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Abstract We establish several convexity results which are concerned with noncon-
vex quadratic matrix (QM) functions: strong duality of quadratic matrix program-
ming problems, convexity of the image of mappings comprised of several QM func-
tions and existence of a corresponding S-lemma. As a consequence of our results,
we prove that a class of quadratic problems involving several functions with similar
matrix terms has a zero duality gap. We present applications to robust optimization,
to solution of linear systems immune to implementation errors and to the problem of
computing the Chebyshev center of an intersection of balls.

Keywords Quadratic matrix functions · Strong duality · Extended S-lemma ·
Semidefinite relaxation · Convexity of quadratic maps

1 Introduction

We consider convexity-type results related to quadratic functions f : F
n×r → R of

the form

f (Z) = Tr(Z∗AZ) + 2�(Tr(B∗Z)) + c, Z ∈ F
n×r , (1)

where A = A∗ ∈ F
n×n,B ∈ F

n×r and c ∈ R. Here F denotes either the real number
field R or the complex number field C. A function of the form (1) is called a quadratic
matrix function of order r . In [1], this type of functions was analyzed over the real do-
main in relation to quadratic matrix programming (QMP) problems, namely problems
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involving QM functions. In particular, it was shown that nonconvex QMP problems
with at most r constraints admit a tight semidefinite relaxation (SDR) and that strong
duality holds. This result is a generalization of the well-known strong duality result
for the class of quadratically constrained quadratic programming (QCQP) problems
with a single quadratic constraint; see for example [7–10] for theoretical and algo-
rithmic analysis. The tightness of the SDR result for QMP problems (or in particular
for QCQP problems with a single constraint) can be interpreted as a type of hidden
convexity property, since it also implies that the solution of the original nonconvex
problem can be extracted from its convex SDR reformulation.

In this paper, we continue to study convexity results of (possibly nonconvex) QM
functions. An overview of the literature reveals that there are three major convexity-
type results with respect to quadratic functions and problems:

(i) Zero duality gap—the value of a QCQP problem is equal to the value of its dual
problem.

(ii) S-lemma-type result—The statement “a quadratic inequality constraint is im-
plied by a set of quadratic inequalities” is equivalent to a certain linear matrix
inequality (LMI).

(iii) Convexity of the image of quadratic mappings—the image of a mapping com-
prised of several quadratic functions is convex.

We note that the first property is generally satisfied if and only if the corresponding
SDR is tight. The reason for this is that the dual of a QCQP and its SDR are convex
problems which are dual to each other and hence, under some regularity conditions,
have the same value.

It is well known that the three categories—although not equivalent—are very
closely related. Examples of derivations from one category to the other can be found
throughout the literature. The earliest results connecting the different categories can
be found in the works of Yakubovich and Fradkov and Yakubovich [2, 3] where
it was shown that, by using separation theorems for convex sets, an appropriate S-
lemma can be deduced from corresponding results on the convexity of the image of
quadratic mappings. Years later, Polyak [4] proved a strong duality result for homoge-
nous nonconvex quadratic problems involving two quadratic constraints by using a
convexity property on the image of three homogenous quadratic forms (under the as-
sumption that there exists a positive-definite linear combination of the corresponding
matrices); this result was also recovered by Ye and Zhang [5]. Polyak’s work [4] also
provided an alternative proof of the well-known strong duality result for (general-
ized) trust region subproblems [6–10], which is based on the convexity property of
mappings comprised of two nonhomogenous quadratic functions. In [11], Beck and
Eldar use a complex version of the S-lemma in order to show strong duality property
for nonconvex quadratic problems with two quadratic mappings over the complex
domain. This result was also independently derived by Huang and Zhang [12]. In
[11] it is also shown that, by comparing real and complex-valued images of quadratic
mappings, one can establish a sufficient condition for strong duality of nonconvex
quadratic problems with two quadratic constraints over the real domain. More inter-
esting results concerning various convexity results of quadratic mappings and their
relation to optimization problems can be found in the comprehensive survey of Po-
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lik and Terlaky [13], the book of Ben-Tal and Nemirovski [14] and in the paper of
Hiriart-Urruty and Torki [15].

In this paper, we present convexity results of all three categories in connection to
QM functions and problems. In Sect. 2, we review the essential facts from [1] about
QMP problems and extend the analysis to the complex domain. Our motivation for
considering the complex setting is twofold. First, optimization problems in many en-
gineering applications naturally have complex-valued variables. Second, results over
the complex and real domains are not the same. In particular, we show that QMP
problems with r constraints over the real domain, or 2r constraints over the complex
domain, have a tight SDR and that strong duality holds. In Sect. 3, we consider the
image of quadratic mappings comprised of several QM functions. We show that a
mapping comprised of at most r QM functions of order r in the real domain, or at
most 2r QM functions in the complex domain, is always convex. Under some as-
sumptions, we prove that an additional QM function can be added without damaging
the convexity result. The latter result exploits a result of Au-Yeung and Poon [16]
on the convexity of the numerical range of a certain class of homogenous quadratic
functions. An extended S-lemma on QM functions is established in Sect. 4; applica-
tions to robust quadratic optimization and the solution of linear systems immune to
implementation errors are presented. Finally, in Sect. 5 we present the special class
of uniform quadratic problems in which strong duality is shown to follow from the
strong duality result of QMP problems. This result is an extension and improvement
of a result which was derived for the real case [17]. For convenience, some technical
results are gathered in the appendices.

Notation The discussion throughout the paper is presented over the number field
F which stands for either R or C. The identity matrix of order r is denoted by Ir ,
(·)∗ and (·)T denote the Hermitian conjugate and the transpose of the corresponding
matrices respectively. In order to be able to analyze the complex and real domains at
the same time, we define the following field-dependent functions:

θ(F) ≡
{

1, F = R,

2, F = C,

ϕ(n;F) ≡
{

n2, F = C,(
n+1

2

)
, F = R.

