
J Glob Optim (2010) 47:29–51
DOI 10.1007/s10898-009-9456-5

A sequential parametric convex approximation method
with applications to nonconvex truss topology design
problems

Amir Beck · Aharon Ben-Tal · Luba Tetruashvili

Received: 29 January 2009 / Accepted: 10 June 2009 / Published online: 5 July 2009
© Springer Science+Business Media, LLC. 2009

Abstract We describe a general scheme for solving nonconvex optimization problems,
where in each iteration the nonconvex feasible set is approximated by an inner convex approx-
imation. The latter is defined using an upper bound on the nonconvex constraint functions.
Under appropriate conditions, a monotone convergence to a KKT point is established. The
scheme is applied to truss topology design (TTD) problems, where the nonconvex constraints
are associated with bounds on displacements and stresses. It is shown that the approximate
convex problem solved at each inner iteration can be cast as a conic quadratic programming
problem, hence large scale TTD problems can be efficiently solved by the proposed method.

Keywords Nonconvex optimization · Successive convex approximations · KKT points ·
Truss topology design · Displacement and stress constraints

1 Introduction

Consider the following generic optimization problem:

(P)
min f (x)
s.t. gi (x) ≤ 0, i = 1, . . . ,m,

x ∈ R
n,

where f, gi (i = 1, . . . ,m) are all continuously differentiable functions over R
n . In addi-

tion, we assume that the function f and the last m − p (for p ≤ m) constraint functions

A. Beck (B) · A. Ben-Tal · L. Tetruashvili
MINERVA Optimization Center, Faculty of Industrial Engineering and Management,
Technion—Israel Institute of Technology, Haifa 32000, Israel
e-mail: becka@ie.technion.ac.il

A. Ben-Tal
e-mail: abental@ie.technion.ac.il

L. Tetruashvili
e-mail: lubate@tx.technion.ac.il

123

30 J Glob Optim (2010) 47:29–51

gp+1, . . . , gm are convex over R
n . Therefore, the “nonconvex part” of the problem is due to

the nonconvexity of the first p constraint functions g1, . . . , gp . The case p = m corresponds
to the case when all the constraints are nonconvex. It is also possible to incorporate linear
equality constraints in the above formulation without significantly changing the analysis pre-
sented in the paper. For the sake of simplicity, we concentrate on the inequality-constrained
problem (P).

Suppose that for every i = 1, . . . , p, gi has a convex upper estimate function, specifically,
assume that there exists a set Y ⊆ R

r (for some positive integer r) and a continuous function
Gi : R

n × Y �→ R such that

gi (x) ≤ Gi (x, y) for every x ∈ R
n, y ∈ Y,

where, for a fixed y, the function Gi (·, y) is convex and continuously differentiable. The
vector y plays the role of a parameter vector and correspondingly Y is called the admissible
parameters set. In this paper we introduce and analyze a method for solving problem (P)
via a sequence of convex problems. The basic idea of the method is that at each iteration we
replace each of the nonconvex functions gi (x) (i = 1, . . . , p) by the upper convex approxi-
mation function x �→ Gi (x, y) for some appropriately chosen parameter vector y. Thus, at
step k(k ≥ 1) of the method it is required to solve a convex problem of the following form:

(Pk)

min f (x)
s.t. Gi (x, yk) ≤ 0, i = 1, . . . , p

g j (x) ≤ 0, j = p + 1, . . . ,m,
x ∈ R

n .

The vector yk is a fixed parameter vector depending on the solution of the problem (Pk−1).
The method will be called sequential parametric convex approximation (SPCA) method.
Specific details on the underlying assumptions and the SPCA method will be given in the
next section.

The idea of iteratively replacing nonconvex functions by convex upper estimates is not
new. A well known example is the gradient method as applied to an unconstrained minimi-
zation problem

min{ f (x) : x ∈ R
n}.

Here f is a (possibly) nonconvex function assumed to be continuously differentiable whose
gradient satisfies a Lipschitz condition with constant L . The gradient method is usually
written as (see e.g., [5])

xk = xk−1 − 1

L
∇ f (xk−1), k ≥ 1.

An equivalent presentation of the method is

xk = argmin
x

F(x, xk−1),

where

F(x, y) = f (y)+ ∇ f (y)T (x − y)+ L

2
‖x − y‖2 (1.1)

is an upper approximation of f (x). The fact that f (x) ≤ F(x, y) follows from the well
known descent lemma (see [5, Proposition A.24]). Thus, at each iteration we replace the
function f (x) by its upper approximation F(x, xk−1) with the parameter chosen to be the

123

J Glob Optim (2010) 47:29–51 31

result of the previous iterate (y = xk−1). We see that the gradient method is indeed an
SPCA-type method.

We also note that convex underestimates (in contrast to our convex overestimates) are
also widely used in algorithms for nonconvex problems. Notably, the αBB method consid-
ered in [1,2] is based on a branch-and-bound approach, where a lower bound on the optimal
solution is obtained at each node using a generation of a valid convex underestimate via an
interval analysis technique. Another technique for solving nonconvex problems using convex
underestimates was suggested for factorable programming in [9].

In the context of structural design problems, a specific convex approximation scheme was
used in [3] to convexify global buckling constraints and gave rise to an SPCA-type method.
In this paper we prove the convergence of the general SPCA method to a KKT point under
certain mild conditions. The problem analyzed in [3] satisfies these conditions, and hence
the convergence of the corresponding SPCA method is proven by the results of this paper.
In this paper we apply this method to structural design problems with two other nonconvex
constraints: displacement and stress constraints. These types of constraints are in fact an
essential part of any realistic structural design specification; ignoring them may result in
severely unstable structures (see the examples in Sect. 5).

