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Abstract. In this paper we study smooth convex programming problems where the decision
variables vector is split into several blocks of variables. We analyze the block coordinate gradient
projection method in which each iteration consists of performing a gradient projection step with
respect to a certain block taken in a cyclic order. Global sublinear rate of convergence of this
method is established and it is shown that it can be accelerated when the problem is unconstrained.
In the unconstrained setting we also prove a sublinear rate of convergence result for the so-called
alternating minimization method when the number of blocks is two. When the objective function is
also assumed to be strongly convex, linear rate of convergence is established.
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1. Introduction. One of the first variable decomposition methods for solv-
ing general minimization problems is the so-called alternating minimization method
[5, 14], which is based on successive global minimization with respect to each com-
ponent vector in a cyclic order. This fundamental method appears in the litera-
ture under various names such as the block-nonlinear Gauss—Seidel method or the
block coordinate descent method (see, e.g., [4]). The convergence of the method
was extensively studied in the literature under various assumptions. For example,
Auslender studied in [1] the convergence of the method under a strong convexity as-
sumption, but without assuming differentiability. In [4] Bertsekas showed that if the
minimum with respect to each block of variables is unique, then any accumulation
point of the sequence generated by the method is also a stationary point. Grippo and
Sciandrone showed in [7] convergence results of the sequence generated by the method
under different sets of assumptions such as strict quasi convexity with respect to each
block. Luo and Tseng proved in [9] that under the assumptions of strong convexity
with respect to each block, existence of a local error bound of the objective func-
tion, and proper separation of isocost surfaces, linear rate of convergence can be
established.

Another closely related method, which will be the main focus of this paper, is the
block coordinate gradient projection (BCGP) method in which at each subiteration,
the exact minimization with respect to a certain block of variables is replaced with
an employment of a single step of the gradient projection method (a step toward the
gradient followed by an orthogonal projection). This method has a clear advantage
over alternating minimization when exact minimization with respect to each of the
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component blocks is not an easy task. In [8] Luo and Tseng studied minimization
problems of the form

rr;in{g(Ex) + (b,x):x € X},

where, loosely speaking, the main assumptions were that g is strictly convex and twice
continuously differentiable over the domain of g and V2g(Ex*) is positive definite for
every optimal solution x*. Under these assumptions, it was shown that the BCGP
method with each block consisting of a single variable has a linear rate of convergence.

Recently, Nesterov studied in [13] a randomized version of the method in the
convex setting in which the selection of the block on which a gradient projection step
is performed is not done by a deterministic rule (such as the cyclic rule), but rather via
a predescribed distribution. For the first time, Nesterov was able to establish global
nonasymptotic rates of convergence in the convex case without any strict convexity,
strong convexity, uniqueness, or error bound assumptions. Specifically, it was shown
that the rate of convergence of the expectation sequence of the randomized method
is sublinear under the assumption of Lipschitz continuity of the gradient and linear
under a strong convexity assumption. In addition, an accelerated O(1/k?) was devised
in the unconstrained setting. Probabilistic results on the convergence of the function
values were also provided.

Recently, there has been a wide interest in randomized methods. In [17] Richtarik
and Takac generalized Nesterov’s results to the case when a separable nonsmooth term
is added. The authors also demonstrated in [16] the ability of various block coordinate
decent methods to solve large-scale truss topology design problems. In [19] Shalev-
Shwartz and Tewari considered the stochastic coordinate descent method applied to
the l;-regularized loss minimization problem. It was shown in [19] that the number
of iterations required to obtain an expected e-accurate solution is O(1/e).

Despite the apparent large amount of results in the stochastic case, there are
only few results on global rate of convergence in the deterministic case. Under an
assumption on the isotonicity of the gradient of f, Saha and Tewari were able to
prove in [18] an O(1/k) rate of convergence of the sequence of function values of
the cyclic coordinate descent and the cyclic coordinate minimization methods. The
complexity of a greedy approach was studied by Dhillon, Ravikumar, and Tewari in
[6]. However, as was pointed out by Nesterov in [13], it seems that there are no global
rate of convergence results for the cyclic block coordinate gradient descent (BCGD)
method under general convexity assumptions in the deterministic case. The main goal
of this paper is to rectify this situation and establish several new results on the rate of
convergence of the BCGP method and other related schemes for convex programming
problems.

In section 2 we lay out the basic setting in the unconstrained case and present
the BCGD method in which each iteration consists of making a gradient step with
respect to each block in a cyclic order. The convergence analysis of the method is
given in section 3, where sublinear O(1/k) rate of convergence (k being the iteration
index) is established under the assumption that the objective function is convex with
Lipschitz continuous gradient. We show by a numerical example that even though the
multiplicative constant obtained in the BCGD method is worse than the one obtained
by the randomized approach in [13], the deterministic BCGD method can even have
a better empirical performance than the randomized counterpart. When in addition
the objective function is strongly convex, the linear rate of convergence is proved. We
then show in section 4 that we can incorporate the BCGD into an optimal scheme
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resulting in an accelerated method with an O(1/k?) rate of convergence. In section 5
we make a detour to discuss the alternating minimization method in the case where
the variables are split into two blocks. We establish a sublinear rate of convergence
and prove a linear rate of convergence when an additional strong convexity assumption
is made. Finally, we discuss the constrained problem where each of the block vectors
is constrained to be in a given convex closed set. In this case each gradient step is
followed by an orthogonal projection operator and the method is consequently called
the block coordinate gradient projection method. We show that a sublinear rate of
convergence can be established in this case too.

Throughout the paper we use the following notation. Vectors are denoted by
boldface lowercase letters, e.g., y, and matrices by boldface uppercase letters e.g., A.
The ith component of a vector y is written as y;. The identity matrix of order n is
denoted by I,,. In this paper, all norms are the usual /2 norms.