It can be readily seen that ϕ(n;F) = θ(F)
n(n−1)

2 + n and that ϕ(n;F) is the di-
mension of Hn(F) over the real number field R. The space Hn(F) denotes the space
of matrices A over the field F that satisfy A∗ = A. Therefore, Hn(R) = S n is the set
of real symmetric matrices and Hn(C) = Hn is the set of complex Hermitian ma-
trices. Similarly, Hn++(F) (Hn+(F)) is the set of all positive (semi)definite matrices
over F. For two matrices A and B , A � B (A � B) means that A − B is positive
definite (semidefinite). Er

ij is the r × r matrix with one at the (i, j)th component
and zero elsewhere. For a given square matrix U , [U ]r denotes the southeast r × r

submatrix of U , i.e., if U = (uij )
n+r
i,j=1, then [U ]r = (uij )

n+r
i,j=n+1. For simplicity, in-

stead of inf/sup we use min/max; however, this does not mean that we assume that



4 J Optim Theory Appl (2009) 142: 1–29

the optimum is attained and/or finite. The value of the optimal objective function of
an optimization problem

(P) min{f (x) : x ∈ C}
is denoted by val(P). The optimization problem (P) is called bounded below if the
minimum is finite and termed solvable in the case where the minimum is finite and
attained (similar definitions for maximum problems). We follow the MATLAB con-
vention and use “;” for adjoining scalars, vectors or matrices in a column.

2 Review and Extension: QMP Problems in the Real and Complex Domains

QMP problems in the real domain were presented and analyzed in [1]. In this section,
we extend the results of [1] to include both the complex and real domains. This sec-
tion can also be regarded as a review of the results on QMP problems which will be
the key ingredient for many of the results in this paper.

We begin by defining in Sect. 2.1 the concepts of QM functions and QMP prob-
lems. We then present in Sect. 2.2 a specially-devised SDR and dual of QMP prob-
lems. Finally, based on the constructed SDR and an extension of the rank reduction
algorithm of Pataki [18, 19], we are able to show in Sect. 2.3 that QMP problems
with r constraints over the real domain and QMP problems with 2r constraints over
the complex field have a tight semidefinite relaxation.

2.1 Quadratic Matrix Functions and Problems

A quadratic matrix (QM) function of order r is a function f : F
n×r → R of the form

f (Z) = Tr(Z∗AZ) + 2�(Tr(B∗Z)) + c, Z ∈ F
n×r , (2)

where A ∈ Hn(F), B ∈ F
n×r and c ∈ R. In the case F = R, the QM function (2) takes

the familiar form of a QM function over the real domain,

f (Z) = Tr(ZT AZ) + 2Tr(BT Z) + c.

If B = 0n×r and c = 0, then f is called a homogenous quadratic matrix function or a
quadratic matrix form. The homogenized quadratic matrix function of f is denoted
by f H : F

(n+r)×r → R and given by

f H (Z;T ) ≡ Tr(Z∗AZ) + 2�(Tr(T ∗B∗Z)) + c

r
Tr(T ∗T ), Z ∈ F

n×r , T ∈ F
r×r ,

(3)
which is a homogenous QM function of order r corresponding to the matrix

M(f ) ≡
(

A B

B∗ c
r
Ir

)
. (4)

The operator M will be used throughout the paper.
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A QM function of order one is merely a standard-form quadratic function: f (z) =
z∗Az+2�(b∗z)+c. Moreover, in this case f H stands for the usual homogenized ver-
sion of a quadratic function, i.e., f H : F

n+1 → R, f H (z;w) = z∗Az + 2�(b∗zw̄) +
‖w‖2.

We note that every QM function of order r is also a “standard” quadratic function
with nr variables. The latter observation follows directly from the relation

Tr(Z∗AZ)+2�(Tr(B∗Z))+c = vec(Z)∗(Ir ⊗A)vec(Z)+2�(vec(B)∗vec(Z))+c,

where vec(D) denotes the vector obtained by stacking the columns of D and ⊗ is
the Kronecker product. The right-hand side presentation of the QM function is called
the vectorized QM function [1]. We refer the reader to the discussion in [1] on vari-
ous relations between the matricial and vectorized presentation of functions and op-
timization problems; however, in this paper, we will not focus on the “vectorized”
counterparts of our results.

Quadratic matrix programming (QMP) problems are problems in which the goal
is to minimize a QM objective function subject to equality and inequality QM con-
straints,

(QMP) min f0(Z),

s.t. fi(Z) ≤ αi, i ∈ I,

fj (Z) = αj , j ∈ E ,

Z ∈ F
n×r , (5)

where fi : F
n×r → R, i ∈ I ∪ E ∪ {0}, are QM functions of order r given by

fi(Z) = Tr(Z∗AiZ) + 2�(Tr(B∗
i Z)) + ci, Z ∈ F

n×r ,

with Ai ∈ Hn(F),Bi ∈ F
n×r , ci ∈ R, i ∈ {0} ∪ I ∪ E . The index sets {0}, I, E are

pairwise disjoint sets of nonnegative integers.

2.2 Semidefinite Relaxation and Dual of the QMP Problem

The following lemma presents a homogenized version of the QMP problem which
utilizes the homogenization procedure (f → f H ) described in Sect. 2.1. This lemma
is a straightforward extension of Lemma 3.1 from [1] and its proof is therefore omit-
ted.

Lemma 2.1 Consider the following homogenized version of the QMP problem (5):

min f H
0 (Z;T ),

s.t. f H
i (Z;T ) ≤ αi, i ∈ I,

f H
j (Z;T ) = αj , j ∈ E ,

T ∗T = Ir ,

Z ∈ F
n×r , T ∈ F

r×r . (6)
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(i) Suppose that the QMP problem (5) is solvable and let Ẑ be an optimal solution

of (QMP). Then problem (6) is solvable, (Ẑ; Ir) is an optimal solution of (6) and

val(QMP) = val(6).
(ii) Suppose that problem (6) is solvable and let (Ẑ; T̂ ) be an optimal solution of (6).

Then problem (QMP) is solvable, ẐT̂ ∗ is an optimal solution of (QMP) and

val(QMP) = val(6).

