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1. Introduction

Consider a general uncertain optimization problem

(P)
min

x
g(x;u)

s.t. fi(x; vi) ≤ 0, i = 1, . . . ,m,
x ∈ Rn,

(1.1)

where g and fi are convex functions with respect to the decision
variable x and u ∈ Rp, vi ∈ Rqi are the uncertain parameters of the
problem.
Robust optimization (RO) [1,2] is one of the basicmethodologies

that deals with the case in which the parameters u, vi are not
exactly known. The setting in RO is that the information available
on the uncertainties is crude: u and vi are only known to reside in
certain convex compact uncertainty sets:

u ∈ U, vi ∈ Vi, i = 1, . . . ,m.

A vector x is a robust feasible solution of (P) if it satisfies the
constraints for every possible realization of the parameters. That
is, it satisfies for every i = 1, . . . ,m:

fi(x; vi) ≤ 0 for every vi ∈ Vi.

We emphasize the fact that RO deals exclusively with problems
modelled as (1.1), i.e., all constraints are inequalities and the
uncertainty is constraint-wise. The constraints in problem (1.1) can
be written as

Fi(x) ≤ 0, i = 1, . . . ,m,
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where

Fi(x) = max
vi∈Vi

fi(x; vi). (1.2)

If we will also denote

G(x) = max
u∈U

g(x,u), (1.3)

then the robust counterpart (RC) of the original problem is given by

min G(x)
s.t. Fi(x) ≤ 0, i = 1, . . . ,m,

x ∈ Rn.
(1.4)

The functions F and Gi are convex as pointwise maxima of convex
functions [6]. Therefore, the robust counterpart (1.4) is always
a convex optimization problem and thus it has a dual convex
problem (call it (DR-P)), which under some regularity conditions
has the same value as the primal problem. At the same time the
primal uncertain problem (P) itself has an uncertain dual problem
(call it (D)), with the same uncertain parameters. In this paper we
study the relation between (DR-P) and the uncertain dual problem
(D). The relation involves the notion of ‘‘optimistic counterpart’’
which is introduced in Section 2. We then show in Section 3
that for linear programming (LP) problems the dual of the robust
counterpart is the optimistic counterpart of the uncertain dual
problem. For LP problems the dual of the robust counterpart can
be computed explicitly and so the above relation is explicitly
revealed. In the last sectionwe study the same relation for a general
uncertain convex program. Although here the robust counterpart
cannot be computed explicitly, we employ a minimax theorem to
show that the relation ‘‘primal worst equals dual best’’ is valid;
so, while in the primal robust problem we have a decision maker
operating under the worst possible data, in the dual problem we
have a decision maker operating under the best possible data.
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2. The optimistic counterpart

A vector x is an optimistic feasible solution of (P) if it satisfies the
constraints for at least one realization of the uncertainty set. That is,
x is optimistic feasible solution if and only if for every i = 1, . . . ,m

fi(x; vi) ≤ 0 for some vi ∈ V.

The optimistic counterpart of problem (P) consists of minimizing
the best possible objective function (i.e., minimal with respect to
the parameters) over the set of optimistic feasible solutions:

min
x

[
min
u∈U
g(x;ui)

]
s.t. fi(x; vi) ≤ 0 for some vi ∈ Vi, i = 1, . . . ,m,

x ∈ Rn.

Denoting Ĝ(x) = minu∈U g(x;u) and F̂i(x) = minvi∈Vi fi(x; vi), the
above problem can be equivalently written as

(OC)
min

x
Ĝ(x)

s.t. F̂i(x) ≤ 0, i = 1, . . . ,m,
x ∈ Rn.

As opposed to the robust counterpart, the above problem is
in general not convex. The objective function Ĝ and constraints
F̂i are pointwise minima of convex functions and as such do not
necessarily posses any convexity/concavity properties.

