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Abstract. Given a linear system Ax ≈ b over the real or complex field, where both A and b
are subject to noise, the total least squares (TLS) problem seeks to find a correction matrix and a
correction right-hand side vector of minimal norm which makes the linear system feasible. To avoid
ill posedness, a regularization term is added to the objective function; this leads to the so-called
regularized TLS problem. A further complication arises when the matrix A and correspondingly
the correction matrix must have a specific structure. This is modeled by the regularized structured
TLS (RSTLS) problem. In general this problem is nonconvex and hence difficult to solve. However,
the RSTLS problem arising from image deblurring applications under reflexive or periodic boundary
conditions possesses a special structure where all relevant matrices are simultaneously diagonalizable
(SD). In this paper we introduce an algorithm for finding the global optimum of the RSTLS problem
with this SD structure. The devised method is based on decomposing the problem into single vari-
able problems and then transforming them into one-dimensional unimodal real-valued minimization
problems which can be solved globally. Based on the uniqueness and attainment properties of the
RSTLS solution we show that a constrained version of the problem possesses a strong duality result
and can thus be solved via a sequence of RSTLS problems.

Key words. structured total least squares, nonconvex optimization, image deblurring, unimodal
functions, simultaneously diagonalizable matrices
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1. Introduction. Given a linear system Ax ≈ b over the real or complex field,
where both the matrix A and the right-hand side vector b are subjected to noise,
the total least squares (TLS) problem seeks to minimize the sum of squared norms
of the perturbations to both the model matrix and vector ‖E‖2 + ‖w‖2 subject to
the condition that the perturbed system holds: (A + E)x = b + w. Although this
problem is nonconvex, it can be solved efficiently and globally by using a spectral
decomposition of the augmented matrix (A,b); see [14, 20].

In many applications, the matrix A has a specific linear structure, e.g., Toeplitz
or Hankel, which imposes a requirement on the perturbation matrix E to possess a
corresponding special structure. The TLS solution does not take into account this
requirement, and consequently the structured TLS (STLS)1 attracted intensive re-
search; see, e.g., [1, 29, 34, 28, 25, 22]. The formulation of the STLS problem is
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1In some papers the STLS problem is also called constrained total least squares.
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420 AMIR BECK, AHARON BEN-TAL, AND CHRISTIAN KANZOW

(STLS):

min
E,x,w

‖E‖2 + ‖w‖2

s.t. (A + E)x = b + w,
E ∈ L,

where L is a linear subspace. We remark that there are several generalizations of the
above STLS formulation that are able to deal with multiple right-hand sides (that is,
b and x are matrices) [23], structure of the right-hand side noise vector w [23], and
other norms such as l1, l∞ [34], and weighted l2 norms [24].

The STLS problem is a nonconvex problem, and thus finding its global solution is
in general a difficult task. There are only a few exceptions to this state of affairs. For
block circulant structures with unstructured blocks the corresponding STLS problem
can be solved by decomposing the problem into several smaller TLS problems using
the discrete Fourier transform [6]. Another tractable case arises when some of the
columns of A are error-free while the others are subjected to noise. This problem is
called the generalized TLS problem or mixed LS-TLS problem, and its solution can
be obtained by computing a QR factorization of A and then solving a TLS problem
of reduced dimension [19]. A more general problem is the restricted TLS problem
introduced in [21]. There it is assumed that (E,w) = D1ẼC1, where D1 and C1 are

known matrices and Ẽ is unknown. As was shown in [21], by choosing the matrices
D1 and C1 appropriately, the restricted TLS problem contains as special cases any
weighted least squares (LS), generalized LS, TLS, and generalized TLS problems.
The restricted TLS problem can be solved by using the restricted singular value
decomposition [37].

In this paper we consider yet another tractable class of STLS problems in which
the global solution can efficiently be found. We deal with structures in which all of
the matrices in L are square and can be diagonalized by a certain fixed orthogonal
(or unitary in the complex case) matrix. These structures are called simultaneously
diagonalizable (SD) structures. The motivation for considering such structures stems
from image deblurring problems with spatially invariant point spread functions (PSF).
For two-dimensional image deblurring problems it is well known that the matrix de-
scribing the blur operator can be diagonalized by a two-dimensional discrete Fourier
transform matrix when periodic boundary conditions are assumed. For reflexive bound-
ary conditions with symmetric PSF the corresponding matrix can be diagonalized by
a two-dimensional discrete cosine transform matrix. Similar structures can be found
in one-dimensional deconvolution problems. Section 2 contains a brief review of these
structures.

A characteristic feature of image deblurring problems is that the matrix A is
ill-conditioned, and as a result the STLS solution usually has a huge norm and as
such is meaningless. Regularization is required in order to stabilize the solution.
For the unstructured TLS problem several regularization methods are well known.
Among them are truncation methods [11, 17] and Tikhonov regularization [13, 7], in
which a quadratic penalty is added to the objective function or a quadratic constraint
bounding the size of the solution norm is added to the problem [36, 33, 13, 8, 5].

For the STLS problem, Tikhonov regularization seems to be the most popular
method. The resulting problem is called the regularized STLS problem (RSTLS) and
is given by

(RSTLS):

min
E,x,w

‖E‖2 + ‖w‖2 + ρ‖Lx‖2

s.t. (A + E)x = b + w,
E ∈ L.
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Common choices for L are the identity or a matrix approximating the first or second
order derivative operator [16, 13, 18].

The RSTLS problem for structures arising in image deblurring was studied in
several works. In [27] periodic boundary conditions are considered. By using the
discrete Fourier transform the problem is decomposed into many complex-valued
single-variable problems. The complex univariate problems are solved as two-variable
nonconvex problems over the real domain by using the Davidon–Fletcher–Powell op-
timization algorithm.

In [31] an iterative algorithm of quasi-Newton form is applied for the RSTLS
problem for reflexive boundary conditions that exploits the diagonalization properties
of the associated matrices. The work [32] extends the structured total least norm
algorithm [34] to include regularization, and image deblurring examples are discussed.
This approach was also advocated in [12] for image deblurring problems with separable
PSFs and in [26] for problems with zero boundary conditions.

In all of the above-mentioned works the optimization problems that need to be
solved are nonconvex, and consequently the devised algorithms are not guaranteed to
converge to a global optimum but rather to a stationary point. The main contribution
of the present paper is the introduction of a method capable of obtaining the global
minimum of the RSTLS problem for SD structures.

The paper is organized as follows. In section 2 we present a precise problem for-
mulation followed by a brief review of the essential ingredients from image deblurring.
The decomposition of the RSTLS problem into single-variable real- or complex-valued
problems is discussed in section 3. These univariate problems are not necessarily uni-
modal, but we show in section 4 that they can be transformed into single-variable
real-valued unimodal problems. Attainment and uniqueness conditions are also ob-
tained. In section 5 we concentrate on circulant structures and show that, when the
data are real-valued, there exists at least one real-valued optimal solution (although
the corresponding single-variable problems are complex-valued). In section 6 we tackle
the constrained version of the RSTLS problem, called CSTLS, and show that, based
on the derived uniqueness properties and on a strong duality result, the constrained
problem can be solved by a sequence of RSTLS problems. The paper ends in section
7 with detailed descriptions of the numerical algorithms and a demonstration of our
method as applied to an image deblurring problem. A MATLAB implementation and
documentation of the RSTLS and CSTLS methods for image deblurring problems
with either periodic or reflexive boundary conditions can be found in [38].