2. Problem formulation and basic setting. Consider the general optimiza-
tion model

(2.1) min{ f(x) : x € R"},

where we assume the following basic assumptions:
e f is a continuously differentiable convex function whose gradient is Lipschitz
over R"™.
e The optimal set of (2.1) is nonempty and is denoted by X* and the corre-
sponding optimal value is denoted by f*.
We will assume that the vector x of decision variables has the following partition:

x(2)
(2.2) X = . )
x(p)
where x(i) € R™ with nq,ng,...,n, being p positive integer numbers satisfying n, +

ng+---+n, = n. We use the notation of [13] and define the matrices U; € R™*™i § =
1,...,p, for which

(U17U27" '7UP) = ITL

Then in our notation x(i) = U;IX for every x € R" and i = 1,...,p, and we also have
that if x is given as in (2.2), then x = Y 7 U;x(4). In addition, we will also define
the vector of partial derivatives corresponding to the variables in the vector x(i) as

Vif(x) = UIVf(x), i=1,2,...,p.

We assume that the gradient of f is block-coordinatewise Lipschitz continuous and
that the Lipschitz constant corresponding to block 7 is L;, meaning that

(2.3) IVif(x+U;h;) — V;f(x)|| < L;||h;|| for every h; € R™.

The constants L1, Lo, ..., L, will also be called the block Lipschitz constants. The
gradient of f, Vf, is of course also Lipschitz continuous, and we denote its “global”
Lipschitz constant by L. That is,

IVf(x) = Vf(y)ll < Llx—yll for every x,y € R".
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We are now ready to define the BCGD method. In this method, at each iteration
we perform a gradient step with a constant stepsize with respect to a different block
of variables taken in a cyclic order.

The BCGD method.

Input: L;(j =1,...,p)—upper bounds on the Lipschitz constant L; (L; > L;).

Initialization: x, € R".
General step (k=0,1,...): Set x) = x;, and define recursively

. . 1 .
(2.4) xp =x, ' — fUivif(x;;l),i =1,...,p.

P
Set Xp41 = X

We will be especially interested in two constant stepsize strategies:
e Exact constant stepsize rule. In this setting

Lj:Lj, ]21,,])

e Conservative constant stepsize rule. Here the upper estimates on the Lipschitz
constants are all chosen to be equal to the global Lipschitz constant, that is,

L;=L, j=1,...,p.

We will assume that the level set

S ={x:f(x) < f(xo)}
is compact and we denote (similarly to [13])

R(xo) = max max {[[x —x"|| : f(x) < f(x0)}.

In particular, by the monotonicity of { f(xx)}r>0,
lIxx —x*|| < R(xo) for every k=0,1,....

3. Convergence analysis of the BCGD method. The efficiency estimates of
the BCGD method depend on several constants which are now defined. The maximal
and minimal block Lipschitz constants are denoted by

(3.1) Liyax = max Ly,

(32) Lmin: min Lj.
Jj=1

We use similar notation for the maximal and minimal upper estimates on the block
Lipschitz constants:

(33) Emax = maXx I/ja
Jj=1,...,p

(3.4) Liin = min L;.
Jj=1,...,p
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It is known (see [13, Lemma 2]) that the Lipschitz constants L, Lo, ... L

satisfy the relation

s Hps

p
L< ZLi,
i—1

which immediately implies that
(3.5) L < pLax

as well as

(3.6) L < pLpax.

In addition, the ratio

Lmax

.7 =
(3 ) " Lmin ’

which will be called the scalability factor, will play an important role in the rate of
convergence analysis. If the scalability factor is “large,” then the problem is poorly
scaled. We will also use quite frequently in our analysis the well-known descent lemma
which is now recalled for the sake of completeness and whose proof can be found, for
example, in [4].

LEMMA 3.1 (descent lemma [4, Proposition A.24]). Let g : RY — R be a contin-
uwously differentiable function whose gradient Vg is Lipschitz with constant M. Then

M
9(y) < 9(x) + (Vg(x),y = x) + o [x = yl? for all x,y € R%.

As a direct consequence we have the following “block” version of the lemma.

LEMMA 3.2 (block descent lemma). Suppose that f is a continuously differ-
entiable function over R™ satisfying (2.3) and assume that i € {1,2,...,p}. Let
u,v € R” be two vectors which differ only in the ith block, that is, there exists an
h € R" such that v—u = U;h. Then

F(V) < F)+ (T ), v — ) + 2 fu— v

We will now show that subject to the underlying assumptions on the objective
function, we can prove a sublinear rate of convergence of the sequence of function
values.

3.1. Sublinear rate of convergence. The next technical lemma is essential in
establishing the sublinear rate of convergence.

LEMMA 3.3. Let {xx}r>0 be the sequence generated by the BCGD method. Then
for every k=0,1,2,...

1
> — =
" 4Lmax (L4 pL?/L2 ;)

min

(3-8) fxk) = f (K1) IV (i) 1%,

where Loy and Ly, are given in (3.3) and (3.4), respectively. B
Proof. By the block descent lemma (Lemma 3.2) and the fact that L; > L;,i =
1,...,p, we have that for alli =1,...,p

. . . . L . .
(3.9) FOq) < O + (VA6 xk = x ) + ol = %1%
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Plugging the recursion relation (2.4) into (3.9) yields

FeG) = Fxi) > 27 IVif G MIP, =12, 0p.

Summing over all the inequalities we get

(3.10) f(xx) — F(xs1) %

|\'M~s

TN >||2_2ma {L}an Hje.

1,...p

By (2.4), and recalling that x = xy, it follows that for every i =0,...,p

D=1 -
Xk:xk"’ZfUijJc(Xi Y,

j=1"
and therefore, for every i =1,2,...,p,

IVf (i) = Vf (i) IIP < L2 — )12
2

1 -
=L ZE—jUjij(Xi Y

min {LQ} Z IVi7tx I

j=1,....,p

Thus, for every i =1,...,p,

IV f Ge) 1 < (1V:f (o) = Vif (e DI+ V3 (DD
< 2U|Vif (xx) = Vif (DI + 2] Vi f (1
<2V f(xr) = Vf(x )H2+2HV f( “OIP

<2 Vis () + {Lg} Z 19,067

Summing over i = 1,...,p we obtain that
p P L2
Vi 2<9 1+(p—1)—————=5 | IV 2
DIV <230 | 14 6= ) | I
1= 1= P

(3.11) <2[14p——rpr ZIIVf DIz

min {L2
j=1,.