Example 2.1 (Linear Programming). Consider a linear program-
ming (LP) problem

min cTx
s.t. aTi x ≤ bi, i = 1, . . . ,m,

x ∈ Rn,
(2.1)

where c, ai ∈ Rn, i = 1, . . . ,m and bi ∈ R for every i = 1, . . . ,m.
Suppose now that the vectors ai are not fixed but rather known to
reside in an uncertainty set Vi which is an l∞ balls of the form:

Vi = {ãi + vi : ‖vi‖∞ ≤ ρ},

where ãi is the nominal value of ai and ρ > 0. This means that the
coefficients aij (jth component of ai) have an interval uncertainty:
|aij − ãij| ≤ ρ. The ith constraint function is Fi(x) ≡ maxvi(ãi +
vi)Tx = ãTi x + ρ‖x‖1, and consequently the robust counterpart
becomes

min cTx
s.t. ãTi x+ ρ‖x‖1 ≤ bi, i = 1, . . . ,m,

x ∈ Rn.

The above problem is of course a convex optimization problem
and can be cast as an LP, thus rendering it tractable. On the other
hand, the ith constraint in the optimistic counterpart is given by
F̂i(x) = minvi(ãi + vi)Tx = ãTi x − ρ‖x‖1. Consequently, the
optimistic counterpart of (2.1) is

min cTx
s.t. ãTi x− ρ‖x‖1 ≤ bi, i = 1, . . . ,m,

x ∈ Rn,

which is clearly not a convex problem.
Note however that if instead of (2.1) the nonlinear LP is

min cTx
s.t. aTi x ≤ bi, i = 1, . . . ,m,

x ≥ 0,
(2.2)
then the corresponding optimistic counterpart associated with the
same uncertainty sets Vi is

min cTx

s.t. ãTi x− ρ
n∑
i=1

xi ≤ bi, i = 1, . . . ,m,

x ≥ 0,

which is a convex (in fact linear) program. Thus we observe that
the convexity status of the optimistic counterpart depends among
other things on the representation of the nominal problem. It also
depends on the choice of the uncertainty set; for example, for the
same nominal problem (2.2) if the uncertainty setsUi are

Ui = {ãi + vi : ‖vi‖2 ≤ ρ}, i = 1, . . . ,m,

then the optimistic counterpart is again a nonconvex problem:

min cTx
s.t. ãTi x− ρ‖x‖2 ≤ bi, i = 1, . . . ,m,

x ≥ 0. �

Example 2.2 (Robust and Optimistic Least Squares). Given a matrix
A ∈ Rm×n and a vector b ∈ Rm, the celebrated least squares
problem [3] consists of minimizing the data error over the entire
space:

(LS) min
x
‖Ax− b‖2.

Now, assume that the matrix A is not fixed but is rather known to
reside in the uncertainty set:

U = {∆̃+ U : ‖∆‖F ≤ ρ},

where ‖ · ‖F stands for the Frobenius norm and Ã is the fixed
nominal matrix. The robust counterpart of (LS) is given by

(R-LS) min
x
max
A∈U
‖Ax− b‖2.

This problemwas introduced and studied in [5]where it was called
robust least squares. By explicitly solving the inner maximization
problem (see [5]), (R-LS) becomes

min
x
‖Ãx− b‖2 + ρ‖x‖2.

The above is of course a convex problem, and more specifically a
conic quadratic problem, that can be solved efficiently.
Here the optimistic counterpart of (LS) is given by

(O-LS) min
x
min
A∈U
‖Ax− b‖2.

Using the variational form of the Euclidean norm, the inner
minimization problem becomes

min
‖∆‖F≤ρ

‖Ãx− b+∆x‖2 = min
‖∆‖F≤ρ

max
y:‖y‖2≤1

yT(Ãx− b+∆x)

= max
y:‖y‖2≤1

min
‖∆‖F≤ρ

yT(Ãx− b+∆x)

= max
y:‖y‖2≤1

yT(Ãx− b)− ρ‖x‖2‖y‖2, (2.3)

where the second equality follows from the equality between
min–max and max–min for convex–concave functions [6, Corol-
lary 37.3.2]. An explicit expression for (2.3) can be found as fol-
lows:

max
y:‖y‖≤1

yT(Ãx− b)− ρ‖x‖‖y‖ = max
0≤α≤1

max
‖y‖=α

yT(Ãx− b)− ρ‖x‖α,

= max
0≤α≤1

α(‖Ãx− b‖ − ρ‖x‖)

=

[
‖Ãx− b‖ − ρ‖x‖

]
+
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where for a scalar x, [x]+ denotes the positive part of x:

[x]+ =
{
x x > 0,
0 x ≤ 0.