1.1. Notation. A vector or matrix is called real-valued (complex-valued) if all
of its entries are real (complex). For a complex scalar a, the complex conjugate is
denoted by ā. Given a matrix A (a vector v), the complex conjugate is denoted by A∗

(v∗). For a real-valued matrix Q, the complex conjugate Q∗ translates to the usual
transpose QT , and unitarity translates to orthogonality: QTQ = I. The root of −1
is denoted by i =

√
−1. For a given vector v, ‖v‖ denotes the Euclidean norm of v,

and, for a matrix A, ‖A‖ denotes the Frobenius norm of the matrix. The Kronecker
product of two matrices A and B is denoted by A ⊗ B.

2. RSTLS for simultaneously diagonalizable structures.

2.1. Problem formulation. The RSTLS problem can be written as follows:

(2.1) (RSTLS):

min ‖E‖2 + ‖w‖2 + ρ‖Lx‖2

s.t. (A + E)x = b + w,
E ∈ L,
x ∈ F

n,w ∈ F
m,
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where A ∈ F
m×n and b ∈ F

m, with F being either the real or the complex number
field (R or C, respectively). The parameter ρ is a positive real number, and the set
L is a linear subspace of the set of all m× n matrices F

m×n. As was discussed in the
introduction, this formulation was considered in several papers; see, e.g., [27, 31, 32,
12, 26].

In this paper we consider the case in which m = n and L is a linear subspace
of the set of all n × n matrices diagonalizable by a given unitary matrix. That is,
L = LQ, where

(2.2) LQ = {Q∗diag(λ)Q : λ ∈ F
n},

with Q being a given unitary matrix (i.e., Q∗Q = I). Such a structure is called a SD
structure, with unitary transform. In our derivations we also assume that A,L ∈ LQ.
This particular structure is also discussed in, e.g., [27, 31].

In section 3 we will show that, as opposed to most structures, the RSTLS problem
with an SD structure can be solved globally and efficiently. Before doing so, we will
describe some image deblurring examples in which SD structures appear.

2.2. SD structures associated with image deblurring. We will now present
four classes of SD structures that arise naturally in image deblurring problems. In
addition to two-dimensional images, we will also consider one-dimensional signals and
refer to them as “one-dimensional images.” Before examining the four classes, we
briefly review some essential facts and notation from image processing.

Many image deblurring problems can be modeled as g = Sf , where g ∈ R
n is the

blurred image and f ∈ R
n is the unknown true image, whose size is assumed to be

the same as the one of g. The matrix S describes the blur operator. In the case of
spatially invariant blurs, Sf is usually a convolution of a corresponding PSF and the
true image f .

The structure of the matrix S depends on the choice of boundary conditions,
that is, the underlying assumptions on the image outside the field of view. Three
very popular boundary conditions are (i) zero boundary conditions, in which all pixels
outside the borders are assumed to be zero, (ii) periodic boundary conditions, in which
it is assumed that the image repeats itself in all directions, (iii) reflexive (Neumann)
boundary conditions, in which it is assumed that the scene outside of the boundaries
is an image mirror of the image boundaries.

Let us illustrate the three types of boundary conditions. First, in the one-
dimensional case consider the image ⎛⎝1

2
3

⎞⎠ ,

and then for zero, periodic, and reflexive boundary conditions the larger image looks
like ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
2
3
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
1
2
3
1
2
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2
1
1
2
3
3
2
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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respectively. In the two-dimensional case if we consider the image⎛⎝1 2 3
4 5 6
7 8 9

⎞⎠ ,

then for zero, periodic, and reflexive boundary conditions the larger image looks like⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 2 3 0 0 0
0 0 0 4 5 6 0 0 0
0 0 0 7 8 9 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 8 7 7 8 9 9 8 7
6 5 4 4 5 6 6 5 4
3 2 1 1 2 3 3 2 1
3 2 1 1 2 3 3 2 1
6 5 4 4 5 6 6 5 4
9 8 7 7 8 9 9 8 7
9 8 7 7 8 9 9 8 7
6 5 4 4 5 6 6 5 4
3 2 1 1 2 3 3 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

respectively. The structure of the matrix S depends on the underlying boundary con-
ditions. Here we consider spatially invariant blurs which, as was already mentioned,
imply that the blur is a convolution of given a PSF with the true (larger) image. For
one-dimensional problems the PSF is just a vector p ∈ R

d with an associated center
c ∈ {1, 2, . . . , d}. The convolution operation is then:

gi =

d∑
j=1

pjfi+c−j , i = 1, . . . , n,

where f ∈ R
d is the true image. Notice that the above formula uses values of f

beyond the boundaries (indices smaller than 1 and larger than n), but these values
are determined by the boundary conditions. For example, consider a one-dimensional
image of length three: f = (f1, f2, f3)

T , and let the PSF array be p = (p1, p2, p3)
T

with c = 2. Then the blurred image g depends on the true image f via the relation
g = Sf , where

S =

⎛⎝p2 p1 0
p3 p2 p1

0 p3 p2

⎞⎠ ,

⎛⎝p2 p1 p3

p3 p2 p1

p1 p3 p2

⎞⎠ ,

⎛⎝p2 + p3 p1 0
p3 p2 p1

0 p3 p2 + p1

⎞⎠
for zero, periodic, and reflexive boundary conditions, respectively. Note that the
above three matrices have different structures (Toeplitz, circulant, and Toeplitz-plus-
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Hankel). We now discuss four SD structures arising from one- and two-dimensional
problems with either periodic or reflexive boundary conditions:2

1. Circulant [10]. For one-dimensional images with periodic boundary condi-
tions, the structure of the model matrix is circulant, i.e., has the form

S =

⎛⎜⎜⎜⎝
s1 s2 · · · sn
sn s1 · · · sn−1

...
...

...
s2 s3 · · · s1

⎞⎟⎟⎟⎠ .

All n×n circulant matrices are diagonalizable by the unitary discrete Fourier
transform (DFT) matrix Fn given by

Fn =

(
1√
n
ω(j−1)(k−1)

)n

j,k=1

,

where ω = e
2πi
n . Multiplications of the DFT matrix Fn with vectors, as well

as eigenvalue computation of circulant matrices, can be done very efficiently
by using the fast Fourier transform (FFT) with a complexity of O(n log n).

2. Block circulant with circulant blocks [2]. For two-dimensional images of size
m × n with periodic boundary conditions, the model matrix has a block
circulant matrix with circulant blocks (BCCB) structure:

S =

⎛⎜⎜⎜⎝
C1 C2 . . . Cn

Cn C1 . . . Cn−1

...
...

...
C2 C3 . . . C1

⎞⎟⎟⎟⎠ ,

where C1, . . . ,Cn are m ×m circulant matrices. All BCCB matrices of the
above size are diagonalizable by the unitary two-dimensional DFT matrix
Fn ⊗ Fm. As in the circulant case, computations with BCCB matrices can
be performed by using the FFT.