In order to be able to present problem (6) as a QMP problem, we will make use of
the following technical lemma (recall that [U ]r denotes the southeast r × r submatrix
of U ):

Lemma 2.2 Let n, r be positive integers and let U ∈ Hn+r (F). Then, [U ]r = Ir if

and only if

Tr(LiU) = 2, i = 1, . . . , r,

Tr(Nk
ijU) = 0, 1 ≤ i < j ≤ r, k = 1, . . . , θ(F),

where

N1
ij =

(
0n×n 0n×r

0r×n Er
ij + Er

ji

)
, N2

ij =
(

0n×n 0n×r

0r×n iEr
ij − iEr

ji

)
,

Li =
(

0n×n 0n×r

0r×n 2Er
ii

)
. (7)

By denoting W = (Z;T ) ∈ F
(n+r)×r and using Lemma 2.2, together with the fact

that T ∗T = Ir if and only if T T ∗ = Ir , we conclude that problem (6) can be written
as

min Tr(M(f0)WW ∗),

s.t. Tr(M(fi)WW ∗) ≤ αi, i ∈ I,

Tr(M(fj )WW ∗) = αj , j ∈ E ,

Tr(LiWW ∗) = 2, i = 1, . . . , r,

Tr(Nk
ijWW ∗) = 0, 1 ≤ i < j ≤ r, k = 1, . . . , θ(F),

W ∈ F
(n+r)×r ,
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where the operator M is defined in (4). Making the change of variables U = WW ∗,
problem (6) becomes

min Tr(M(f0)U),

s.t. Tr(M(fi)U) ≤ αi, i ∈ I,

Tr(M(fj )U) = αj , j ∈ E ,

Tr(LiU) = 2, i = 1, . . . , r,

Tr(Nk
ijU) = 0, 1 ≤ i < j ≤ r, k = 1, . . . , θ(F),

U ∈ Hn+r+ (F),

rank(U) ≤ r.

Omitting the “hard” constraint rank(U) ≤ r , and invoking Lemma 2.2, we arrive
at the following semidefinite relaxation of the QMP problem (5):

(SDR) min
U

Tr(M(f0)U),

s.t. Tr(M(fi)U) ≤ αi, i ∈ I,

Tr(M(fj )U) = αj , j ∈ E ,

[U ]r = Ir ,

U ∈ Hn+r+ (F). (8)

The dual problem to the semidefinite relaxation problem (SDR) is given by

(D) max
λi ,�

−
∑

i∈I∪E
λiαi − Tr(�),

s.t. M(f0) +
∑

i∈I∪E
λiM(fi) +

(
0n×n 0n×r

0r×n �

)
� 0,

� ∈ Hr (F),

λi ≥ 0, i ∈ I,

λj ∈ R, j ∈ E . (9)

It is interesting to note that (D) is, in fact, the standard dual problem of (QMP).
Therefore, (D) is the dual problem of both (QMP) and (SDR).

2.3 Tightness of the Semidefinite Relaxation of the QMP Problem

Consider the following general-form SDP problem:

min Tr(C0U),

s.t. Tr(CiU) ≤ αi, i ∈ I1,

Tr(CjU) = αj , j ∈ E1,

U ∈ Hn+(F), (10)
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where I1 and E1 are disjoint index sets, Ci ∈ Hn(F) for i ∈ {0} ∪ I1 ∪ E1 and αi ∈ R

for i ∈ I1 ∪ E1. In the real case (F = R), Pataki [18, 19] showed that, if |I1| + |E1| ≤
ϕ(r +1;R) and if the SDP problem (10) is solvable, then there exists a rank-r solution
of the problem. In Appendix A, we present a simple extension of Pataki’s procedure
(termed “algorithm RED”) that considers both the real and complex domains. The
validity of this procedure implies the following theorem:

Theorem 2.1 Suppose that problem (10) is solvable and that |I1| + |E1| ≤ ϕ(r +
1;F)− 1, where r is a positive integer. Then problem (10) has a solution U for which
rank(Z) ≤ r .

A different rank reduction algorithm for SDP problems can be found in Huang and
Zhang [12].

One of the main reasons for considering QMP problems, which are a special class
of general QCQPs, is that they enjoy more powerful results in the context of tight
SDR and strong duality results. The following theorem, which is the main result of
this section, shows that QMP problems with at most r constraints in the real domain,
or 2r constraints in the complex domain, have—under some mild conditions—a tight
SDR and the duality gap is zero. This result is based on the constructed SDR problem
(8) and Theorem 2.1.

Theorem 2.2 (Tight Semidefinite Relaxation for the QMP Problem) If problem
(SDR) is solvable and |I| + |E | ≤ θ(F)r , then problem (QMP) is solvable and
val(SDR) = val(QMP).

Proof It is sufficient to show that problem (SDR) has a solution with rank smaller or
equal to r . The number of constraints in (SDR) is equal to |I| + |E | + ϕ(r;F). Thus,
using the inequality |I| + |E | ≤ θ(F)r , we conclude that the number of constraints in
(SDR) is bounded above by

θ(F)r + ϕ(r;F) = θ(F)

(
r + r(r − 1)

2

)
+ r = θ(F)

(
(r + 1)r

2

)
+ r

= ϕ(r + 1;F) − 1.

Invoking Theorem 2.1, the result follows. �

In order to guarantee the solvability of the SDR problem, some kind of a regularity
condition must be imposed. For example, the condition

∃γi ∈ R, i ∈ I ∪ E for which γi ≥ 0, i ∈ I such that A0 +
∑

i∈I∪E
γiAi � 0 (11)

implies that the dual problem (9) is strictly feasible (for details see e.g. [1,
Lemma 3.2]); this together with the feasibility of the QMP problem implies, by the
conic duality theorem [14], the solvability of the SDR problem and that val(SDR) =
val(D). This is summarized in the following corollary.
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Corollary 2.1 Consider the QMP problem (5) with |I|+|E | ≤ θ(F)r , its semidefinite
relaxation (SDR) (problem (8)) and its dual (D) (problem (9)). Suppose that condition
(11) holds true and that the QMP problem is feasible. Then, problems (QMP) and
(SDR) are solvable and val(QMP) = val(SDR) = val(D).

Remark 2.1 In the special case r = 1, Corollary 2.1 recovers the well-known strong
duality/tightness of SDR results for QCQP problems with a single quadratic con-
straint over the real domain (see e.g. [4, 7, 8, 10]) and the corresponding result on
QCQP problems with two quadratic constraints over the complex domain [1, 12].

3 Convexity of the Image of Quadratic Matrix Mappings

In this section, we establish several results regarding the convexity of the image
of several quadratic maps defined by QM functions. In particular, we will show in
Sect. 3.1 that the image of F

n×r under a map comprised of θ(F)r QM functions of
order r is always convex, and under some further assumptions, a mapping comprised
of θ(F)r + 1 QM functions of order r is convex. Moreover, we present a semidefinite
presentation for each of the sets for which convexity is proved. In Sect. 3.2, the con-
nection to general-form optimization problems involving QM functions is discussed.

