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Abstract. We consider the problem of locating a single radiating source from several noisy
measurements using a maximum likelihood (ML) criteria. The resulting optimization problem is
nonconvex and nonsmooth, and thus finding its global solution is in principle a hard task. Exploiting
the special structure of the objective function, we introduce and analyze two iterative schemes for
solving this problem. The first algorithm is a very simple explicit fixed-point-based formula, and the
second is based on solving at each iteration a nonlinear least squares problem, which can be solved
globally and efficiently after transforming it into an equivalent quadratic minimization problem with
a single quadratic constraint. We show that the nonsmoothness of the problem can be avoided
by choosing a specific “good” starting point for both algorithms, and we prove the convergence of
the two schemes to stationary points. We present empirical results that support the underlying
theoretical analysis and suggest that, despite of its nonconvexity, the ML problem can effectively be
solved globally using the devised schemes.
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1. Introduction.

1.1. The source localization problem. Consider the problem of locating a
single radiating source from noisy range measurements collected using a network of
passive sensors. More precisely, consider an array of m sensors, and let a; € R"
denote the coordinates of the jth sensor.! Let x € R™ denote the unknown source’s
coordinate vector, and let d; > 0 be a noisy observation of the range between the
source and the jth sensor:

(L1) d;=lx—aj]|+e5 j=1....m,

where € = (¢1,...,6m)7 denotes the unknown noise vector. Such observations can be
obtained, for example, from the time-of-arrival measurements in a constant-velocity
propagation medium. The source localization problem is the following.

The source localization problem: Given the observed range measurements
d; > 0, find a “good” approximation of the source x satisfying (1.1).
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n practical applications n = 2 or 3.
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The source localization problem has received significant attention in the signal
processing literature and specifically in the field of mobile phones localization [12, 5,
13]. Tt is also worth mentioning that the interest in wireless localization problems has
increased since the first ruling of the Federal Communications Commission (FCC) for
the detection of emergency calls in the United States in 1996 [17]. Currently, a high
percentage of Enhanced 911 (E911) calls originate from mobile phones. Due to the
unknown location of the wireless E911 calls, these calls do not receive the same quality
of emergency assistance that fixed network 911 calls enjoy. To deal with this problem,
the FCC issued an order on July 12, 1996, requiring all wireless service providers to
report accurate mobile station location information to the E911 operator.

In addition to emergency management, mobile position information is also useful
in mobile advertising, asset tracking, fleet management, location-sensitive billing [12],
interactive map consultation, and monitoring of the mentally impaired [5].

1.2. The maximum likelihood criteria. In this paper we adopt the maximum-
likelihood (ML) approach for solving the source localization problem (1.1); see, e.g.,
[4]. When e follows a Gaussian distribution with a covariance matrix proportional
to the identity matrix, the source x is the ML estimate that is the solution of the
problem:

m

1.2 ML):  mi = — aj|| — d;)?
(1.2) (ML):  min ¢ f(x) Z;(HX aj|| — dj)
j:
Note that, in addition to the statistical interpretation, the latter problem is a least
squares problem in the sense that it minimizes the squared sum of the errors.
An alternative approach for estimating the source location x is by solving the
following least squares (LS) problem in the squared domain:

m

) . 9 o2
(1.3) @&-gg%dﬁk—%ﬂ—%)-
Despite of its nonconvexity, the LS problem can be solved globally and efficiently
by transforming it into a problem of minimizing a quadratic function subject to a
single quadratic constraint [1] (more details will be given in section 3.2). However,
the LS approach has two major disadvantages compared to the ML approach: first,
the LS formulation lacks the statistical interpretation of the ML problem. Second, as
demonstrated by the numerical simulations in section 4, the LS estimate provides less
accurate solutions than those provided by the the ML approach.

The ML problem, like the LS problem, is nonconvex. However, as opposed to
the LS problem for which a global solution can be computed efficiently [1], the ML
problem seems to be a difficult problem to solve efficiently. A possible reason for
the increased difficulty of the ML problem is its nonsmoothness. One approach for
approximating the solution of the ML problem is via semidefinite relaxation (SDR)
[4, 1]. We also note that the source localization problem formulated as (ML) can be
viewed as a special instance of sensor network localization problems in which several
sources are present; see, for example, the recent work in [3]; for this class of problems,
semidefinite programming-based algorithms have been developed.

In this paper we depart from the SDR techniques and seek other efficient ap-
proaches to solve the ML problem. This is achieved by exploiting the special structure
of the objective function which allows us to devise fixed-point-based iterative schemes
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for solving the nonsmooth and nonconvex ML problem (1.2). The first scheme admits
a very simple explicit iteration formula given by

xFth = My (x*,a) (wherea = (ai,...,a,)),

while the second iterative scheme is of the form
x"1 € argmin M, (x,xk,a)
X
and requires the solution of an additional subproblem which will be shown to be effi-
ciently solved. The main goals of this paper are to introduce the building mechanism
of these two schemes, to develop and analyze their convergence properties, and to
demonstrate their computational viability for solving the ML problem (1.2), as well
as their effectiveness when compared with the LS and SDR approaches.

1.3. Paper layout. In the next section, we present and analyze the first scheme,
which is a simple fixed-point-based method. The second algorithm, which is based
on solving a sequence of least squares problems of a similar structure to that of
(1.3), is presented and analyzed in section 3. The construction of both methods
is motivated by two different interpretations of the well-known Weiszfeld method
for the Fermat—Weber location problem [16]. For both schemes, we show that the
nonsmoothness of the problem can be avoided by choosing a specific “good” starting
point. Empirical results presented in section 4 provide a comparison between the
two devised algorithms, as well as a comparison to different approaches such as LS
and SDR. In particular, the numerical results suggest that, despite its nonconvexity,
the ML problem can, for all practical purposes, be globally solved using the devised
methods.