3. Toeplitz-plus-Hankel [30]. For one-dimensional images with reflexive
boundary conditions and symmetric PSF, the matrix S has a Toeplitz-plus-
Hankel structure of the form [30]

T (s) + H(s),

where, for a given vector s = (s1, . . . , sn)T ∈ R
n, T (s) is the symmetric

Toeplitz matrix whose first column is s and H(s) is the Hankel matrix whose
first and last columns are (s1, s2, . . . , sn, 0)T and (0, sn, . . . , s2, s1)

T , respec-
tively. All Toeplitz-plus-Hankel matrices of the above form are diagonalizable
by the orthogonal discrete cosine transform (DCT) matrix Cn given by

Cn =

(√
(2 − δk1)/n cos

π(2j − 1)(k − 1)

2n

)n

j,k=1

,

where, for two indices i and j, δij denotes the Kronecker sign. Multiplica-
tions of the DCT matrix Cn with vectors, as well as eigenvalue computation

2We do not consider in this paper the zero boundary condition as it does not lead to an SD
structure.
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of circulant matrices, can be done very efficiently by using the fast cosine
transform (FCT) with a complexity of O(n log n).

4. BTTB+BTHB+BHTB+BHHB structure [15, 30]. For two-dimen-
sional images of size m × n with reflexive boundary conditions and a sym-
metric PSF, the matrix S is a sum of a BTTB (block Toeplitz with Toeplitz
blocks), BTHB (block Toeplitz with Hankel blocks), BHTB (block Hankel
with Toeplitz blocks), and BHHB (block Hankel with Hankel blocks) ma-
trices. All matrices of this form are diagonalizable by the orthogonal two-
dimensional DCT matrix Cn ⊗ Cm. We note that the symmetry condition
does occur in practice, for example, the Gaussian model for atmospheric tur-
bulence blur, out-of-focus blurs, and certain classes of Moffat blurs [15].

We have thus described four SD structures arising from one- and two-dimensional
deblurring problems. The first two classes correspond to F = C (since the DFT matrix
is complex-valued), and the last two classes correspond to F = R. Coming back to
the RSTLS problem, we note that it is very natural to assume that the boundary
conditions also apply to the regularization operator, and we can thus assume that
L ∈ LQ.

3. Decomposition of the RSTLS problem for SD structures. We begin
by showing that the RSTLS problem (2.1) with an SD structure can be decomposed
into n one-dimensional minimization problems.

Theorem 3.1. Consider the RSTLS problem (2.1) with m = n and L = LQ (see
(2.2)), where Q ∈ F

n×n is a given unitary matrix. Suppose that A,L ∈ LQ, and let
α, l be the eigenvalues of A and L defined by the relations

(3.1) QAQ∗ = diag(α), QLQ∗ = diag(l).

Then any solution to the RSTLS problem is given by x = Q∗x̂, where, for every
i = 1, . . . , n, the ith component of x̂, x̂i, is an optimal solution to the one-dimensional
problem

(3.2) min
x̂i

{
|αix̂i − b̂i|2
1 + |x̂i|2

+ ρ|li|2|x̂i|2
}
,

where b̂ = Qb. The optimal matrix E is given by

(3.3) E = Q∗diag(r)Q,

where

(3.4) ri = − x̂i(αix̂i − b̂i)

1 + |x̂i|2
.

Proof. By using the relation w = (A + E)x − b, we can rewrite (2.1) as the
following problem in the variables E and x:

min
E,x

{‖E‖2 + ‖(A + E)x − b‖2 + ρ‖Lx‖2 : E ∈ LQ,x ∈ F
n},

which, by the unitarity property of Q, is the same as

(3.5)
min
E,x

{‖QEQ∗‖2 + ‖Q(A + E)Q∗Qx − Qb‖2 + ρ‖QLQ∗Qx‖2 : E ∈ LQ,x ∈ F
n}.
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Since E ∈ LQ, we can make the change of variables QEQ∗ = diag(r), where
r ∈ F

n is an unknown variables vector. By combining this with (3.1) we conclude
that (3.5) can be reformulated as

min
r,x̂

{‖diag(r)‖2 + ‖diag(α + r)x̂ − b̂‖2 + ρ‖diag(l)x̂‖2 : r, x̂ ∈ F
n},

where x̂ = Qx, and more explicitly as

min
r,x̂

{
n∑

i=1

(|ri|2 + |(αi + ri)x̂i − b̂i|2 + ρ|li|2|x̂i|2) : r, x̂ ∈ F
n

}
.

The above optimization problem is separable with respect to the pairs of variables

(r1, x̂1), (r2, x̂2), . . . , (rn, x̂n),

implying that, for every i, the optimal (ri, x̂i) is the solution to the two-dimensional
problem

(3.6) min
ri,x̂i

{
|ri|2 + |(αi + ri)x̂i − b̂i|2 + ρ|li|2|x̂i|2 : ri, x̂i ∈ F

}
.

Next, we fix x̂i and minimize with respect to ri. The result is

ri = − x̂i(αix̂i − b̂i)

1 + |x̂i|2
.

By substituting the above expression back into the objective function of (3.6) with
some simple algebraic manipulations, we arrive at the following equivalent problem
in the single variable x̂i:

min
x̂i

{
|αix̂i − b̂i|2
1 + |x̂i|2

+ ρ|li|2|x̂i|2
}
,

establishing the result.

4. Solution and analysis of the RSTLS problem for SD structures. In
this section we study the one-dimensional (1D) problems (3.2) arising in the decom-
position of the RSTLS problem. We show in section 4.1 that, although these problems
are not unimodal,3 they can be transformed into (strictly) unimodal problems and
consequently solved efficiently and globally. This is especially crucial in image de-
blurring applications in which there are hundreds of thousands or even millions of 1D
problems to be solved. Based on the uniqueness and attainment properties of the 1D
problems, corresponding conditions for the RSTLS problem are established in section
4.2.

4.1. Solution of the single-variable problem. Our goal in this section is to
analyze the one-dimensional problem (3.2) and to devise an efficient solution method
for solving it. Consider the problem

(4.1) min
x∈F

{
f(x) =

|ax− b|2
1 + |x|2 + |c|2|x|2

}
,

3A function f : I → R, I ⊆ R being a closed interval, is (strictly) unimodal if it has a unique
local minimizer on I and is (strictly) decreasing from the left boundary of the interval to this unique
minimum and (strictly) increasing from the minimum to the right boundary of the interval.
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Fig. 1. The objective function of problems (4.5) (left) and (4.6) (right).

where a, b, c ∈ F. If c �= 0, then the objective function is coercive, and consequently
its minimum is attained. The objective function of (4.1) is not unimodal (cf. Figure
1) and thus finding its global minimum efficiently is in principle a hard task. We will
show in the next result that it can be solved via the minimization problem

(4.2) min
y≥0

{
g(y) ≡

|a|2y − 2|ab|√y + |b|2
1 + y

+ |c|2y
}

in the real nonnegative variable y. Before stating the result we briefly recall that for
a real number x ∈ R the sign function is defined by

sgn (x) ≡

⎧⎨⎩
1 x > 0,
0 x = 0,
−1 x < 0,

and for a complex number z ∈ C the sign function is given by

sgn (z) ≡
{ z

|z| z �= 0,

0 z = 0.