The paper layout is as follows. Section 2 describes the details of the SPCA method and
provides all the required assumptions. A convergence analysis of the method is provided in
Sect. 3. Implementation and analysis of the SPCA method for structural optimization prob-
lems with stress and/or displacement constraints is given in Sect. 4. The paper concludes in
Sect. 5 with some numerical examples demonstrating the effectiveness of the SPCA method
for the aforementioned optimization problems.

2 The sequential parametric convex approximation (SPCA) method

The SPCA method was loosely described in the introduction. What is apparently missing
there is the update formula for the parameter sequence yk . For a full description of the method
and the ensuing analysis, we further require the convex upper estimate functions to satisfy
the following property:

Property A For every i = 1, . . . , p there is a continuous function ψi : R
n → R

r such that
for any given point x ∈ R

n, the vector y := ψi (x) ∈ Y satisfies

gi (x) = Gi (x, y), (2.1)

∇gi (x) = ∇x Gi (x, y). (2.2)

Example 2.1 Consider a continuously differentiable function f : R
n → R with a Lipschitz

gradient with constant L . Then, as explained in the introduction, the function F given in
(1.1) is a convex upper approximation of f . In addition, it clearly satisfies the two parts of
Property A with ψi (x) = x .

Property A induces a very natural choice for the parameter vector at each iteration. The
SCPA method can now be stated rigorously.

123

32 J Glob Optim (2010) 47:29–51

Sequential Parametric Convex Approximation Method (SPCA):

Step 0. Choose an arbitrary starting point x0 which is feasible to (P),
and set y(i)1 = ψi (x0)(i = 1, . . . , p).
Step k. Compute a solution xk of the convex problem:

min f (x)

(Pk) s.t. Gi (x, y(i)k) ≤ 0, i = 1, . . . , p,

g j (x) ≤ 0, j = p + 1, . . . ,m,

x ∈ R
n .

Set y(i)k+1 = ψi (xk) for every i = 1, . . . , p, set k := k + 1.

The algorithm stops at iteration k if either the KKT necessary optimality conditions are
approximately satisfied, i.e.

min
λ∈Rn

{||∇x L(xk, λ)||2 | λ ≥ 0, λi = 0 if gi (xk) < 0
} ≤ ε, (2.3)

where L(x, λ) = f (x)+ ∑m
i=1 λi gi (x) is the Lagrangian of the original problem (P),

or no improvement in the objective function value f (·)was achieved in the last 10 iterations.
The next result shows that the SPCA method produces a sequence of feasible points whose
function values are monotonically nonincreasing, namely, the SPCA method is a descent
scheme. We will denote the feasible set of (Pk) by Xk and the feasible set of (P) by X .
Throughout the paper we will assume that X is nonempty and compact.

Lemma 2.2 Let {xk} be the sequence generated by the SPCA method. Then for every k ≥ 0

i. Xk ⊆ X.
ii. xk ∈ Xk ∩ Xk+1.

iii. xk is a feasible point of (P).
iv. f (xk+1) ≤ f (xk).

Proof

i. Recall that for every k ≥ 0 and i = 1, . . . , p we have gi (x) ≤ Gi (x, y(i)k) ≤ 0,
implying that every x ∈ Xk also satisfies all the constraints of (P), i.e. x ∈ X .

ii. xk ∈ Xk since it is an optimal solution of (Pk) (and thus also feasible). By the definition
of y(i)k+1 we have that Gi (xk, y(i)k+1) = gi (xk) ≤ 0 so that xk ∈ Xk+1.

iii. By parts i and ii we have xk ∈ Xk ⊆ X , so that xk is a feasible solution of (P).
iv. By part ii of the lemma it follows that xk is a feasible solution of (Pk+1), which means

that its objective function value f (xk) is no less then the optimal value of (Pk+1),
which is f (xk+1).
�

A direct consequence of Lemma 2.2 is the following corollary.

Corollary 2.3 Let {xk} be the sequence generated by the SPCA method. Then the sequence
{ f (xk)} converges.

Proof By Lemma 2.2 the sequence { f (xk)} is nonincreasing. In addition, since the feasible
set of (P) is compact and nonempty, it follows that the sequence { f (xk)} is bounded below,
and thus has a limit.
�

123

J Glob Optim (2010) 47:29–51 33

3 Convergence analysis and example

In this section we establish a convergence result for the SPCA method. Since the original
problem (P) is nonconvex, it is not possible to prove convergence to a global minimum but
rather convergence to KKT points under some regularity conditions. The following simple
and technical lemma will be used in the convergence proof.

Lemma 3.1 Let f : R
n → R be a continuously differentiable and strictly convex function

on a nonempty convex and compact set S ⊆ R
n. Then f is strongly convex on the set S.

Proof The function f (x)− f (y)−〈x − y,∇ f (y)〉 is continuous and thus attains its minimal
value on the compact set S. Denote this value by q . By the definition of strict convexity it
follows that q > 0. Denote the squared diameter of the set S by D := maxx,y∈S ||x − y||2
and set c = q

D . Then,

f (x)− f (y)− 〈x − y,∇ f (y)〉 ≥ q = c · D ≥ c||x − y||2 for every x, y ∈ S,

proving the strong convexity of f on S.
�
Recall that a feasible solution x∗ of problem (P) is regular if the set of gradients of the

active constraints at x∗, {∇gi (x∗)}i∈I , is linearly independent, where:

I = {i ∈ [1,m] : gi (x
∗) = 0}.

Proposition 3.2 Let {xk} be the sequence generated by the SPCA method.

i. If the objective function f is strictly convex on the convex hull of the feasible set, then
all regular accumulation points of {xk} are KKT points of problem (P).

ii. If the sequence {xk} generated by the SPCA method converges to a regular point x∗,
then x∗ is a KKT point of problem (P).

