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Abstract. We consider the problem of locating a user’s position from a set of noisy pseudoranges
to a group of satellites. We consider both the nonlinear least squares formulation of the problem,
which is nonconvex and nonsmooth, and the nonlinear squared least squares variant, in which the
objective function is smooth, but still nonconvex. We show that the squared least squares problem
can be reformulated as a generalized trust region subproblem and as such can be solved efficiently.
Conditions for attainment of the optimal solutions of both problems are derived. The nonlinear
least squares problem is shown to have tight connections to the well-known geometric circle fitting
and orthogonal regression problems. Finally, a fixed point method for the nonlinear least squares
formulation is derived and analyzed.
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1. Introduction. This paper is concerned with a problem arising in global posi-
tioning system (GPS) localization in which measurements are processed to determine
a user’s position x ∈ R

n (in applications, n is either 2 or 3). GPS consists of a set of
satellites transmitting time-stamped signals; the distance measurements are formed
by multiplying the difference between the user clock and the transmission time (ac-
cording to GPS time) with the propagation velocity usually assumed to be the speed
of light. The user’s clock cannot be assumed to be accurate, but the error, or bias,
introduced by this clock is the same for all measurements. Distances that are con-
taminated by the same error caused by the clock bias are also called pseudoranges.
Mathematically speaking, the pseudoranges d1, . . . , dm are given by the following ap-
proximate equations:

(1.1) di ≈ ‖x− ai‖ − r, i = 1, . . . ,m,

where r is the bias caused by the unknown user clock bias (see also [1]) and a1, . . . , am
are m vectors in R

n (in some applications, the satellites’ locations). The above equa-
tions are only approximate in applications due to errors in measurements that are not
related to the “shared” error r; that is, the exact model is in fact

(1.2) di = ‖x− ai‖ − r + εi, i = 1, . . . ,m,

where for every i = 1, . . . ,m, εi is an unknown noise corresponding to the ith pseu-
dorange. The problem of estimating x and r from the set of pseudoranges d1, . . . , dm
is the GPS localization problem. Usually, in applications, n is set to 3, and in this
setting 4 measurements (i.e., satellites) should be sufficient to estimate the position of
the user; however, additional measurements can increase the estimation accuracy. A
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GPS LOCALIZATION AND CIRCLE FITTING PROBLEMS 109

popular approach is to take a reference satellite, say j, and subtract the jth equation
from all other equations. This way, the bias r is eliminated. The arising problem of
estimating x from difference measurements has attracted a lot of attention in the more
general context of source localization estimation from range-difference measurements;
see, e.g., [2, 11] and the excellent review paper [18]. This indirect approach has several
disadvantages: it is not clear how to choose the reference satellite, and the obtained
solution might be sensitive to this choice; in addition, subtraction of equations intro-
duces dependencies between the noise components, which are complicated to handle.
Another approach, which was considered in [20], is to consider the differences between
all pairs of equations. The estimate that was devised in [20] is based on a semidefinite
relaxation of a maximum likelihood problem involving all these pair-differences.

Surprisingly, the GPS localization problem is closely related to another important
and seemingly unrelated problem: circle fitting. Indeed, when di = 0 for all i =
1, 2, . . . ,m the approximate equations amount to

r ≈ ‖x− ai‖, i = 1, . . . ,m,

which is the same as saying that the points a1, . . . , am approximately reside on the
circle1 with center x and radius r. Circle fitting is an important problem with ap-
plications in many areas such as archeology [19], computer graphics [16], coordinate
metrology [6], petroleum engineering [10], quality inspection for mechanical parts [13],
and statistics [14]. More difficult geometric fitting problems, which are not discussed
in this paper, are ellipse fitting problems; see, e.g., [9, 7] and the references therein.

In this paper we are primarily concerned with solving the least squares (LS) prob-
lem associated with the approximate equations (1.1). The precise formulation of this
nonlinear LS problem is given in section 2, where we also show that when di = 0 for
all i = 1, . . . ,m, the problem coincides with the circle geometric fit problem. The
resulting problem is nonconvex and nonsmooth and as such is in principal difficult to
solve. In particular, iterative methods designed to solve the problem are not guar-
anteed to converge to a global minimum. This is why finding a good approximate
solution is an important task as it can serve as a good starting point of an iterative
method. The approximate solution that we consider in section 3 is the solution of
a “squared least squares” (SLS) problem associated with the approximate equations
(1.1). This problem, although also nonconvex, can be cast as a generalized trust re-
gion subproblem [15] for which a global optimal solution can be efficiently obtained
under suitable mild conditions, which also guarantee the attainment of the optimal
solution. The SLS problem in the circle fitting setting (i.e., di = 0 for all i) is even
simpler; it is shown to be equivalent to a linear LS problem—a generalization of a
known result for the two-dimensional case; see [12]. Then, in section 4, we return to
the LS problem and provide conditions under which the minimum of the problem is
attained, showing also the connection to the so-called orthogonal regression problem.
Finally, in section 5, we develop and analyze a fixed point–type method for solving the
LS problem, and we conclude with some numerical results illustrating the advantage
of the LS approach over the SLS approach.

2. Problem formulation: GPS navigation. We will assume without loss of
generality that α ≡ mini=1,...,m di = 0. This is not a restrictive assumption since it
is always possible to make the change of variables r̃ = r + α, define the perturbed

1In this paper the term “circle” represents the boundary of an n-dimensional ball (n is not
necessarily 2).
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110 AMIR BECK AND DROR PAN

measurements d̃i = di − α, and obtain the equivalent model d̃i = ‖x − ai‖ − r̃ + εi,
i = 1, . . . ,m, in which mini=1,...,m d̃i = 0.

In this paper we consider the LS approach in which (x, r) is chosen as the optimal
solution of the problem

(2.1) min
x,r

{
m∑
i=1

(‖x− ai‖ − di − r)2 : r ≥ 0

}
.

The constraint r ≥ 0 is added due to the following reason: in applications, for every
i, the magnitude of the error εi is significantly smaller than the distance ‖x − ai‖,
which is usually measured in hundreds of kilometers, and it is thus safe to assume that
r+di = ‖x−ai‖+εi is positive. Hence, r+di ≥ 0 for every i = 1, . . . ,m leading to the
inequality r ≥ −mini=1,...,m di = 0. In addition, in the circle fitting problem, r stands
for the radius, which is obviously nonnegative. The LS formulation (2.1) also has a
statistical meaning: if the noise components εi are identical normally distributed zero-
mean Gaussian variables, then an optimal solution of (2.1) is a maximum-likelihood
estimator of (x, r).

It is possible to eliminate the decision variable r by fixing x and minimizing with
respect to r. This leads to the following unconstrained and reduced formulation of
the problem:

(GPSls) min
x

{
m∑
i=1

(‖x− ai‖ − di − r(x))2

}
,

where

(2.2) r(x) :=

[
1

m

m∑
i=1

(‖x− ai‖ − di)

]
+

and where for a real number x, [x]+ ≡ max{x, 0} denotes the nonnegative part of
x. Problem (GPSls) is a nonsmooth nonconvex problem and as such is in principal
a difficult problem to solve. A typical randomly generated two-dimensional example
illustrating the nonconvexity and nonsmoothness of the problem is given in Figure 1.

An underlying assumption that will be made throughout the paper is that the
vectors a1, . . . , am do not reside in a lower-dimensional affine space (that is, a line
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Fig. 1. Surface and contour plots of problem (GPSls) with m = 5, n = 2 and a1 = (−0.89,
1.00)T , a2 = (−0.62,−0.04)T , a3 = (−0.87, 0.63)T , a4 = (1.21,−0.42)T , a5 = (−1.86, 1.00)T ,
d1 = 2.90, d2 = 1.70, d3 = 1.76, d4 = 1.77, d5 = 2.71.
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when n = 2 and a plane when n = 3). Mathematically, this condition can be written
as follows.