Lemma 4.1 (equivalence of problems (4.1) and (4.2)). Consider problem (4.1)
with a, b, c ∈ F. Then

(i) If ab �= 0, then ỹ is an optimal solution of (4.2) if and only if x̃ = sgn (āb)
√
ỹ

is an optimal solution of (4.1).
(ii) If ab = 0, then ỹ is an optimal solution of (4.2) if and only if x̃ = z

√
ỹ is an

optimal solution of (4.1) for every z ∈ F satisfying |z| = 1.
Proof. Let x̃ be an optimal solution of (4.1). Then by the optimality of x̃ we have

f(x̃) ≤ f(zx̃) for every z ∈ F satisfying |z| = 1,

which is the same as

|ax̃− b|2
1 + |x̃|2 + |c|2|x̃|2 ≤ |a(zx̃) − b|2

1 + |zx̃|2 + |c|2|zx̃|2.

The latter inequality reduces to

(4.3) 
((1 − z)ab̄x̃) ≥ 0.
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We will now show that ab̄x̃ is a nonnegative real number. This is obviously true
if x̃ = 0. Otherwise, we split the analysis into two cases:

Case I. If ab �= 0, then substituting

z =
ab̄x̃

|ab̄x̃|

into (4.3) yields


(ab̄x̃) ≥ |ab̄x̃|,

implying that ab̄x̃ is a nonnegative real number and, in particular, that sgn (x̃) =
sgn (āb).

Case II. If ab = 0, the function f satisfies f(zx) = f(x) for every x, z ∈ F such
that |z| = 1 and thus zx̃ is also an optimal solution for every z satisfying |z| = 1.

A conclusion from the above two cases is that if the minimum of (4.1) is attained
at a nonzero solution, then there must be at least one optimal solution x̃ for which
sgn (x̃) = sgn (āb); consequently, we can make the change of variables x = sgn (āb)

√
y

which transforms problem (4.1) into (4.2).
Remark 4.1. Consider problem (4.1) with F = C but with real data, i.e., a, b, c ∈

R. Then a direct consequence of Lemma 4.1 is that if the optimal set of (4.1) is
nonempty, then there must exist at least one real-valued optimal solution.

The following simple lemma establishes some key properties of problem (4.2). In
particular, it is shown that problem (4.2) is strictly unimodal (in all interesting cases)
and thus can be solved efficiently. This is in fact the main motivation for transforming
problem (4.1) into (4.2).

Lemma 4.2 (properties of problem (4.2)). Consider problem (4.2) with a, b, c ∈ F.
Then

(i) the objective function g(y) of (4.2) is quasi-convex4 over [0,∞);

(ii) if c �= 0 and ỹ is an optimal solution of (4.2); then ỹ ≤ |b|2
|c|2

(iii) the solution of (4.2) is attained and unique if and only if (a, c) �= (0, 0);
(iv) if (a, c) �= (0, 0), then the objective function g(y) of (4.2) is strictly unimodal

over [0,∞).
Proof. (i) We need to show that the level set {y : g(y) ≤ α} is convex. Indeed,

{y ≥ 0 : g(y) ≤ α} = {y ≥ 0 : (|a|2 + |c|2 − α)y − 2|ab|√y + |c|2y2 + |b|2 − α ≤ 0}.

The latter is the zero level set of a convex function and hence convex.
(ii) Note that for y ≥ 0

g(y) =
(|a|√y − |b|)2

1 + y
+ |c|2y ≥ |c|2y.

Therefore, for y > |b|2
|c|2 we have

g(y) ≥ |c|2y > |b|2 = g(0),

showing that there are no optimal solutions for (4.2) larger than |b|2
|c|2 .

4A function f : I → R (I ⊆ R being an interval) is quasi-convex if all of its level sets {x ∈ I :
f(x) ≤ α} are convex.
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(iii) First consider the case (a, c) = (0, 0). Then g(y) = |b|2/(1 + y). Hence it
follows either that g does not attain a minimum (if b �= 0) or that the minimum
(namely, all y ≥ 0) is nonunique (if b = 0). Now consider the case (a, c) �= (0, 0). We
split the analysis into two subcases.

Subcase I. If c �= 0, then limy→∞ g(y) = ∞, implying the attainment of the mini-
mum. To show the uniqueness of the minimum in this case, assume in contradiction
that the optimal solution of (4.2) is not unique. Then since the optimal set is convex
(by quasi convexity) we conclude that the optimal set is an interval I ⊆ [0,∞) with
a nonempty interior. Denote the optimal value by f∗. Then

g(y) = f∗ for every y ∈ I,

which can be explicitly written as

(|a|2 + |c|2 − f∗)y − 2|ab|√y + |c|2y2 + |b|2 − f∗ = 0 for every y ∈ I.

By making the change of variables z =
√
y, we obtain

(4.4) (|a|2 + |c|2 − f∗)z2 − 2|ab|z + |c|2z4 + |b|2 − f∗ = 0 for every z ∈ J,

where J = {z : z2 ∈ I} is an interval with a nonempty interior. However, (4.4) is
impossible since an univariate quartic equation has at most four roots and thus cannot
have an infinite number of roots.

Subcase II. Suppose that c = 0. Then a �= 0, and it is easy to see that g attains
a unique minimum at |b|2/|a|2.

(iv) Since (a, c) �= (0, 0), we know from part (iii) that g attains a unique global
minimum on the interval [0,∞). Hence it remains to show that it is strictly decreasing
from the origin to this minimum and strictly increasing when we go from this minimum
to plus infinity. Suppose that this is not true. Then the function g must have a
stationary point in (0,∞) which is different from the unique minimum. However, we
will show that, for any y > 0 such that g′(y) = 0, we automatically have g′′(y) > 0;
hence this stationary point y is at least a local minimum and, therefore, must be equal
to the unique minimum of g on the interval [0,∞). Elementary differentiation gives

g′(y) =
(|a|√y − |b|)(|a| 1√

y + |b|)
(1 + y)2

+ |c|2.

Now let ỹ > 0 be such that g′(ỹ) = 0. Then

g′′(ỹ) = − 2

(1 + ỹ)3
(|a|

√
ỹ − |b|)

(
|a| 1√

ỹ
+ |b|

)
+

|a||b|
2(1 + ỹ)2

√
ỹ

(
1 +

1

ỹ

)
g′(ỹ)=0

=
2|c|2
1 + ỹ

+
|a||b|

2(1 + ỹ)2
√
ỹ

(
1 +

1

ỹ

)
> 0,

where the positivity of the last expression comes from the fact that (a, c) �= (0, 0);
hence this last expression can be equal to zero only if both c = 0 and b = 0, but then,
by taking into account that ỹ is also a stationary point, we would obtain a = 0 as
well, in contrast to (a, c) �= (0, 0).

The most important property of the function g is its strict unimodality (as stated
in Lemma 4.2 (iv)). The strict unimodality property implies that there are no non-
global local minima and thus enables us to invoke efficient one-dimensional solvers for
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Fig. 2. The function
(
√
y−1)2

1+y
from Remark 4.2.

(strictly) unimodal functions that are guaranteed to converge to the global minimum.
The following example illustrates this property.