Proof

i. By Lemma 3.1 it follows that the strictly convex objective function f is also strongly
convex on the convex and compact feasible set Xk+1. In particular, there exists c > 0
such that for all k ≥ 0 we have

f (xk)− f (xk+1) ≥ 〈xk − xk+1,∇ f (xk+1)〉 + c||xk − xk+1||2. (3.1)

Since xk is a feasible point of (Pk+1) (by Lemma 2.2, ii), and xk+1 is its optimum, then
from the optimality conditions for (Pk+1) (see [5, proposition 2.1.2]), we obtain:

〈xk − xk+1,∇ f (xk+1)〉 ≥ 0,

which combined with (3.1) yields

f (xk)− f (xk+1) ≥ c||xk − xk+1||2. (3.2)

By Corollary 2.3, the sequence { f (xk)} converges and thus the inequality (3.2) implies that

||xk − xk+1|| → 0. (3.3)

Let x∗ be an accumulation point of the sequence {xk}, we will show that x∗ is a KKT
point. Since x∗ is an accumulation point of {xk}, there exists a subsequence {xnk } such that
xnk → x∗. Note that by (3.3) it also follows that xnk−1 → x∗, a fact that will be used in the
sequel.

123

34 J Glob Optim (2010) 47:29–51

Let I be the index set of the active constraints of (P) with respect to x∗ and let Ink be the
index set of the active constraints of (Pnk) with respect to xnk , that is,

I = {i ∈ [1,m] : gi (x
∗) = 0},

Ink = {i ∈ [1, p] : Gi (xnk , ψi (xnk−1)) = 0} ∪ { j ∈ [p + 1,m] : g j (xnk) = 0}.
Letting k → ∞ and using (3.3) along with the continuity of g j ,Gi , ψi , we have

g j (xnk) → g j (x
∗), j = p + 1, . . . ,m, (3.4)

Gi (xnk , ψi (xnk−1)) → Gi (x
∗, ψi (x

∗)) = gi (x
∗), i = 1, . . . , p, (3.5)

where the last equality follows from Property A [relation (2.1)]. The limits (3.4) and (3.5)
imply that there exists a positive integer K1 such that

Ink ⊆ I for all k > K1. (3.6)

Since the functions Gi ,∇x Gi , g j ,∇g j , ψi (i = 1, . . . , p, j = p + 1, . . . ,m) are all contin-
uous, when k → ∞ we get

∇ f (xnk) → ∇ f (x∗),
∇x Gi (xnk , ψi (xnk−1)) → ∇x Gi (x

∗, ψi (x
∗)) = ∇gi (x

∗), i = 1, . . . , p, (3.7)

∇g j (xk j) → ∇g j (x
∗), j = p + 1, . . . ,m,

where the equality in (3.7) follows from Property A (Eq. 2.2). In particular, all the gradients
of the constraint functions of (Pnk) converge to the corresponding gradients of the constraint
functions of (P). This, combined with the inclusion (3.6), implies that there exists a positive
integer K2 > K1 such that xnk is a regular point of (Pnk) for every k > K2. Therefore,
for every k > K2 the KKT conditions are satisfied for problem (Pnk), namely, there exist
nonnegative numbers µnk

1 , . . . , µ
nk
m ∈ R+ such that

∇ f (xnk)+
p∑

i=1

µ
nk
i ∇x Gi (xnk , ψi (xnk−1))+

m∑

j=p+1

µ
nk
j ∇g j (xnk) = 0, (3.8)

µ
nk
i Gi (xnk , ψi (xnk−1)) = 0, i = 1, . . . , p,

µ
nk
j g j (xnk) = 0, j = p + 1, . . . ,m.

For every k > K2 let vk := −∇ f (xnk) and let Ak be the matrix whose columns are the
gradients of the constraints corresponding to the index set I, namely, the vectors

{∇x Gi (xnk , ψi (xnk−1))}i∈[1,p]∩I ∪ {∇g j (xnk)} j∈[p+1,m]∩I .

Note that by (3.6) and the complementary slackness conditions for (Pnk), we have for all
k > K2 that

µ
nk
i = 0 for all i /∈ I.

Therefore, Eq. (3.8) reduces to

Akη
k = vk,

where ηk = (µ
nk
i)i∈I is the vector of all multipliers corresponding to I . If we denote v :=

−∇ f (x∗) and define A to be the matrix whose columns are the vectors

{∇g j (x
∗)} j∈[1,m]∩I ,

123

J Glob Optim (2010) 47:29–51 35

then we have that Ak → A and vk → v. In addition, A and Ak (for every k > K2) are of full
column rank, which immediately implies that

ηk = (AT
k Ak)

−1 AT
k vk .

We conclude that ηk → (AT A)−1 AT v. Since µnk
i is comprised of the components of ηk and

zeros, it follows that it has a limit. Denoting the limit of µnk
i by µ∗

i ≥ 0 and taking the limit
k → ∞ for the KKT conditions of (Pnk), we obtain

∇ f (x∗)+
∑

i∈I

µ∗
i ∇gi (x

∗) = 0,

µ∗
i gi (x

∗) = 0, i ∈ I.

Defining µ∗
i = 0 for every i /∈ I we finally conclude that

∇ f (x∗)+
m∑

i=1

µ∗
i ∇gi (x

∗) = 0,

µ∗
i gi (x

∗) = 0, i = 1, . . . ,m + 1,

proving that x∗ is a KKT point.

ii. The proof here follows the same line of argument as the derivation in the first part.
The only difference is that we do not require the strict convexity assumption in order
to establish that both xk and xk−1 converge to the same limit.

�
Remark 3.3 The analysis in the current and previous sections is made under the assumption
that the objective and constraint functions are defined over the entire space R

n . The same
analysis is applicable to the case when all the functions are defined over an open domain �
containing X .

Example 3.4 Consider the following nonconvex problem:

min f (x) := (x1 − 2)2 + (x2 − 2)2

s.t. g(x) := x1x2 ≤ 1,
0.01 ≤ x1, x2 ≤ 100.