Assumption A. The matrix Ã defined by

(2.3) Ã =

⎛
⎜⎜⎜⎝
2aT1 −1
2aT2 −1
...

...
2aTm −1

⎞
⎟⎟⎟⎠

has full column rank.
A direct consequence of this assumption is that m ≥ n+ 1.

2.1. The circle fitting problem. When di = 0 for all i = 1, . . . ,m, the problem
in its unreduced form is given by

min
x,r

{
m∑
i=1

(‖x− ai‖ − r)2 : r ≥ 0

}
,

and in its unreduced form by

(CFls) min
x

{
f(x) :=

m∑
i=1

(‖x− ai‖ − r(x))2

}
,

where

r(x) :=
1

m

m∑
i=1

‖x− ai‖.

Note that there is no need to take the nonnegative part of the above expression as it is
already nonnegative. Problem (CFls) is also called the circle “geometric” fit problem
(see, e.g., [9]) since it consists of finding a circle that minimizes the sum of squared
distances to a certain set of points (here denoted by a1, . . . , am):

(2.4) min
x,r

m∑
i=1

d(ai, C(x, r))2,

where

C(x, r) = {y ∈ R
n : ‖y − x‖ = r},

and d(y, S) denotes the distance between a point y and a set S. The equivalence
between (2.4) and (CFls) is made clear by the fact that d(z, C(x, r))2 = (‖z−x‖−r)2.
An illustration of a geometric fit is given in Figure 2.

3. The SLS localization problem. One of the main objectives of this paper is
to analyze problem (GPSls) and to devise an iterative method for solving it. However,
as illustrated, for example, in Figure 1, one of the major difficulties in solving (GPSls)
is its nonconvexity. This is why it is imperative to find a good quality starting point
for the devised iterative method. We will therefore proceed now to analyze a different
optimization problem, which provides an approximation of the (GPSls) problem. The
main feature of this new problem is that it is tractable; that is, its global optimal
solution can be found efficiently.
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Fig. 2. The best circle fit (the optimal solution of (CFls)) of 10 points denoted by asterisks.

3.1. Problem formulation. Recall that the model considered in the GPS lo-
calization problem consists of solving approximate equations of the form

‖x− ai‖ ≈ r + di.

Instead of looking directly at an LS approach, let us first square both sides of the
approximate equation,

‖x− ai‖2 ≈ (r + di)
2,

and then choose x and r to minimize the sum of squares of differences between the
two sides:

(3.1) (GPSsls) : min

{
m∑
i=1

(‖x− ai‖2 − (r + di)
2
)2}

.

Note that here we discarded the inequality r ≥ 0 since the aim is to define a tractable
problem, and the sign constraint introduces further difficulties into the problem. From
the modeling perspective, this problem possesses several disadvantages in comparison
to the LS problem (GPSls): (i) (GPSsls) does not have the same statistical meaning
as problem (GPSls) and as a result might produce a solution which is worse—in terms
of the distance to the “true” solution—than the one provided by (GPSls). (ii) In the
context of a circle fitting (i.e., di = 0 for all i) problem, (GPSsls) is not the geometric
fitting problem, which in some applications (in particular, those emanating in image
processing) is in fact the problem of interest.

The main advantage of the “squared least squares” (SLS) problem (GPSsls) is
that, as opposed to problem (GPSls), it is tractable and, as illustrated by the numerical
Example 4.1 of section 4.2, often provides a good approximation for the solution of
problem (GPSls). As such, it is a good candidate for a starting point of iterative
methods devised to solve (GPSls).
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3.2. Formulation of (GPSsls) as a tractable problem. To show that (GPSsls)
is indeed tractable, note that it is equivalent to

min
x,r

{
m∑
i=1

(−2aTi x− 2dir + ‖x‖2 − r2 + ‖ai‖2 − d2i
)2}

,

which can be rewritten as

(3.2) min
x,r,α

{
m∑
i=1

(−2aTi x− 2dir + α+ ‖ai‖2 − d2i
)2

: α = ‖x‖2 − r2

}
.

By denoting

(3.3) B =

⎛
⎜⎜⎜⎝
2aT1 −1 2d1
2aT2 −1 2d2
...

...
...

2aTm −1 2dm

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝
‖a1‖2 − d21
‖a2‖2 − d22

...
‖am‖2 − d2m

⎞
⎟⎟⎟⎠

and letting y = (xT , α, r)T , we obtain that an equivalent formulation of (3.2) is

(3.4) min
y∈Rn+2

{‖By − b‖2 : yTDy − 2gTy = 0
}
,

where

(3.5) D =

⎛
⎝In 0n 0n

0T
n 0 0

0T
n 0 −1

⎞
⎠ , g =

1

2

⎛
⎝0n

1
0

⎞
⎠ .

Problem (3.4) is a generalized trust region subproblem (GTRS) [15, 8], that is, a
problem consisting of minimizing a quadratic function subject to a single quadratic
constraint. Recall that despite its nonconvexity, a GTRS of the form

(GTRS) min{xTA1x+ 2bT
1 x+ c1 : xTA2x+ 2bT

2 x+ c2 = 0},
where A1 = AT

1 ,A2 = AT
2 ∈ R

n×n,b1,b2 ∈ R
n, c1, c2 ∈ R, possesses necessary and

sufficient optimality conditions as recalled in the following theorem.
Theorem 3.1 (see [15, Theorem 3.2]). Suppose that A2 �= 0. Then x is an

optimal solution of (GTRS) if and only if there exists λ ∈ R such that

(A1 + λA2)x+ (b1 + λb2) = 0,

A1 + λA2 � 0,

xTA2x+ 2bT
2 x+ c2 = 0.

As a consequence of Theorem 3.1, y∗ is an optimal solution of (3.4) if and only if
there exists λ ∈ R such that

(BTB+ λD)y∗ = BTb+ λg,(3.6)

BTB+ λD � 0,(3.7)

(y∗)TDy∗ − 2gTy∗ = 0.(3.8)

Note that the above conditions do not guarantee that the optimal value of (3.4) is
attained. We will now derive conditions that guarantee not only the attainment of
an optimal solution, but also the existence of a method for efficiently computing the
global optimal solution of (3.4).
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3.3. Attainment of the solution of (3.4). A known sufficient condition for

the attainability of the minimum is the existence of λ̂ ∈ R for which

(3.9) BTB+ λ̂D 	 0.

We are therefore led to discuss sufficient conditions under which (3.9) is satisfied.
Theorem 3.2. Let d = (d1, d2, . . . , dm)T and let Ã be given in (2.3). The

minimum of the GTRS (3.4) is attained if at least one of the following conditions is
satisfied:

(i) d /∈ Range(Ã).
(ii) d ∈ Range(Ã) and ‖w‖ �= 1

2 , where w consists of the first n components of

the vector (ÃT Ã)−1ÃTd.

In addition, if (i) is satisfied, then (3.9) holds true with λ̂ = 0. If (ii) is satisfied,
then ‖w‖ < 1

2 implies that there exists an ε1 > 0 for which (3.9) holds true for all

λ̂ ∈ (−ε1, 0), and if ‖w‖ > 1
2 , then there exists an ε2 > 0 for which (3.9) holds true

for all λ̂ ∈ (0, ε2).
Proof. Note that

B = (Ã, 2d).