Example 1. Consider problem (4.1) with F = R, a = 2, b = 5, and c = 1. In this
case, problems (4.1) and (4.2) are given by

(4.5) min
x

{
(2x− 5)2

1 + x2
+ x2

}
and

(4.6) min
y≥0

{
4y − 20

√
y + 25

1 + y
+ y

}
,

respectively. The plots of the two functions are given in Figure 1.
Clearly, the objective function in (4.5) is not unimodal and indeed possesses a

nonglobal local minimizer. The global solution of (4.5) is x̃ = 1.5606 (given in four-
digit accuracy). The objective function in (4.6) is, as guaranteed by Lemma 4.1, an
unimodal function. The global minimum is ỹ = 2.4354, and the relation x̃ =

√
ỹ

holds.
Remark 4.2. A natural question here is whether g is even more than quasi-convex,

namely, convex. The answer to this question is negative. For example, for a = b = 1
and c = 0, the function g is clearly nonconvex as can be seen from Figure 2. Note,
however, that this figure also illustrates the quasi convexity of g.

Combining Lemmas 4.1 and 4.2, we are now able to state the basic properties of
problem (4.1).

Lemma 4.3 (uniqueness for problem (4.1)). The optimal solution of problem
(4.1) is uniquely attained if and only if one of the following two conditions holds:

(i) a �= 0.
(ii) a = 0, c �= 0, and |b| ≤ |c|.
Proof. We will split the analysis into four cases:
Case I. a �= 0 and b �= 0. By Lemma 4.2(iii), since a �= 0, the optimal solution of

(4.2) is uniquely attained. Moreover, since ab �= 0, then by Lemma 4.1, there is a one-
to-one correspondence between optimal solutions of (4.1) and (4.2) (via the relation
x̃ = sgn (āb)

√
ỹ), implying the uniqueness and attainment of the optimal solution of

(4.1).
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Case II. a �= 0 and b = 0. The objective function of (4.2) in this case is strictly
increasing, implying that the unique optimal solution of (4.2) is ỹ = 0 and hence that
the unique optimal solution of (4.1) is x̃ = 0.

Case III. a = 0 and b �= 0. By Lemma 4.2(iii), to guarantee the uniqueness
and attainment of the optimal solution of (4.2) we must further assume that c �= 0.
The solution of (4.1) is unique if and only if the optimal solution ỹ of (4.2) is zero
(otherwise, z

√
ỹ will be an optimal solution of (4.1) for every z satisfying |z| = 1).

By the unimodality of g, the optimal solution is 0 if and only if g′(0) ≥ 0, which is
equivalent to |b| ≤ |c|.

Case IV. a = 0 and b = 0. Again, as in the previous case, we further assume that
c �= 0. Here it is evident that the unique optimal solution is x̃ = 0.

By combining the four cases we obtain the result.

4.2. Uniqueness and attainment of the RSTLS solution. The result in
section 4.1 collectively can be summed up in the following result.

Theorem 4.1. Consider the RSTLS problem (2.1) with m = n and L = LQ (see

(2.2)), where Q ∈ F
n×n is a given unitary matrix. Let b̂ = Q∗b. Suppose further

that A,L ∈ LQ, and let α, l be the eigenvalues of A and L given by the relations:

(4.7) Q∗AQ = diag(α), Q∗LQ = diag(l).

Then the solution to the RSTLS problem is uniquely attained if and only if for each
i = 1, . . . , n one of the following two conditions is satisfied:

(i) αi �= 0.

(ii) αi = 0, li �= 0, and |b̂i| ≤
√
ρ|li|.

Proof. Note that the optimal E is uniquely defined via the optimal x by (3.3) and
(3.4). Therefore, the uniqueness and/or attainment properties of the optimal solution
of (2.1) amount to uniqueness and/or attainment of the single-variable problems (3.2),
which combined with Lemma 4.3 establishes the result.

Theorem 4.1 provides conditions for the optimal solution of the RSTLS problem
to be uniquely attained. Based on this, we can derive a simpler condition:

(4.8) Null(A) ∩ Null(L) = {0},

which is sufficient for attainment of the optimal solution and necessary for the unique
attainment of the optimal solution, as shown in the following theorem.

Theorem 4.2. Consider the setting of Theorem 4.1. Then
(i) if the optimal solution of (2.1) is uniquely attained, then condition (4.8) is

satisfied;
(ii) if condition (4.8) is satisfied, then the optimal solution set of (2.1) is nonempty;
(iii) if A is nonsingular, then the solution of (2.1) is uniquely attained.
Proof. (i) Note that by Theorem 4.1 a necessary condition for the optimal solution

of (2.1) to be uniquely attained is that |αi|2 + |li|2 �= 0 for every i, that is, αi and
li are not both zero for any given i. The eigenvalues of the matrix A∗A + L∗L are
exactly |αi|2 + |li|2, implying that A∗A + L∗L is nonsingular; therefore,

Null(A) ∩ Null(L) = Null(A∗A + L∗L) = {0}.

(ii) Assume that condition (4.8) holds. By Theorem 3.1, it is enough to show
that for every i = 1, . . . , n the one-dimensional problem (3.2) has at least one optimal
solution. Now by Lemma 4.1 it is sufficient to establish the attainment of the solution
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of

(4.9) min
y≥0

{
|αi|2y − 2|αib̂i|

√
y + |b̂i|2

1 + y
+ ρ|li|2y

}

for every i = 1, . . . , n, where αi, b̂i, and li are defined in the premise of Theorem 3.1.
By Lemma 4.2(iii), this is guaranteed if (αi, li) �= (0, 0) for every i, which, as shown
in the proof of (i), is equivalent to condition (4.8).

(iii) It follows from the nonsingularity of A that all of its eigenvalues are nonzero,
which, by Theorem 4.1, implies that the solution of (2.1) is uniquely attained.

The following example shows by suitable counterexamples that the assumptions
used in Theorem 4.2 are sufficient, but not necessary, for the corresponding statements
to be true.

Example 2. (i) Consider problem (2.1) with n = m = 1, A = (0), L = (1), b =
(2), ρ = 1, and F = R. Then condition (4.8) holds, but problem (2.1) has the two
solutions (E, x) = (1, 1) and (E, x) = (−1,−1). This shows that the unique attain-
ment of a solution of problem (2.1) is sufficient for condition (4.8) to hold but not
necessary.

(ii) Consider problem (2.1) with n = m = 1, A = (0), L = (0), b = (0), ρ = 1,
and F = R. Then every vector (E, x), with E = 0 and x ∈ R arbitrary, is a solution
of problem (2.1), although condition (4.8) does not hold. Hence this condition is
sufficient for problem (2.1) to have a nonempty solution set but not necessary.

It is interesting to compare the above conditions to the corresponding attain-
ment/uniqueness conditions for the regularized least squares problem:

(RLS): min ‖Ax − b‖2 + ρ‖Lx‖2.

The optimal solution of (RLS), as opposed to the solution of the RSTLS problem,
is always attained; it is unique if and only if condition (4.8) holds. This is in contrast
to the RSTLS problem where condition (4.8) is only a necessary condition for unique
attainment of the solution.

5. The RSTLS problem with circulant structure. The RSTLS problem
(2.1) with L = LFn

(Fn being the n× n DFT matrix) corresponds to problems with
circulant-structured matrices. Here the underlying number field is F = C since the
matrix Fn is complex-valued. However, in many applications the data A,b, and L are
real-valued. The main result in this section is that if the optimal set of the RSTLS
problem is nonempty, then there exists at least one real-valued optimal solution.
Therefore, there is no drawback in analyzing the RSTLS problem over the complex
field even when the data are real-valued.