(3.9)

Obviously the objective function f is strictly convex, the function g is nonconvex and the
feasible set of problem (3.9) is compact. For every λ > 0, define the function

G(x, λ) := λ

2
x2

1 + 1

2λ
x2

2 .

In the following lemma we will prove that G(x, λ) overestimates g(x) for every λ > 0 and
that Property A is satisfied.

Lemma 3.5 The function G(x, λ) is convex and overestimates the function g(x) for every
fixed value λ > 0, i.e.

g(x) ≤ G(x, λ), ∀λ > 0. (3.10)

Letψ(x) := x2
x1

. Then for a given feasible point x = (x1, x2) satisfying x1 �= 0 andλ := ψ(x)
it holds that

g(x) = G(x, λ), (3.11)

123

36 J Glob Optim (2010) 47:29–51

∇g(x) = ∇G(x, λ). (3.12)

Proof Since λ > 0, the function G is convex quadratic. The relation (3.10) holds true since

G(x, λ)− g(x) = 1

2

(√
λx1 − 1√

λ
x2

)2

≥ 0.

Now, by substituting λ = ψ(x) = x2
x1

we get:

G(x, λ) = λ

2
x2

1 + 1

2λ
x2

2 = x1x2 = g(x),

and thus (3.11) holds true. The gradient of the function G is given by

∇G(x, λ) =
(
λx1

x2/λ

)
.

Substituting in the above expression λ := x2
x1

yields

∇G(x, λ) =
(

x2

x1

)
= ∇g(x).

�
Since all required assumptions for the SPCA method are satisfied, we can replace the

function g by its convex approximation G and solve iteratively the sequence of convex
problems:

(Ek)

min (x1 − 2)2 + (x2 − 2)2

s.t. λk−1
2 x2

1 + 1
2λk−1

x2
2 ≤ 1,

0.01 ≤ x1, x2 ≤ 100,

where the parameter λk is updated at each iteration according to the obtained solution, spe-

cifically λk = xk
2

xk
1

with (xk
1 , xk

2) being the optimal solution of (Ek).

The optimal solution of the original nonconvex problem (3.9) is attained at the point (1, 1)
with a corresponding optimal value of 2. We ran 25 iterations of the SPCA method starting
from point (5, 0.02), which is rather far from the optimum and reached the value 2.0015 after
25 iterations. Figure 1 describes the feasible sets and iterates at iterations 1, 2, 3, 4, 5, 25.

We also observed empirically that the method always converges (in this example) to the
global optimum as long as the starting point (even an infeasible one) is in the first quadrant.

Remark 3.6 Note that we assume that the initial point x0 is feasible. This assumption implies
the feasibly of the entire sequence of iteration points {xk}. Finding an initial point might be
an easy or a hard task depending on the specific problem at hand. In Sect. 5 we will describe a
method for choosing a feasible point in the context of truss topology design (TTD) problems.

4 Nonconvex truss topology design problems

In this section we will explain how the SPCA method can be applied to solving TTD problems
with (nonconvex) stress and displacement constraints. Several methods were proposed in the
literature to deal with these types of nonconvex constraints. In [8] a bilevel programming
approach is proposed for the minimum-compliance formulation of the TTD problem with

123

J Glob Optim (2010) 47:29–51 37

(a)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

x1

(b)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

x2

(c)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

x3

(d)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

x4

(e)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

x5

(f)

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

x25

Fig. 1 Iterations 1, . . . , 5 and 25 of the SPCA method. The shaded area is the feasible set of the convex
approximation problem (Ek)

displacement constraints. A relaxation method for the TTD problem with stress constraints
has been presented in [7] and was further analyzed in [11]. In their approach, termed the epsi-
lon-relaxation method, the stress constraint is relaxed for a bar with small cross-sectional
area. As noted in [12], it is very difficult, however, to choose an appropriate value of relaxing
parameters to reach the globally optimal solution. An alternative to the epsilon-relaxation
methodology was proposed in [6], and is based on the same idea but is different in terms of
convergence features. In [12] the same authors proved that the problem can be rewritten as
a linear mixed 0–1 problem.

123

38 J Glob Optim (2010) 47:29–51

In this section we show that the SPCA method can be applied to TTD problem with
displacement and/or stress constraints.

4.1 The basic truss topology design (TTD) problem

A truss is a mechanical construction comprising thin elastic bars linked to each other, such as
an electric mast, a railroad bridge, or the Eiffel Tower, see [4]. The goal is to design a truss of
a given total weight best able to withstand the given load while satisfying other requirements
such as displacement and/or stress constraints or alternatively to find the minimum weight
truss satisfying stress and displacement constraints. In the sequel we will concentrate on
minimum-weight formulations.

A basic multiload TTD problem is described by the following mathematical formulation
which consists of minimizing total material (weight) subject to bounds on the compliance
for each of the K loading scenarios:

mint
∑n

i=1 ti
s.t. f T

k A(t)−1 fk ≤ γ k = 1, . . . K ,
ti ≥ ε i = 1, . . . , n.

(4.1)

The decision variables ti (i = 1, . . . , n) are the volumes of the corresponding bars, n is the
number of potential bars, fk is a load vector corresponding to the k-th scenario, γ is a known
upper bound on the compliance f T

k A(t)−1 fk (potential energy stored in the truss), ε is a
very small positive number and A(t) = ∑n

i=1 ti bi bT
i ∈ R

M×M is the so-called bar-stiffness
matrix. The vectors bi ∈ R

M depend on the coordinates of the nodes and the type of material
of the truss. The stiffness matrix is assumed to be a positive definite matrix for all t > 0 so
that the compliance constraints are well defined.

Problem (4.1) is a convex problem since for every k = 1, . . . , K , the compliance function
fk A(t)−1 fk is convex, see [4, Proposition 4.8.1] for details.