1.4. Notation. Throughout the paper, the following notation is used: vectors
are denoted by boldface lowercase letters, e.g., y, and matrices by boldface uppercase
letters, e.g., A. The ith component of a vector y is written as y;. Given two matrices
A and B, A > B (A > B) means that A — B is positive definite (semidefinite). The
directional derivative of a function f : R” — R at x in the direction v is defined (if it
exists) by

L fE4tV) - f(X)
14 "(x;v) = 1 .
(1.4) fxv) = lim ;
The a-level set of a function f : R™ — R is defined by Lev(f,a) = {x e R" : f(x) <
a}. The collection of m sensors {ay,...,a,} is denoted by A.

2. A simple fixed-point algorithm. In this section we introduce a simple
fixed-point algorithm that is designed to solve the ML problem (1.2). The algorithm
is inspired by the celebrated Weiszfeld algorithm for the Fermat—Weber problem,
which is briefly recalled in section 2.1. In section 2.2 we introduce and analyze the
fixed-point scheme designed to solve the ML problem.

2.1. A small detour: Weiszfeld algorithm for the Fermat—Weber prob-
lem. As was already mentioned, the ML problem (1.2) is nonconvex and nonsmooth,
and thus finding its exact solution is in principle a difficult task. We propose a fixed-
point scheme motivated by the celebrated Weiszfeld algorithm [16, 7] for solving the
Fermat—Weber location problem:

(2.1) min ¢ s(x) = 3 wjllx — ay] §
j=1
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where w; > 0 and a; € R" for j =1,...,m. Of course, the Fermat-Weber problem is
much easier to analyze and solve than the ML problem (1.2) since it is a well-structured
nonsmooth convex minimization problem. This problem has been extensively studied
in the location theory literature; see, for instance, [11]. Our objective here is to mimic
the Weiszfeld algorithm [16] to obtain an algorithm for solving the nonsmooth and
nonconvex ML problem (1.2). The Weiszfeld method is a very simple fixed-point
scheme that is designed to solve the Fermat—Weber problem. One way to derive it is
to write the first order global optimality conditions for the convex problem (2.1)

Vs(x) = ijx%aj =0vx¢ A
j=1

l[x — ajl

as

St
i=1%i Ta—ay]

Em W ?
J=1 Jlx—ayll

which naturally calls for the iterative scheme

m L B

(2.2) L 21 Yi T e

' DR =
7=1 TxF—a]

For the convergence analysis of the Weiszfeld algorithm (2.2) and modified versions
of the algorithm, see, e.g., [10, 15], and references therein.

2.2. The simple fixed-point algorithm: Definition and analysis. Simi-
larly to the Weiszfeld method, our starting point for constructing a fixed-point al-
gorithm to solve the ML problem is by writing the optimality conditions. Assuming
that x ¢ A we have that x is a stationary point for problem (ML) if and only if

m

(2:3) Vi) =2 (Ix -2l — d))

J=1

X —aj -0
Y
Il — ay|

which can be written as
m m
1 X — aj
ST DIL R B ey
m X —a;
j=1 j=1 J

The latter relation calls for the following fixed-point algorithm, which we term the
standard fized point (SFP) scheme.

ALGORITHM SFP.

1 m m Xk—a
(2.4) XK= —3N"a;+ Y dj——r 0, k>0
m

2T 2LV ]

Like in the Weiszfeld algorithm, the SFP scheme is not well defined if x* € A for
some k. In what follows we will show that by carefully selecting the initial vector x°
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we can guarantee that the iterates are not in the sensors set A, therefore establishing
that the method is well defined. At this juncture, it is interesting to notice that
the approach we suggest here for dealing with the points of nonsmoothness that
occur at x* € A is quite different from the common approaches for handling the
nonsmoothness. For example, in order to avoid the nondifferentiable points of the
Fermat—Weber objective function, several modifications of the Weiszfeld method were
proposed; see, e.g., [10, 15], and references therein. However, there do not seem to
have been any attempts in the literature to choose good initial starting points to avoid
the nonsmoothness difficulty. A constructive procedure for choosing a good starting
point for the SFP method will be given at the end of this section.

Before proceeding with the analysis of the SFP method, we record the fact that,
much like the Weiszfeld algorithm (see [7]), the SFP scheme is a gradient method with
a fixed step size.

PROPOSITION 2.1. Let {x*} be the sequence generated by the SFP method (2.4),
and suppose that x* ¢ A for all k > 0. Then

(2.5) Pl = xk —me (Xk) .

Proof. The proof follows by a straightforward calculation, using the gradient of f
computed in (2.3). o

A gradient method does not necessarily converge without additional assumptions
(e.g., assuming that Vf is Lipschitz continuous and/or using a line search [2]). Nev-
ertheless, we show below that scheme (2.4) does converge.

By Proposition 2.1 the SFP method can be compactly written as

(2.6) M =1 (x9),

where T': R™ \ A — R" is the operator defined by

(2.7) T(x) =x— %Vf(x).

In the convergence analysis of the SFP method, we will also make use of the auxiliary
function:

(2.8) h(x,y) = Z x —a; —d;ri(y)|*? ¥Yxe€R"y e R"\ A,
j=1
where
_ Y4 ;
rily) =——=>L, j=1,...,m.
! ly —ayll

Note that for every y ¢ A, the following relations hold for every j = 1,...,m:

(2.9) i)l =1,
(2.10) (v —a)"ri(y) =y — al.