Combining (3.10) and (3.11), the desired result (3.8) follows. O

Remark 3.1. Note that a direct result of Lemma 3.3 is that the BCGD method
generates a nonincreasing sequence of function values { f(xx) }x>0-

Remark 3.2. Note that the convexity assumption on f was not used in the proof
of Lemma 3.3 and is thus valid for any C!+! function.

An almost direct consequence of the latter lemma is the following key relation
between consecutive objective function values.
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LEMMA 3.4. Let {xx}r>0 be the sequence generated by the BCGD method. Then
(3.12)

Fx) = f(xpsn) !

> —
T 4Lyax (1+pL?/L2;,) R*(x0)

min

(f(Xk)—f*)Q, k:()vla---v

where Limax and Lyin are given in (3.3) and (3.4), respectively.
Proof. By the convexity of f we have for every x* € X* that

f(xp) = f*<(Vf(xx),xx—x"), k=0,1,...,
and hence, by the Cauchy—Schwartz inequality, it follows that
F&R) = 7 <AVEER) - ke = x| < Rxo)IVFxi)IlL, k=0,1,...,

which combined with (3.8) implies (3.12). O

To derive the rate of convergence of the function values sequence {f(xx)}r>0
to the optimal value f*, we will use the following simple and well-known lemma on
convergence of nonnegative scalar sequences.

LEMMA 3.5. Let {Ax}r>0 be a nonnegative sequence of real numbers satisfying

Ak_Ak+12A/Aza kzoala"'7

and
1
Ag < —
my
for some positive v and m. Then
1 1
(3.13) Ay < —-—, k=0,1,...,
v k+m
and in particular
11
Akg_'_a k:1727
v k
Proof. For every k =1,2,... we have
1 1 A — A AL Ay

= — > — >,

A Ara A1 Ay — PyAk—lAk 7 A, — 7

where the last inequality follows from the monotonicity of {Ag}. We thus conclude
that

1
4, 2 A Pk zalktm)
and hence (3.13) follows. O

Combining Lemmata 3.4 and 3.5 we obtain the following result on the sublin-
ear rate of convergence of the objective function sequence generated by the BCGD
method.

THEOREM 3.6 (sublinear rate of convergence of the BCGD method). Let {xx}x>0
be the sequence generated by the BCGD method. Then

(3.14) f(xk) — f* < 4Lmax(1 4+ pL? /L2, ) R*(x0) =0,1,...,

_
k+8/p)’

where Liax and Lyin are given in (3.3) and (3.4), respectively.
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Proof. By the descent lemma we have that
Flox0) — * < o —X°I1? < 2 R (x0).
Therefore,

L (*) Emax
flxo) = < 5 R (x) < B

R2(x0) < § (4amax(1+pL?/ L) R(x0))

where the inequality (*) follows from (3.6). On the other hand, by (3.12) it follows
that

Floxk) = F(xs1) .

= 4Lmax (1 + pL?/L%,) R* (o)

min

(f(xp) — 92, k=0,1,....

1
4Lmax(14+pL2 /L2 YR?(x0

Invoking Lemma 3.5 with v =

(3.14) follows. a

We can deduce some immediate consequences from Theorem 3.6 for the exact and
conservative constant stepsize rules.

COROLLARY 3.7 (convergence of BCGD with exact constant stepsize rule). Let
{xk}r>0 be the sequence generated by the BCGD method with exact constant stepsize
rule (Lj = Lj,j=1,...,p). Then

5 and m = 8/p, the desired result

(3.15) f(xk) = f* < 4Lmax(1 + p*K?) R%(x0) k=0,1,....

1
k+(8/p)’

Proof. In the exact constant stepsize setting Limax = Lmaxs Lmin = Lmin, Which
along with the inequality L < pLpax and (3.14) implies (3.15). O

COROLLARY 3.8 (convergence of BCGD with conservative constant stepsize rule).
Let {xy}r>0 be the sequence generated by the BCGD method with a conservative con-
stant stepsize rule (Lj = L,j =1,...,p). Then

4L(1 + p)R*(xo)

3.16 Flxp) — f* < C k=01,....
(3.16) (xk) Y
Proof. The proof follows by simple substitution of the relations Lyin = Liax = L
in (3.14). O

Remark 3.3. When p = 1, the BCGD method with conservative stepsize amounts
to the standard gradient descent method with constant stepsize % The complexity
bound obtained in Theorem 3.6 is

. o 8L]x" —xo?
(3'17) f(Xk) - < T

Note that we were able to replace the expression R?(xg) by ||x* — xl|? (for some x* €
X*) due to the well-known Fejér monotonicity property of the sequence generated by
the gradient descent method, namely, that for every x* € X*

%k — x*|| < |lxx —x*||, k=0,1,....

The result (3.17) is very similar to the efficiency estimates derived in the literature
for the gradient descent method. Specifically, in [10, p. 70] the bound

2L||xo — x*||?

- < =
f(Xk) f = k'+4 7k 0717 )
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was established, while in [3, Theorem 1.1] the bound

Lljxo —x*|?

flxp)—fr < o7 Jk=1,2,...,
was derived.

Remark 3.4. In [18] Saha and Tewari studied the case in which the gradient of
the objective function! V f, in addition to being Lipschitz continuous with constant L,
also satisfies an isotonicity assumption which means that the operator x — x — %(x)
is isotone. Under this assumption the authors studied the cyclic coordinate descent
method which is the BCGD method with a conservative constant stepsize rule and

p = n. It was shown in [18] that the sequence of function values satisfies

Lljx* — xo|?