4.2 Nonconvex constraints

Consider the function

H(t) := |qT A(t)−1 f |, (4.2)

where q, f ∈ R
M are fixed vectors and A(t) is the bar-stiffness matrix just defined. We will

now show that displacement and stress constraints, which are nonconvex, can be formulated
using the function H .

4.2.1 Displacement constraints

Recall that the displacement vector corresponding to the k-th scenario is given by uk :=
A(t)−1 fk . A displacement constraint consists of bounding a certain norm of the displace-
ment vector:

||A(t)−1 fk || ≤ ρ. (4.3)

Depending on the choice of the norm || · || we can obtain different representations of the
displacement constraint (4.3). For example, in the case of an l1-norm, the constraint (4.3)
can be written in the following form:

123

J Glob Optim (2010) 47:29–51 39

|eT
j A(t)−1 fk | ≤ τ j , j = 1, . . .M,

M∑

j=1

τ j ≤ ρ, (4.4)

where e j is the j-th unit vector. If we use the l∞-norm we obtain constraints of the form:

|eT
j A(t)−1 fk | ≤ ρ, j = 1, . . . ,M. (4.5)

Alternatively, we might be interested also to restrict displacements just of certain nodes and
not of all nodes. In this case we add only some of the constraints of (4.5). In all the above
examples of displacement constraints, the corresponding nonconvex constraints are indeed
special cases of the function H(t) given in (4.2).

4.2.2 Stress constraints

Suppose we are interested in restricting stresses in bars by some finite upper bound ν. This
can be formulated as follows

|√EbT
i A(t)−1 fk | ≤ ν, i = 1, . . . , n, (4.6)

where E is the Young modulus of the material. The stress constraint function is just the
function H with q = √

Ebi and f = fk .
To summarize, using the function H(t) defined in (4.2), it is possible to incorporate several

types of displacement and stress constraints. All these problems are then modelled by the
following nonconvex problems in variables t ∈ R

n and v ∈ R
d :

min
∑n

i=1 ti

s.t. f T
k A(t)−1 fk ≤ γ, k = 1, . . . , K

|qT
j A(t)−1r j | ≤ α jv j + β j , j = 1, . . . , d

Pv + c ≤ 0

ti ≥ ε, i = 1, . . . , n,

(4.7)

where P ∈ R
l×d , c ∈ R

l , q1, . . . , qd , r1, . . . , rd ∈ R
M , α1, . . . , αd , β1, . . . , βd ∈ R. We

will assume the more general setting in which A(t) is given by:

A(t) =
n∑

i=1

ti Bi BT
i , Bi ∈ R

M×µ.

The feasible set of (4.7) is compact and we will assume that it is nonempty. To solve (4.7) by
the SPCA method, we first develop a convex upper approximation for the generic function
H(t) in (4.2) and use it to approximate the nonconvex constraints in (4.7).

4.3 A convex approximation

Consider again the nonconvex function H(t) given in (4.2) and define the function:

Fλ,h(t) = λ

2
qT A(t)−1q + 1

2λ
(f + A(t)h)T A(t)−1(f + A(t)h),

123

40 J Glob Optim (2010) 47:29–51

where the scalar λ > 0 and the vector h ∈ R
M are fixed parameters. Let us begin by showing

that Fλ,h(·) is convex.

Proposition 4.1 For a given λ > 0 and a vector h ∈ R
M the function Fλ,h(t) is convex for

any t > 0.

Proof The function Fλ,h(t) is a linear combination of two functions F1, F2 where F1 :=
qT A(t)−1q and F2 := (f + A(t)h)T A(t)−1(f + A(t)h). The epigraph of F1 is given by

{(t, u1)|u1 ≥ qT A(t)−1q},
which, by Schur complement, can be equivalently written as

{
(t, u1) :

(
u1 qT

q A(t)

)
� 0

}
.

Similarly, the epigraph of F2 is given by
{
(t, u2) :

(
u2 (f + A(t)h)T

f + A(t)h A(t)

)
� 0

}
.

Therefore, the epigraphs of F1 and F2, being representable by linear matrix inequalities, are
convex sets, thus proving that F1, F2, and consequently also Fλ,h , are convex functions.
�

Next, in Theorem 4.3, we will show that under some conditions on the vector h, Fλ,h is
an upper bound on H . To show this, we will use the following simple lemma.

Lemma 4.2 Let α > 0, β ≥ 0 be given. Then the optimal solution of the minimization
problem

min
λ≥0

{
λ

2
α + 1

2λ
β

}

is λ =
√
β
α

with a corresponding optimal value
√
αβ.

Theorem 4.3 For every scalar λ > 0 and every vector h such that qT h = 0 it holds that

H(t) ≤ Fλ,h(t) for every t > 0.

Proof By the fact that qT h = 0 we can write (here ‖ · ‖ is the Euclidean l2 norm)

H(t) = |qT A(t)−1 f | = |qT A(t)−1(f + A(t)h)|
=

∣
∣
∣qT A(t)−1/2 A(t)−1/2(f + A(t)h)

∣
∣
∣

≤ ‖A(t)−1/2q‖ · ‖A(t)−1/2(f + A(t)h)‖
= (qT A(t)−1q)1/2((f + A(t)h)T A(t)−1(f + A(t)h))1/2,

where the inequality follows from the Cauchy-Schwartz inequality. Using Lemma 4.2 we
have

H(t) ≤ (qT A(t)−1q
︸ ︷︷ ︸

α

)1/2((f + A(t)h)T A(t)−1(f + A(t)h)
︸ ︷︷ ︸

β

)1/2

= min
λ̃≥0

{
λ̃

2
qT A(t)−1q + 1

2λ̃
(f + A(t)h)T A(t)−1(f + A(t)h)

}

≤ Fλ,h(t).