In Lemma 2.1 below, we prove several key properties of the auxiliary function h
defined in (2.8).
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LEMMA 2.1.

(a) h(x,x) = f(x) for every x ¢ A.
(b) (Xy)>f( ) for every x e R,y € R™ \ A.
(c) Ify ¢ A, then

(2.11) T(y) = argmin h(x,y).
xeR™

Proof. (a) For every x ¢ A,

I
Ms
=

|
b93
0

fx)

I
INgE
£l
|
£
T
|
[\
Q<
=
|
£
_|_
&
D

(2.9),(2.10) —
SN (Ix = ag))? = 2d5(x — a) (%) + d3 s (x)]|7) = h(x, x),

where the last equation follows from (2.8).
(b) Using the definition of f and h given in (1.2) and (2.8), respectively, and the
fact (2.9), a short computation shows that for every x € R™|y € R" \ A,

h(x,y) = f(x) =2>_d; ([x—a,l| — (x —a;)"r;(y))
=1

>0

)

where the last inequality follows from the Cauchy—Schwarz inequality and using again
(2.9).

(c) For any y € R™\ A, the function x — h(x,y) is strictly convex on R™ and
consequently admits a unique minimizer x* satisfying

Vxh(x*,y) = 0.
Using the definition of h given in (2.8), the latter identity can be explicitly written as
Y (x—a;—dri(y) =0
j=1

which by simple algebraic manipulation can be shown to be equivalent to x* =y —
7=V f(y), establishing that x* = T(y). O

Using Lemma 2.1 we are now able to prove the monotonicity property of the
operator T' with respect to f.

LEMMA 2.2. Lety ¢ A. Then

[(T(y)) < f(y),

and equality holds if and only if T(y) =y.
Proof. By (2.11) and the strict convexity of the function x — h(x,y), one has

hT(y),y) < h(x,y) for every x # T(y).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/02/14 to 132.68.246.174. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

THE SINGLE SOURCE LOCALIZATION PROBLEM 1403

In particular, if T(y) # y, then

(2.12) h(T(y),y) <h(y,y) = f(y),

where the last equality follows from Lemma 2.1(a). By Lemma 2.1(b), h(T(y),y) >
f(T(y)), which, combined with (2.12), establishes the desired strict monoton
icity. O

Theorem 2.1 given below states the basic convergence results for the SFP method.
In the proof, we exploit the boundedness of the level sets of the objective function f,
which is recorded in the following lemma.

LEMMA 2.3. The level sets of f are bounded.

Proof. The proof follows immediately from the fact that f(x) — oo as
x| oo O

THEOREM 2.1 (convergence of the SFP method). Let {x*} be generated by (2.4)
such that x° satisfies
(2.13) f (XO) <  min f(ay).

j=1,....m

Then

(a) x* ¢ A for every k > 0;

(b) for every k > 0, f(x**1) < f(x*), and equality is satisfied if and only if

k

xktl = xk,
(c) the sequence of function values {f(x*)} converges;
(d) the sequence {x*} is bounded;

e) every convergent subsequence {xkl} satisfies xkitl gk 0,
(f) any limit point of {x*} is a stationary point of f.

Proof. (a) and (b) The proof follows by induction on k using Lemma 2.2.

(¢) The proof readily follows from the monotonicity and lower boundedness (by
zero) of the sequence { f(x*)}.

(d) By (b), all of the iterates x* are in the level set Lev(f, f(x°)) which, by
Lemma 2.3, establishes the boundedness of the sequence {x*}.

(e) and (f) Let {x*} be a convergent subsequence of {x*} with limit point x*.
Since f(xf) < f(x°) < minj—1,_m f(a;j), it follows by the continuity of f that
f(x*) < f(x°) < minj—; ., f(a;), proving that x* ¢ A. By (2.6)

(2.14) xFH =T (xM) .

Therefore, since the subsequence {x*'} and its limit point x* are not in A, by the
continuity of Vf on R™ \ A, we conclude that the subsequence {x**1} converges to
a vector X satisfying

(2.15) % = T(x").

To prove (e), we need to show that x = x*. Since both x* and x are limit points of
{x*} and since the sequence of function values converges (by (c)), then the continuity
of f over R™ implies that f(x*) = f(x). Invoking Lemma 2.2 for y = x*, we conclude
that x = x*, proving claim (e). Part (f) follows from the observation that the equality
x* = T'(x*) is equivalent (by the definition of T') to V f(x*) = 0. O

Remark 2.1. Tt is easy to find a vector x° satisfying condition (2.13). For example,
Procedure INIT, that will be described at the end of this section, produces a point
satisfying (2.13).
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Combining claims (c¢) and (f) of Theorem 2.1, we immediately obtain convergence
of the sequence of function values.

COROLLARY 2.1. Let {x*} be the sequence generated by the SFP algorithm sat-
isfying (2.13). Then f(x*) — f*, where f* is the function value at a stationary point
of f.

We were able to prove the convergence of the function values of the sequence.
The situation is more complicated for the sequence itself, where we were able only
to show that all limit points are stationary points. We can prove convergence of the
sequence itself if we assume that all stationary points of the objective function are
isolated.? The proof of this claim strongly relies on the following lemma from [8].

LEMMA 2.4 (see [8, Lemma 4.10]). Let x* be an isolated limit point of a sequence
{xkY in R™. If {x*} does not converge, then there is a subsequence {x¥'} which
converges to x* and an € > 0 such that ||x"+1 —xki|| > .

We can now use the above lemma to prove a convergence result under the as-
sumption that all stationary points of f are isolated.