3.1 Semidefinite Representation and Convexity of the Image of F
n×r under a QM

Mapping

We begin by showing that the image of F
n×r under a QM mapping comprised of

θ(F)r QM functions is always convex. This is a consequence of the strong duality
result of Theorem 2.2. We present also a semidefinite representation of this convex
set, i.e., we provide an explicit description of the set as the image of Hn+(F) ∩ A
under a linear mapping, where A is an affine subspace.

Theorem 3.1 (Convexity of the Image of F
n×r under θ(F)r QM Functions) Let

g1, g2, . . . , gm be m QM functions of order r given by

gi(Z) = Tr(Z∗AiZ) + 2�(Tr(B∗
i Z)) + ci, Z ∈ F

n×r , i = 1,2, . . . ,m,

where Ai ∈ Hn(F),Bi ∈ F
n×r and ci ∈ R. Suppose that m ≤ θ(F)r . Then, the set

F ≡ {(g1(Z); . . . ;gm(Z)) : Z ∈ F
n×r}

is convex and equal to the set

W ≡ {(Tr(M(g1)U); . . . ;Tr(M(gm)U)) : U ∈ Hn+r+ (F), [U ]r = Ir}.

Proof Since obviously the set W is convex, it is enough to show that F = W . The
inclusion F ⊆ W is clear. We will show that the reverse inclusion (W ⊆ F ) holds
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true. Let (β1; . . . ;βm) ∈ W and consider the QMP problem

min 0,

s.t. fj (Z) = βj , j = 1, . . . ,m,

Z ∈ F
n×r , (12)

and its SDR

min 0,

s.t. Tr(M(fj )U) = βj , j = 1, . . . ,m,

[U ]r = Ir ,

U ∈ Hn+r+ (F). (13)

Note that since the objective functions of problems (12) and (13) are identically zero,
then the notion of solvability of these problems coincide with the notion of feasibility.
Since (β1; . . . ;βm) ∈ W , we conclude that problem (13) is feasible. Thus, by The-
orem 2.2, problem (12) is also feasible (= solvable). Hence, there exists Z ∈ F

n×r

such that βj = fj (Z), j = 1, . . . ,m, which implies that (β1; . . . ;βm) ∈ F . �

Our next objective is to prove the convexity of the image of F
n×r under θ(F)r + 1

QM functions. Such a convexity result was proven already by Polyak for the case
r = 1,F = R [4]:

Theorem 3.2 [4, Theorem 2.2] Let fi(x) = xT Aix + 2bT
i x + ci, i = 1,2 with Ai ∈

Hn(R), bi ∈ R
n and ci ∈ R. Suppose that n ≥ 2 and that there exist μ1,μ2 ∈ R such

that μ1A1 + μ2A2 � 0. Then, the set

{(f1(x), f2(x)) : x ∈ R
n}

is closed and convex.

Note that the convexity result of Polyak’s theorem is established under some con-
ditions (Polyak also provides examples demonstrating the necessity of these condi-
tions): the existence of a positive definite linear combination of the corresponding
matrices and the restriction n ≥ 2. We will show that under the exact same condi-
tions, the image of F

n×r under θ(F)r + 1 QM functions is closed and convex; we
will also provide a semidefinite representation of these sets.

We begin by stating Theorem 3.3 below that establishes a result on the convexity of
the image of several homogenous QM functions. In the real domain, Barvinok proved
this result under very similar conditions [20, Theorem 1.2]. However, it seems that the
result for both the real and complex domains is not stated explicitly in the literature.
We therefore provide a complete proof of this theorem in Appendix B.

Theorem 3.3 (Convexity of the Image of Homogenous QM Mappings) Let A1, . . . ,

Ak ∈ Hn(F), where k ≤ ϕ(r + 1;F). Suppose that there exist μi ∈ R, i = 1, . . . , k
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such that
∑k

i=1 μiAi � 0 and that n ≥ r + 2. Then, the set

F = {(Tr(Z∗A1Z); . . . ;Tr(Z∗AkZ)) : Z ∈ F
n×r}

is closed and convex and equal to

W = {(Tr(A1U); . . . ;Tr(AkU)) : U ∈ Hn+(F)}.

Proof The proof basically follows the line of analysis of [4], see the details in Ap-
pendix B. �

We are now ready to prove the main result of this section.

Theorem 3.4 (Convexity of the Image of θ(F)r+1 QM Mappings) Let g1, g2,. . ., gm

be m QM functions of order r given by

gi(Z) = Tr(Z∗AiZ) + 2�(Tr(B∗
i Z)) + ci, Z ∈ F

n×r , i = 1,2, . . . ,m,

where Ai ∈ Hn(F),Bi ∈ F
n×r and ci ∈ R. Suppose that m ≤ θ(F)r + 1, n ≥ 2 and

that there exist μi ∈ R, i = 1, . . . ,m, such that

m∑
i=1

μiAi � 0. (14)

Then, the set

F ≡ {(g1(Z); . . . ;gm(Z)) : Z ∈ F
n×r}

is closed and convex and F = W , where W is given by

W = {(Tr(M(g1)U); . . . ;Tr(M(gm)U)) : U ∈ Hn+r+ (F), [U ]r = Ir}.

Proof Let h1, h2, . . . , hm+ϕ(r;F) : F
(n+r)×r → R be the m + ϕ(r;F) homogenous

QM functions comprised of

(i) the m QM functions hi(W) = gH
i (W) = Tr(W ∗M(gi)W), i = 1, . . . ,m,

(ii) the r QM functions φi(W) = Tr(W ∗LiW), i = 1, . . . , r, where Li is given
in (7),

(iii) the θ(F)
r(r−1)

2 QM functions ψk
ij (W) = Tr(W ∗Nk

ijW),1 ≤ i < j ≤ r, k =
1, . . . , θ(F), where Nk

ij is given in (7).