�

123

J Glob Optim (2010) 47:29–51 41

Next we show that Property A holds for H(t) and its convex approximation Fλ,h(t), namely,
that for every t > 0 there exists a choice of the parameters λ, h for which the function values
and gradients of H, Fλ,h coincide.

Proposition 4.4 Consider the function H given in (4.2) with A(t) = ∑N
i=1 ti Bi BT

i (Bi ∈
R

M×µ) and let t > 0 with H(t̄) �= 0. Then it holds that

H(t) ≤ Fλ,h(t) for every t > 0, (4.8)

H(t̄) = Fλ,h(t̄), (4.9)

∇ H(t̄) = ∇Fλ,h(t̄), (4.10)

where

λ = |θ |,
h = A(t̄)−1(θq − f).

with

θ = qT A(t̄)−1 f

qT A(t̄)−1q
.

Proof By Theorem 4.3, in order to prove (4.8), it is enough to show that qT h = 0, λ > 0.
The inequality λ > 0 is satisfied since

λ̄ = |θ | = |H(t̄)|
qT A(t̄)q

> 0.

Now,

qT h = qT A(t̄)−1(θq − f) = θqT A(t̄)−1q − qT A(t̄)−1 f = 0,

thus establishing (4.8). To show (4.9) let us plug the expressions for λ and h in Fλ,h(t̄):

Fλ,h(t̄) = |θ |
2

qT A(t̄)−1q + 1

2|θ |θ
2qT A(t̄)−1q = |θ |qT A(t̄)−1q = |qT A(t̄)−1 f | = H(t̄).

It remains to check that condition (4.10) is satisfied. Recalling that A(t) = ∑N
i=1 ti Bi BT

i , it
is not difficult to verify that

∂Fλ̄,h̄(t)

∂ti

∣
∣
∣
∣
t=t̄

= Tr

(
BT

i

(
− λ̄

2
A(t̄)−1qqT A(t̄)−1 − 1

2λ̄
A(t̄)−1 f f T A(t̄)−1 + 1

2λ̄
h̄h̄T

)
Bi

)
.

(4.11)

Substituting the expressions for (λ, h) into (4.11) we get:

∂Fλ̄,h̄(t)

∂ti

∣
∣
∣
∣
t=t̄

= Tr

(
BT

i

(
− sign(θ)

2
A(t̄)−1 f qT A(t̄)−1 − sign(θ)

2
A(t̄)−1q f T A(t̄)−1

)
Bi

)
,

(4.12)

123

42 J Glob Optim (2010) 47:29–51

where the sign of θ equals to the sign of the expression qT A(t)−1 f . The function H(t) :=
|qT A(t)−1 f | is differentiable for all t > 0 except for t’s in which |qT A(t)−1 f | = 0. Since
we assumed that H(t̄) �= 0 we have:

∂H(t)

∂ti

∣
∣
∣
∣
t=t̄

= −sign(θ)Tr

(
BT

i

(
A(t̄)−1 f qT A(t̄)−1

2
+ A(t̄)−1q f T A(t̄)−1

2

)
Bi

)
,

(4.13)

which is exactly the expression (4.12).
�

Remark 4.5 Note that as a consequence of Proposition 4.4, it is required that H(t) �= 0 each
time the convex approximation is invoked. In all of our numerical examples we noticed that
this assumption is indeed satisfied.

4.4 Implementation of the SPCA algorithm for the TTD problem

The main computational effort in solving the nonconvex TTD probem (4.7) is the solu-
tion, at each iteration, of the following convex approximation problem in variables ti (i =
1, . . . , N), v j (j = 1, . . . , d):

min
n∑

i=1

ti

s.t. f T
k A(t)−1 fk ≤ γ, k = 1, . . . , K

F̂λ j ,h j (t) = λ j

2
qT

j A(t)−1q j + 1

2λ j
(r j + A(t)h j)

T A(t)−1

×(r j + A(t)h j) ≤ α jv j + β j , j = 1, . . . , d

Pv + c ≤ 0

ti ≥ ε, i = 1, . . . , n. (4.14)

An important fact, which makes the task of solving the convex approximation problem (4.14)
a tractable one, is that it can be cast as a conic quadratic problem (CQ). To see this note first
that the convex approximation function F̂λ j ,h j (t) can be written as

F̂λ j ,h j (t) = λ j

2
qT

j A(t)−1q j + 1

2λ j
r T

j A(t)−1r j + 1

2λ j
hT

j A(t)h j + 1

λ j
r T

j h j .

Hence, problem (4.14) can be rewritten with the original variables t j , v j and additional
variables τ j , θ j as

123

J Glob Optim (2010) 47:29–51 43

min
∑n

i=1 ti

s.t. f T
k A(t)−1 fk ≤ γ, k = 1, . . . , K

qT
j A(t)−1q j ≤ τ j , j = 1, . . . , d

r T
j A(t)−1r j ≤ θ j , j = 1, . . . , d

λ j
2 τ j + 1

2λ j
θ j + 1

2λ j
hT

j A(t)h j + 1
λ j

r T
j h j ≤ α jv j + β j , j = 1, . . . , d

Pv + c ≤ 0

ti ≥ ε, i = 1, . . . , n.

(4.15)

To show that (4.15) can be cast as a CQ problem it suffices to show that a generic constraint

f (t) ≡ qT A(t)−1q ≤ τ (4.16)

has a CQ representation. The latter fact is proved in [4], here we give a shorter self contained
proof. We are going to show that t > 0 satisfies the inequality (4.16) if and only if there exist
vectors si ∈ R

µi = 1, . . . , n that together with t satisfy the system:

n∑

i=1

Bi si = q,

n∑

i=1

||si ||2
ti

≤ τ, (4.17)

t > 0.

This system can be further reduced to the following CQ system in variables ti , si and σi :

n∑

i=1

Bi si = q,

||si ||2 ≤ tiσi , ∀i = 1, . . . n,

n∑

i=1

σi ≤ τ, (4.18)

t > 0.