Foa) - 7 < =

The multiplicative constant in the latter result is better from the constant obtained
in (3.16) since it does not depend on p. However, the efficiency estimate in (3.16)
is derived without the isotonicity assumption, and under general convexity assump-
tions.

3.2. Comparison to randomized block coordinate descent. The complex-
ity of randomized BCGD methods were initially studied by Nesterov in [13]. The input
for the randomized BCGD method is a probability distribution vector, that is, a vec-
tor q € A, (A, being the unit simplex). At iteration k(k > 0), an index is generated
randomly according to the probability vector g, meaning that the probability that
the generated index is ¢ is ¢;. The next iterate is then defined as

1
Xk+1 = X — E—Uzvlf(xk)

3

In [13] the distribution vector was chosen as

Lo |
9% = n T7q° Z:1727"'an7
imi LY
where o € [0,1] is a parameter. Of course, when o = 0 the blocks are chosen

by a uniform distribution and when o = 1 the blocks are chosen in a probability
proportional to the size of the corresponding Lipschitz constant. Nesterov called the
method RCDM(a,x) since it depends on the parameter o and the initial point xg.
The BCGD method is of course different from the RCDM method by the simple fact
that it is deterministic rather than stochastic. Since the sequence generated by the
RCDM method is a sequence of random variables, the efficiency estimate result either
bounds the difference of the expectation of the function values f(xy) and f* or bounds
the actual difference f(xj) — f* with a certain probability. The efficiency estimate
obtained in [13] for the sequence generated by RCDM(1,x0) is given by

x < 22?:1 I:j

(318) E(fGa)) -/ <~ R )

! The model in [18] is actually more involved since it also involves an l1 regularization term.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/02/14 to 132.68.246.174. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2046 AMIR BECK AND LUBA TETRUASHVILI

The multiplicative constant in the above result is Mrcom = 2( 5:1 L;)R?*(xo)
is smaller than the multiplicative constant in the result of Theorem 3.6 which is
Mpcap = 4Lmax(1 + pL? /L2, )R?(x0). Indeed,

min

MRCDM S 2pimaxR2(XO) S 4pimaxR2(XO) S 4Emax(1+pL2/I:12nin)R2(X0) = MRCDM-
In addition, note that each iteration of the RCDM method requires only an update of
a single block, while each iteration of the BCGD methods involves the update of all
the blocks. Therefore, the efficiency estimate of the RCDM method is better than the
one of the BCGD method. However, two remarks are in order in this respect. First of
all, the comparison is made between two different types of results. The result (3.18)
for the RCDM method does not guarantee that the distance of the function values
from the optimal values are bounded by a sequence converging to 0 in an O(1/k) rate,
since it only relates to the expectation. Second, in practice, it does not seem that
the RCDM method has a clear advantage over the BCGD method. We illustrate this
phenomena with a numerical example.

Ezxample 3.1. Consider the least squares problem
1 2
min —||Ax — b||%,
xER™ 2

where A € R"™ ™ b € R™. A is a nonsingular matrix, so obviously the optimal
solution of the problem is the vector A~'b and the optimal value is f* = 0. We
consider the partition of variables to p blocks, each with n/p variables (we assume
that p divides n). We will also use the notation

A=(A1 Ay - A,

where A; is the submatrix of A comprising the columns corresponding to the
1th block, that is, columns (i — )p+ 1,(¢ — 1)p + 2,...,ip. We will compare four
algorithms:

e the BCGD method with the exact constant stepsize rule, L; = L; =

Amax(AZTAi);

e the method RCDM(1,x¢) from [13] with stepsizes L%,

e the method RCDM(0,x¢) from [13] with stepsizes Llj;

e the gradient method with stepsize % with L = Apnax(ATA).
We begin by describing one run of the four methods for n = 100, p = 5. In this run
the components of A and b were independently generated from a standard normal
distribution. To make a fair comparison, we count every p iterations of the RCDM
method (each working on one block) as only one iteration, so that the computational
effort at each iteration of the four methods is exactly the same—equivalent to the
computation of the entire gradient. The function values of the sequence generated by
each of the methods after 10, 100, 500, and 1000 iterations, and with the zeros vector
as the initial point, is given in Table 3.1.

Obviously, in this run the BCGD method performs better than the two random-
ized methods, as well as from the gradient method. It can be seen that RCDM(1,x¢)
is second to the BCGD method and performs better than RCDM(0,x¢) in which the
blocks are picked by a uniform distribution.
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TABLE 3.1
Results of the four methods for a single realization.

Iteration number || BCGD | RCDM(1,x9) | RCDM(0,x0) | Gradient
10 4.1404 4.4959 5.4491 5.9135
100 0.8720 1.1311 1.0743 1.8180
500 0.1732 0.2105 0.2101 0.4240
1000 0.0829 0.0963 0.1008 0.2031

We now wish to test the performance of the method for various choices of A, b,
and p and for a large amount of runs. We consider three choices of p: 2, 5, and 20. In
addition, we consider two settings related to the generation of A. In the scaled setting
the components of A were randomly and independently generated from a standard
normal distribution. In the unscaled setting, after generating A as in the scaled case,
for each i =1,2,...,p the columns of A corresponding to the ith block are multiplied
by the number ¢. This way, the Lipschitz constants L; are significantly different from
each other. For each value of p and choice of setting (scaled/unscaled), 100 problems
were generated and 1000 iterations of each of the methods were employed with the
initial vector chosen as the vector of all zeros. Of the 600 problems that were tested,
the BCGD method got the best (i.e., lower) results in 594 runs, showing a clear
advantage to the BCGD method. To quantify the advantage of the BCGD method
over the other methods, the BCGD method was taken as a reference method, and in
each run we computed the relative difference between the value obtained after 1000
iterations by each of the three methods and the value obtained after 1000 iterations by
the BCGD method. That is, if for a certain run the sequences generated by the BCGD,
RCDM(1,x0), RCDM(0,x¢), and gradient methods are {xx},{yx}, {2zr}, {wk}, then
the following three numbers were computed:

f(}’1000) — f(Xlooo) f(Zlooo) — f(Xlooo) f(Wlooo) - f(Xlooo)
f(%x1000) ’ f(x1000) ’ f(x1000) '

Table 3.2 presents for each choice of p and setting the quantities rely, rels, rels
which are the averages over 100 runs of the relative difference of the RCDM(1,x¢),
RCDM(0,x¢), and gradient methods. For example, the fact that the value of rely
for p = 2 and the scaled setting is 0.06 means that the values obtained after 1000
iterations by the RCDM(1,x¢) method were higher in average by 6% than the value
obtained after 1000 iterations by the BCGD method.