THEOREM 2.2 (convergence of the sequence). Let {x*} be generated by (2.4) such
that x° satisfies (2.13). Suppose further that all stationary points of f are isolated.
Then the sequence {x*} converges to a stationary point.

Proof. Let x* be a limit point of {x*} (its existence follows from the boundedness
of the sequence proved in Theorem 2.1(d)). By our assumption x* is an isolated point.
Suppose in contradiction that the sequence does not converge. Then by Lemma 2.4
there exists a subsequence {x*'} that converges to x* satisfying ||x*+! — x¥|| > e.
However, this is in contradiction to (e) of Theorem 2.1. We thus conclude that {x*}
converges to a stationary point. g

The analysis of the SFP method relies on the validity of condition (2.13) on the
starting point x°. We will now show that, thanks to the special structure of the
objective function (ML), we can compute such a point through a simple procedure.
This is achieved by establishing the following result.

LEMMA 2.5. Let A={ay,...,a;,} be the given set of m sensors, and let

gx) = Y (x—al-d)? j=1,..,m.
i=1,ij

Then for every j =1,...,m the following apply:

(i) If Vgj(a;) # 0, then f'(a;; —Vyg,(a;)) <0. Otherwise, if Vg;(a;) = 0, then
f'(aj;v) <0 for every v # 0. In particular, there exists a descent direction
from every sensor point.

(ii) Fvery x € A is not a local optimum for the ML problem (1.2).

Proof. (i) For convenience, for every j = 1,...,m we denote

(2.16) fi(x) = (IIx — ayl| — d;)°
so that the objective function of problem (ML) can be written as
(2.17) f(x) = fi(x) + 9;()

for every x € R® and j = 1,...,m. Note that f is not differentiable for every x € A.
Nonetheless, the directional derivative of f at x in the direction v € R™ always exists

2We say that x* is an isolated stationary point of f, if there are no other stationary points in
some neighborhood of x*.
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and is given by

. _ Vf(i)TV, X ¢ Aa
(2.18) fxv) = { Vg;(a;)"v = 2d;|v], x=a;.

Indeed, the above formula for x ¢ A is obvious. In the other case, suppose then
that x = a; for some j € {1,...,m}. Noting that g; is differentiable at a;, we have
g;(a;;v) = Vg; (aj)Tv, and using definition (2.16) for f;, we get fi(ay;v) = =2d;|v|],
and hence with (2.17), we obtain the desired formula (2.18) for f’(a;;v). Finally, if
Vgj(a;) # 0, then using (2.18) we have

f'(aj; =Vgj(a;)) = —[Vg;(a;)|* - 2d;(Vg;(a;)| < 0.
Otherwise, if Vg;(a;) = 0, then for every v # 0 we have
f'(aj;v) = =2d;|Iv]| <0.

(i) By part (i) there exists a descent direction from every sensor point x € A. There-
fore, none of the sensor points can be a local optimum for problem (ML). d

Using the descent directions provided by Lemma 2.5, we can compute a point X
satisfying

j=1,...,
by the following procedure.
PROCEDURE INIT.
1. t=1.
2. Set k to be an index for which f(ag) = minj—1 . f(a;).
3. Set
_J =Vgr(ar), Vgr(ar) #0,
(2.19) Vo = { e, Vor(az) = 0.

where e is the vector of all ones.?

4. While f(a; +tvo) > f(ax), set t =t/2. End
5. The output of the algorithm is aj + tvg.
The validity of this procedure stems from the fact that, by Lemma 2.5, the direction
o defined in (2.19) is always a descent direction.

One of the advantages of the SFP scheme is its simplicity. However, the SFP
method, being a gradient method, does have the tendency to converge to local minima.
In the next section we will present a second and more involved algorithm to solve the
ML problem. As we shall see in the numerical examples presented in section 4, the
empirical performance of this second iterative scheme is significantly better than that
of the SFP, both with respect to the number of required iterations and with respect
to the probability of getting stuck in a local/nonglobal point.

3. A sequential weighted least squares algorithm. In this section we study
a different method for solving the ML problem (1.2), which we call the sequential
weighted least squares (SWLS) algorithm. The SWLS algorithm is also motivated
by the construction of the Weiszfeld method, but from a different viewpoint; see
section 3.1. Each iteration of the method consists of solving a nonlinear least squares
problem, whose solution is found by the approach discussed in section 3.2. The
convergence analysis of the SWLS algorithm is given in section 3.3.

3We could have chosen any other nonzero vector.
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3.1. The SWLS algorithm. To motivate the SWLS algorithm, let us first go
back to the Weiszfeld scheme for solving the classical Fermat—Weber location problem,
whereby we rewrite the iterative scheme (2.2) in the following equivalent, but different,
way':

||X_aJH2

(3.1) = argmin ij

xcRn ka a ||

The strong convexity of the objective function in (3.1) (recall that w; > 0 for all
§) implies that x**! is uniquely defined as a function of x*. Therefore, the Weiszfeld
method (2.2) for solving problem (2.1) can also be written as

xFH = argmin q (x,xk) ,
x€eR™
where
Z J””X_ o for every x e R")y € R" \ A.
y—a;

The auxiliary function ¢ was essentially constructed from the objective function
s of the Fermat—Weber location problem, by replacing the norm terms ||x — a;|| with

HH);_—{Z'”\T’ i.e., with s(x) = ¢(x,x). Mimicking this observation for the ML problem
under study, we will use an auxiliary function in which each norm term ||x—a;|| in the
objective function (1.2) is replaced with H”’; Z]”H , resulting in the following auxiliary
function:

m 9 2
(3.2) g(x,y)zz<||xy_72_””—di) , x€eR"yeR"\ A

. - 1

The general step of the algorithm for solving problem (ML), the SWLS method,
is now given by

xMt e argmin g (x, xk)

x€eR”

or more explicitly by the following algorithm.