Therefore, (O-LS) simplifies to

min
x
[‖Ãx− b‖2 − ρ‖x‖2]+,

which is not a convex optimization problem. It is interesting to
note that as was shown in [5], the solution of (R-LS) is of the form
x̂ = (Ã

T
Ã+ αI)−1Ã

T
bwhere α ≥ 0 and in [4] it was shown, under

the assumption that ρ is ‘‘small enough’’, that the solution of (O-
LS) is of the form x̂ = (Ã

T
Ã − βI)−1Ã

T
b where β ≥ 0. Both α

and β are solutions of certain one-dimensional secular equations.
Therefore, the optimal solution of (R-LS) is a regularization of the
least squares solution while the optimal solution of (O-LS) has an
opposite de-regularization effect. �

We end this section by defining the optimistic counterpart for
a more general optimization model in which equality constraints
are also present and with uncertainty parameters which are
not necessarily constraint-wise. Specifically, consider the general
model

(G)

min
x

g(x;u)
s.t. H(x; v1) ≤ 0,

K(x; v2) = 0,
x ∈ Rn

where H : Rn → Rm1 and K : Rn → Rm2 are vector functions
and g : Rn → R is a scalar function of n variables. The parameters
u ∈ Rp, v1 ∈ Rq1 , v2 ∈ Rq2 are uncertain and only known to reside
in compact setsU1,V1 andV2 respectively. The optimistic counter
part of problem (G) is defined as

(O-G)

min
x

min
u∈U
g(x;u)

s.t. H(x; v1) ≤ 0 for some v1 ∈ V1,
K(x; v2) = 0 for some v2 ∈ V2,
x ∈ Rn.

Note that as opposed to the robust counterpart, in the context of
the optimistic counterpart, it doesmake sense to deal with equality
constraints.

3. The dual of robust linear programming problems

In this section we consider an LP of the following general form:

(LP)
max cTx
s.t. aTi x ≤ bi, i = 1, . . . ,m,

x ≥ 0,
(3.1)

where c, ai ∈ Rn. Assume now that for every i = 1, . . . ,m,
the vector ai is not fixed but rather known to reside in some
uncertainty setUi:

ai ∈ Ui,

whereUi is a nonempty compact set. We assume that b and c are
certain data vectors for the sake of exposition. Indeed a problem
with uncertainty in the objective function and righthand side of the
constraints can be reduced to an equivalent one with uncertainty
only in the lefthand side of the constraints. Throughout, the
letters ‘‘D’’, ‘‘R’’, ‘‘O’’ stand for ‘‘dual’’, ‘‘robust’’ and ‘‘optimistic’’
respectively. In particular, (R-LP) is the robust counterpart of (LP),
(DR-LP) is the dual of (R-LP), (D-LP) is the dual of (LP) and (OD-LP)
is the optimistic counterpart of (D-LP).
Now, consider (DR-LP) – the dual of the robust counterpart of

(LP). A very natural question is whether or not the dual of the
robust counterpart is the same as the robust counterpart of the
dual problem. The answer is certainly not. On the contrary, we will
show in this section (Theorem 3.1) that regardless of the choice
of the uncertainty set, problem (DR-LP) – the dual of the robust
counterpart of (LP) – is the same as the optimistic counterpart of
the dual problem of (LP), that is, problem (OD-LP). The following
sketch illustrates this relation.

(LP)
robust ↙ ↘ dual

(R-LP) (D-LP)
dual ↓ ↓ optimistic

(DR-LP) = (OD-LP)

We use the following notation. For a compact nonempty set S,
the support function of S at a point y is denoted by

σS(y) ≡ max{yTz : z ∈ S}.

