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Abstract

We consider the max-cut problem on a random graph G with n vertices and weights wij being independent bounded
random variables with the same �xed positive expectation � and variance �2. It is well known that the max-cut number
mc(G) always exceeds 1

2

∑
i¡j wij . We prove that with probability greater than pn the max-cut number satis�es

1
2

∑
i¡j

wij6mc(G)6qn

(
1
2

∑
i¡j

wij

)
;

where pn; qn are explicitly expressed in terms of the problem’s data and such that pn; qn approach 1 as n → ∞. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Given an undirected graph G=(V; E) with nonneg-
ative weights wij=wji on the edges (i; j)∈E, the max-
imum cut problem is that of �nding a subset S ⊆V
such that

∑
i∈ S; j∈ V\S wij is maximized. The maxi-

mum cut of G will be denoted by mc(G).
The max-cut problem is of fundamental impor-

tance in combinatorial optimization and is known to
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be NP-complete [5]. The max-cut problem also arises
in several practical applications. Recently, Goemans
and Williamson [7] discovered an approximation al-
gorithm for max-cut whose accuracy is signi�cantly
better than all previously known algorithms. This al-
gorithm was based on a semi-de�nite programming
relaxation which can be solved approximately in
polynomial time. For relevant literature and recent
results on the max-cut problem, we refer the reader
to Goemans and Williamson [7] and the more recent
survey of Goemans [6] and references therein.
It is well known that the max-cut number mc(G)

always exceeds 1
2

∑
i¡j wij. The main result of this

paper shows that if (wij)i¡j are independent bounded
random variables with the same expectation �¿ 0 and
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variance �2 then

1
2

∑
i¡j

wij6mc(G)6qn

(
1
2

∑
i¡j

wij

)

with probability greater than pn, where pn and qn are
explicitly given and such that pn; qn → 1 as n→ ∞.
To prove our result we �rst show in the next section

that on any graph G it holds that

1
2

∑
i¡j

wij6mc(G)6

(
1− n�min(W )

2
∑

i¡j wij

)
1
2

∑
i¡j

wij;

where �min(W ) denotes the minimum eigenvalue
of the matrix W = (wij). The last inequality leads
us to investigate the behavior of the ratio rn(W ) :=
(1 − n�min(W )=2

∑
i¡j wij)

−1, which depends on n
and on the minimum eigenvalue of the matrix W . In
Section 3, we show by numerical experiments, that
on di�erent types of random graphs, the ratio rn(W )
approaches 1 as n gets larger. This is formalized in
Section 4 where our main result is presented and ex-
plicit expressions for pn and qn are given in terms of
n and the parameter distribution of W .

2. Bounds for the max-cut

Let G = (V; E) be an undirected graph with vertex
set V = 1; 2; : : : ; n and nonnegative weights wij = wji
on the edges (i; j)∈E with wij = 0; ∀(i; j) 6∈ E. The
maximum cut of G consists of �nding the set S ⊂V
to maximize the weight of the edges with one point in
S and the other point in �S :=V \ S. To each vertex i,
assign the variable xi = 1 if i∈ S and −1 otherwise.
Then the problem of �nding the weight of the maxi-
mum cut can be equivalently written as the following
integer quadratic problem:

(M) max
1
4

n∑
i; j=1

wij(1− xixj)

s:t: xi ∈{−1; 1}n; i = 1; : : : ; n:

We will use the following notation. The value of the
max-cut problem (M) will be denoted by mc(G). The
matrix W =(wij)ni; j=1 will stand for the weight matrix
with wij = wji¿0 ∀i 6= j and wii = 0 ∀i∈V . The
feasible set of (M) will be denoted by D := {x∈Rn:
x2i = 1 i = 1; : : : ; n} ≡ {−1; 1}n. Recall that for any
symmetric matrix A, the minimum and maximum

eigenvalues denoted, respectively, by �min(A) and
�max(A) satisfy the relations

�min(A)6zTAz6�max(A) ∀ ‖z‖= 1:
The following result is the starting point of our analy-
sis. For completeness we include here a self-contained
and easy proof of this result (see also Remark 2.1).