First, observe that t solves (4.16) if and only there exists x ∈ R
M such that

A(t)x =
n∑

i=1

ti Bi BT
i x = q, (4.19)

qT x ≤ τ.

Now assume that (4.19) has a solution (t, x). Define

si = ti BT
i x i = 1, . . . , n. (4.20)

123

44 J Glob Optim (2010) 47:29–51

From (4.20) it follows immediately that:

n∑

i=1

||si ||2
ti

=
n∑

i=1

ti xT Bi BT
i︸ ︷︷ ︸

qT

x = qT x ≤ τ

and
n∑

i=1

Bi si =
n∑

i=1

ti Bi BT
i x = q.

Hence we proved that if (t, x) solves (4.19), then there exist vectors s1, . . . , sn such that
(t, s1, . . . , sn) solves (4.17).
Conversely, suppose that (4.17) has a solution (t, s1, . . . , sn), then

min
s

{
n∑

i=1

||si ||2
ti

:
n∑

i=1

Bi si = q

}

≤ τ, (4.21)

and the optimal solution, which we denote by s̄, surely satisfies (4.17). The KKT optimality
conditions for this problem imply that there exists a vector of multipliers y ∈ R

M for which

∇si

⎡

⎣
n∑

i=1

||s̄i ||2
ti

+
(

q −
n∑

i=1

Bi s̄i

)T

y

⎤

⎦

si =s̄i

= 0, i = 1, . . . , n

i.e.

2
s̄i

ti
− BT

i y = 0, i = 1, . . . , n.

Hence, the vector x = 2y satisfies

s̄i = ti BT
i x, i = 1, . . . , n.

Substituting s̄i in the objective function in (4.21) we get

qT x ≤ τ

where

q =
n∑

i=1

Bi s̄i =
n∑

i=1

ti Bi BT
i x,

implying that (t, x) solves (4.19).
Summing up, the CQ problem solved at each iteration is the following:

minimize w

s.t. s2
i j ≤ tiσi j , i = 1, . . . , n, j = 1, . . . , K ,

p2
i j ≤ ti p̂i j , i = 1, . . . , n, j = 1, . . . , d,

l2
i j ≤ ti l̂i j , i = 1, . . . , n, j = 1, . . . , d,
n∑

i=1

σi j ≤ γ, j = 1, . . . , K ,

123

J Glob Optim (2010) 47:29–51 45

n∑

i=1

p̂i j ≤ τ j , j = 1, . . . , d,

n∑

i=1

l̂i j ≤ θ j , j = 1, . . . , d,

λ j

2
τ j + θ j

2λ j
+ 1

2λ j

n∑

i=1

(hT
j Bi BT

i h j)ti + 1

λ j
r T

j h j ≤ α jv j + β j , j = 1, . . . , d,

n∑

i=1

si j bi = f j , j = 1, . . . , K ,

n∑

i=1

pi j bi = q j , j = 1, . . . , d,

n∑

i=1

li j bi = r j , j = 1, . . . , d,

Pv + c ≤ 0,
n∑

i=1

ti ≤ w,

ti ≥ ε, i = 1, . . . , n (4.22)

with variables ti , si j , σi j , pi j , p̂i j , li j , l̂i j , v j , τ j and θ j .

5 Computational results

In this section we describe several numerical experiments showing the effectiveness of the
SPCA method as applied to TTD problems with displacement constraints. The convex sub-
problems were cast as conic quadratic problems (4.22), and solved by MOSEK software
package. In all the TTD examples here, we solve a minimum weight (volume) problem sub-
ject to compliance, displacement and/or stress constraints. To find an initial feasible point,
all the bar weights were chosen to be equal to some constant. We then enlarged this constant
until all constraints were satisfied.

Example 5.1 Consider the single load TTD problem with two vertical external forces
described in Fig. 2 with the following ground structure: 18 free nodes, 2 fixed nodes, 117
potential bars. The forces are marked by the two arrows and the fixed nodes are marked by
black squares. The logarithm of the total material volume, p∗ = logw, for the solution of
the convex TTD problem without displacement constraints, that is, problem (4.1) was equal
to p∗ = 7.47. The optimal truss is described by solid lines and the displaced truss is given
by by the dashed lines. The maximal displacement in the optimal structure is 0.66. We added
(nonconvex) displacement constraints to the two nodes on which the forces act; these were
indeed the nodes in which the displacement was the largest (as can be clearly seen in Fig. 2).
We limited the displacement at each of these nodes to be at most 0.1. In Fig. 3 we can see
that the solution of the TTD problem with the additional displacement constraints is much
more stable. The cost is that the total material volume of the new optimal truss increased
(p∗ = 9.37). We obtained this solution in five iterations of the SPCA method after which no
significant reduction of the total material volume occurred.

123

46 J Glob Optim (2010) 47:29–51

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 2 Maximal displacement equals to 0.66 and log(w) = 7.47

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 3 Maximal displacement equals to 0.1 and log(w) = 9.37

Example 5.2 This example also deals with the single load scenario problem with three ver-
tical forces. The ground structure consists of 40 free nodes, 2 fixed nodes and 559 potential
bars. In Fig. 4 we can see the optimal truss and its displacement for the basic convex TTD
problem. In Fig. 5 the optimal design obtained after adding displacement constraints is shown.
As in the previous example, we restricted the displacement at the three nodes in which the
forces act to be no more than 0.1. Here the solution was obtained after 10 iterations of the

123

J Glob Optim (2010) 47:29–51 47

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

Fig. 4 Maximal displacement equals to 1.18 and log(w) = 1.89

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

Fig. 5 Maximal displacement equals to 0.1 and log(w) = 4.31

SPCA method. The value of the objective function p∗ increased from 1.89 to 4.31 and the
maximal displacement was reduced from 1.18 to 0.1.