Consider the set

R = {(h1(Z;T ); . . . ;hm+ϕ(r;F)(Z;T )) : Z ∈ F
n×r , T ∈ F

r×r} ⊆ R
m+ϕ(r;F),

which is the image of F
n+r under m + ϕ(r;F) homogenous QM functions, and let

A = {
w ∈ R

m+ϕ(r;F) : wm+1 = · · · = wm+r = 2, wm+r+1 = · · · = wm+ϕ(r;F) = 0
}
.
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Let P : R
m+ϕ(r;F) → R

m be the linear transformation that maps each vector in
R

m+ϕ(r;F) onto its first m components. Lemma 2.2 implies that the set P(A ∩ R)

can be written as

P(A ∩ R) = {(gH
1 (Z;T ); . . . ;gH

m (Z;T )) : T ∗T = Ir , T ∈ F
r×r ,Z ∈ F

n×r}.
We begin by showing that

P(A ∩ R) = F. (15)

(F ⊆ P(A ∩ R))—Let w ∈ F . Then there exists Z ∈ F
n×r such that wi = gi(Z).

Therefore, wi = gH
i (Z;T ) with T = Ir which implies that w ∈ P(A ∩ R).

(P(A ∩ R) ⊆ F)—Let w ∈ P(A ∩ R). Then there exist Z ∈ F
n×r , T ∈ F

r×r such
that T ∗T = Ir and wi = gH

i (Z;T ). Using the relation gH
i (Z;T ) = gH

i (ZT ∗; Ir) =
gi(ZT ∗), we conclude that w ∈ F .

We will now show that the conditions of Theorem 3.3 are satisfied for the homoge-
nous QM functions h1, . . . , hm+ϕ(r;F). Let � = (φij )

r
i,j=1 ∈ Hr (F) be any matrix

satisfying

� �
(

m∑
i=1

μiBi

)∗( m∑
i=1

μiAi

)−1( m∑
i=1

μiBi

)
− 1

r

m∑
i=1

ci, (16)

and consider the linear combination

m∑
i=1

μiM(gi) + 1

2

r∑
i=1

φiiLi +
∑

i,j∈{1,...,r},i<j

�(φij )N
1
ij +

∑
i,j∈{1,...,r},i<j

�(φij )N
2
ij

=
( ∑m

i=1 μiAi

∑m
i=1 μiBi

(
∑m

i=1 μiBi)
∗ 1

r

∑m
i=1 μici + �

)
. (17)

Using (14) and (16) combined with the Schur complement, we conclude that ma-
trix (17) is positive definite. Therefore, we have proven that there exists a positive def-
inite linear combination of the matrices associated with h1, . . . , hm+ϕ(r;F). Moreover,

m+ϕ(r;F) ≤ θ(F)r + 1 + θ(F)
r(r − 1)

2
+ r = θ(F)

r(r + 1)

2
+ r + 1 = ϕ(r + 1;F).

Therefore, the conditions of Theorem 3.3 are satisfied and we can deduce that R is
closed, convex and equal to

S = {(Tr(M(h1)U); . . . ;Tr(M(hm+ϕ(r;F))U)) : U ∈ Hn+r+ (F)}.
The set A ∩ R—being an intersection of two closed and convex sets—is closed and
convex, which implies that P(A ∩ R) = P(A ∩ S) is also closed and convex. More-
over,

P(A ∩ S) = {(Tr(M(g1)U), . . . ,Tr(M(gm)U)) : [U ]r = Ir ,U ∈ Hn+(F)}
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and as such is equal to W . To conclude, we have shown that F = P(A ∩ R) = W is
closed and convex. �

Substituting r = 1 in Theorem 3.4, we arrive at the following corollary whose first
part is a recovery of Polyak’s theorem (Theorem 3.2).

Corollary 3.1

(i) Let fi(x) = xT Aix + 2bT
i x + ci, i = 1,2, with Ai ∈ Hn(R), bi ∈ R

n and ci ∈ R.
Suppose that n ≥ 2 and that there exist μ1,μ2 ∈ R such that μ1A1 + μ2A2 � 0.

Then, the set

{(f1(x), f2(x)) : x ∈ R
n}

is closed and convex and equal to

{(Tr(M(f1)U),Tr(M(f2)U)) : U ∈ Hn+1+ (R),Un+1,n+1 = 1}.
(ii) Let fi(z) = z∗Aiz + 2�(b∗

i z) + ci, i = 1,2,3, with Ai ∈ Hn(C), bi ∈ C
n and

ci ∈ R. Suppose that n ≥ 2 and that there exist μ1,μ2,μ3 ∈ R such that μ1A1 +
μ2A2 + μ3A3 � 0. Then, the set

{(f1(z), f2(z), f3(z)) : z ∈ C
n}

is closed and convex and equal to

{(Tr(M(f1)U),Tr(M(f2)U),Tr(M3U)) : U ∈ Hn+1+ (C),Un+1,n+1 = 1}.
3.2 Convex Counterparts of Problems Involving QM Functions

Theorems 3.1 and 3.4 can be used to generate large classes of nonconvex problems,
possibly different from QMP problems, for which there exists an equivalent convex
problem. For example, consider the following nonconvex problem:

min
Z

{ψ0(f1(Z),f2(Z), . . . , fm(Z)) : ψi(f1(Z),f2(Z), . . . , fm(Z)) ≤ 0,

i = 1,2, . . . , p},
where fi are QM functions of order r and ψi : R

r → R are p convex functions over
R

r . The last problem can be cast as the problem

min
ti

{ψ0(t1, t2, . . . , tm) : ψi(t1, t2, . . . , tm) ≤ 0, i = 1,2, . . . , p, (t1; t2; . . . ; tr ) ∈ C},
(18)

where C is the set {(f1(Z); . . . ;fm(Z)) : Z ∈ F
n×r}. By Theorems 3.1 and 3.4, C is

convex, provided that either m ≤ θ(F)r or m ≤ θ(F)r + 1 and the conditions of The-
orem 3.4 are satisfied. In this case, (18) is a convex optimization problem.

We can also recover the tightness-of-SDR result of Theorem 2.2 by using The-
orem 3.4. Indeed, consider the QMP problem (5). Then, the QMP problem can be
written as

min
ti

{t0 : ti ≤ αi, tj = αj , i ∈ I, j ∈ E , (t0; t1; t2; . . . ; tm) ∈ C}, (19)
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where C = {(f0(Z); . . . ;fm(Z)) : Z ∈ F
n×r}. Assume that (i) m ≤ θ(F)r , (ii) condi-

tion (11) is satisfied, (iii) the SDR problem (8) is solvable and (iv) n ≥ 2. Then, by
Theorem 3.4, the set C is also equal to

{(Tr(M(f0)U); . . . ;Tr(M(fm)U)) : U ∈ Hn+r+ (F), [U ]r = Ir}.
Substituting this presentation of C back into (19), we obtain the SDR problem (8).