Theorem 5.1. Consider the RSTLS problem with F = C,L = LFn , with Fn

being the n × n DFT matrix. Assume that A, b, and L are real-valued, that is,
A ∈ R

n×n,b ∈ R
n, and L ∈ R

n×n. If the optimal set of (RSTLS) is nonempty, then
there exists at least one optimal real-valued solution.

Proof. We will require the following notation:

A = {z ∈ C
n : z1 ∈ R, zj+1 = zn+1−j for every j = 1, . . . , n− 1}.

To simplify the notation we omit the subscript in the n× n DFT matrix and denote
it by F rather than by Fn. The proof is based on the following three claims:

(i) Let w = Fv for some v ∈ R
n. Then w ∈ A.
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(ii) Let α be the vector of eigenvalues of a real-valued circulant matrix A. Then
α ∈ A.

(iii) Let z ∈ A. Then F∗z ∈ R
n.

Proof of (i). First,

w1 = (Fv)1 =
1√
n

n∑
i=1

vi,

proving that w1 ∈ R. Next, for every j = 1, . . . , n− 1 we have

(5.1) wj+1 = (Fv)j+1 =

n∑
i=1

Fj+1,ivi =
1√
n

n∑
i=1

ωj(i−1)vi.

On the other hand,

wn+1−j = (Fv)n+1−j =

n∑
i=1

Fn+1−j,ivi =
1√
n

n∑
i=1

ω(n−j)(i−1)vi

=
1√
n

n∑
i=1

ωj(i−1)vi
(5.1)
= wj+1.

Proof of (ii). Let (s1, s2, . . . , sn) be the first row of A. The jth eigenvalue of the
circulant matrix A is given by αj =

∑n
i=1 ω

(i−1)(j−1)si. Then

α1 =

n∑
i=1

si ∈ R

and

αn+1−j =

n∑
i=1

ω(i−1)(n−j)si =

n∑
i=1

ω(i−1)jsi = αj+1

for every j = 1, . . . , n− 1. Thus, α ∈ A.
Proof of (iii). For every i = 1, 2, . . . , n:

√
n(F∗w)i =

√
n

n∑
j=1

Fj,iwj =

n∑
j=1

ω−(i−1)(j−1)wj

w∈A
= w1 +

n∑
j=2

ω−(i−1)(j−1)wn+2−j = w1 +

n∑
j=2

ω(i−1)(n+1−j)wn+2−j

k←n+2−j
= w1 +

n∑
k=2

ω(i−1)(k−1)wk =
√
n

n∑
k=1

Fk,iwk

=
√
n

n∑
k=1

Fk,iwk =
√
n (F∗w)i.

By Theorem 3.1, an optimal solution of the RSTLS problem is given by x = F∗x̂,
where x̂i, the ith component of x̂, is an optimal solution of (3.2). Recall that b̂ = Fb
for real-valued b and that α and l are the eigenvalues vectors of the real-valued
circulant matrices A and L, respectively. Therefore, by properties (i) and (ii), b̂,α, l ∈
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A. Hence, x̂1 is the solution of (3.2) with i = 1 and with real data, which by Remark
4.1 implies that x̂1 is real. Moreover, for every j = 1, . . . , n − 1, x̂j and x̂n+1−j are
the optimal solutions of

min
x̂j+1

{
|αj+1x̂j+1 − b̂j+1|2

1 + |x̂j+1|2
+ ρ|lj |2|x̂j |2

}
,

min
x̂n+1−j

{
|αj+1x̂n+1−j − b̂j+1|2

1 + |x̂n+1−j |2
+ ρ|lj+1|2|x̂n+1−j |2

}
,

respectively. Therefore, we can always choose the optimal solutions of these problems
to satisfy x̂n+1−j = x̂j+1. Thus, for the mentioned choice x̂ ∈ A and by property (iii)
this proves that x = F∗x̂ is real-valued.

Remark 5.1. It can be shown by using the same methodology employed in the
proof of Theorem 5.1 that there always exists a real-valued solution for the RSTLS
problem with Q = Fn⊗Fm (BCCB structure) whenever A,L, and b are real-valued.

The following two examples demonstrate the validity of Theorem 5.1.
Example 3. Let Q = F3 (3 × 3 circulant matrices) and

A =

⎛⎝1 2 3
3 1 2
2 3 1

⎞⎠ , b =

⎛⎝4
5
6

⎞⎠ , L =

⎛⎝ 1 −1 0
0 1 −1
−1 0 1

⎞⎠ , ρ = 1.

Then

α = diag(F3AF∗
3) =

⎛⎝ 6
−1.5 − 0.866025i
−1.5 + 0.866025i

⎞⎠ ,

b̂ = F3b =

⎛⎝ 8.660254
−0.866025 + 0.5i
−0.866025 − 0.5i

⎞⎠ , l =

⎛⎝ 0
1.5 − 0.866025i
1.5 + 0.866025i

⎞⎠ .

The vector x̂ consisting of the optimal solutions the three arising optimization prob-
lems is

x̂ =

⎛⎝ 1.443375
0.143941 − 0.249314i
0.143941 + 0.249314i

⎞⎠ ,

and the optimal solution

x = F∗
3x̂ =

⎛⎝0.999543
0.999543
0.500913

⎞⎠
is indeed real.

Example 4. Consider the RSTLS problem with Q = F3 (3×3 circulant matrices)
and

A =

⎛⎝1 1 1
1 1 1
1 1 1

⎞⎠ , b =

⎛⎝2
4
6

⎞⎠ , L =

⎛⎝ 1 −1 0
0 1 −1
−1 0 1

⎞⎠ , ρ = 1.
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Then

α = diag(F3AF∗
3) =

⎛⎝3
0
0

⎞⎠ , b̂ = F3b =

⎛⎝ 6.928203
−1.732050 + i
−1.732050 − i

⎞⎠ .

In this example the optimal solutions of the arising one-dimensional problems are
not unique, and they consist of the collection of vectors x̂ of the form:

x̂ =

⎛⎝ 2.309401
0.393319z1

0.393319z2

⎞⎠ ,

where z1 and z2 are complex numbers satisfying |z1| = |z2| = 1. Correspondingly,
the set of optimal solutions of (RSTLS) consists of all vectors F∗

3x̂, where x̂ is of the
above form and is thus equal to

{(a + z1b + z2c, a + bz1ω̄ + cz2ω, a + bz1ω + cz2ω̄)T : |z1| = |z2| = 1},

where a = 2.309401, b = 0.393319, and ω = e
2πi
3 . The above set certainly contains

complex-valued optimal solutions, but, if we choose z1 = z̄2, we obtain a subset of
real-valued optimal solutions:{

1√
3
(a + 2 cos(θ)c, a + 2 cos(θ + 2π/3)c, a + 2 cos(θ − 2π/3)b)T : 0 ≤ θ ≤ 2π

}
.

6. Solution of the CSTLS problem with SD structure. When the regu-
larization is made by adding a constraint rather than by penalization, the problem
becomes

(6.1) (CSTLS):

min
E,x

‖E‖2 + ‖(A + E)x − b‖2

s.t. ‖Lx‖2 ≤ α,
E ∈ LQ,
x ∈ F

n,

where α > 0. We will show that the CSTLS problem can be solved by a sequence of
RSTLS problems using a dual approach. We assume throughout this section that A is
nonsingular. This assumption prevails in many image deblurring problems, although
the matrix is often extremely ill conditioned.