Theorem 3.1. The dual of the robust counterpart of (LP) and the
optimistic counterpart of the dual problem of (LP) are both given by
the convex program

(DR-LP),(OD-LP)
min bTy
s.t. g(y) ≥ 0,

y ≥ 0,
(3.2)

where

g(y) = min
x≥0

{
m∑
i=1

yiσUi(x)− cTx

}
. (3.3)

Proof. The ith constraint of the robust counterpart of (3.1) is

max{aTi x : ai ∈ Ui} ≤ bi,

which can also be written as

(R-LP)
max

x
cTx

s.t. σUi(x) ≤ bi, i = 1, . . . ,m,
x ≥ 0.

To construct the dual, let us write the Lagrangian:

L(x, y) = cTx−
m∑
i=1

yi(σUi(x)− bi).

By the homogenicity of the support function we have

max
x≥0

L(x, y) =
{
bTy g(y) ≥ 0,
∞ else

where g is given in (3.3). Therefore, the dual problem of (R-LP) is
given by

(DR-LP)
min bTy
s.t. g(y) ≥ 0,

y ≥ 0,

where g is given in (3.3). Let us now consider the uncertain dual
problem of (LP):

(D-LP)

min
y

bTy

s.t.
m∑
i=1

yiai ≥ c,

y ≥ 0.

(3.4)

A vector y ≥ 0 is optimistic-feasible solution of (D) if and only if

∃ai ∈ Ui :

m∑
i=1

yiai ≥ c.
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The latter is satisfied if and only if

max
ai∈Ui

min
z≥0

{
zT
(
m∑
i=1

yiai − c

)}
≥ 0.

Using the equality of min–max and max–min for convex–concave
functions [6, Corollary 37.3.2], we can replace the order of the min
and the max, thus resulting with

min
z≥0
max
ai∈Ui

{
m∑
i=1

yiaTi z− cTz

}
≥ 0,

which is the same as

g(y) = min
z≥0

{
m∑
i=1

yiσUi(z)− cTz

}
≥ 0.

Therefore, the optimistic counterpart of the dual problem (D-LP)
coincides with (DR-LP) — the dual of the robust counterpart of the
primal problem. �

Example 3.1. Suppose that the uncertainty setsUi are ellipsoidal
sets given by

Ui =
{
ai = ãi + vi : ‖vi‖2 ≤ ρ

}
, i = 1, . . . ,m.

In this case

σUi(x) = maxz∈Ui
xTz = max

‖vi‖2≤ρ
(xTãi + xTvi) = ãTi x+ ρ‖x‖2.

Therefore,

g(y) = min
x

{
m∑
i=1

yiσUi(x)− cTx

}

= min
x

(
m∑
i=1

yiãi − c

)T
x+ ρ

(
m∑
i=1

yi

)
‖x‖2

=

0
∥∥∥∥∥ m∑
i=1

yiãi − c

∥∥∥∥∥
2

≤ ρ

(
m∑
i=1

yi

)
−∞ else.

Plugging this in (3.2) we conclude that the dual of the robust
counterpart of LP, which is the same as the optimistic counterpart
of the dual of LP is given by the conic quadratic problem

max bTy

s.t.

∥∥∥∥∥ m∑
i=1

yiãi − c

∥∥∥∥∥
2

≤ ρ

(
m∑
i=1

yi

)
,

y ≥ 0. �

Theorem 3.1 shows that val(DR-LP) = val(OD-LP). In addition,
if (R-LP), the robust counterpart of (LP), is bounded below and
satisfies a regularity condition such as Slater condition, then
strong duality holds [6] and val(R-LP) = val(DR-LP). From this we
conclude that

val(R-LP) = val(OD-LP). (3.5)

Namely, the value of the robust counterpart of (LP) (‘‘primal
worst’’) is equal to the value of the optimistic counterpart of
the dual problem (‘‘dual best’’). To interpret this result, assume
that problem (LP) models a standard production problem. In this
context xj, the decision variable, stands for the amount to be
produced of item j; cj is the profit from the sale of one unit of item
j; aij (the jth component of the vector ai) is the quantity of resource
i needed to produce one unit of item j, and bi is the the available
supply of resource i. The dual problem of (3.1) is

min

{
bTy :

m∑
i=1

yiai ≥ c, y ≥ 0

}
. (3.6)