Lemma 2.1. Let G = (V; E) be an undirected graph
with a symmetric nonnegative weights matrix
W ∈Rn×n. Then
1
2

∑
i¡j

wij6mc(G)6

(
1− n�min(W )

2
∑

i¡j wij

)
1
2

∑
i¡j

wij:

Proof. Using our notation we have

mc(G) =max
x∈D

1
4

∑
i; j

wij(1− xixj)

=max
x∈D

1
4

∑
i; j

wij − 1
4
xTWx:

Now, consider the sum

∑
x∈D

xTWx=
∑
x∈D


 n∑
i=1

wiix2i +
∑
i 6=j
wijxixj




=


 n∑
i=1

∑
x∈D

wiix2i +
∑
i 6=j

∑
x∈D

wijxixj




= 2n tr(W ) + 0 = 0;

since here, tr(W ) :=
∑n

i=1 wii = 0. Therefore, ∃ �x∈D
which satis�es �xTW �x60, and the value of the cut at
this point is

1
4

∑
i; j

wij − 1
4
�xTW �x¿

1
4

∑
i; j

wij =
1
2

∑
i¡j

wij

proving the lower bound. To derive the upper bound
we �rst write mc(G) as

mc(G) =
1
4

∑
i; j

wij +
1
4
max
x∈D

−xTWx

=
1
2

∑
i¡j

wij − 1
4
min
x∈D

xTWx: (2.1)

Since zTWz¿�min(W ) ∀ ‖z‖2=1, and D⊂ x: ‖x‖2=
n we obtain

xTWx¿n�min(W ) ∀x∈D:
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Using this last inequality in (2.1) we thus have

mc(G)6
1
2

∑
i¡j

wij − n
4
�min(W )

=
1
2

∑
i¡j

wij

(
1− n�min(W )

2
∑

i¡j wij

)
:

The lower bound 1
2

∑
i¡j wij is well known in

the literature. The greedy algorithm and local search
both �nd a cut with value greater than or equal to
1
2

∑
i¡j wij. Our interest here is on investigating the

upper bound (1− n�min(W )=2
∑

i¡j wij)1=2
∑

i¡j wij
on the max-cut mc(G). By denoting

rn(W ) :=

(
1− n�min(W )

2
∑

i¡j wij

)−1
;

we see from Lemma 4.1 that if rn(W ) is close to 1 as
n tends to in�nity then 1

2

∑
i¡j wij is a good approxi-

mation for the max-cut for large values of n. The next
section describes numerical experiments showing that
rn(W ) is indeed getting close to 1 when n is getting
larger.

Remark 2.1. Eigenvalue bounds and their use in ap-
proximating the optimal value of the max-cut mc(G)
have been extensively studied in the literature, and we
refer the reader to the work of Delorme and Poljak [2]
and the survey by Mohar and Poljak [8]. In particular,
a better upper bound than the one derived in Lemma
2.1, can be found in [2]. More precisely, it is shown
in [2] that mc(G)6’(G) with

(DM) ’(G)= min
u∈ Rn

{n
4
�max(L+diag(u)):uTe=0

}
;

where L denotes the Laplacian matrix of the graph
G; e is the vector of ones, and diag(u) is the diag-
onal matrix with entries ui. In fact, it can be eas-
ily shown that the bound ’(G) is nothing else but
the dual bound for problem (M). Moreover, it should
be noted that our bound could also be derived from
the dual bound ’(G), by choosing the feasible point
u=−We+ (1=n)tr(L)e, where tr(L) is the trace of L.

Remark 2.2. We would like to emphasize that here
the upper bound derived in Lemma 2.1 is for the
sole purpose of deriving a probabilistic analysis of
the bound by exploiting powerful properties of

eigenvalues of random symmetric matrices, (see Sec-
tion 4). Yet, the numerical experiments given below
also show that the simple explicit bound given in
Lemma 2.1 already provides for small values of n a
good approximation on the random graphs under con-
sideration. The bound ’(G), while theoretically bet-
ter, requires on the other hand the numerical solution
of a di�cult non-smooth optimization problem (DM).