ALGORITHM SWLS.

—a:l? 2
(3.3) xFl e argmlnz (M - dj> .
J

x€eR”? j=1

The name SWLS stems from the fact that at each iteration k we are required to
solve the following weighted least squares (WLS) version of the LS problem (1.3):

(3.4) (WLS): mme (Hx—CjH2 —5?)2a
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with

1

(3.5) cj = aj, B = djIx" —ayll, wh = a2

Note that the SWLS algorithm as presented above is not defined for iterations
in which x¥ € A. In our random numerical experiments (cf. section 4) this situation
never occurred; i.e., x* did not belong to A for every k. However, from a theoretical
point of view this issue must be resolved. Similarly to the methodology advocated
in the convergence analysis of the SFP method, our approach for avoiding the sensor
points A is by choosing a “good enough” initial vector. In section 3.3, we introduce
a simple condition on the initial vector x° under which the algorithm is well defined
and proven to converge.

3.2. Solving the WLS subproblem. We will now show how the WLS sub-
problem (3.4) can be solved globally and efficiently by transforming it into a problem
of minimizing a quadratic function subject to a single quadratic constraint. This
derivation is a straightforward extension of the solution technique devised in [1] and
is briefly described here for completeness.

For a given fixed k (for simplicity we omit the index k below), we first transform
(3.4) into a constrained minimization problem:

m
. 2
(36) min 3w (a2 x o2 - 5)" P = o
fex | &

which can also be written as (using the substitution y = (x, a)T)

(3.7) mi

n
yER?+1

{IIAy —b|?:y"Dy +2f'y = 0} ;
where

SNt Ve (6= lleal?)
: : b= :

_ T /. . 2
2 WmCm, Wm \V Wm (ﬂm - Hcm” )

_ In 0n><1 _ 0
D‘(OM 0 )’f—<—o.5>'

Note that (3.7) belongs to the class of problems consisting of minimizing a quadra-
tic function subject to a single quadratic constraint. Problems of this type are called
generalized trust region subproblems (GTRS). GTRS problems possess necessary and
sufficient optimality conditions from which efficient solution methods can be derived;
see, e.g., [6, 9].

The SWLS scheme is of course more involved than the simpler SFP scheme.
However, as explained above, the additional computations required in SWLS to solve
the subproblem can be done efficiently and are worthwhile, since the SWLS algorithm
usually possesses a much larger region of convergence to the global minimum than the
SEFP scheme, which in turn implies that it has the tendency of avoiding local minima
and a greater chance of hitting the global minimum. This will be demonstrated on
the numerical examples given in section 4.

A:

)

and
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TABLE 1
Number of runs (out of 10000) for which Assumption 2 is satisfied for x° = xrg5.

o le-3 le-2 le-1 le+0
Ng 10000 | 10000 | 9927 | 6281

3.3. Convergence analysis of the SWLS method. In this section we provide
an analysis of the SWLS method. We begin by presenting our underlying assumptions
in section 3.3.1, and in section 3.3.2 we prove the convergence results of the method.

3.3.1. Underlying assumptions. The following assumption will be made
throughout this section.
Assumption 1. The matrix

1 af
A 1 af
1 al

is of full column rank.

This assumption is equivalent to saying that ay,...,a,, do not reside in a lower-
dimensional affine space (i.e., a line if n = 2 and a plane if n = 3).

To guarantee the well definiteness of the SWLS algorithm (i.e., x* ¢ A for all k),
we will make the following assumption on the initial vector x°.

Assumption 2. x° € R. where

(3.8) R = {xeR":f(x)<mmjf{dj}2}.

A similar assumption was made for the SFP method (see condition (2.13)). Note
that for the true source location Xty one has f(Xirue) = Z;”Zl 5?. Therefore, X ue
satisfies Assumption 2 if the errors ¢; are smaller in some sense than the range mea-
surements d;. This is a very reasonable assumption since in real applications the
errors ¢; are often an order of magnitude smaller than d;. Now, if the initial point x°
is good enough in the sense that it is close to the true source location, then Assump-
tion 2 will be satisfied. We have observed through numerical experiments that the
solution to the LS problem (1.3) often satisfies Assumption 2 as the following example
demonstrates.

Ezxample 3.1. Consider the source localization problem with m = 5 and n = 2.
We performed Monte Carlo runs, where in each run the sensor locations a; and the
source location x were randomly generated from a uniform distribution over the square
[—20,20] x [—20,20]. The observed distances d; are given by (1.1) with &; being
independently generated from a normal distribution with mean zero and standard
deviation ¢. In our experiments o takes on four different values: 1,10~%, 1072, and
10_*3. For each o, N, denotes the number of runs for which the condition f(xrs) <
%jdi holds, and the results are given in Table 1. Clearly, Assumption 2 fails only
for high noise levels.

The following simple and important property will be used in our analysis.

LemMMA 3.1. Let x € R. Then

(3.9) |x —a;l| >d;/2, j=1,...,m.
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Proof. Suppose in contradiction that there exists jo for which ||x —a;, || < dj, /2.
Then
P60 =Y =yl = d)? = (Ix = a | - dy,)? = = > ===,
j=1

which contradicts x € R. a

A direct consequence of Lemma 3.1 is that any element in R cannot be one of
the sensors.

COROLLARY 3.1. Ifx € R, then x ¢ A.