A common interpretation of the dual is as follows: suppose that
a merchant wants to buy the resources of the manufacturer. For
every i, his decision variable yi stands for the price he offers to pay
for purchasing one unit of resource i. Of course he wants to pay as
little as possible and thus his objective is to minimize bTy. The set
of constraints

∑m
i=1 aijyi ≥ cj indicates that the merchant has to

suggest competitive prices (so that the profit cj the manufacturer
can get from selling a unit of item j is nomore than the value he can
get from what the merchant is paying for the resources needed to
produce a unit of item j).
Now suppose that the vectors are uncertain. The robust

counterpart of the production problem (3.1) reflects in a sense
a pessimistic manufacturer that wishes to maximize his profit
under a worst case scenario. The equality (3.5) states that what is
worst for the factory is best for the merchant. Specifically, since
the manufacturer underestimates the value of the resources, the
merchant needs to be less competitive and can offer lower prices
for the resources, thus reducing his total payment.

Remark 3.1. In Example 2.1 we showed that the optimistic
counterpart of the LP (2.1) is nonconvex, and thus it cannot be
equivalent to the dual of a robust LP (which is always a convex
problem). How does this then agree with the duality result in
Theorem 3.1? the answer is that the LP in (2.1) is the dual of the
following LP:

max bTy

s.t.
m∑
i=1

yiai = c,

y ≤ 0,

which is not of the general form (3.1), where the constraints
are assumed to be inequalities and the uncertainties must be
constraint-wise.

4. Primal worst equals dual best

Consider now the general model (P) given in (1.1). The robust
counterpart of (P) is the problem (R-P) given in (1.1). The dual of
(R-P) is given by

max
λ≥0
min

x

{
G(x)+

m∑
i=1

λiFi(x)

}
.

Recalling the definition ofG and Fi (see (1.2) and (1.3)), the problem
becomes

(DR-P) max
λ≥0
min

x
max

u∈U,vi∈Vi

{
g(x;u)+

m∑
i=1

λifi(x; vi)

}
.

We will assume that Slater constraint qualification is satisfied
for problem (R-P) and that (R-P) is bounded below. Under these
conditions it is well known that val(R-P)= val(DR-P) [6].
On the other hand, the dual of (P) is given by

(D-P) max
λ≥0
q(λ;u, vi),

where

q(λ;u, vi) ≡ min
x

{
gi(x;u)+

m∑
i=1

λifi(x; vi)

}
. (4.1)
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The optimistic counterpart of (D-P) is

max
λ≥0

max
u∈U,vi∈Vi

q(λ;u, vi).

Plugging the expression (4.1) for q in the above problem, we arrive
at the following formulation of the optimistic counterpart of the
dual:

(OD-P) max
λ≥0

max
u∈U,vi∈Vi

min
x

{
gi(x;u)+

m∑
i=1

λifi(x; vi)

}
.

The LP case considered in Section 3 suggests that under some
conditions the optimal values of (OD-P) and (DR-P) are equal. The
following result shows that val(OD-P) is always greater than or
equal to val(DR-P) and that under suitable convexity assumptions,
equality holds.

Theorem 4.1. Consider the general convex problem (P) (problem
(1.1)). Then

val(OD− P) ≤ val(DR− P). (4.2)

If in addition the functions g, fi are concave with respect to the
unknown parameters u, vi, then the following equality holds:

val(OD− P) = val(DR− P). (4.3)

Proof. Sincemin–max is always greater than or equal tomax–min
we have:

val(OD-P) = max
λ≥0

max
u∈U,vi∈Vi

min
x

{
gi(x;u)+

m∑
i=1

λifi(x; vi)

}

≤ max
λ≥0
min

x
max

u∈U,vi∈Vi

{
gi(x;u)+

m∑
i=1

λifi(x; vi)

}
= val(DR-P).