Note that, in this line of proof the additional restriction n ≥ 2 was added showing that
there is a cost for using the result on the image space in order to obtain the tightness-
of-SDR result. Moreover, this proof is highly nonconstructive in the sense that it does
not provide a procedure for obtaining an optimal solution of the QMP problem from
its SDR counterpart. This is in contrast to the proof of Theorem 2.2, which uses the
constructive RED procedure.

4 S-lemma on QM Functions

The celebrated S-lemma has many applications in several areas and is a key tool in
control and optimization; see the comprehensive survey [13]. The nonhomogenous
version of the S-lemma that takes into account both the real and complex domains
was derived by Fradkov and Yakubovich [3]. We state their result explicitly.

Lemma 4.1 (Real and Complex S-lemma [3]) Let fi(z) = z∗Aiz+2�(b∗
i z)+ci, i =

0, . . . , θ(F), with Ai ∈ Hn(F), bi ∈ F
n and ci ∈ R, i = 0, . . . , θ(F). Suppose that

there exists z̃ ∈ F
n such that fi(z̃) < 0, i = 1, . . . , θ(F). Then, the following two state-

ments are equivalent:

(i) f0(z) ≤ 0 for every z ∈ F
n satisfying fi(z) ≤ 0, i = 1, . . . , θ(F).

(ii) There exists λi ≥ 0, i = 1, . . . , θ(F) such that

(
A0 b0
b∗

0 c0

)
�

θ(F)∑
i=1

λi

(
Ai bi

b∗
i ci

)
.

In this section, we derive an S-lemma-type result on QM functions that gives an
LMI characterization for a statement on the implication of a QM constraint of order r

from θ(F)r QM constraints of order r . This result can be regarded as an extension of
the classical S-lemma result (Theorem 4.1). The second part of this section is devoted
to the presentation of two applications: the first is concerned with the solution of
linear systems immune to implementation errors, and the second describes a tractable
robust counterpart of a class of quadratic problems with unstructured uncertainty.

4.1 Extended S-Lemma on QM Functions

In this section, we prove an extended version of the S-lemma applied to QM func-
tions. We use the following lemma that gives an LMI characterization of the claim
that a certain QM function is nonnegative. This result was derived in [1] over the real
domain; the fact that it is also valid over the complex domain is straightforward.
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Lemma 4.2 [1, Lemma 4.2] Let f be a QM function given in (2). Then, the following
three statements are equivalent:

(i) f (Z) ≥ 0 for every Z ∈ F
n×r .

(ii) There exists � ∈ Hr (F) for which Tr(�) ≤ 0 such that

(
A B

B∗ c
r
Ir + �

)
� 0.

(iii)

(
Ir ⊗ A vec(B)

vec(B)∗ c

)
� 0.

We are now ready to state and prove the extended S-lemma.

Lemma 4.3 (S-Lemma on QM Functions) Let fi(Z) = Tr(Z∗AiZ)+2�(Tr(B∗
i Z))+

ci, i = 0, . . . ,m, be m + 1 QM functions of order r with Ai ∈ Hn(F), bi ∈ F
n and

ci ∈ R. Assume that m ≤ θ(F)r and that there exist μi ≥ 0, i = 1, . . . , θ(F)r such
that

−A0 +
m∑

i=1

μiAi � 0. (20)

Furthermore, suppose that there exists Ẑ ∈ F
n×r for which

fi(Ẑ) < 0, i = 1, . . . , θ(F)r. (21)

Then, the following four statements are equivalent:

(i) f0(Z) ≤ 0 for every Z ∈ F
n×r such that fi(Z) ≤ 0, i = 1, . . . ,m.

(ii) There exist λi ≥ 0, i = 1, . . . ,m such that

f0(Z) −
m∑

i=1

λifi(Z) ≤ 0, for every Z ∈ F
n×r .

(iii) There exist λi ≥ 0, i = 1, . . . ,m such that

(
Ir ⊗ (A0 − ∑m

i=1λiAi) vec(B0 − ∑m
i=1 λiBi)

vec(B0 − ∑m
i=1 λiBi)

∗ c0 − ∑m
i=1 λici

)
� 0.

(iv) There exist λi ≥ 0, i = 1, . . . ,m and � ∈ Hr (F) with Tr(�) ≤ 0 such that

(
A0 − ∑m

i=1 λiAi B0 − ∑m
i=1 λiBi

(B0 − ∑m
i=1 λiBi)

∗ 1
r
(c0 − ∑m

i=1 λici)Ir − �

)
� 0.
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Proof Consider the QMP problem.

max f0(Z),

s.t. fi(Z) ≤ 0, i = 1, . . .m,

Z ∈ F
n×r . (22)

The SDR of (22) is the problem

max Tr(M(f0)U),

s.t. Tr(M(fi)U) ≤ 0, i = 1, . . . ,m,

[U ]r = Ir ,

U ∈ Hn+r+ (F), (23)

and its dual is given by the SDP

min Tr(�),

s.t. − M(f0) +
m∑

i=1

λiM(fi) +
(

0n×n 0n×r

0r×n �

)
� 0,

� ∈ Hr (F),

λi ≥ 0, i = 1, . . . ,m. (24)

We begin by showing that both the SDR (23) and its dual (24) are strictly feasi-
ble. The strict feasibility of the dual problem (24) follows immediately from condi-
tion (20). To show that problem (23) is strictly feasible, consider Û = (Ẑ; Ir)(Ẑ

∗, Ir ).
Then by (21), we have that Û ∈ Hn+(F) satisfies

[Û ]r = Ir , Tr(M(fi)Û) < 0, i = 1, . . . ,m.

Let � ∈ Hn++(F) be any n × n positive-definite matrix. Define

�̃ =
(

� 0n×r

0r×n 0r×r

)
.