3.3.2. Convergence analysis of the SWLS method. We begin with the
following result which plays a key role in the forthcoming analysis.
LEMMA 3.2. Let 0 be a positive number, and let t > 6/2. Then

(3.10) (% — 5)2 >2(s —0)% — (t —6)?

St
2
Proof. Rearranging (3.10) one has to prove

for every s > and equality is satisfied if and only if s =t.

2

2
A(s,t) = <57 —5> (s — 82+ (t—8)% > 0.

Some algebra shows that the expression A(s,t) can be written as follows:

2
(3.11) As,t) = %(s—t)z ((%—F\/Z) —25).

Using the conditions ¢ > §/2 and s > %, we obtain

(3.12) <%+ﬁ)2—25><\/§+\/g>2—25:0.

Therefore, from (3.11) and (3.12) it readily follows that A(s,t) > 0 and that equality
holds if and only if s = ¢. d

Thanks to Lemma 3.2, we establish the next result which is essential in proving
the monotonicity of the SWLS method.

LEMMA 3.3. Lety € R. Then the function g(x,y) given in (3.2) is well defined
on R™ X R, and with

(3.13) z € argming(x,y),
x€eR”
the following properties hold:
(a) f(z) < f(y), and the equality is satisfied if and only if z =y;
(b) zeR.
Proof. By Corollary 3.1, any y € R implies y ¢ A, and hence the function g
given by (cf. (3.2))

9(x,y) = Zn: (M di)2

—\ lly —aill
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is well defined on R™ x R. Now, by (3.13) and y € R we have

314 o(2.) < oly.y) = fly) < AL

In particular,
2 2
||Z—ajH2_dv <ﬂ i1 m
ly —a;ll T
from which it follows that
|z — a;|®

(3.15) >
Iy —ayll

, J=1,...,m.

ro S

Invoking Lemma 3.2, whose conditions are satisfied by (3.15) and Lemma 3.1, we
obtain

|z — a2 ?
(—J —dy) 22— ayl - dy) — (ly - ay] - d,)>

ly — aj]|
Summing over j = 1,...,m, we obtain
m 9 2 m m
Sl —a) 223 - a7 - Sy - al -
= y — aj| = =

Therefore, together with (3.14), we get

f(y) > g(z,y) > 2f(z) — f(y),

showing that f(z) < f(y). Now, assume that f(y) = f(z). Then by Lemma 3.2 it
follows that the following set of equalities is satisfied:

(3'16) ”y_ajH:HZ_aj”7 J=1...,m,
which after squaring and rearranging reads as

(Iyll* = llzl*) — 2a] (y —2) =0, j=1,...,m.

Therefore,
1 af
T
Loa <|y||2—|z|2):0,
Lo —2(y —2)
1 al

Thus, by Assumption 1, z =y, and the proof of (a) is completed. To prove (b), using
(a) and (3.14), we get

2
f@) < fy) < min D
j=1,....m 4
proving that z € R. O
We are now ready to prove the main convergence results for the SWLS method.
THEOREM 3.1 (convergence of the SWLS method). Let {x*} be the sequence
generated by the SWLS method. Suppose that Assumptions 1 and 2 hold true. Then
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a) x¥ € R fork >0;
b) for every k >0, f(x**1) < f(x*) and equality holds if and only if x*+! = x*;
c) the sequence of function values {f(x*)} converges;
d) the sequence {x*} is bounded;
e) every convergent subsequence {xkl} satisfies xkitl gk 0,
) any limit point of {x*} is a stationary point of f.
Proof. (a) and (b) The proof follows by induction on k using Lemma 3.3.
(¢) The proof follows from the fact that {f(x*)} is bounded below (by zero) and
is a nonincreasing sequence.
(d) By (b), all of the iterates x* are in the level set Lev(f, f(x°)) which, by
Lemma 2.3, establishes the boundedness of the sequence {x*}.
(e) Let {x*'} be a convergent subsequence, and denote its limit by x*. By claims
(a) and (b), we have for every k that

d2

f( )<f( )< min Zj’

which combined with the continuity of f implies x* € R and hence x* ¢ A, by
Corollary 3.1. Now, recall that

xMT! ¢ argmin g (x xkl)

To prove the convergence of {x¥*!} to x*, we will show that every subsequence
converges to x*. Let {x*»T1} be a convergent subsequence, and denote its limit by
y*. Since

xFtl ¢ argmin g (x,xklp) ,

x€eR™

the following holds:
g (x X lp) > g( klp“,x’%) for every x € R™.

Taking the limits of both sides in the last inequality and using the continuity of the
function f, we have

g(x,x*) > g(y*,x") for every x € R,
and hence

(3.17) y* € argmin g(x, x¥).
xER™

Since the sequence of function values converges, it follows that f(x*) = f(y*).
Invoking Lemma 3.3 with y = x* and z = y*, we obtain x* = y*, establishing
claim (e).

(f) To prove the claim, note that (3.17) and x* = y* imply that

x* € argmin g(x, x).
x€ER™

Thus, by the first order optimality conditions we obtain the following:

X" —a;

0= Vseg (%, X" )xmser =4 ( ||x*—aj|\—dj)”x*7—2Vf( 7). o
7j=1

aj|
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As a direct consequence of Theorem 3.1, we obtain the following convergence in
function values.

COROLLARY 3.2. Let {x*} be the sequence generated by the algorithm. Then
F(xF) — f*, where f* is the function value at some stationary point x* of f.

As was shown for the SFP algorithm, global convergence of the sequence gener-
ated by the SWLS algorithm can also be established under the same condition, i.e.,
assuming that f admits isolated stationary points.