Clearly, the worst method is the gradient method. In addition, it can be clearly
observed from the data in the table that the advantage of the BCGD over the other

TABLE 3.2
Average over 100 realizations of the relative differences between RCDM(1,x0), RCDM(0,x0),
and the gradient methods and the BCGD method.

Setting rely rels rels
scaled 0.060 0.063 0.310
unscaled | 0.383 0.056 0.898
scaled 0.167 0.174 0.998
unscaled | 1.408 | 0.1436 3.620
scaled 0.374 0.366 2.013
unscaled | 7.889 0.383 15.985

ISR
S S oot B
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methods becomes more significant in the unscaled setting and as the number of blocks
(p) becomes larger.

3.3. Strongly convex functions: Linear rate of convergence. The gra-
dient method converges in a linear rate when the objective function is assumed to
be strongly convex and continuously differentiable with Lipschitz gradient; see, e.g.,
[10, 15]. Tt is therefore not a surprise that if we further assume that f is strongly con-
vex, then the linear rate of convergence of the BCGD method can be proved. Indeed,
let us assume in this subsection that f is strongly convex with parameter o > 0, i.e.,

(319)  f) = F)+(VF().y =) + Ty — x|* for every x,y € R".

The linear rate of convergence result is established in the next theorem.

THEOREM 3.9 (linear rate of convergence under strong convexity). Let {Xx}x>0
be the sequence generated by the BCGD method as applied to the function f which is
also assumed to be strongly convex with parameter o > 0. Then

g

2Lmax(1 + pL2/ L2

min

k
(3.20) f(xk)—f*é(l— )) (Fx0) — f7), k=0.1,....

Proof. By minimizing both sides of (3.19) with respect to y, we obtain that
1
(3.21) flx)—f < %HV][(X)HQ for every x € R".

Combining (3.21) with inequality (3.8) yields for every k =1,2,...

(f(xr—1) = F7) = (f(x) = F7) = f(xp—1) — f(xk)

1
4Emax(1 +pL2/I/min)
o 2Emax(1 +pL2/Emin)

> IV (-1

(f (k1) = "),

which immediately implies the desired result. d

Remark 3.5. Using the same arguments as in Corollaries 3.7 and 3.8 we deduce
that in the exact constant stepsize setting (3.20) amounts to

o k
)) (f(x())_f), k:()vla---v

(322)  flx)—f < (1 T 2 (1 + PPR2)

and in the conservative constant stepsize rule

. k
)) (f(x0) = f), k=0,1,....

(3-23) f(Xk)_f* < <1— m

3.4. Dynamic stepsize rule. In many scenarios, the block Lipschitz constants
Ly,...,L, are not known and thus it is also important to incorporate into the
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optimization scheme a procedure for estimating these constants. The following version
of the BCGD method incorporates a simple backtracking procedure and is almost as
simple as the constant stepsizes versions.

The BCGD method with backtracking.

Input: EJO- (j =1,...,p)—initial estimates of the block Lipschitz constants.
1 > 1—a constant.

Initialization: x, € R".
General step (k=0,1,...): Set x) = x;, and define recursively

1

i i1
(3.24) X, =X, — nTE?

Uivif(x,]ic_l)vi = 17 Y2
where /; is the smallest nonnegative integer number for which

i i 1 i 1 i
f = f <Xk t— WUivif(Xk 1)) > Wﬂvif(xk Y2

P
Set Xp41 = X

Note that in principal the initial estimates E? can be chosen arbitrarily and are
not assumed to be upper bounds on L;. It is not difficult to prove the sublinear rate
of convergence of this variant of the BCGD method. The arguments are very similar
to those used in the constant stepsize setting and we thus state the result without
proof.

THEOREM 3.10. Let {x1} be the sequence generated by the BCGD method with
backtracking stepsize rule. Then

- 1
f(xk) = f* < AnLyax(1 + pL? /(L)) *) R (x0) ——=—, k=0,1,...,
(xk) ( /(Linin) ™) (O)k+(8/p)
where Lyax is given in (3.1) and LY, = min;—; _, E?.

If f is strongly convex with parameter o > 0, then

o
21 Linax(1 4 pL2 /(L

min

k
f(xk)— f <<1— )2)) (f(xo0) = f*), k=0,1,....

4. Acceleration of the BCGD method. It is well known that the rate of
convergence of gradient methods can be accelerated by using a multistep strategy.
This was first shown by Nesterov in [11] and was later generalized for nonsmooth
convex composite models in [12, 2, 3]. A general scheme of an optimal method can
be found in the book of Nesterov [10] and is given here.
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Optimal scheme.
Input: M > 0.
Initialization: xy € R", vy = xg, v = M.
General step (k=0,1,...):
e Compute ay € (0,1) which is a solution of the quadratic equation
Mai = (1 — o).
Set

Yer1 = (1 — ar) vk

Vi = apvi + (1 — ag)xp.

2.

e | Core step: Find x41 satisfying f(xxt1) < f(yr) — 557 |V f(¥r)

e Set Vi1 =V — ,Yf:lvf(yk)'

What is missing in the description of the optimal gradient scheme is the value of
the parameter M and the description of the core step. The O(1/k?) convergence rate
of the optimal scheme is recalled in the following theorem.