Then �̃ ∈ Hn+r+ (F). Consider the matrix W = Û +α�̃, where α is a positive number.
Obviously [W ]r = Ir . Moreover, for small enough α, we have Tr(M(fi)W) < 0, i =
1, . . . ,m. From its definition, W is positive semidefinite. To prove that W is positive
definite, all that remains to show is that for a ∈ F

n+r , a∗Wa = 0, if and only if a = 0.
Suppose indeed that a∗Wa = 0 for a ∈ F

n+r . Then,

0 = a∗Wa = a∗Ûa + αa∗�̃a = 0,

and thus a∗Ûa = 0 and a∗�̃a = 0. Denote a = (a1;a2) where a1 ∈ F
n and a2 ∈ F

r .
By the definition of �̃, the equality a∗�̃a = 0 is equivalent to a∗

1�a1 = 0, which,
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by the positive definiteness of �, implies that a1 = 0. Using this and a∗Ûa = 0, we
conclude that a∗

2 [Û ]ra2 = 0. Since [Û ]r = Ir we deduce that a2 = 0. In conclusion,
a = 0 and we have proven that W satisfies

W ∈ Hn+r++ (F), Tr(M(fi)W) < 0, [W ]r = Ir ,

which implies that W is a strictly feasible solution of (23).
Since both the SDR (23) and its dual (24) are strictly feasible, we can invoke

the conic duality theorem [14] and conclude that both problems are solvable and
val(23) = val(24). The conditions of Theorem 2.2 are satisfied since (23) is solv-
able and m ≤ θ(F)r . Therefore, the QMP problem (22) is solvable and val(22) =
val(23) = val(24).

Statement (i) is equivalent to the claim that the value of the optimization problem
(22) is nonpositive. By the preceding discussion, this is equivalent to the statement
that the value of the dual problem (24) is nonpositive, which, by solvability of the
dual problem, is the same as:

There exists λi ≥ 0 and � ∈ Hr (F), with Tr(�) ≤ 0,

for which − M(f0) +
m∑

i=1

λiM(fi) +
(

0n×n 0n×r

0r×n �

)
� 0.

Noting that the latter is in fact statement (iv), we conclude that statement (i) and (iv)
are equivalent. Finally, invoking Lemma 4.2, we conclude that statements (ii), (iii)
and (iv) are equivalent. �

Remark 4.1 In the case r = 1, we recover the S-lemma (Lemma 4.1) with the excep-
tion that the condition (20) is assumed to hold.

Remark 4.2 The technique used to prove Lemma 4.3 is based on convex duality. An
alternative approach is to invoke the convexity result on the image of QM functions
(Theorem 3.4) together with a separation argument. This methodology was used, for
example, in the derivation of the classical S-lemma [3] and in Polyak [4]. However,
this line of analysis will necessarily yield a weaker result, since the restriction n ≥
2 of Theorem 3.4 will have to be imposed in the S-lemma result. The restriction
n ≥ 2, although necessary in the convexity result on the image of QM mappings
(Theorem 3.4), is not necessary in the S-lemma result (4.3).

4.2 Applications I: Solutions of Linear Systems Immune to Implementation Errors

Many problems in data fitting and estimation give rise to a linear system of the form

AZ ≈ B, (25)

where A ∈ F
m×n,B ∈ F

m×r and Z ∈ F
n×r is an unknown variable matrix. Fre-

quently, the case r = 1 is considered. The situation in which r > 1 is considered,
for example, in the multiple observations setting in which we are given r linear
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systems Azk ≈ bk, k = 1, . . . , r with bk ∈ F
m. By denoting B = (b1, . . . , bk) and

Z = (z1, . . . , zr ), we arrive at the model (25). The latter model was analyzed, for
instance, in the context of total least squares solutions where it is called “multidi-
mensional total least squares” [21]. Also, there are different estimation problems, in
which the Z is indeed a matrix rather than a vector, see e.g. [22] for an example with
r = n.

Due to expected implementation errors, we would like to construct a solution to
(25) for which the worst case data error ‖A(Z +�)−B‖2 over all possible � ∈ U is
minimized,

min
Z

max
�∈U

‖A(Z + �) − B‖2. (26)

The solution Z is a robust solution to the system (25) in the sense that it is immune
to implementation errors. The tractability of the minmax problem (26) depends, of
course, on the choice of the uncertainty set U . Here, we consider U to be an intersec-
tion of several unstructured ellipsoids,

U = {� : ‖Ci�‖2 ≤ ρi, i = 1, . . . ,m}.
We assume that there exist μi, i = 1, . . . ,m, such that

∑m
i=1 μiC

∗
i Ci � 0 and that

m ≤ θ(F)r . To give an example of such a structure, note that in the case r = n, this
structure of U can model the situation in which each row of the perturbation matrix
� has a Euclidean norm bound (by substituting Ci = En

ii ).
The inner maximization problem

max
�∈U

‖A(Z + �) − B‖2

can be written as

min{t : ‖A(Z + �) − B‖2 ≤ t ∀� ∈ U }.
Invoking Lemma 4.3, we conclude that the statement

‖A(Z + �) − B‖2 ≤ t, ∀� ∈ U ,

holds true if and only if there exist λi ≥ 0 such that
(

Ir ⊗ (A∗A − ∑m
i=1 λiC

∗
i Ci) vec(A∗(AZ − B))

vec(A∗(AZ − B))∗ ‖AZ − B‖2 − t + ∑m
i=1 λiρ

2
i

)
� 0,

which is equivalent to saying that there exist λi ≥ 0 such that
(

(Ir ⊗ A∗)(Ir ⊗ A) − ∑m
i=1 λi(Ir ⊗ C∗

i )(Ir ⊗ Ci) (Ir ⊗ A∗)vec(AZ − B)

vec(AZ − B)∗(Ir ⊗ A) ‖AZ − B‖2 − t + ∑m
i=1 λiρ

2
i

)

� 0.

Using the Schur complement, the latter LMI is transformed to
⎛
⎝

Imr Ir ⊗ A vec(AZ − B)

Ir ⊗ A∗ ∑m
i=1 λi(Ir ⊗ C∗

i )(Ir ⊗ Ci) 0

vec(AZ − B)∗ 0 t − ∑m
i=1 λiρ

2
i

⎞
⎠ � 0. (27)
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Therefore, problem (26) can be recast as the following SDP in the variables t, λi,Z:

min t,

s.t.

⎛
⎝ Imr Ir ⊗ A vec(AZ − B)

Ir ⊗ A∗ ∑m
i=1 λi(Ir ⊗ C∗

i )(Ir ⊗ Ci) 0
vec(AZ − B)∗ 0 t − ∑m

i=1 λiρ
2
i

⎞
⎠ � 0,

t ∈ R,

λi ∈ R+, i = 1, . . . ,m,

Z ∈ F
n×r .