If g, fi are concavewith respect tou, vi (in addition to the convexity
with respect to x), and since U,Vi are convex compact sets, then
by [6, Corollary 37.3.2] equality (4.3) holds. �

Clearly, Theorem4.1 generalizes the result obtained in Section 3.
As was noted in the LP case, by the strong duality result for

convex programming we know that val(R-P) = val(DR-P). We
therefore conclude that if the functions are all convex with respect
to x and concave with respect to u, vi — the unknown parameters,
then

val(R-P) = val(OD-P). (4.4)

Loosely speaking, relation (4.4) states that optimizing under the
worst case scenario in the primal is the same as optimizing under
the best case scenario in the dual (‘‘primalworst equals dual best’’).
Theorem 4.1 is not restricted only to LP problems. Another

interesting example is that of a convex quadratically constrained
quadratic programming (QCQP).

Example 4.1. Consider the QCQP problem

(QCQP)
min xTA0x+ 2bT0x+ c0
s.t. xTAix+ 2bTi x+ ci ≤ 0,

x ∈ Rn.

Then for each i = 0, 1, . . . ,m the matrix Ai is uncertain and
resides in the uncertainty set

Ui =

{
Ãi +∆i : ∆i = ∆Ti , ‖∆i‖2 ≤ ρi

}
here ‖S‖2 is the spectral norm of a matrix S, i.e., ‖S‖2 =√
λmax(STS). We assume that the nominal matrices Ãi are positive
definite and that ρi < λmin(Ãi) for every i = 0, 1, . . . ,m. Under
this condition the objective functions and constraints are strictly
convex for every possible realization of the uncertain parameters.
Therefore, the objective function and all the constraint functions
are convex with respect to x and concave (in fact linear) with
respect to∆i. By Theorem4.1 this implies that val(DR-P)= val(OD-
P). Let us find explicit expressions for these problems and verify the
result. Since for every i = 0, 1, . . . ,m

max
Ai∈Ui

xTAix+ 2bTi x+ ci = xT(Ãi + ρiI)x+ 2bTi x+ ci,

the robust counterpart of (QCQP) is given by

(R-QCQP)
min xT

(
Ã0 + ρ0I

)
x+ 2bT0x+ c0

s.t. xT
(
Ãi + ρiI

)
x+ 2bTi x+ ci ≤ 0,

x ∈ Rn.

The dual problem of (R-QCQP) is

(DR-QCQP) max
λ≥0
−

(
b0 +

∑
λibi

)T
×

(
Ã0 + ρ0I+

∑
λi(Ãi + ρiI)

)−1 (
b0 +

∑
λibi

)
+ c0 +

∑
ciλi,

where the summation is over i = 1, . . . ,m. Now consider the dual
problem of (QCQP):

(D-QCQP) max
λ≥0
−

(
b0 +

∑
λibi

)T
×

(
A0 +

∑
λiAi

)−1 (
b0 +

∑
λibi

)
+ c0 +

∑
ciλi.

The optimistic counterpart of (D-QCQP) is given by

max
λ≥0

max
‖∆i‖2≤ρi

−

(
b0 +

∑
λibi

)T
×

(
Ã0 +∆0 +

∑
λi

(
Ãi +∆i

))−1 (
b0 +

∑
λibi

)
+ c0 +

∑
ciλi. (4.5)

To solve the inner maximization, we will use the following
property: if two positive definite matrices satisfy A � B, then
A−1 � B−1. Therefore, since ∆i � ρiI for every i = 0, 1, . . . ,m,
we conclude that

−

(
b0 +

∑
λibi

)T (
Ã0 +∆0 +

∑
λi(Ãi +∆i)

)−1
×

(
b0 +

∑
λibi

)
≤ −

(
b0 +

∑
λibi

)T (
Ã0 + ρ0I+

∑
λi(Ãi + ρiI)

)−1
×

(
b0 +

∑
λibi

)
.