3. Behavior of rn(W ): numerical experiments

To understand the behavior of the ratio rn(W ) which
depends on the minimum eigenvalue of the matrix
W and n we consider the following experiment on
random graphs. We ran 1000 instances on graphs of
n vertices with n= 32; 64; 128; 256; 512. We consider
3 types of random graphs when the weights of the
matrix W are generated as follows:
Type A: each weight wij (i¡ j) is 0 or 1 in prob-

ability 1
2 ; and with wii = 0 and wij :=wji (i¿ j).

Type B: each weight wij (i¡ j) is randomly drawn
from the set {0; 1; 2; : : : ; 10}with uniform distribution,
and with wii = 0 and wij :=wji (i¿ j).
Type C: each weight wij (i¡ j) is randomly drawn

from the set {0; 1; 2; : : : ; 100} with uniform distribu-
tion, and with wii = 0 and wij :=wji (i¿ j).
We summarize the results of our experiment in

Table 1, where we denote by r(G) the ratio rn(W ),
and by r̂(G) its average over 1000 runs. Likewise,

Table 1
Values of r̂(G) on random graphs

n Type r̂(G) rmin(G) rmax(G)

A 0.73 0.69 0.77
32 B 0.80 0.77 0.83

C 0.82 0.79 0.84
A 0.79 0.77 0.81

64 B 0.85 0.84 0.87
C 0.86 0.85 0.87
A 0.84 0.83 0.85

128 B 0.89 0.88 0.9
C 0.9 0.89 0.9
A 0.88 0.88 0.89

256 B 0.92 0.92 0.92
C 0.93 0.92 0.93
A 0.91 0.91 0.92

512 B 0.94 0.94 0.94
C 0.95 0.94 0.95



212 A. Beck, M. Teboulle / Operations Research Letters 27 (2000) 209–214

rmin(G) and rmax(G) denote, respectively, the mini-
mum and maximum values of the ratio rn(W ) over the
1000 runs, and n denotes the size of the graph.
From the results summarized in Table 1 it can be

seen that the ratio r̂(G) tends to 1 as n gets larger.
Another observation is that the rate of convergence de-
pends on the way the weights are selected. The above
numerical experiments motivate us to theoretically an-
alyze the behavior of rn.

4. Probabilistic analysis of the upper bound

It is known that for unweighted random graphs,
the maximum eigenvalue satis�es �max(A(G))¿kmin,
where kmin is the smallest vertex degree in the graph
and A(G) is the adjacency matrix of a graph G, see
e.g., [1]. Therefore, �max(A(G)) is of magnitude O(n).
A surprising fact is that for a weighted random graph,
�min(W ) is of magnitude O(n1=2+�) for any �¿ 0 un-
der quite general assumptions made on the way W is
randomly generated. This latest fact which was proven
by F�uredi and Koml�os [4] will be a key ingredient in
the proof of our main result. More precisely, we need
a more speci�c result tailored to our needs which will
be derived from the analysis developed in [4] and is
given in Lemma 4.1 below. We �rst state our assump-
tions and introduce some new notation. The random
graph G on n vertices with weights matrix W is as-
sumed to satisfy the following conditions:
(C1)W is an n×nmatrix where the entries (wij)i ¡ j

are independent bounded random variables with the
same expectation �¿ 0 and variance �2.
(C2) wij = wji ∀i¿ j and wii = 0 ∀i.

Lemma 4.1. Let W be a random symmetric ma-
trix satisfying (C1) and (C2), with eigenvalues
lambda1(W )¿�2(W )¿ · · ·¿�n(W ). Then for any
v¿0 and for any k6(�=K)1=3n1=6 we have

Prob
{
max
26i6n

|�i(W )|¿ 2�
√
n+ v

}

¡
√
n
(
1− v

2�
√
n+ v

)k
;

where K ∈ (0;+∞) is such that |wij−�|6K; ∀i¡ j.