THEOREM 4.1 (see [10, Theorem 2.2.2]). Let {xx}r>0 be the sequence generated
by the optimal scheme. Then

4M||x* — xo]|?

flxp) — < k122

k=0,1,....
We will now show how to incorporate a step of the BCGD method in order to
devise an accelerated version of this method.

Core step for the accelerated BCGD method.
(input: y; output: Xji1)
Set y? =y and define recursively

) i— 1 i— .
Y =Yk 1_fUivif(Yk b, i=1,...,p,

__ P
Xk+1 = Y-

Here, we assume that for every i = 1,...,p, L; is an upper bound on the block
Lipschitz constants L;. By Lemma 3.3 the required inequality

1
_ > 2
f(ye) = f(%nt1) > 2M||Vf(}’k)||
holds with
M = 2Ly (1 + pL?/L2.),

and the convergence result is given by the following theorem.
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THEOREM 4.2. Let {x}r>0 be the sequence generated by the optimal scheme
with the BCGD core step. Then

f(xk) _ f* < SLmaX(l +pL2/'z’12nm)HX* — X0H2

(k+2)?

. k=0,1,....

5. The alternating minimization method. A closely related method to the
BCGD method is the alternating minimization method in which at each iteration the
objective function is minimized with respect to a different block taken in a cyclic
order. We will analyze the method when p = 2, that is, when the decision variables
vector x is split into two parts,

Zz

X = (y) =(y;z), ye€R" zecR".

In addition to our basic assumptions given in section 2, we will also assume that
the solution of the problem

S 1052

exists for any vector z € R™* and that similarly the solution of the problem

o, f(7:2)

exists for any vector y € R™!. The alternating minimization method is detailed below.

The alternating minimization method.

Initialization: x¢ = (yo;20), where yg € R™ 2z, € R"2.
General step (k=0,1,...): Compute

(5.1) Ye+1 € argmin f(y; zg),
yeER™

(5.2) Zhs1 € argmin f(Yis1;2).
zcR"2

Set Xk11 = (Yr+152Zk+1)-

The alternating minimization method is also known as the nonlinear Gauss—Seidel
method or the block coordinate descent method (see, e.g., [4]). By its definition, the
method produces a nonincreasing sequence of function values. In addition to the
sequence {Xy } x>0 generated by the method, we will also be interested in the “sequence
in between” defined by

XkJr%E(ykJrl;Zk), kZO,l,...,

and we have

f(x0) 2 f(x1) = f(x1) > f(xg) > fx2) > -+

=

The convergence of the alternating minimization method is based on the following
technical lemma.
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LemmA 5.1, Let {xp}r>0 and {x)1}r>0 be the sequences generated by the
alternating minimization method. Then for any k =0,1,...

(5.3) £00) = Fxkiy) = 519 £ 00 P
(5.4) P 1)~ Foxksn) = 519 (e I
2

Proof. By the definition of yxy; given in (5.1) we have

1

f(Yrs1:2r) < f <Yk I

Vift)ian ).
Therefore,
F&xe) = F(Xpp ) = f(yrsze) = f(Yrt1528)
> f(ywizi) — f <}’k - Lilvlf(Xk);zo

1
> - 2
> 5 IVl

where the last inequality follows from the block descent lemma. The result (5.3)
is a direct consequence of the fact that by the definition of the method we have
Vaf(xx) = 0. A similar argument shows the validity of (5.4). O

The next theorem establishes the convergence rate of the alternating minimization
method.

THEOREM 5.2. Let {x}r>0 be the sequence generated by the alternating mini-
mazation method. Then

(5.5) f(xp)—f* < 2min{L]i’i321}R2(Xo)7

k=23,....

If [ is strongly convex with parameter o, then

ag

k—1
m) (f(x0) = f*), k=12....

(5.6)  fon)— < (1 -
Proof. Since f is convex we have

(5.7) fOk) = 7 < R(x0) [V f ()]
On the other hand, by (5.3) and (5.4), we have for every k =0, 1,...

(5.8) £Ox0) = FOxus) = £00) = F iy y) = 5719 FGau) P,

1

(69 Fotuey) = Foousg) 2 Fly) = FOo) = 5 VS oyl

Combining (5.8) with (5.7) we obtain that

(f(xx) — f*)z_

(5.10) J(xk) = f(Xpt1) = 2L, R2(x0)
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In addition,

* L * L
Fxo) = 7 < Sllxo = 7" < S R (x0).
Invoking Lemma 3.5 with Ay = f(xx) — f* and v = m, we obtain that for
every k =2,3,...
2L R? 2L1R?
(511) ,f(Xk)_f* < 1 (XO) < 1 (XO).

k - k-1
Combining (5.9) with (5.7) we obtain that for every k =0,1,...

(f (s ) — £

(5.12) F0y) = F14y) > s
Invoking Lemma 3.5 with Ay = f(xk+%) — f*and vy = m, we obtain that for
every k=1,2,...

2L2R2(X0)

Flay) - fr < 222
Finally, for every k = 2,3,...

Fxe) = 7 < flxpoy) = f7 < %_Z(IXO)’

2

which combined with (5.11) implies the result (5.5).
If f is strongly convex with parameter o > 0, then by (3.21) it follows that

Fls) — f < eV FG?

which implies that
o k o k—1
613 s - s < (1o 2 ) -1 < (1) () - 1)
1 1
Similarly,
Fooy) — 7 < oIV Gay)I?
(5.4)
D fa) — POt g) = 210 y) — 1)~ Floeg) — 1))
and hence for all k =1,2,...
o k—1 o k—1
fou) 17 < s )= < (1= 2) =< (1-£) (Gla)=1),
2 2

which combined with (5.13) implies (5.6). O
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The convergence result for the alternating minimization method given in
Theorem 5.2 is better than the result for the BCGD method (with p = 2) given in
Theorem 3.6. Let us compare the efficiency estimates given in Theorems 3.6 and 5.2
for the convex case. (The comparison for the strongly convex case is practically the
same.) The multiplicative coefficients are of course ordered as follows:

4Lmax(1 4 pL?/Linin) > 2min{ Ly, Ly };

this means that the efficiency estimate of the alternating minimization method is
better than the one of the BCGD method. More importantly, note that in terms of
Lipschitz constants, the efficiency estimate of the alternating minimization method
proportionally depends on min{Lj, L2}, which means that if we have a poorly scaled
problem in which one of the Lipschitz constants is much larger than the other, then
the alternating minimization method practically ignores this scalability issue and is
as strong as its strongest link. The opposite situation exists for the BCGD method,
in which the efficiency estimate depends on Linax which means that that the largest
Lipschitz constant is the dominant constant in the efficiency estimate and the method
is in a sense as strong as its weakest link. Of course, the fact that the alternating min-
imization method is faster than the BCGD method is not a surprise since the BCGD
method only performs gradient steps with respect to the individual blocks, while the
alternating minimization method performs an exact minimization with respect to each
of the blocks.

6. The constrained setting. In the previous sections we considered the un-
constrained setting in which the minimization is performed over the entire space R".
Unfortunately, it seems that the previous analysis cannot be directly generalized to
the constrained setting. We will show, by using a different line of analysis, that the ap-
propriate modification of the BCGD method to the constrained setting also possesses
a sublinear rate of convergence. The constrained problem we consider is

(6.1) min{f(x) : x € X}.

The objective function f satisfies all the assumptions made in section 2 (convex,
continuously differentiable with Lipschitz gradient; the block Lipschitz constants of
the gradient are L; and the global Lipschitz constant is L). The feasible set X C R™
is the closed convex set defined by the Cartesian product

XEXl XXQX---XXP,

where X; C R™ is a closed convex set for every ¢ = 1,2,...,p. The definition of
R(x¢) in the constrained setting is generalized as follows:

R(xo) = max max {[lx —x"|| : f(x) < f(xo),x € X}.

The orthogonal projection of a vector y onto a given closed convex set S C R is
denoted by Ps(y), and we recall the basic property of the projection mapping—for a
given y € R, the following relation holds:

(6.2) (y — Ps(y),x— Ps(y)) <0 for every x € S.

In the constrained version of the BCGD method we employ an orthogonal pro-
jection after each gradient step, giving rise to the BCGP method, which is given
below.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/02/14 to 132.68.246.174. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONVERGENCE OF BLOCK COORDINATE DESCENT METHODS 2055

The BCGP method.
Input: L;(j =1,...,p)—upper bounds on the Lipschitz constant L; (L; > L;).

Initialization: xy € X.

General step (k=0,1,...): Set xg = x;, and define recursively for i =1,2,...,p:
1 () = i (9), j#i,

J y Ly P L\ PX,i (X;c—l(i) _ J_sz(xz_l)) ’ ] = 4.

P
Set Xp41 = X

To establish the sublinear rate of convergence of the BCGP method, we will now
prove a result on the difference of consecutive function values f(xx) — f(Xp+1)-

LEMMA 6.1. Let {xx}r>0 be the sequence generated by the BCGP method. Then
(6.3)

Emin % o
f(xk) - f(Xk+1) > 2p([f/max + 2L]R(XQ) + M)2 (f(Xk+1) - f )27 k= 07 1a EREE)
where
(6.4) M = max ||V f(x")].

x*eX*

Proof. Since

X0 = P, (%70 - £V,

it follows by the characterization (6.2) of the projection operator that

(6.5) <x§;1(z’) — %ivif(x;—l) — x4 (i), 2z — x;;(i)> <0

for every z € X;. Plugging z = Xi_l(i) into the latter inequality yields
(6.6)  (Vaf(xp 1)oxp (1) = x(0) = Lillxi (i) == (D%, i=1.2,....p.
By the block descent lemma,
FOxk) < O HVaf )% (6) =g (D) + S Ixi () =% (@), i = 1,20,
which combined with (6.6) implies
FOGT) — £0k) = S X =12,

Summing the above inequality for 4 = 1,2,...,p and using the fact that L; > Ly,
it follows that

Emin b i i— Emin
(6.7) Foxr) = f(xer1) 2 =5 Dol xR = 5 1%k = xp1,
i=1
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where the last equality follows from the fact that

X, (1) = x5 (0) = xpe1 (1) = x (), i=1,2,...,p
Let i € {1,2,...,p} and x* € X*. A direct consequence of (6.6) is the inequality
(6.8) (UiVif(x,7 1) x5, —x;7 1) <0,

from which it follows that
(6.9) , , , . .
(UiVif (), x* =x7 1) < (UaVif (x5 1), x5 = x3) = (U Vi f (1), X" — xq1).

By the Lipschitz continuity of the gradient V f we have

UV f (x111) — Ui Vi f (x| < IV (k1) — VD)
< Llxp1 — x|

< L”Xk-i-l — Xk Ha
and hence, using the Cauchy—Schwartz inequality,

(UiVif (1), x* = xpp1) = (UiVif (Xpt1), X5 = Xpey1)
+(UVif (x5 1) = UiVif (Xkeg1), X — Xp1)
< (Ui Vif (Xpoy1), X" — Xppg1)
+ L|xg41 — xx[[[[x*(4) — xp4+1(0) ],
which combined with (6.9) yields
(6.10) |
(UiVif(x, 1), x =x 1) < (UiVaf (%p41), X5 =Xpg10) L%k 10— ||| % (1) —xp 41 (8)]]

We will now use the following simple identity, which follows from the Cauchy—Schwartz
inequality: if aq,as,...,a, are nonnegative integers, then

(6.11)

Using the above inequality with m = p and a; = ||x*(¢) — Xk+1(¢)|| and summing up
(6.10) we obtain

p p
(6.12) DUV X = x> (Ui f(xpg1), X — Xig)
=1 i=1

+ Ly/plitr = xu [l = xpqa -

Since f is convex,
P
Foern) = f7 < (V&R Xk — %) = 3 (UiVif (Kkg1), Xrg1 — Xa)
i=1