THEOREM 3.2 (convergence of the sequence). Let {x*} be generated by (3.3)
such that Assumptions 1 and 2 hold. Suppose further that all stationary points of f
are isolated. Then the sequence {x*} converges to a stationary point.

Proof. The proof is the same as the proof of Theorem 2.2. O

4. Numerical examples. In this section we present numerical simulations il-
lustrating the performance of the SFP and SWLS schemes, as well as numerical com-
parisons with the LS approach and with the SDR of the ML problem. The simulations
were performed in MATLAB, and the semidefinite programs were solved by SeDuMi
[14].

Before describing the numerical results, for the reader’s convenience, we first recall
the SDR proposed in [4], which will be used in our numerical experiments comparisons.
The first stage is to rewrite problem (ML) given in (1.2) as

m
mineg Y (g5 —d;)°
j=1
s.t. g =lx—a;l*, j=1,...,m.

Making the change of variables

G:(%) &7 1), X

problem (1.2) becomes

I
7 N\
— X
N————
—

»

~

—
~—

minx’(; Z(ij — 2dem+1,j + d?)

J=1
s.t. ij :TI'(CjX), ] = 1,...,m,
G=0, X=0,

G7n+1,m+1 - X77,+1,n+1 - 17
rank(X) = rank(G) = 1,

where

I —a;
C, = L), oi=1,...,m.
g (—af |aj||2> J

Dropping the rank constraints in the above problem, we obtain the desired SDR. of
problem (1.2). The SDR is not guaranteed to provide an accurate solution to the ML
problem, but it can always be considered as an approximation of the ML problem.
In the first example, we show that the SWLS scheme usually possesses a larger
region of convergence to the global minimum than the scheme SFP. This last property
is further demonstrated in the second example, which compares the SFP and SWLS
methods and also demonstrates the superiority of the SWLS scheme. The last example
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//

0 0.1 02 03 04 05 06 07 08 0.9 1

Fic. 1. The SFP method for three initial points.

Fic. 2. The SWLS method for three initial points.

illustrates the attractiveness of the solution obtained by the SWLS method over the
SDR and the LS approaches.

Ezample 4.1 (region of convergence of the SFP and SWLS methods). In this
example we show typical behaviors of the SFP and SWLS methods. Consider an
instance of the source localization problem in the plane (n = 2) with three sensors
(m = 3) in the locations (0.466,0.418), (0.846,0.525) and (0.202,0.672). Figures 1 and
2 describe the results produced by the iterative schemes SFP and SWLS, respectively,
for three initial trial points. The global minimum is (0.4285,0.9355), and there exists
one additional local minimum at (0.1244,0.3284). As demonstrated in Figure 2, the
SWLS method might converge to a local minimum; however, it seems to have a greater
chance than the SFP algorithm to avoid local minima; for example, the SWLS con-
verged to the (relatively far) global minimum from the initial starting point (0.5,0.1),
while the SFP converged to the local minimum. We estimated the probability to
converge to the global minimum by invoking both methods for 1681 initial starting
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TABLE 2
Comparison between the SFP and SWLS methods.

m | #tight || #(f(%xsrp) > f(XswLs)) | Iter — SFP | Tter — SWLS |

3 | 814 152 207(500.2) 26.2 (5)

4| 325 96 124(192.6) 29.9(1.8)
5 259 83 93.6(96.2) 30.9(3.1)
10| 278 23 66.5 (35.3) | 31.6 (1.3)

points, which are the nodes of a 41 x 41 grid over the square [0, 1] x [0,1]. The SFP
method converged to the global minimum in 45.87% of the runs, while the SWLS
methods converged to the global minimum in 83.28% of the runs. Thus, the SWLS
method has a much wider region of convergence to the global minimum. This was
our observation in many other examples that we ran, which suggests that the SWLS
method has the tendency to converge to the global minimum.

Remark 4.1. As shown in Proposition 2.1, the SFP scheme is just a gradient
method with a fixed step size. Thanks to Lemma 2.5, which as shown in section 2.2
can be used in order to avoid the nonsmoothness, we can of course use more sophisti-
cated smooth unconstrained minimization methods. Indeed, we also tested a gradient
method with an Armijo step-size rule and a trust region method [8], which uses second
order information. Our observation was that, while these methods usually possess an
improved rate of convergence in comparison to the SFP method, they essentially have
the same region of convergence to the global minimum as the SFP algorithm.

Ezample 4.2 (comparison of the SFP and SWLS methods). We performed Monte
Carlo runs, where in each run the sensor locations a; and the true source loca-
tion were randomly generated from a uniform distribution over the square [—1000,
1000] x [-1000, 1000]. The observed distances d; are given by (1.1) with ¢; being gen-
erated from a normal distribution with mean zero and standard deviation 20. Both
the SFP and SWLS methods were employed with (the same) initial point, which was
also uniformly randomly generated from the square [—1000, 1000] x [-1000, 1000]. The
stopping rule for both the SWLS and SFP methods was ||V f(x*)|| < 1072,

The results of the runs are summarized in Table 2. For each value of m, 1000
realizations were generated. The numbers in the first column are the number of
sensors, and in the second column we give the number of runs out of 1000 in which
the SDR of the ML problem was tight; that is, the matrix which is the optimal solution
of the SDR has rank one. We have also compared the SWLS solution with the SDR
solution for these “tight” runs (about a quarter of the runs). In all of these runs,
the SWLS and SDR solutions coincided; i.e., the SWLS method produced the exact
ML solution. The third column contains the number of runs out of 1000 in which the
solution produced by the SFP method was worse than the SWLS method. In all of
the remaining runs, the two methods converge to the same point; thus, there were no
runs in which the SWLS produced worse results. The last two columns contain the
mean and standard deviation of the number of iterations of each of the methods in
the form “mean (standard deviation).”