Proof. Let A be a random symmetric matrix with en-
tries aij such that (aij)i6j are independent bounded

random variables with bound K , and with the same
expectation �=0 and variance �2, and let aij=aji for
i¿ j. Then, from the claim 3:3 in [4, pp. 237–238, see
also p. 236] we have for any v¿0 and k6( �K )

1=3n1=6:

Prob
{
max
16i6n

|�i(A)|¿ 2�
√
n+ v

}

¡
√
n
(
1− v

2�
√
n+ v

)k
:

Let E be the matrix with all entries 1. Applying the
above inequality with the random symmetric matrix
A :=W − �E, we thus have

Prob
{
max
16i6n

|�i(W − �E)|¿ 2�
√
n+ v

}

¡
√
n
(
1− v

2�
√
n+ v

)k
:

To complete the proof, it remains to show that

max
26i6n

|�i(W )|6 max
16i6n

|�i(W − �E)|: (4.2)

Noting that

max
26i6n

|�i(W )|=max{|�2(W )|; |�min(W )|};

max
16i6n

|�i(W − �E)|=max{|�max(W − �E)|;
|�min(W − �E)|}

and using the facts that �2(W )6�max(W − �E) and
�min(W )¿�min(W−�E) (see e.g., Lemmas 1 and 2 in
[4, pp. 237–238]), it can be veri�ed that (4.2) holds,
and hence the desired result follows.

We now state and prove our main result.

Theorem 4.1. Let G be a random graph with n ver-
tices and weights matrixW satisfying (C1) and (C2).
Then given �∈ (0; 12 ) and �∈ (0; 1) the following hold:∀n¿ 1 with probability greater than

1−√
n
(

1
n� + 1

)(�=K)1=3n1=6
− 2�2

n(n− 1)�2�2 ;

we have
1
2

∑
i¡j

wij6mc(G)

6
1
2

∑
i¡j

wij

(
1 +

2�
�(1− �)

√
n+ n1=2+�

n− 1
)
:
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Proof. First, by applying Lemma 4.1 with k :=
(�=K)1=3n1=6 and v := 2�n1=2+� we obtain

Prob{|�min(W )|¿ 2�
√
n+ 2�n1=2+�}

6Prob
{
max
26i6n

|�i(W )|¿ 2�
√
n+ 2�n1=2+�

}

¡
√
n
(

2�
√
n

2�
√
n+ 2�n1=2+�

)(�=K)1=3n1=6

=
√
n
(

1
n� + 1

)(�=K)1=3n1=6
: (4.3)

De�ne Wt :=
∑

i; j wij = 2
∑

i¡j wij (since here wii =
0) and recall that wij (i¡ j) are independent random
variables with the same expectation � and variance
�2. Then, using Tschebyche� inequality [3, p. 247],
we obtain that

∀�¿ 0 Prob

{∣∣∣∣∣
∑
i¡j

(wij − �)
∣∣∣∣∣¿�

}
6
n(n− 1)�2

2�2
:

Pick � := n(n− 1)=2�� with �∈ (0; 1), then

Prob
{∣∣∣∣Wt2 − n(n− 1)

2
�
∣∣∣∣¿ n(n− 1)

2
��
}

6
2�2

n(n− 1)�2�2 :

Hence, in particular, we get

Prob
{
Wt
2
¡
n(n− 1)

2
(1− �)�

}

6Prob
{∣∣∣∣Wt2 − n(n− 1)

2
�
∣∣∣∣¿ n(n− 1)

2
��
}
;

6
2�2

n(n− 1)�2�2 : (4.4)

For convenience, we now de�ne the following events:

An := {|�min(W )|¿ 2�
√
n+ 2�n1=2+�};

Bn :=
{
Wt
2
¡
n(n− 1)

2
(1− �)�

}

and the probability

pn;� := 1−
√
n
(

1
n� + 1

)(�=K)1=3n1=6
− 2�2

n(n− 1)�2�2 :