Since the upper bound is attained at∆i = ρiI, we conclude that the
solution of the inner maximization is ∆i = ρiI, thus simplifying
(4.5) to

(OD-QCQP) max
λ≥0
−

(
b0 +

∑
λibi

)T (
Ã0 + ρ0I

+

∑
λi

(
Ãi + ρiI

))−1 (
b0 +

∑
λibi

)
+ c0 +

∑
ciλi,
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which is the same as (DR-QCQP). Also note that by using
Schur complement, problem (DR-QCQP) can be cast as the linear
semidefinite program

max
λ≥0,t

−t + c0 +
∑
ciλi

s.t.

Ã0 + ρ0I+
∑

λi(Ãi + ρiI) b0 +
∑

λibi(
b0 +

∑
λibi

)T
t

 � 0. �

The next and last example illustrates that when the concavity
assumption of the functions with respect to the unknown
parameters fails, strict inequality may occur in (4.2).

Example 4.2. Consider the least squares problem

(LS): min ‖Ax− b‖2.

Let us assume that A is uncertain and is known to reside in a ball:

A ∈ U = {A0 +∆ : ‖∆‖F ≤ ρ} .

The robust counterpart of (LS) is:

min
x
max
‖∆‖F≤ρ

‖(A0 +∆)x− b‖2.

Solving the inner maximization problem, the above problem
reduces to

(R-LS) min
x
‖A0x− b‖2 + ρ‖x‖2.

The dual problem to (R-LS) is

(DR-LS)
max bTλ
s.t. ‖λ‖2 ≤ 1,

‖AT0λ‖2 ≤ ρ.

In order to write a dual problem of (LS), let us rewrite it first as

(LS′) min
x,y
{‖y‖2 : y = Ax− b} .

The dual problem to (LS′) is

(D-LS)
max bTλ
s.t. ‖λ‖2 ≤ 1

ATλ = 0.
To find the optimistic counterpart of the dual problem we need to
write explicitly (i.e., in terms of λ) the constraint:

ATλ = 0 for some A ∈ U.

The above constraint is the same as

‖AT0λ‖2 ≤ ρ‖λ‖2
and thus the optimistic counterpart of (D-LS) is

(OD-LS)
max bTλ
s.t. ‖λ‖2 ≤ 1

‖AT0λ‖2 ≤ ρ‖λ‖2.

The feasible set of (DR-LS) is contained in the feasible set of (OD-
LS), thus verifying the inequality

val(OD-LS) ≤ val(DR-LS).

Strict inequality may occur. For example, let us take m = n = 1
and A0 = 2, b = −2, ρ = 1. (DR-LS) is just the problem

max {−2λ : |λ| ≤ 1, |2λ| ≤ 1} ,

whose optimal solution λ = −0.5 with an optimal function value
of 1. On the other hand, (OD-LS) is

(OD-LS)max {−2λ : |λ| ≤ 1, |2λ| ≤ |λ|} .

The only feasible point in (OD-LS) is λ = 0. Thus, in this case the
optimal value of (OD-LS) is zero and is strictly smaller than the
optimal value of (DR-LS). �

References

[1] A. Ben-Tal, A. Nemirovski, Robust convex optimization, Math. Oper. Res. 23 (4)
(1998) 769–805.

[2] A. Ben-Tal, A. Nemirovski, Robust optimization—methodology and applications,
Math. Program. Ser. B 92 (3) (2002) 453–480. ISMP 2000, Part 2 (Atlanta, GA).

[3] A. Björck, Numerical Methods for Least-Squares Problems, SIAM, Philadelphia,
PA, 1996.

[4] S. Chandrasekaran, G.H. Golub, M. Gu, A.H. Sayed, Efficient algorithms for
least squares type problems with bounded uncertainties, in: Recent Advances
in Total Least Squares Techniques and Errors-in-variables Modeling (Leuven,
1996), SIAM, Philadelphia, PA, 1997, pp. 171–180.

[5] L. El Ghaoui, H. Lebret, Robust solution to least-squares problemswith uncertain
data, SIAM J. Matrix Anal. Appl. 18 (4) (1997) 1035–1064.

[6] R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1970.


	Duality in robust optimization: Primal worst equals dual best
	Introduction
	The optimistic counterpart
	The dual of robust linear programming problems
	Primal worst equals dual best
	References


