsizes in an appropriateway, it canbe shown
that the sequence H(n) ≡ min{H(xk) : k = 1, . . . , n} converges
to the optimal value H∗ at a rate of O(1/

√
n); see e.g., [14,2,1]. The

O(1/
√
n) rate is clearlyworse than theO(1/n2) rate of convergence

established for the dual function values of the fast dual proximal
gradient method, but in a sense this comparison is not fair for two
reasons. First, the FDPG is a dual method tackling the constrained
equivalent reformulation of (P) and not the direct primal formu-
lation (4.10); second, the subgradient projection method does not
exploit the strong convexity of the objective functionH . In the next
theorem we show how the rate of convergence of the subgradient
projection method can be improved when the stepsizes are cho-
sen in a specific way, and where the strong convexity is exploited
in the analysis.

Theorem 4.2. Let {xk} be the sequence generated by the subgradient
projection method with x0 ∈ X and tk =

1
kσ . Then for all n ≥ 1

n
k=1

H(xk)

n
− H∗

≤
γ 2 ln(n + 1)

2σn
.

In addition, for all n ≥ 2 the inequality

∥xn − x∗
∥ ≤

γ
√

σ


ln(n)
n − 1

(4.12)

holds true.
Proof. Let x∗ be the optimal solution of problem (P). Then

∥xk+1 − x∗
∥
2

= ∥PX (xk − tkH ′(xk)) − PX (x∗)∥2

≤ ∥xk − tkH ′(xk) − x∗
∥
2

= ∥xk − x∗
∥
2
− 2tk⟨H ′(xk), xk − x∗

⟩ + t2k ∥H
′(xk)∥2,
where the inequality follows from the nonexpansiveness of the
orthogonal projection operator. Simple algebraic rearrangement of
the resulting inequality yields

2⟨H ′(xk), xk − x∗
⟩ ≤

1
tk

(∥xk − x∗
∥
2
− ∥xk+1 − x∗

∥
2)

+ tk∥H ′(xk)∥2. (4.13)

On the other hand, by the strong convexity of the objective function
H we have

H(x∗) ≥ H(xk) + ⟨H ′(xk), x∗
− xk⟩ +

σ

2
∥x∗

− xk∥2,

and hence

⟨H ′(xk), xk − x∗
⟩ ≥ H(xk) − H(x∗) +

σ

2
∥xk − x∗

∥
2,

which combined with (4.13) implies the inequality

H(xk) − H(x∗) ≤
1
2


1
tk

− σ


∥xk − x∗

∥
2

−
1
2tk

∥xk+1 − x∗
∥
2
+

tk
2

∥H ′(xk)∥2.

Taking tk =
1
kσ and summing over k = 1, 2, . . . , nwe obtain

n
k=1

(H(xk) − H∗) +
n
2
∥xn+1 − x∗

∥
2

≤
1
2σ

n
k=1

1
k
∥H ′(xk)∥2

≤
γ 2

2σ

n
k=1

1
k

≤
γ 2

2σ
ln(n + 1). (4.14)

Thus,
n

k=1
H(xk)

n
− H(x∗) ≤

γ 2

2σ


ln(n + 1)

n


.

In addition, since H(xk) ≥ H∗ for all k, it follows by (4.14) that for
all n ≥ 1

n
2
∥xn+1 − x∗

∥
2

≤
γ 2

2σ
ln(n + 1),

from which the inequality (4.12) follows a once. �

The above shows that under strong convexity of the objective,
the rate of convergence of the subgradient projection can be im-
proved from O(1/

√
k) to O(ln k/k). As was already mentioned, the

subgradient projection method has two inherent disadvantages:
it requires the computation of the orthogonal projection onto the
feasible set X , and its convergence analysis assumes that the quan-
tity γ must be finite. We will now show that it has a third disad-
vantage: its efficiency estimate is worse than the one of the dual
proximal gradient method. We have seen that the rate of conver-
gence of the sequence {xk} generated by the fast dual proximal
gradient method to x∗ is O(1/k). To compare the two methods,
we need to consider the sequence of function values and its rate
of convergence towards H∗. Since we want to look at a feasible
point, we will consider the feasible sequence {PX (xk)} and estab-
lish the O(1/k) rate of convergence of the fast dual proximal gradi-
ent method when applied on the direct primal formulation of the
problem (P) as given in (4.10).

Theorem 4.3. Let {yk} be the sequence generated by the fast dual
proximal gradient method with L =

∥A∥
2

σ
and let {xk} be the cor-

responding primal sequence defined by (4.1). Then

H(PX (xk)) − H∗
≤ 2γ

∥A∥

σ

∥y0 − y∗
∥

k
. (4.15)
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Proof. By the subgradient inequality, the Cauchy–Schwarz in-
equality and the nonexpansiveness of the projection operator, we
have

H(PX (xk)) − H(x∗) ≤ ⟨H ′(PX (xk)), xk − x∗
⟩

≤ ∥H ′(PX (xk))∥ · ∥PX (xk) − x∗
∥

≤ γ ∥xk − x∗
∥

≤ 2γ
∥A∥

σ

∥y0 − y∗
∥

k
(by Theorem 4.1). �

To summarize, even when taking into account the strong con-
vexity of the objective, the ergodic sequence of primal function val-
ues of the subgradient projection method converges at a rate of
O(ln k/k) to the optimal value while the function values of the fast
dual proximal gradient method converge with the superior rate of
O(1/k).
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