By the latter relation, and by Assumption A, which states that the columns of Ã
are linearly independent, it follows that B is of full column rank if and only if d /∈
Range(Ã). Therefore, if (i) is satisfied, then B is of full column rank and hence (3.9)

is satisfied with λ̂ = 0. Now suppose that (ii) is satisfied. Note that

D =

(
E 0n+1

0T
n+1 −1

)
,

where E =
( In 0n

0T
n 0

)
. Therefore,

(3.10) BTB+ λD =

(
ÃT Ã+ λE 2ÃTd

2dT Ã 4‖d‖2 − λ

)
.

Recall that by Assumption A the matrix Ã has full column rank, and therefore there
exists an ε > 0 such that ÃT Ã+λE is positive definite for λ ∈ I, where I = (−ε,∞).
Thus, if λ ∈ I, then it follows by Schur complement (see, e.g., [4, Appendix A.5]) that
the matrix given by (3.10) is positive definite if and only if

g(λ) := 4‖d‖2 − λ− 4dT Ã(ÃT Ã+ λE)−1ÃTd > 0.

Note that in the setting of case (ii) we have

(3.11) g(0) = 4‖d‖2 − 4dT Ã(ÃT Ã)−1ÃTd = 0.

This is due to the fact that the relation d ∈ Range(Ã) implies that

(3.12) min
x
‖Ãx− d‖2 = 0,

but on the other hand, the optimum of (3.12) is attained at x = (ÃT Ã)−1ÃTd,
implying that the optimal value is also equal to

‖Ã(ÃT Ã)−1ÃTd− d‖2 = ‖d‖2 − 4dT Ã(ÃT Ã)−1ÃTd,
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thus establishing the validity of (3.11). Since g(0) = 0, it is sufficient to prove that
g′(0) �= 0 to guarantee the existence of an interval of either the form (−ε1, 0) or the
form (0, ε2) (where ε1, ε2 > 0) on which g is positive. A rather tedious technical
computation shows that

g′(0) = −1 + 4dT Ã(ÃT Ã)−1E(ÃT Ã)−1ÃTd,

and therefore we conclude that if β ≡ ‖E(ÃT Ã)−1ÃTd‖ �= 1
2 , then g′(0) �= 0. Note

that the vector w defined in the premise of the theorem is equal to E(ÃT Ã)−1ÃTd
so that β = ‖w‖. We can thus conclude that if β < 1

2 , then there exists ε1 > 0 such

that (3.9) is satisfied for λ̂ ∈ (−ε1, 0), and if β > 1
2 , then there exists ε2 > 0 for which

(3.9) is satisfied for λ̂ ∈ (0, ε2).
The fact that problem (GPSsls) can be recast as the GTRS (3.4) immediately

implies the following corollary.
Corollary 3.3 (attainment of the optimal solution of (GPSsls)). If condition

(i) or (ii) of Theorem 3.2 is satisfied, then the minimum of problem (GPSsls) given in
(3.1) is attained.

Note that in a sense the conditions of Theorem 3.2 are rather mild, although it is
of course always possible to tailor special examples in which these conditions are not
satisfied. Indeed, recall that the relation m ≥ n + 1 holds. If m ≥ n + 2, then Ã is
a tall matrix (i.e., the number of rows is greater than the number of columns) and,
at least for randomly generated instances, the relation d /∈ Range(Ã) is likely to be
satisfied. If m = n+1, then Ã is square, which, combined with the fact that it has a
full column rank, implies that it is nonsingular. Therefore, d ∈ Range(Ã). However,
in this case, condition (ii) is expected to be satisfied since there is no particular reason,
at least in applications, why ‖w‖ will be exactly equal to 1

2 .

If d /∈ Range(Ã), then λ̂ = 0 satisfies (3.9). If d ∈ Range(Ã) and ‖w‖ �= 1
2 , then

the following line search procedure will find a λ̂ satisfying (3.9).

A line search procedure for finding λ̂ satisfying (3.9).

Initialization: Set λ̂ = sgn (‖w‖ − 1
2 ).

Step 1: Compute G = BTB+ λ̂D.

Step 2: If G 	 0, then STOP. Otherwise, set λ̂ = λ̂
2 and return to Step 1.

3.4. Finding a global optimal solution of (GPSsls). By using the necessary
and sufficient optimality conditions for GTRS problems, it is possible to construct a
dual-based method for finding the global optimal solution of problem (GPSsls). To do
so, we first write explicitly the interval in which λ satisfies the semidefinite constraint
(3.7). We use the following notation: for an N × N symmetric matrix A and an
N ×N positive definite matrix B, the generalized eigenvalues of the matrix pair A,B
are

λ1(A;B) ≥ λ2(A;B) ≥ · · · ≥ λN (A;B).

Lemma 3.1. Let λ̂ satisfy (3.9). Then BTB+ λD � 0 if and only if

(3.13) μ1 ≤ λ ≤ μ2,
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116 AMIR BECK AND DROR PAN

where

μ1 = λ̂− 1

λ1(D;BTB+ λ̂D)
,

μ2 = λ̂− 1

λn+2(D;BTB+ λ̂D)
.

Proof. The relation BTB+ λD � 0 holds if and only if

BTB+ λ̂D+ (λ− λ̂)D � 0.

After multiplication by (BTB+ λ̂D)−1/2 from the left and the right, the latter linear
matrix inequality reads

I+ (λ − λ̂)(BTB+ λ̂D)−1/2D(BTB+ λ̂D)−1/2 � 0,

which is equivalent to

1 + (λ− λ̂)λi(D;BTB+ λ̂D) ≥ 0, i = 1, . . . , n+ 2.

The latter inequality is the same as (3.13).
We will assume that the so-called hard case does not occur; that is, we will assume

that

(3.14) BTb+ μig /∈ Range(BTB+ μiD), i = 1, 2.

If (3.14) is indeed satisfied, then condition (3.6) will not be satisfied for λ = μ1 or
λ = μ2. Therefore, the optimal λ will reside in the open interval (μ1, μ2) in which
BTB + λD 	 0. The optimal solution of the GTRS (3.4), y∗, will be of the form
y∗ = y(λ∗), where

y(λ) ≡ (BTB+ λD)−1(BTb+ λg),

and where λ∗ is the unique root of the function

(3.15) φ(λ) ≡ y(λ)TDy(λ) − 2gTy(λ),

which is strictly decreasing function over I (a proof of this property can be found in
[15]).

The above discussion is summarized in the following theorem.
Theorem 3.4. Let B,D,b,g be as defined in (3.3) and (3.5) and assume that

(3.14) is satisfied. Then the global optimal solution of problem (GPSsls) is composed
of the first n components of the vector

(BTB+ λ∗D)−1(BTb+ λ∗g),

where λ∗ is the unique root over (μ1, μ2) of the strictly decreasing function φ defined
in (3.15).

Thus, in order to solve the GTRS (3.4), it is required to invoke some kind of a
root-finding procedure, such as bisection, in order to locate the optimal dual variable,
and thus also the optimal solution of problem (GPSsls).
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3.5. The circle fitting SLS problem. When di = 0 for all i, problem (GPSsls)
reduces to the circle fitting SLS problem given by

(CFsls) min
x,r

{
m∑
i=1

(‖x− ai‖2 − r2)2 : x ∈ R
n, r ∈ R

}
.

As a special case of problem (GPSsls), it can be cast as a GTRS and solved using
the method described in the previous section. However, it is known that in the two-
dimensional case (n = 2), this problem [12, 5] is in fact equivalent to a linear LS
problem. In this section we generalize this result and show that problem (CFsls) can
be recast as a linear LS problem for a general n. We begin by noting that problem
(CFsls) is the same as

(3.16) min
x,r

{
m∑
i=1

(−2aTi x+ ‖x‖2 − r2 + ‖ai‖2)2 : x ∈ R
n, r ∈ R

}
.