The Lagrangian dual problem of (6.1) is given by

(6.2) max
λ≥0

q(λ),

where

(6.3)
q(λ) = min

E,x
‖E‖2 + ‖(A + E)x − b‖2 + λ(‖Lx‖2 − α)

s.t. E ∈ LQ,x ∈ F
n.

Therefore, evaluating a value of the dual objective function amounts to solving a
single RSTLS problem which can be solved efficiently as shown in the previous sec-
tions. Since A is nonsingular, then by Theorem 4.2 (iii), the optimal solution of (6.3)
is uniquely attained for all λ ≥ 0, and we denote it by (xλ,Eλ). The function q has
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several important properties which are summarized in Lemma 6.1 below. The differ-
entiability property of q (part (ii) of Lemma 6.1), relies on the uniqueness property
and on the following well known result [9, Proposition 6.1.1].

Theorem 6.1. Let f and g be continuous functions defined on a compact set X.
Let

h(λ) ≡ min
x∈X

{f(x) + λg(x)} , λ ∈ [λ1, λ2],

and assume that there exists a unique minimizer xλ to the above optimization problem
for every λ ∈ [λ1, λ2] denoted by xλ. Then h is differentiable for every λ ∈ (λ1, λ2)
and h′(λ) = g(xλ).

In our case the compactness assumption is not satisfied; however, this difficulty
can be avoided. We will use the following notation:

s(x,E) = ‖E‖2 + ‖(A + E)x − b‖2,

t(x,E) = ‖Lx‖2 − α,

Y = {(x,E) : x ∈ F
n,E ∈ LQ}.

Then, in this notation, the CSTLS problem can be written as

(6.4) min
x,E

{s(x,E) : t(x,E) ≤ 0, (x,E) ∈ Y }.

Lemma 6.1. Consider the function q given by (6.3). Then
(i) q is concave over [0,∞);
(ii) q(λ) is differentiable for every λ > 0 and q′(λ) = ‖Lxλ‖2 − α;
(iii) limλ→∞ q(λ) = −∞.
Proof. (i) q(λ) is the pointwise minimum of functions which are linear in λ and

hence concave.
(ii) Let λ̃ > 0, and let λ2 > λ1 > 0 be two positive numbers for which λ̃ ∈ (λ1, λ2).

The dual objective can be written as

(6.5) q(λ) = min{s(x,E) + λt(x,E) : (x,E) ∈ Y }.

From the nonsingularity of A and Theorem 4.2(iii) it follows that there exists a
unique minimizer to the above problem which we denote by (xλ,Eλ). By Theorem
3.1 it follows that xλ = Q∗yλ, where the ith component of yλ, yλi , is the solution to

min
yi

{
|αiyi − b̂i|2
1 + |yi|2

+ ρλ|li|2|yi|2
}
.

If li = 0, then yλi = b̂i
αi

(αi �= 0 for every i as an eigenvalue of a nonsingular matrix).
Otherwise,

ρλ|li|2|yλi |2 ≤ |αiy
λ
i − b̂i|2

1 + |yλi |2
+ ρλ|li|2|yλi |2 ≤ |αi0 − b̂i|2

1 + 02
+ ρλ|li|202 = |b̂i|2,

so that |yλi |2 ≤ |b̂i|2
ρλ|li|2 . Consequently, for every λ ∈ [λ1, λ2],

|yλi |2 ≤

⎧⎨⎩
∣∣∣ b̂iαi

∣∣∣2 li = 0,

|b̂i|2
ρλ1|li|2 li �= 0.
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Hence, yλ is bounded for every λ ∈ [λ1, λ2] showing that xλ = Q∗yλ is also bounded
over [λ1, λ2]; that is, there exists β > 0 for which ‖xλ‖ ≤ β, λ ∈ [λ1, λ2]. Moreover,
by the relation between the optimal E and the optimal x given by (3.3) and (3.4),
it follows that Eλ is also bounded over [λ1, λ2]; namely, there exists γ > 0 for which
‖Eλ‖ ≤ γ. The dual objective function can thus be written as

q(λ) = min{s(x,E) + λt(x,E) : (x,E) ∈ Ỹ },

where

Ỹ = {(x,E) : x ∈ F
n,E ∈ LQ, ‖x‖ ≤ β, ‖E‖ ≤ γ}

is a compact set. Therefore, by Theorem 6.1, q is differentiable over (λ1, λ2) and in
particular at λ̃ and q′(λ̃) = t(xλ̃,Eλ̃) = ‖Lxλ̃‖2 − α.

(iii) Since E = 0,x = 0 is feasible for (6.3), we obtain

q(λ) ≤ ‖b‖2 − λα,

establishing that q(λ) → −∞ as λ → ∞.
We will now show that, despite the nonconvexity of the CSTLS problem, strong

duality holds.
Theorem 6.2 (strong duality for CSTLS). Let λ∗ > 0 be a maximizer of (6.2).

Then q(λ∗) is equal to the optimal value of the primal problem (6.1), and (xλ∗ ,Eλ∗)
is the optimal solution of (6.1).

Proof. Since λ∗ > 0 is the optimal solution of (6.2) and q is differentiable by
Lemma 4.2(ii), we have ‖Lxλ∗‖2 − α = q′(λ∗) = 0. Therefore, xλ∗ is a feasible
solution of the primal problem (6.1), and

q(λ∗) = s(xλ∗ ,Eλ∗) + λ∗(‖Lxλ∗‖2 − α) = s(xλ∗ ,Eλ∗),

which, from basic duality theory, implies that λ∗ and (xλ∗ ,Eλ∗) are the dual and
primal optimal solutions, respectively.

The optimal λ∗ is a root of the nondecreasing function q′(λ) and can thus be
found via a simple bisection procedure.

7. Implementation and a numerical example.

7.1. Implementation. The core of the numerical method for solving the RSTLS
problem is the solution of n single-variable problems of the form (4.1). Since the
number of these 1D problems might be huge (for example, for a two-dimensional
1024×1024 image, there are more than one million problems), it is imperative to find
the global solution of each of them. The method will produce an erroneous solution
even if one of the 1D problems is not solved correctly.

From numerical considerations the algorithm is split into two phases. In the first
phase, we find the optimal solution of (4.2) up to a moderate tolerance ε (in our
experiments ε = 10−4). That is, the output of the first phase is an interval [�, u], with
u − � < ε, in which the optimal solution of (4.2) is guaranteed to reside. The goal
of the first phase is to find a “small enough” interval in which the global solution is
guaranteed to reside. Since in the course of the change of variables x = sgn (āb)

√
y

the accuracy of the solution might be reduced from ε to
√
ε, a second phase is invoked

in which we seek the global minimizer x∗ of the problem

(7.1) min
x

{
|a|2x2 − 2|ab|x + |b|2

1 + x2
+ |c|2x2
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in the interval [
√
�,
√
u] up to a tolerance ε2. The interval [

√
�,
√
u] is small enough

so that for all practical purposes the function in (7.1) is unimodal over [
√
�,
√
u] and

the global optimal solution given by sign(āb)x∗ is obtained. A detailed description of
the algorithm follows.

Algorithm SOLVE1D(a, b, c).

input a, b, c ∈ C

output x - an optimal solution of (4.1).
comments 1. It is assumed that a and c are not both zero.