Example 5.3 In the third example we solved a multiload TTD problem with the same ground
structure as in the previous example and with three load scenarios. In each of the three sce-
narios, one vertical force acts on the truss (colored arrows in Fig. 6). In Fig. 6 we can see the
optimal truss obtained by solving the basic convex TTD problem. The displacement caused
by each scenario is shown in Fig. 7. We then limited the maximal displacement in the three

123

48 J Glob Optim (2010) 47:29–51

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

Fig. 6 Topology design of the truss with three load scenarios

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

Fig. 7 Maximal displacement of the truss over all three scenarios equals to 0.67 and log(w) = 2.21

nodes on which the force are activated to be no more than 0.1. In the last three images of
Fig. 8, we see the truss design and the corresponding displacement for each of the three
scenarios. This solution was obtained after two iterations of the SPCA method.

The CPU time of each experiment was <1 min.

Example 5.4 The example deals with a three dimensional problem with 25 potential bars,
two load scenarios and 86 nonconvex constraints (36 displacement and 50 stress constraints).
The data for this example is based on problem 16 in [10]. The lower bound for all cross

123

J Glob Optim (2010) 47:29–51 49

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

Fig. 8 SPCA solution: maximal displacement of the truss over all three scenarios equals to 0.1 and log(w) =
4.1

Table 1 Lengths of bars i Comments

li 75 i = 1, 10, 11, 12, 13

li
25
2

√
109 i = 2, 3, 4, 5

li
25
2

√
73 i = 6, 7, 8, 9

li 25
√

105
2 i = 14, . . . , 21

li 25
√

57
2 i = 22, 23, 24, 25

sections equals to 0.01, the bound for all displacements is 0.35 and the bound for all stresses
is 2000. The density of material is 0.1 and Young modulus equals to 107. The lengths of bars
and loads are given in Tables 1 and 2, respectively. The numbering of the bars and the nodes
can be seen in Fig. 9 (the numbers in parenthesis correspond to bars and the bold numbers
correspond to nodes).
Results. At the starting point the weight was 3000 (equally distributed between 25 bars). It
was reduced after 200 iterations (CPU: 6 min) to 1010.9. From there, no significant progress
in the objective value was observed and the algorithm was stopped. The stopping rule (2.3)
based on the KKT conditions was valid with ε = 10−4. The final structure is depicted in
Fig. 9.

123

50 J Glob Optim (2010) 47:29–51

Table 2 Load conditions j Comments

f j1 1000 j = 1

f j1 10000 j = 2, 5

f j1 −5000 j = 3, 6

f j1 500 j = 7, 16

f j1 0 Otherwise

f j2 20000 j = 2

f j2 0.1 j = 1, 4

f j2 −5000 j = 3, 6

f j2 −20000 j = 5

f j2 0 Otherwise

−100 −80 −60 −40 −20 0 20 40 60 80 100

−100
−50

0
50

100
0

20

40

60

80

100

120

140

160

180

200 (1)

2

1

(9)

6

(22)

10

(5)

(10)

(4)

(8)

(7)
(6)(3)

(2)

(12)
3

4

(11)
5

(13)

(20)

(14) (24)

(21)

(15)
(23)

(16)

9

(18)

7 (17)

(19)

(25)

8

Fig. 9 The truss topology in the Example 5.4

Acknowledgements This work was partly supported by the EU Commission in the Sixth Framework Program,
Project 30717 PLATO-N.

References

1. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method,αBB, for general twice-dif-
ferentiable NLPs implementation and computational results. Comput. Chem. Eng. 22, 1159–1178 (1998)

2. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, αBB, for general
twice-differentiable NLPs theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998)

3. Ben-Tal, A., Jarre, F., Kocvara, M., Nemirovski, A., Zowe, J.: Optimal design of trusses under a nonconvex
global buckling constraint. Optim. Eng. 1, 189–213 (2000)

4. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. MPS-SIAM Series on Optimi-
zation (2001)

5. Bertsekas, D.P.: Nonlinear Programming. 2nd edn. Athena Scientific, Belmont, MA (1999)
6. Braggi, M.: On an alternative approach to stress constraints relaxation in topology optimization. Struct.

Multidiscipl. Optim. 36, 125–141 (2008)

123

J Glob Optim (2010) 47:29–51 51

7. Cheng, G., Guo, X.: Epsilon-relaxed approach to structural topology optimization. Struct. Optim. 13, 258–
266 (1997)

8. Kocvara, M.: Topology optimization with displacement constraints: a bilevel programming approach.
Struct. Multidiscipl. Optim. 14(4), 256–263 (1997)

9. McCormick, G.P.: Nonlinear programming. John Wiley & Sons Inc., New York, (1983). Theory, algo-
rithms, and applications, A Wiley-Interscience Publication

10. Stolpe, M.: Global optimization of minimum weight truss topology problems with stress, displacement,
and local buckling constraints using branch-and-bound. Int. J. Numer. Methods Eng. 61, 1270–1309 (2004)

11. Stolpe, M., Svanberg, K.: On the trajectories of the epsilon-relaxation approach for stress-constrained
truss topology optimization. Struct. Multidiscipl. Optim. 21, 140–151 (2001)

12. Stolpe, M., Svanberg, K.: A note on stress-constrained truss topology optimization. Struct. Multidiscipl.
Optim. 25, 62–64 (2003)

123

	A sequential parametric convex approximation method with applications to nonconvex truss topology design problems
	Abstract
	1 Introduction
	2 The sequential parametric convex approximation (SPCA) method
	3 Convergence analysis and example
	4 Nonconvex truss topology design problems
	4.1 The basic truss topology design (TTD) problem
	4.2 Nonconvex constraints
	4.2.1 Displacement constraints
	4.2.2 Stress constraints

	4.3 A convex approximation
	4.4 Implementation of the SPCA algorithm for the TTD problem

	5 Computational results
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