Making the change of variables R = ‖x‖2 − r2, the above problem reduces to

(3.17) min
x,R

{
m∑
i=1

(−2aTi x+R+ ‖ai‖2)2 : ‖x‖2 ≥ R

}
.

Note that the change of variables imposes an additional relation between the
variables that is given by the constraint ‖x‖2 ≥ R. We will show that in fact this
constraint can be dropped; that is, problem (3.17) is equivalent to the linear LS
problem

(3.18) min
x,R

{
m∑
i=1

(−2aTi x+R+ ‖ai‖2)2
}
.

Indeed, any optimal solution (x̂, R̂) of (3.18) automatically satisfies ‖x̂‖2 ≥ R̂ since
otherwise, if ‖x̂‖2 < R̂, then we have

−2aTi x̂+ R̂+ ‖ai‖2 > −2aTi x̂+ ‖x̂‖2 + ‖ai‖2 = ‖x̂− ai‖2 ≥ 0, i = 1, . . . ,m.

Squaring both sides of the first inequality in the above and summing over i yields

m∑
i=1

(
−2aTi x̂+ R̂ + ‖ai‖2

)2

>
m∑
i=1

(−2aTi x̂+ ‖x̂‖2 + ‖ai‖2
)2

,

showing that (x̂, ‖x̂‖2) gives a lower function value than (x̂, R̂) in contradiction to the
optimality of (x̂, R). To conclude, problem (CFsls) is equivalent to the LS problem
(3.18) that can also be written as

(3.19) min
y∈Rn+1

‖Ãy − b‖2,

where y = (xT , R)T , Ã is given in (2.3), and b = (‖a1‖2, . . . , ‖am‖2)T . Since, by
Assumption A, Ã is of full column rank, it follows that the unique optimal solution
is

y = (ÃT Ã)−1ÃTb.
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118 AMIR BECK AND DROR PAN

The optimal x is given by the first n components of y, and the radius r is given by

r =
√
‖x‖2 −R,

whereR is the last (i.e., (n+1)th) component of y. We summarize the above discussion
in the following theorem.

Theorem 3.5. Let y = (ÃT Ã)−1ÃTb, where Ã is given in (2.3). Then the
optimal solution of problem (CFsls) is given by (x̂, r̂), where x̂ consists of the first n
components of y and r =

√‖x̂‖2 − yn+1.

4. Attainment of the optimal solution of problem (GPSls). Problem
(GPSls) is more difficult than problem (GPSsls) in the sense that it is also nonsmooth
in addition to being nonconvex, and indeed it does not seem to be possible, as it
was for problem (GPSsls), to find an equivalent formulation of (GPSls) as a tractable
problem. The objective function of (GPSls) is not coercive, and it might be that
the optimal solution is not attained. We therefore begin with establishing conditions
under which attainment of the optimal solution is guaranteed.

4.1. The liminf of the objective function of (GPSls). The following lemma,
bounding r(x) (see (2.2)), will be useful in what follows.

Lemma 4.1. Let

(4.1) N =
1

m

m∑
i=1

(‖ai‖+ di).

Then for every x ∈ R
n satisfying ‖x‖ ≥ N the inequality

(4.2) |‖x‖ − r(x)| ≤ N

is satisfied.
Proof. Let x ∈ R

n satisfy ‖x‖ ≥ N . Then

m∑
i=1

(‖x−ai‖−di) ≥
m∑
i=1

(‖x‖−‖ai‖−di) = m‖x‖−
m∑
i=1

(‖ai‖+di) ≥ mN−
m∑
i=1

(‖ai‖+di) = 0.

Therefore,

r(x) =
1

m

m∑
i=1

(‖x− ai‖ − di) ≥ 0.

Now, on the one hand,

r(x) =
1

m

m∑
i=1

(‖x− ai‖ − di) ≤ 1

m

m∑
i=1

(‖x‖+ ‖ai‖ − di),

showing that

(4.3) r(x) − ‖x‖ ≤ 1

m

m∑
i=1

(‖ai‖ − di) ≤ 1

m

m∑
i=1

(‖ai‖+ di).

On the other hand,

r(x) =
1

m

m∑
i=1

(‖x− ai‖ − di) ≥ 1

m

m∑
i=1

(‖x‖ − ‖ai‖ − di),
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GPS LOCALIZATION AND CIRCLE FITTING PROBLEMS 119

implying the inequality

(4.4) r(x) − ‖x‖ ≥ 1

m

m∑
i=1

(−‖ai‖ − di).

Combining (4.3) and (4.4), inequality (4.2) follows.
A direct result of (4.2) is the following (soon-to-be) useful limit:

(4.5) lim
‖x‖→∞

r(x)

‖x‖ = 1.

The main result, which will be used in order to establish conditions for attainment
of the optimal solution, is that the liminf of the objective function as ‖x‖ → ∞ of
problem (GPSls) can be computed. In particular, if we denote the objective function
of (GPSls) by

(4.6) f(x) ≡
m∑
i=1

(‖x− ai‖ − di − r(x))2,

then we will prove that

(4.7) lim inf
‖x‖→∞

f(x) = fliminf,

where

(4.8) fliminf ≡ min
z

{
(Az+ d)T

(
Im − 1

m
1m1T

m

)
(Az+ d) : ‖z‖ = 1

}
,

and where 1m denotes a column vector of m ones and A is the matrix defined by

(4.9) A :=

⎛
⎜⎜⎜⎝
aT1
aT2
...

aTm

⎞
⎟⎟⎟⎠ .

In this notation, the connection between A and the matrix Ã defined in (2.3) is given
by

Ã = (2A,−1m).

Lemma 4.2 below shows that

lim inf
‖x‖→∞

f(x) ≤ fliminf

by detecting a sequence {xk} for which f(xk) converges to fliminf .
Lemma 4.2. Let z be an optimal solution of the problem (4.8). Then the sequence

defined by

xk = kz, k = 1, 2, . . . ,

satisfies ‖xk‖ → ∞ as k →∞ and

(4.10) lim
k→∞

f(xk) = fliminf.
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Proof. Let k > N (where N is given in (4.1)). Then r(xk) =
1
m

∑m
i=1(‖xk−ai‖−

di) and thus for every i = 1, . . . ,m it holds that

‖xk − ai‖ − di − r(xk) = ‖kz− ai‖ − di − r(kz)

=
‖z− 1

kai‖ − di

k − 1
m

∑m
j=1

(
‖z− 1

kaj‖ − dj

k

)
1
k

(4.11)

= gi

(
1

k

)
,(4.12)

where

gi(α) ≡
‖z− αai‖ − diα− 1

m

∑m
j=1 ‖z− αaj‖+ d̄α

α

and

d̄ =
1

m

m∑
j=1

dj .

Since the denominator and the nominator in g(α) both converge to 0 as α → 0+, it
follows by l’Hôpital’s rule that

lim
α→0+

gi(α) = lim
α→0+

⎡
⎣−aTi [z− αai]− di + d̄

‖z− αai‖ − 1

m

m∑
j=1

−aTj [z− αaj ]

‖z− αaj‖

⎤
⎦

= −
⎡
⎣aTi z+ di − 1

m

m∑
j=1

(aTj z+ dj)

⎤
⎦ .