6.12) P )
(6.13) O S UV, X = %) + DBllxess — il — i)

=1
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Now, substituting z = x* in (6.5) results in the inequality

(UiVif (3 1), % = x%) < Lilxy(0) — x3,(2), %3,() — x*(0)).
Plugging the latter inequality into (6.13) implies

f(xps1) — f* < Z<Ulv Fh it — xk + ) — %)

Ld p
<DLl ) = )k Ik =%+ DIV f )

i=1 i=1
(6.14) X1 0) = XL )+ L/l — %l - 1K — x|
Now, the following inequality is a consequence of (6.11) with m = p, a;

ll¢k (4) = Xpp1 (4)[|:
Z I~ (4) — xi (0) = Z 1% (4) = Xp41 (D) < VPlIxk = Xpega ||

Using the above inequality, along with the identity
X, (1) = x5, (6) = %(0) — xp11(0),

we have the following inequalities:

Lillx" = x| Ik = x|l < Linax/PR(%0) %k — Xira]],

DIV DI I (0)
=1

-

s
Il
-

(IVf () = VA

I - Ix60) = xesa (]
< (LR(xo) + M) /Il — xus1 ],
Ly/plixies — xull - % = x| € Ly/BR(x0) x6 — Xl

which together with (6.14) and (6.7) yields

i M*@

2p([Linax + 2L R(x0) + M)?
Emin

(f(xrr1) = f)? < (f (&) = f(Xn41)),
establishing the desired result. d

The result of Lemma 6.1 bears a resemblance to the result of Lemma 3.4, but
note that here the right-hand side depends on f(xx+1) rather than on f(xy), which
requires a different result on the rate of convergence of sequences.

LEMMA 6.2. Let {Ax}r>0 be a nonnegative sequence of real numbers satisfying

(6.15) Ay = Appr 2 7A%, k=01,

and

—
[

1.
A <X 4, <
v

[\

gl
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for some positive v. Then
(6.16) Ap <

Proof. We will prove the lemma by induction with respect to k. For k = 1,2 we
have

1. 1.
A < —5, Ay < —5

0 Y

Let us assume that for some k > 2
151
6.17 A < — =,
(617) <
Combining (6.15) and the induction assumption (6.17), we get
15 1

2
VA F Appr S AR < P

Thus,

Appr < e

v k+1

Combining Lemmata 6.1 and 6.2 we arrive at the main result which establishes
the sublinear rate of convergence of the BCGP method.

THEOREM 6.3 (sublinear rate of convergence of the BCGP). Let {xy}r>0 be the
sequence generated by the BCGP method. Then for k=1,2,...

(6.18) Fxa) — f* < 3p([Lumax + 2L]R(x0) + M)? 1

I+525 -1 45 1
2y

Lmin E’
where M is given in (6.4).
Proof. The result follows by invoking Lemma 6.2 with

Lmin
2p([Limax + 2L R(x0) + M)?’

A= floxi) — [* amd 5 =

What is left to show is that

(6.19) A= flx) = < Ay = flx) — <

and indeed, by the descent lemma we have for every k (x
X*)

is an arbitrary vector in

Fsk) = 7 < (VRO 30— %)+ 5 o = [P < MR(o) + 5 B (x0),

where the last inequality uses (6.4) and the definition of R(xp). Now, we also have

1 2p(Luax + 2L)R(x0) + M)? _ 2p(4Lmax LR (X0) + 2Lmax M R(x0))
Y B Emin B Emin
flrrmnxzilmin
> 8pLR*(x0) + 4pM R(xo)
L
> (MROw) + )
> Ap(fxk) = 1),
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showing the validity of (6.19) and, consequently, also of the desired result
(6.18). O

Note that in the unconstrained case (X = R™), the constant M defined in (6.4)
is zero, and thus the efficiency bound reduces to

* 3p(imax + 2L)2R2 (XO) 1
(6:20) Jox) = £ < — T

establishing once again the sublinear rate of convergence of the BCGD method. De-
spite for this, the analysis of section 3 is necessary for several reasons: first of all, the
bound (6.20) might be worse than the bound given in Theorem 3.6. For example, in
the conservative constant stepsize rule, the efficiency bound (6.20) amounts to

27pLR?(x0)

f(xe) = 7 < p , k=1,2,...,

which is clearly worse than the bound obtained under the analysis of section 3:

4L(1 + p)R*(xo)
k+8/p ’

fxg)— < k=0,1,....
(The multiplicative constants are dominant over the additive constants in the denom-
inator.) In addition, the analysis in this section, as opposed to the analysis of section
3, cannot be used in order to show two main results on the BCGD method: the linear
rate of convergence under the strong convexity assumption and the proof that the
BCGD method can be used as a core step of the optimal scheme.

7. Concluding remarks. In this paper we considered two block coordinate
descent type methods. The first method is the block coordinate gradient projection
method. We were able to show that when the blocks are taken in a cyclic order,
the sequence of function values converges to the optimal value in an O(1/k) rate,
and when acceleration is incorporated in the unconstrained case, an O(1/k?) rate of
convergence can be proved. Despite the fact that the analyzed method assumes that
at each iteration the blocks are taken by the same order i = 1,2,...,p, the analysis
of the method is actually also valid when at each iteration, a different order of the
iterations is taken. The second method considered in the paper is the alternating
minimization method when the number of blocks is two. For this method, we were
also able to show an O(1/k) rate of convergence result of the function values and that
the constant depends on the minimal Lipschitz constant of the two blocks, which
has the nice interpretation that the convergence rate is “optimistic”—it only depends
on the “better behaved” problem. Finally, we would like to note that there are still
several open issues that can be the basis of future research on the block coordinate
descent method. For example, it is still unclear how to derive a rate of convergence
result for the alternating minimization method when the number of blocks is greater
than two. In addition, improving the constants in the efficiency estimates derived for
the BCGP method is an important theoretical challenge.
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