Combining (4.3) and (4.4) we then obtain

Prob{An ∪ Bn}6Prob(An) + Prob(Bn)¡ 1− pn;�

and hence:

Prob{ �An ∩ �Bn}¿pn;�;

where

�An :=
{|�min(W )|62�√n+ 2�n1=2+�} and

�Bn :=
{
Wt
2
¿
n(n− 1)

2
(1− �)�

}

denote the complementary events of An and Bn, respec-
tively. Therefore, with probability greater than pn;�
we have obtained that

rn(W ) =
1

1− n�min(W )=Wt =
1

1 + n|�min(W )|=Wt
¿

1
1+(2�n3=2 +�n3=2+�)=[n(n−1)(1−�)�]

=
1

1 + [2=(1− �)]�=�(√n+ n1=2+�)=(n− 1)
where in the �rst equality we used the fact that
�min(W )60 (since here tr(W ) = 0 =

∑n
i=1 �i(W )¿

n�min(W )), and this completes the proof.

An easy by-product of Theorem 4.1 is the following
asymptotic result.

Corollary 4.1. The value of the ratio 1
2

∑
i¡j wij=

mc(G) tends to 1 with probability approaching 1
as n → ∞. More precisely, ∀�¿ 0; ∃N such that
∀n¿N with a probability greater than 1−� we have

1− �6
1
2

∑
i¡j wij

mc(G)
61:

Proof. Note that ∀�∈ (0; 1) and ∀�∈ (0; 1) we have
that as

n→ ∞ : pn;� → 1 and

rn;� :=
1

1 + 2=(1− �)�=�(√n+ n1=2+�)=(n− 1) → 1:

Therefore ∀�¿ 0 ∃N s.t. ∀n¿N it holds that
1− pn;� ¡ � and rn;� ¿ 1− �
and hence with probability greater than 1− � we have
1
2

∑
i¡j wij

mc(G)
¿rn;� ¿ 1− �:
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Table 2
Values of pn;� and rn;�

n pn;1=4 rn;1=4 pn;1=8 rn;1=8 pn;1=16 rn;1=16

100 0.330 0.535 −0:313 0.633 −0:818 0.672
200 0.623 0.588 −0:094 0.698 −0:766 0.740
300 0.729 0.618 0.001 0.733 −0:766 0.740
400 0.788 0.638 0.071 0.756 −0:761 0.797
1000 0.917 0.697 0.320 0.819 −0:661 0.857
5000 0.993 0.784 0.745 0.897 −0:158 0.926
10000 0.998 0.814 0.866 0.920 −0:128 0.945
20000 0.999 0.841 0.940 0.939 0.404 0.959
30000 0.999 0.855 0.966 0.947 0.545 0.966
40000 0.999 0.864 0.978 0.953 0.634 0.970
50000 0.999 0.871 0.984 0.956 0.695 0.973
100000 0.999 0.890 0.995 0.967 0.842 0.980

We note that an asymptotic result similar to the one
given in Corollary 4.1 can be found in [2, Theorem
8] where it was established that ’(G)=mc(G)→ 1 as
n→ ∞.
The following example illustrates Theorem 4.1,

by computing the explicit numbers pn;�; rn;� for the
choice � := 1

32 . Consider matrices with entries either
0 or 1 in probability 1

2 . We then get � =
1
2 � =

1
2 and

K = 1
2 . Applying Theorem 4.1 to this class of random

matrices gives that with probability greater than pn;�
we have
1
2

∑
i¡j wij

mc(G)
¿rn;�;

where

pn;� := 1−
√
n
(

1
n� + 1

)n1=6
− 2048
n(n− 1) ;

rn;� :=
1

1 + 64
31 (

√
n+ n1=2+�)=(n− 1) :

Table 2 summarizes the values of the probabilities
pn;� and the ratio rn;� for various choices of n and
�∈ (0; 12 ). Note that negative values in the probability

columns indicate that the theorem does not furnish any
useful information.
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