Therefore, by plugging α = 1
k into the above limit and using (4.12), it follows that

lim
k→∞

‖xk − ai‖ − di − r(xk) = −
⎛
⎝aTi z+ di − 1

m

m∑
j=1

(aTj z+ dj)

⎞
⎠ ,

and thus

lim
k→∞

f(xk) =

m∑
i=1

⎛
⎝aTi z+ di − 1

m

m∑
j=1

(aTj z+ dj)

⎞
⎠2

=

[
(Az + d)T

(
Im − 1

m
1m1T

m

)
(Az + d)

]
.

Finally, since z is an optimal solution of (4.8), the result (4.10) follows.
We have thus shown that lim inf‖x‖→∞ f(x) ≤ fliminf . To show the reverse in-

equality, we will require the following technical lemma.
Lemma 4.3. There exist continuous functions A(x) and C(x) satisfying

lim
‖x‖→∞

A(x) = 1, lim
‖x‖→∞

C(x) = 0

for which

f(x) ≥ A(x)fliminf + C(x)

for every ‖x‖ > max{1, N}, where N is given by (4.1).
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Proof. First note that

f(x) =

m∑
i=1

(‖x− ai‖ − r(x) − di)
2

=

m∑
i=1

(‖x− ai‖2 − r2(x)− 2dir(x) − d2i
‖x− ai‖+ r(x) + di

)2

=
m∑
i=1

(−2aTi x+ ‖x‖2 − r2(x)− 2dir(x) − d2i + ‖ai‖2
‖x− ai‖+ r(x) + di

)2

=

m∑
i=1

(−2aTi x+ ‖x‖2 − r2(x)− 2dir(x) − d2i + ‖ai‖2
2‖x‖

)2 (
2‖x‖

‖x− ai‖+ r(x) + di

)2

≥ A(x)B(x),

where

A(x) ≡ min
i=1,...,m

{(
2‖x‖

‖x− ai‖+ r(x) + di

)2
}
,(4.13)

B(x) ≡
m∑
i=1

(−2aTi x+ ‖x‖2 − r2(x)− 2dir(x) − d2i + ‖ai‖2
2‖x‖

)2

.(4.14)

The denominator in (4.13) is positive since by Lemma 4.1 the inequality ‖x‖ > N
implies that r(x) > 0. By (4.5) it follows that

lim
‖x‖→∞

A(x) = 1.

In addition, B(x) can be rewritten as

B(x) =

m∑
i=1

(
aTi

x

‖x‖ + di − ‖x‖
2 − r2(x)

2‖x‖ + αi(x)

)2

,

where

αi(x) ≡ 2di(r(x) − ‖x‖) + d2i − ‖ai‖2
2‖x‖ .

Now,

B(x) =

B1(x)︷ ︸︸ ︷
m∑
i=1

(
aTi

x

‖x‖ + di − ‖x‖
2 − r2(x)

2‖x‖
)2

+

B2(x)︷ ︸︸ ︷
m∑
i=1

α2
i (x)

+ 2

m∑
i=1

(
aTi

x

‖x‖ + di − ‖x‖
2 − r2(x)

2‖x‖
)
αi(x)︸ ︷︷ ︸

B3(x)

.

The first term in the above summation can be bounded below as follows:

B1(x) ≥ min
y

{
m∑
i=1

(
aTi z+ di − y

)2}
,
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where z = x/‖x‖. The optimal solution of the above optimization problem is y =
1
m

∑m
i=1(a

T
i z+ di), which corresponds to the optimal value

(Az+ d)T
(
Im − 1

m
1m1T

m

)
(Az+ d).

Therefore, since ‖z‖ = ‖x/‖x‖‖ = 1, it follows that

B1(x) ≥ min
z

{
(Az+ d)T

(
Im − 1

m
1m1T

m

)
(Az+ d) : ‖z‖ = 1

}
= fliminf.

Since ‖x‖ ≥ N , we have by Lemma 4.1 that (4.2) holds, implying that |αi(x)| ≤
2diN+d2

i+‖ai‖2

2‖x‖ , which in turn implies that

(4.15) αi(x)→ 0 as ‖x‖ → ∞

and hence

lim
‖x‖→∞

B2(x) = 0.

Finally, note that by (4.2) it follows that∣∣∣∣‖x‖2 − r2(x)

‖x‖
∣∣∣∣ = |‖x‖ − r(x)| · |‖x‖+ r(x)|

‖x‖ ≤ N
‖x‖+ r(x)

‖x‖ ≤ N
2‖x‖+N

‖x‖ ≤ 2N+N2,

where the last inequality uses the fact that ‖x‖ ≥ 1. We can now conclude that

|B3(x)| ≤ 2

m∑
i=1

∣∣∣∣
(
aTi

x

‖x‖ + di − ‖x‖
2 − r2(x)

2‖x‖
)∣∣∣∣ · |αi(x)|

= 2

m∑
i=1

(
‖ai‖+ |di|+N +

N2

2

)
|αi(x)|,

which combined with (4.15) implies that B3(x) → 0 as ‖x‖ → ∞. The result then
follows with A(x) defined in (4.13) and C(x) ≡ A(x)(B2(x) +B3(x)).

The direct result of Lemmas 4.2 and 4.3 is the following proposition stating that
fliminf is indeed the liminf of f(x) as ‖x‖ → ∞.

Proposition 4.1. lim inf‖x‖→∞ f(x) = fliminf.
Proof. By Lemma 4.2 it follows that lim inf‖x‖→∞ f(x) ≤ fliminf. To prove the

reverse inequality, take a sequence {xk} for which ‖xk‖ → ∞, satisfying that the
sequence {f(xk)} converges to a finite value. Let A(·) and C(·) be as defined in
Lemma 4.3. Then A(xk)→ 1 and C(xk)→ 0 as k →∞ and thus

lim
k→∞

f(xk) ≥ lim
k→∞

{A(xk)fliminf + C(xk)} = fliminf ,

establishing the fact that lim inf‖x‖→∞ f(x) ≥ fliminf ; hence the result follows.
Note that the value fliminf is computable as it is the optimal value of a GTRS,

which, as already mentioned, can be efficiently solved.
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4.2. Sufficient conditions for attainability. The direct consequence of Propo-
sition 4.1 is that the condition

[SC1]: there exists x̃ ∈ R
n such that f(x̃) < fliminf

is sufficient for the attainability of the optimal solution of (GPSls). In order to con-
struct a verifiable condition, we can take x̃ as a “good” and computable approximation
of the optimal solution of (GPSls). A natural candidate for such a point is the optimal
solution of problem (GPSsls), which, as mentioned in section 3.4, can be efficiently
computed. Therefore, a computable sufficient condition is the following:

[SC2]: f(xsls) < fliminf ,

where xsls is the optimal solution of (GPSsls).
Example 4.1. We now show empirically that condition [SC2] is likely to be sat-

isfied in practical situations. Suppose that m = 6, n = 2. We performed Monte
Carlo runs where in each run the locations aj , j = 1, . . . , 6, and the true source
location x were randomly generated from a uniform distribution over the square
[−10, 10] × [−10, 10]. The observed distances dj are given by (1.2), with εj being
generated from a normal distribution with zero-mean and standard deviation σ and
r is generated from a normal distribution with zero-mean and standard deviation
10. The results of the runs are summarized in Table 1 below. For each value of σ,
1000 realizations were generated. In our experiments σ takes on four different values:
10−2, 10−1, 1, and 10. For each σ, Nσ denotes the number of runs for which condition
[SC2] is satisfied.

Table 1

Number of runs (out of 1000) for which condition [SC2] is satisfied.

σ 10−2 10−1 1 10
Nσ 1000 1000 986 513

Clearly, for the smaller values of σ (10−2 and 10−1), condition [SC2] was always
satisfied, and it was almost always satisfied when σ = 1. For the largest value of
σ, that is, σ = 10, [SC2] was satisfied for approximately half of the runs. It should
be noted that σ = 10 is a huge standard deviation compared to the exact distances,
meaning that the observed pseudoranges are essentially random and have only a mild
connection to the “true” pseudoranges, and therefore this large σ cannot represent a
practical scenario.