As can be clearly seen from the table, the SWLS method requires much less
iterations than the SFP method, and in addition it is more robust in the sense that
the number of iterations are more or less constant. In contrast, the standard deviations
of the number of iterations of the SFP method are quite large. For example, the huge
standard deviation 500.2 in the first row stems from the fact that in some of the runs
the SFP algorithm required thousands of iterations!
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TABLE 3
Mean squared position error of the SDR, LS and SWLS methods.

[ o [ SOR [ TS [ swis |

le —3 24e—6 | 2.7e—6 | 1.5e — 6
le — 2 22e—4 | 1.6e—4 | 1.3e — 4
le—1 22e—2 | 1.9e—2 | 1.3e — 2
le+0 2.2e+4+0 | 2.7¢e4+0 | 2.0e40

From the above examples we conclude that the SWLS method does tend to con-
verge to the global minimum. Of course, we can always construct an example in which
the method converges to a local minimum (as was demonstrated in Example 4.1), but
it seems that for random instances this convergence to a nonglobal solution is not
likely.

We should also note that we also compared the SFP and SWLS methods with
the initial point chosen as the solution of the LS problem (1.3). For this choice of
the initial point, the SFP and SWLS methods always converged to the same location
point? (which is probably the global minimum); however, with respect to the number
of iterations, the SWLS method was still significantly superior to the SFP algorithm.
We have also compared the SWLS solution with the SDR solution for the runs in
which the SDR solution is tight (about a quarter of the runs (cf. column 1 in Table
2)). In all of these runs, the SWLS and SDR solutions coincided; i.e., the SWLS
method produced the exact ML solution.

The last example shows the attractiveness of the SWLS method over the LS and
SDR approaches.

Ezample 4.3 (comparison with the LS and SDR estimates). Here we compare
the solution of (1.3) and the solution of the SDR with the SWLS solution. The
stopping rule for the SWLS method was ||V f(x)|| < 107°. We generated 100 random
instances of the source localization problem with five sensors, where in each run the
sensor locations a; and the source location x were randomly generated from a uniform
distribution over the square [—10, 10] x [—10, 10]. The observed distances d; are given
by (1.1) with ¢; being independently generated from a normal distribution with mean
zero and standard deviation o. In our experiments o takes four different values:
1,107,102, and 10~3. The numbers in the three right columns of Table 3 are the
average of the squared position error ||x — x||* over 100 realizations, where % is the
solution by the corresponding method. The best result for each possible value of ¢ is
marked in boldface. From the table, it is clear that the SWLS algorithm outperforms
the LS and SDR methods for all four values of o.

REFERENCES

[1] A. BEck, P. Stoica, AND J. L1, Ezact and approzimate solutions of source localization prob-
lems, IEEE Trans. Signal Process., 56 (2008), pp. 1770-1778.

[2] D. P. BERTSEKAS, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.

(3] P. Biswas, T. C. LiaN, T. C. WANG, AND Y. YE, Semidefinite programming based algorithms
for sensor network localization, ACM Trans. Sen. Netw., 2 (2006), pp. 188-220.

[4] K. W. CHEUNG, W. K. MA, AND H. C. S0, Accurate approximation algorithm for TOA-based
maximum likelihood mobile location using semidefinite programming, in Proceedings of the
ICASSP, Vol. 2, 2004, pp. 145-148.

4Numerically we used the criteria that two vectors x1 and xz are “the same” if [[x1 —x2| < 108,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/02/14 to 132.68.246.174. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1416 AMIR BECK, MARC TEBOULLE, AND ZAHAR CHIKISHEV

K. W. CHEUNG, H. C. So, W. K. MA, AND Y. T. CHAN, Least squares algorithms for time-of-
arrival-based mobile location, IEEE Trans. Signal Process., 52 (2004), pp. 1121-1228.

C. ForTIN AND H. WOLKOWICZ, The trust region subproblem and semidefinite programming,
Optim. Methods Softw., 19 (2004), pp. 41-67.

H. W. KunN, A note on Fermat’s problem, Math. Program., 4 (1973), pp. 98-107.

J. J. MORE AND D. C. SORENSEN, Computing a trust region step, SIAM J. Sci. Stat. Comput.,
4 (1983), pp. 553-572.

J. J. MORE, Generalizations of the trust region subproblem, Optim. Methods Softw., 2 (1993),
pp. 189-209.

L. M. OSTRESH, On the convergence of a class of iterative methods for solving the Weber

location problem, Oper. Res., 26 (1978), pp. 597-609.
. G. Morris, R. F. LovE, AND G. O. WESOLOWSKY, Facilities Location: Models and Methods,
North—Holland, New York, 1988.

A. H. SAYED, A. TARIGHAT, AND N. KHAJEHNOURI, Network-based wireless location, IEEE
Signal Proces. Mag., 22 (2005), pp. 24-40.

P. Stoica AND J. L1, Source localization from range-difference measurements, IEEE Signal
Process. Mag., 23 (2006), pp. 63-65, 69.

J. F. STURM, Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones,
Optim. Methods Softw., 11-12 (1999), pp. 625-653.

Y. VARDI AND C. H. ZHANG, A modified Weiszfield algorithm for the Fermat-Weber location
problem, Math. Program. Ser. A, 90 (2001), pp. 559-566.

E. WEISZFELD, Sur le point pour lequel la somme des distances de n points donnés est minimum,
Tohoku Math. J., 43 (1937), pp. 355-386.

http://www.fcc.gov/911/enhanced/.

(=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