2. The functions f1 and f2 called in the solver are given by

f1(x; a, b, c) = (|a|
√
x−|b|)2

1+x + |c|2x,

f2(x; a, b, c) = (|a|x−|b|)2
1+x2 + |c|2x2.

If c is equal to zero up to some tolerance, then the output of the algorithm is b/a;
otherwise, the upper bound is chosen.
if c < 10−8

x = b
a

stop
else

u =
∣∣ b
c

∣∣2
end if
� = 0
s = sgn (āb)
Phase I. Activating an unimodal solver on the function f1

while (u− �)> ε
x− = 2

3� + 1
3u

x+ = 1
3� + 2

3u
f+ = f1(x

+; a, b, c)
f− = f1(x

−; a, b, c)
if f− ≤ f+

u = x+

else
� = x−

end if
end while
Updating the lower and upper bounds.

� =
√
�

u =
√
u

Phase II. Activating an unimodal solver on the function f2.
while (u− �)> ε2

x− = 2
3� + 1

3u

x+ = 1
3� + 2

3u
f+ = f2(x

+; a, b, c)
f− = f2(x

−; a, b, c)
if f− ≤ f+

u = x+

else
� = x−

end if
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end while

x = sx++x−

2
stop

We note that in the MATLAB implementation the minimization of the n 1D
problems is done simultaneously using MATLAB’s vector operations. For the exact
implementation please see the (small) RSTLS MATLAB package available at [38].
Given the 1D solver, the solution of the RSTLS problem (2.1) is obtained via the
following procedure.

Algorithm RSTLS (Q,A,L, ρ).

input Q ∈ F
n×n - a unitary matrix.

A,L ∈ LQ,b ∈ F
n.

ρ ∈ R++.
output The x-part of the optimal solution of (2.1).

Step 1. b̂ = Qb.
Step 2. Compute the eigenvalues vectors α, l of A and L defined

by the relations (3.1).

Step 3. For each i = 1, . . . , n call algorithm SOLVE1D with input αi, b̂i, ci
and obtain an output x̂i.

Step 4. x = Q∗x̂, where x̂ = (x̂i)
n
i=1.

Based on the RSTLS algorithm, the constrained version, problem (CSTLS), is
solved via a simple bisection algorithm applied to q′(λ), where q is the dual function
defined by (6.3). The bisection is over the logarithm of base 10 of the dual variable λ.

Algorithm CSTLS(Q,A,L, α).

input Q ∈ F
n×n - a unitary matrix.

A,L ∈ LQ,b ∈ F
n.

α ∈ R++.
output The x-part of the optimal solution of (6.1).

Step 1. u = 2, � = −4.
Step 2. while (u− �) > 0.1

h = u+�
2

call Algorithm RSTLS with input Q,A,L, 10h and obtain an output x̃
if ‖Lx̃‖2 < α

u = h
else

� = h
end if

Step 11. end while
Step 3. x = x̃.

Note that the RSTLS and CSTLS algorithms use matrix-vector multiplications
with the matrices Q and Q∗ and require the computation of the eigenvalues of the
matrices A and L. When LQ is one of the four SD structures described in section
2.2 in the context of image deblurring, these operations can be efficiently performed
by utilizing fast transforms: one- or two-dimensional FFT for periodic boundary
conditions and one- or two-dimensional FCT for reflexive boundary conditions.
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7.2. A numerical example. To demonstrate our approach we consider an im-
age deblurring example. We start with the 512×512 Lena gray image (top left image
of Figure 3) scaled so that all of the pixels are in the interval [0, 1] and blur it with
a Gaussian PSF of dimension 9 × 9 with standard deviation 6 implemented in the
command psfGauss([9,9],6) from [15]; the values in the PSF range between 0.0095 and
0.0148. We assume that the blurring is not exactly known and that the observed PSF
is a Gaussian PSF of dimension 9 × 9 with standard deviation 8. We then cut the
margins by 20 rows and columns resulting in 492×492 and add a Gaussian white noise
with standard deviation 10−3 (top right image of Figure 3). By assuming reflexive
boundary conditions, the poor naive solution construction (i.e., A−1b) is given in the
left middle image of Figure 3. This poor quality of the naive solution is not surprising
since the problem is extremely ill conditioned. In our experiments, the regularization
matrix L represents a discretization of a differential operator corresponding to the PSF⎛⎝−1 −1 −1

−1 8 −1
−1 −1 −1

⎞⎠ .

The constrained least squares solution, that is, the solution of the problem

min{‖Ax − b‖2 : ‖Lx‖2 ≤ α},

is presented in the right middle image. The CSTLS reconstructions under periodic and
reflexive boundary conditions are the left and right bottom images, respectively. The
parameter α is chosen as 1.2‖Lxtrue‖2. Clearly, the best reconstruction is provided
by the CSTLS algorithm with reflexive boundary conditions. The artifacts in the
CSTLS reconstruction with periodic boundary conditions are much more prominent.
The relative error of the CSTLS reconstruction with reflexive boundary conditions,
‖xtrue−xCSTLS−R‖

‖xtrue‖ , is 0.0961, while for periodic boundary conditions the relative error

is 0.1393. The constrained least squares solution gave the worst relative error: 0.15.

8. Conclusion and discussion. In this paper we have shown that the RSTLS
problem for structures involving matrices which are simultaneously diagonalizable by
a given unitary matrix can be efficiently and globally solved (as opposed to general
structures). These SD structures appear in image deblurring problems with either
reflexive or periodic boundary conditions. The solution method consists of first de-
composing the problem into several real or complex one-dimensional problems which
are not necessarily unimodal. In the described image deblurring examples, the decom-
position is performed by using the FFT or the FCT. The one-dimensional problems
are then globally solved by invoking an unimodal solver on a transformation of the
problems. Numerical results demonstrate the effectiveness of the proposed approach.

Another type of boundary conditions are antireflective boundary conditions in-
troduced in [35].5 As stated in [35], antireflective boundary conditions further reduce
the boundary artifacts. The reason is that zero Dirichlet and periodic boundary con-
ditions introduce an artificial discontinuity at the border of the field of view; reflexive
boundary conditions impose that the reflected image is globally continuous but in-
troduce an artificial discontinuity of the first derivative, while antireflective boundary
conditions using a central symmetry are able to maintain C1 continuity in the case of
signals and C0 with normal derivative continuity for images.

5We thank an anonymous reviewer for referring us to the literature on this type of boundary
conditions.
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original blurred and noisy

naive solution constrained LS

CSTLS (periodic) CSTLS (reflexive)

Fig. 3. Deblurring of Lena.

In analogy with the reflexive boundary conditions, matrix-vector operations, solu-
tion of linear systems, and eigenvalue computations in the antireflective setting can be
done in O(n log n) real operations [4] (using the fast sine transform). It is also known
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that for these types of boundary conditions and with symmetric PSFs the set of all
possible matrices is simultaneously diagonalizable [3]. However, the diagonalizing
matrix is not unitary. The unitary property is essential to the analysis introduced in
the current paper. Specifically, the decomposition of the RSTLS problem described
in Theorem 3.1 will not be valid if the diagonalization is via a nonunitary matrix.
Therefore, it does not seem possible to analyze the RSTLS problem with antireflec-
tive boundary conditions within the setting of the paper. It is an open question
whether it is possible to exploit the special properties of antireflective boundary con-
ditions in order to construct an efficient method for solving the corresponding RSTLS
problem.
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