4.3. The connection between circle fitting and orthogonal regression.
In the circle fitting problem (CFls), that is, when d = 0, the liminf is given by

fliminf = min
z

{
zTAT

(
Im − 1

m
1m1T

m

)
Az : ‖z‖ = 1

}
.

The above expression can also be written as

fliminf = λmin

[
AT

(
Im − 1

m
1m1T

m

)
A

]
.

In this case fliminf has a nice geometric interpretation in the context of orthogonal
regression, which we now recall. Consider the set of points {a1, . . . , am}. For a given
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124 AMIR BECK AND DROR PAN

0 �= x ∈ R
n, y ∈ R, we define the hyperplane:

Hx,y :=
{
a ∈ R

n : xTa = y
}
.

In the orthogonal LS problem we seek to find a nonzero x ∈ R
n and y ∈ R such that

the sum of squared Euclidean distances between the points a1, . . . , am and Hx,y is
minimal; that is, the problem is given by

(4.16) min
x,y

{
m∑
i=1

d(ai, Hx,y)
2 : 0 �= x ∈ R

n, y ∈ R

}
.

An illustration of the solution to the orthogonal regression problem is given in
Figure 3 below.

Fig. 3. A two-dimensional example: given 5 points a1, . . . , a5 in the plane, the orthogonal
regression problems seeks to find the line for which the sum of squared norms of the dashed lines is
minimal.

The optimal solution of the orthogonal regression problem is described in the
next well-known result (see, e.g., [17]), whose proof is given here for the sake of
completeness.

Proposition 4.2. Let a1, . . . , am ∈ R
n and let A be the matrix given in (4.9).

Then an optimal solution of problem (4.16) is given by x that is an eigenvector of
the matrix AT (Im − 1

m1m1T
m)A associated with the minimum eigenvalue and y =

1
m

∑m
i=1 a

T
i x. The optimal function value is λmin

[
AT (Im − 1

m1m1T
m)A

]
.

Proof. Since the squared Euclidean distance between the point ai and Hx,y is
given by

d(ai, Hx,y)
2 =

(aTi x− y)2

‖x‖2 , i = 1, . . . ,m,

it follows that (4.16) is the same as

(4.17) min

{
m∑
i=1

(aTi x− y)2

‖x‖2 : 0 �= x ∈ R
n, y ∈ R

}
.

Fixing x and minimizing first with respect to y, we obtain that the optimal y is given
by

y =
1

m

m∑
i=1

aTi x.
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GPS LOCALIZATION AND CIRCLE FITTING PROBLEMS 125

Plugging the above expression of y into (4.17) and using the definition of the matrix
A (4.9), we arrive at the following reformulation of (4.16):

min
x

{‖(Im − 1
m1m1T

m)Ax‖2
‖x‖2 : x �= 0

}
,

which is the same as

min
x

{
xT [AT (Im − 1

m1m1T
m)A]x

‖x‖2 : x �= 0

}
.

Therefore, an optimal solution of the problem is an eigenvector of the matrix
AT (Im− 1

m1m1T
m)A corresponding to the minimum eigenvalue; the optimal function

value is the minimum eigenvalue λmin

[
AT (Im − 1

m1m1T
m)A

]
.

We can thus conclude that the liminf of the objective function of the circle fitting
problem is equal to the optimal value of the orthogonal regression problem. This
result is in fact quite natural, as illustrated by the following example.

Example 4.2. Consider the following five points in the plane:

a1 = (10.21, 4.51), a2 = (8.63, 9.56), a3 = (3.89, 13.56),

a4 = (3.22, 13.09), a5 = (9.29, 6.26),

which are denoted by asterisks in all four plots of Figure 4. We plotted in Figure 4
the four circles

C(kz, r(kz)), k = 1, 10, 100, 1000,

0 10 20
0

5

10

15

20
k= 1

0 10 20
0

5

10

15

20
k= 10

0 10 20
0

5

10

15

20
k= 100

0 10 20
0

5

10

15

20
k= 1000

Fig. 4. A sequence of circles for which the objective function of the circle fitting problem
converges to the optimal value of the orthogonal regression problem.
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126 AMIR BECK AND DROR PAN

where z is an optimal solution of (4.8). Clearly, as k grows, the curvature of the
circle in the surrounding of the five points goes to zero. As a result, the circle fitting
objective function converges (as k → ∞) to the optimal value of the orthogonal
regression problem.

5. A fixed point method for solving (GPSls). In this section we construct
a simple fixed point method for solving problem (GPSls). Since the problem is non-
convex, only convergence to stationary points will be established. We assume that
condition [SC2] (see section 4) is satisfied, that is, that f(xsls) < fliminf. First note
that the objective function f of problem (GPSls) can be rewritten as

(5.1) f(x) =
m∑
i=1

(‖x− ai‖ − di)
2 −mr(x)2.

Thus, problem (GPSls) is closely related to the problem of estimating the location of
a source from a set of distances to several anchors (see, e.g., [3] and the references
therein) in which the objective function is given by

f̃(x) =

m∑
i=1

(‖x− ai‖ − di)
2.

In fact, the relation (5.1) means that f is a subtraction of f̃ and a convex function,
and in that sense it is “less convex” than f̃ , suggesting that problem (GPSls) is more
difficult than the source localization discussed in [3].

5.1. The method. Let

A = {a1, a2, . . . , am}

be the set of points of nondifferentiability of the objective function f of (GPSls). To
derive the method, we begin by writing the optimality condition. For every x /∈ A,

(5.2) ∇f(x) = 0.

The equality (5.2) can be rewritten as

1

2
∇f(x) =

m∑
i=1

(‖x− ai‖ − di)
x− ai
‖x− ai‖ − r(x)

m∑
i=1

x− ai
‖x− ai‖

= mx−
m∑
i=1

ai −
m∑
i=1

(r(x) + di)
x− ai
‖x− ai‖ .

Therefore, a point x /∈ A is a stationary point if and only if

x =
1

m

m∑
i=1

ai +
1

m

m∑
i=1

(r(x) + di)
x− ai
‖x− ai‖ .

Let us denote the operator T : Rn\A → R
n by

(5.3) T (x) ≡ 1

m

m∑
i=1

ai +
1

m

m∑
i=1

(r(x) + di)
x− ai
‖x− ai‖ .
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GPS LOCALIZATION AND CIRCLE FITTING PROBLEMS 127

Then it is natural to define the following fixed point method:

A fixed point method for solving (GPSls).

Initialization: Choose x0 ∈ R
n.

General Step:

(5.4) xk+1 = T (xk), k = 0, 1, 2, . . . .

For the circle fitting problem the method takes the following form:

A fixed point method for solving (CFls).

Initialization: Choose x0 ∈ R
n.

General Step:

(5.5) xk+1 =
1

m

m∑
i=1

ai + r(xk)

[
1

m

m∑
i=1

xk − ai
‖xk − ai‖

]
, k = 0, 1, 2, . . . .

The method, as it is written, is not well defined since there might be a k for which
xk ∈ A, and in this case xk+1 cannot be computed via (5.4). In what follows, we will
show how to avoid the points of nondifferentiability A.

5.2. Convergence. The method (5.4) is very similar to the fixed point method
that was devised for the source localization problem of [3]. Indeed, omitting the term
r(x) in the definition of T (x) results with the exact same method introduced in [3].
The convergence analysis is also very similar, and we therefore present only the result
and for completeness give the proof in the appendix.

Theorem 5.1 (convergence of the fixed point method). Let {xk} be generated
by (5.4) such that x0 satisfies

(5.6) f(x0) < min{f(a1), . . . , f(am), fliminf}.

Then the following hold:
(a) xk /∈ A for every k ≥ 0.
(b) For every k ≥ 0, f(xk+1) ≤ f(xk) and equality is satisfied if and only if

xk+1 = xk.
(c) The sequence of function values {f(xk)} converges.
(d) The sequence {xk} is bounded.
(e) Every convergent subsequence {xkl} satisfies xkl+1 − xkl → 0.
(f) Any limit point of {xk} is a stationary point of f .
Proof. See the appendix.
A direct consequence of Theorem 5.1 is the following corollary.
Corollary 5.2. Let {xk} be the sequence generated by the fixed point algorithm

satisfying (5.6). Then f(xk) → f∗, where f∗ is the function value at a stationary
point of f .

5.3. Initialization of the fixed point method. To make the fixed point
method (5.4) well defined, it is crucial to find a point satisfying

(5.7) f(x0) < min{f(a1), . . . , f(am), fliminf}.
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128 AMIR BECK AND DROR PAN

If fliminf ≤ min{f(a1), . . . , f(am)}, then by the validity of the sufficient condition
[SC2] the choice x0 = xsls will satisfy (5.7). Suppose that fliminf ≥ min{f(a1), . . . , f(am)}
and let

p ∈ argmin
i=1,...,m

{f(ai)}.

To find a point whose function value is smaller than f(ap), we will seek a descent
direction v ∈ R

n satisfying ‖v‖ = 1 for which f ′(ap;v) < 0 (that is, the directional
derivative of the objective function at ap in the direction v is negative). For such a
direction there exists an ε > 0 satisfying f(ap + tv) < f(ap) for all t ∈ (0, ε). The
next lemma shows how to find such a direction under a mild condition.

Lemma 5.1. Let p ∈ argmini=1,...,m{f(ai)} and let

gj(x) =

m∑
i=1,i	=j

(‖x− ai‖ − di)
2, j = 1, . . . ,m,

hj(x) =
1

m

m∑
i=1,i	=j

‖x− ai‖, j = 1, . . . ,m.

Assume that the following three conditions do not hold simultaneously:

(5.8) r(ap) = 0, ∇gp(ap) = 0, dp = 0.

Then f ′(ap,v) < 0, where the normalized vector v is given by

v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z1
‖z1‖ if r(ap) > 0, z1 �= 0,

any normalized vector if r(ap) > 0, z1 = 0,
any normalized vector if r(ap) = 0,∇gp(ap) = 0, dp > 0,

− ∇gp(ap)
‖∇gp(ap)‖ if r(ap) = 0,∇gp(ap) �= 0,

and where

(5.9) z1 = −∇gp(ap) + 2mr(ap)∇hp(ap).

Proof. Recall that

f(x) =
m∑
i=1

(‖x− ai‖ − di)
2 −mr2(x).

Let us split the analysis into two cases.
Case 1. If

∑m
i=1(‖ap − ai‖ − di) > 0, then r(ap) > 0 and we have that

f ′(ap;v) = ∇gp(ap)Tv − 2dp − 2mr(ap)

(
∇hp(ap)

Tv +
1

m

)
= −zT1 v − 2dp − 2r(ap).

If z1 = 0, then any direction is a descent direction. Otherwise, by taking ṽ = z1
‖z1‖ ,

we obtain that

f ′(ap; ṽ) = −‖z1‖ − 2dp − r(ap),

which by the fact that dp ≥ 0 and r(ap) > 0 implies that f ′(ap; ṽ) < 0.
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GPS LOCALIZATION AND CIRCLE FITTING PROBLEMS 129

Case 2. If
∑m

i=1(‖ap − ai‖ − di) ≤ 0, then r(ap) = 0. Consider the function

f̃(x) =
∑m

i=1(‖x − ai‖ − di)
2. It is enough to show that there exists a normalized

vector v for which f̃ ′(ap;v) < 0. Now,

f̃ ′(ap;v) = ∇gp(ap)Tv − 2dp.

If ∇gp(ap) �= 0, then define ṽ = − ∇gp(ap)
‖∇gp(ap)‖ . It holds that

f̃ ′(ap; ṽ) = −‖∇gp(ap)‖ − 2dp,

which by the fact that dp ≥ 0 implies that f̃ ′(ap; ṽ) < 0. If ∇gp(ap) = 0 and dp > 0,

then f̃ ′(ap;v) = −2dp < 0 for any v ∈ R
n, implying that any direction is a descent

direction.
Note that the condition which states that (5.8) will not be satisfied is mild in the

sense that it is very unlikely for “true” random data that the vector ∇gp(ap) will be
equal to the zeros vector. In fact, for the circle fitting problem, (5.8) will surely not
be satisfied unless all the points a1, . . . , am are equal to ap, which is certainly not an
interesting case, and is also not possible under the underlying Assumption A. Under
this condition, and based on Lemma 5.1, we can define the following procedure for
finding an initial vector x0 for which the fixed point method (5.4) is well defined.

Procedure for finding an x0 ∈ R
n satisfying

f(x0) < min{f(a1), . . . , f(am), fliminf}.
a. If fliminf ≤ min{f(a1), . . . , f(am)}, then choose x0 = xsls and

STOP.
b. Let p ∈ argmini=1,...,m {f(ai)}. Choose a descent direction of f at

ap according to the following cases:
– If r(ap) > 0, then there are two options: if z1 = −∇gp(ap) +

2mr(ap)∇hp(ap) �= 0, then take ṽ = 1
‖z1‖z1; otherwise, take ṽ

to be any normalized vector and go to step c.
– If r(ap) = 0, then either z = ∇gp(ap) �= 0, and in that case

ṽ = − 1
‖z‖z, or ∇gp(ap) = 0, and in that case ṽ can be chosen

as any normalized vector.
c. Set s = 1.
d. If f(ap + sṽ) < f(ap), then STOP. The output is x0 = ap + sṽ.

Otherwise, go to step e.
e. Set s← s

2 . Go back to step d.

5.4. Numerical examples. The following example illustrates the advantage of
the LS solution (an optimal solution of problem (GPSls)) over the SLS solution (an
optimal solution of (GPSsls)). All the experiments were performed in MATLAB.

Example 5.1. The setting in this example is the same as the one used in Example
4.1, with the exception that we do not consider the value σ = 10. For each value of
σ, 1000 realizations were generated. For each value of σ, the second column is the

average over the 1000 runs of the relative error of the SLS solution ‖xsls−xtrue‖
‖xtrue‖ , while

the third column is the average of the relative error of the LS solution ‖xls−xtrue‖
‖xtrue‖ .

The LS solution was obtained by using the fixed point method (5.4) with the SLS
solution as an initial point. The fourth column contains the number of runs in
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130 AMIR BECK AND DROR PAN

Table 2

The average of the relative errors of the LS and SLS solutions (second and third columns) and
the number of runs in which the LS solution provided a better solution than the SLS solution.

σ Relative error SLS Relative error LS Iσ

10−2 0.0033 0.0028 651
10−1 0.0355 0.0279 634
1 0.3193 0.2846 605

which the LS solution was closer than the SLS solution to the true solution (that
is, ‖xls − xtrue‖ < ‖xsls − xtrue‖).

Obviously, the results summarized in Table 2 suggest that on average the LS
estimate gives better results than the SLS estimate. At the same time, it seems that
the SLS solution is a rather good approximation of the LS solution in the sense that
it has the same order of magnitude of relative error and in many cases (approximately
35–40 percent) gives a better approximation than the LS solution.

Example 5.2. In this example we further illustrate the advantage of the LS
solution over the SLS solution by considering one realization of the GPS localization
problem in which

a1 =

(−29
−18

)
, a2 =

(
7
−24

)
, a3 =

(−19
−27

)
, a4 =

(
10
−27

)
, a5 =

(−9
3

)
, a6 =

(−33
−34

)
,

and with the “true” source location chosen as xtrue = (−8,−2)T . We then generated
1000 realizations of the noise components εi with standard deviation σ = 1, and
computed the LS and SLS solutions (as in the previous example). The left image
in Figure 5 describes the histogram of the errors of the LS solution (‖xls − xtrue‖),
while the right image describes the corresponding histogram of the errors of the SLS
solution (‖xsls − xtrue‖).
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100
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140

160

180

200
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0 1 2 3 4 5
0

20

40
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80

100

120

140

160

180

200
SLS Solution

Fig. 5. Histograms of the errors of the LS (left) and SLS (right) solutions.

The histogram corresponding to the LS estimate is shifted closer to zero compared
to the histogram of the SLS estimate and also has a smaller variance. This clearly
indicates that overall the LS solution provides more accurate solutions than the SLS
solution.
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Example 5.3. In this example we demonstrate that the LS circle fitting problem
(CFls) can result with a more geometrical sense than the SLS circle fitting problem
(CFsls). Consider the 6 points

a1 =

(
1
9

)
, a2 =

(
2
7

)
, a3 =

(
5
8

)
, a4 =

(
7
7

)
, a5 =

(
9
5

)
, a6 =

(
3
7

)
.

Then the solutions to (CFls) and (CFsls) are given in Figure 6. Obviously the LS
solution is much more reasonable from a geometrical point of view. Further evidence
for this observation is that the sum of squares of the distances of the points to the
circle obtained by the circle fitting LS problem (CFls) is 3.1724, while the sum of
distances of the points to the circle produced by the SLS circle fitting problem (CFsls)
is 7.2081—more than twice as much.

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

 

 
LS
SLS

Fig. 6. The dashed circle is the optimal solution to (CFls), while the circle plotted with a solid
line is the optimal solution to (CFsls).

6. Concluding remarks. This paper considered two possible formulations of
the GPS localization problem: the squared least squares (SLS) formulation (GPSsls),
which is nonconvex and smooth, and the least squares (LS) variant (GPSls), which is
nonconvex and nonsmooth. Both problems are generalizations of circle fitting prob-
lems. The disadvantage of the SLS formulation is that it lacks the statistical and
geometrical meaning of the LS problem. However, the SLS solution was shown (em-
pirically) to be a good starting point for a fixed point method devised to solve the
LS problem. It is still an open question whether an efficient method for finding the
global optimal solution of the LS problem can be devised. Another interesting line of
analysis would be to generalize the obtained results to the more complicated problems
arising in the area of sensor network localization.

Appendix. Proof of Theorem 5.1. Before proving Theorem 5.1, we need to
define the following auxiliary function:

(A.1) h(x,y) =

m∑
i=1

‖x− ai − (r(y) + di)hi(y)‖2,

where

(A.2) hi(y) ≡ y − ai
‖y − ai‖ , i = 1, . . . ,m.
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Then it holds that xk+1 = argminx∈Rn h(x,xk). The following lemma states several
key properties of the auxiliary function h.

Lemma A.1.

(a) h(x,x) = f(x) for every x /∈ A.
(b) h(x,y) ≥ f(x) for every x ∈ R

n,y /∈ A.
(c) If y /∈ A, then

T (y) = argmin
x∈Rn

h(x,y).

(d) For every y /∈ A

f(T (y)) ≤ f(y)

and equality holds if and only if T (y) = y.
Proof. (a) By the definition of the auxiliary function h and h1, . . . , hm, it follows

that

h(x,x) =

m∑
i=1

‖x− ai − (r(x) + di)hi(x)‖2

=

m∑
i=1

{‖x− ai‖2 − 2(r(x) + di)hi(x)
T (x− ai) + (r(x) + di)

2‖hi(x)‖2
}

=

m∑
i=1

{‖x− ai‖2 − 2(r(x) + di)‖x− ai‖+ (r(x) + di)
2
}

=

m∑
i=1

(‖x− ai‖ − r(x) − di)
2 = f(x).

(b) First, note that

h(x,y) =
m∑
i=1

‖x− ai − (r(y) + di)hi(y)‖2

=

m∑
i=1

{‖x− ai‖2 − 2(r(y) + di)hi(y)
T (x− ai) + (r(y) + di)

2‖hi(y)‖2
}

=

m∑
i=1

{‖x− ai‖2 − 2(r(y) + di)hi(y)
T (x− ai) + (r(y) + di)

2
}
.(A.3)

By the Cauchy–Schwarz inequality it follows that

hi(y)
T (x − ai) =

(y − ai)
T (x− ai)

‖y− ai‖ ≤ ‖y− ai‖ · ‖x− ai‖
‖y − ai‖ = ‖x− ai‖,

which combined with the expression (A.3) for h(x,y) and the fact that r(y) ≥ 0
implies that

h(x,y) ≥
m∑
i=1

{‖x−ai‖2−2(r(y)+di)‖x−ai‖+(r(y)+di)
2
}
=

m∑
i=1

(‖x−ai‖−r(y)−di)2.
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Finally, by the definition of r(x) as the minimizer of
∑m

i=1(‖x − ai‖ − r − di)
2 over

all nonnegative r, it follows that

m∑
i=1

(‖x− ai‖ − r(y) − di)
2 ≥

m∑
i=1

(‖x− ai‖ − r(x) − di)
2 = f(x),

proving that h(x,y) ≥ f(x).
(d) By (5.3) and the strict convexity of the function x �→ h(x,y), one has

h(T (y),y) < h(x,y) for every x �= T (y).

In particular, if T (y) �= y, then

(A.4) h(T (y),y) < h(y,y) = f(y),

where the last equality follows from part (a). By part (b), h(T (y),y) ≥ f(T (y)),
which combined with (A.4) establishes the desired strict monotonicity.

Proof of Theorem 5.1. (a) and (b) follow by induction on k using Lemma A.1(d).
(c) readily follows from the monotonicity and lower boundedness (by zero) of the

sequence {f(xk)}.
(d) By part (b) all the iterates xk are in the level set Lev(f, f(x0)), which, by

the fact that f(x0) < fliminf , establishes the boundedness of the sequence {xk}.
(e) and (f) Let {xkl} be a convergent subsequence of {xk} with limit point x∗.

Since f(xkl) ≤ f(x0) < minj=1,...,m f(aj), it follows by the continuity of f that
f(x∗) ≤ f(x0) < minj=1,...,m f(aj), proving that x∗ /∈ A. By (5.4),

(A.5) xkl+1 = T (xkl).

Therefore, since the subsequence {xkl} and its limit point x∗ are not in A, by the
continuity of ∇f on R

n \ A, we conclude that the subsequence {xkl+1} converges to
a vector x̄ satisfying

(A.6) x̄ = T (x∗).

To prove (e), we need to show that x̄ = x∗. Since both x∗ and x̄ are limit points
of {xk} and since the sequence of function values converges (by part (c)), then the
continuity of f over Rn implies f(x∗) = f(x̄). Invoking Lemma A.1 for y = x∗, we
conclude that x̄ = x∗, proving claim (e). Part (f) follows from the observation that
the equality x∗ = T (x∗) is equivalent (by the definition of T ) to ∇f(x∗) = 0.
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