4.3 Applications II: Robust Quadratic Problems with Unstructured Uncertainty

Consider a second-order cone problem of the form:

(Q) min
z

�(a∗z),

s.t. ‖Aiz + bi‖ ≤ ci, i = 1, . . . , k,

z ∈ F
n,

where Ai ∈ F
r×n, bi ∈ F

r , a ∈ F
n and ci ∈ R, i = 1, . . . , k. The constraints in (Q)

are more specific than those considered in the general form of second-order cone
problems (see e.g., [14]) in which a linear term is introduced in the right-hand side
of each constraint. However, in many applications the natural constraints are norm-
type constraints so that the model (Q) captures a substantial amount of “real-life”
situations.

Assume now that for each i = 1, . . . , k, the data (Ai, bi) is uncertain and is only
known to reside in some uncertainty set Ui . The robust counterpart of the problem
(Q) is the optimization problem

(RQ) min
z

�(a∗z),

s.t. ‖Aiz + bi‖ ≤ ci ∀(Ai, bi) ∈ U , i = 1, . . . , k,

z ∈ F
n.

The tractability of the robust counterpart strongly relies on the choice of the un-
certainty set U . For example, in the structured case, it is well known that if U is an
ellipsoid, then (RQ) can be recast as an SDP; however, in the case when U is given by
an intersection of ellipsoids, then (RQ) is generally not tractable [23]. We will now
show that when U is given by an intersection of at most θ(F)r unstructured ellipsoids,
the problem can be recast as an SDP. Define

Ui = {(A,b) = (A0
i , b

0
i ) + �∗ : � ∈ F

(n+1)×r ,‖Cj�‖2 ≤ ρj , j = 1, . . . ,m},
where we assume—as in the previous application—that m ≤ θ(F)r and that there
exist μi ∈ R, i = 1, . . . ,m such that

∑m
j=1 μjC

∗
j Cj � 0.
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Note that a vector z ∈ F
n satisfies the ith constraint if and only if

‖Aiz + bi‖ ≤ ci, for every (Ai, bi) ∈ Ui ,

which is the same as

‖(A0
i , b

0
i )z̃ + �∗z̃‖2 ≤ c2

i ,

for every � ∈ F
n×r satisfying ‖Cj�‖2 ≤ ρj , j = 1, . . . ,m.

Here, z̃ ≡ (z;1). The latter implication can be written in terms of QM functions as
follows:

Tr(�∗E�) + 2�(Tr(F ∗�)) + g ≤ 0,

for every � ∈ F
n×r satisfying Tr(�∗C∗

j Cj�) − ρ2
j ≤ 0, j = 1, . . . ,m, (28)

where

E = z̃z̃∗, F = z̃w∗
i , g = Tr(wiw

∗
i ) − c2

i

with wi ≡ (A0
i , b

0
i )z̃. By Lemma 4.3, we have that (28) is equivalent to the following

statement:

There exist λi
j ≥ 0, j = 1, . . . ,m such that

(
Ir ⊗ (E − ∑m

i=1 λi
jC

∗
j Cj ) vec(F )

vec(F )∗ g + ∑m
i=1 λi

jρ
2
j

)
� 0. (29)

Using the identities

Ir ⊗ E = (Ir ⊗ z̃)(Ir ⊗ z̃)∗, vec(F ) = (Ir ⊗ z̃)wi, g = w∗
i wi − c2

i ,

we deduce that the LMI (29) is the same as

(
(Ir ⊗ z̃)(Ir ⊗ z̃)∗ − ∑m

j=1 λi
j (Ir ⊗ Cj )

∗(Ir ⊗ Cj ) (Ir ⊗ z̃)wi

w∗
i (Ir ⊗ z̃)∗ w∗

i wi − c2
i + ∑m

j=1 λi
jρ

2
j

)
,

� 0,

which, by the Schur complement, transforms to

⎛
⎜⎝

Ir (Ir ⊗ z̃)∗ wi

Ir ⊗ z̃
∑m

j=1(Ir ⊗ Cj )
∗(Ir ⊗ Cj) 0

w∗
i 0 ci − ∑m

j=1 λi
jρ

2
j

⎞
⎟⎠ � 0,

so that problem (RQ) is equivalent to the following SDP problem in the variables
z,λi

j :
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(RQ) min �(a∗z),

s.t.

⎛
⎜⎝

Ir (Ir ⊗ z̃)∗ wi = (A0
i , b

0
i )z̃

Ir ⊗ z̃
∑m

j=1(Ir ⊗ Cj )
∗(Ir ⊗ Cj) 0

z̃∗(A0
i , b

0
i )

∗ 0 ci − ∑m
j=1 λi

jρ
2
j

⎞
⎟⎠

� 0, i = 1, . . . , k,

z̃ = (z;1) ∈ F
n+1,

λi
j ≥ 0, i = 1, . . . , k, j = 1, . . . ,m.

5 Uniformly Quadratic Problems

Consider the following class of QCQPs:

(UQ) min f0(z),

s.t. fi(z) ≤ 0, i ∈ I,

0fj (z) = 0, j ∈ E,

z ∈ F
p,

where the functions fi : F
p → R, i ∈ I ∪ E ∪ {0} are given by

fi(z) = aiz
∗Qz + 2�(b∗

i z) + ci,

with ai ∈ R, bi ∈ F
d , ci ∈ R and Q ∈ Hp

++(F).
Such problems will be called uniformly quadratic problems. In this section, we

will show that this special class of (possibly) nonconvex problems (UQ) admits a
tight SDR and has a zero duality gap as long as the number of constraints |I| + |E |
is smaller or equal to θ(F)p (and under some very mild conditions). This result is an
improvement and extension of a related result [17, Corollary 2.1] which was derived
for the real case. In [17], it was shown that, as long as the number of constraints is no
larger than p − 1, then the problem admits a tight SDR. Here, we improve the result
by allowing p constraints and extending it to the complex domain.

5.1 Strong Duality for the Class of Uniform Quadratic Problems

The dual problem of (UQ) is the problem

(DUQ) max −t,

s.t. M(f0) +
∑

i∈I∪E
λiM(fi) +

(
0d×d 0d×1

01×d t

)
� 0,

λi ∈ R+, i ∈ I,

λi ∈ R, i ∈ E

(recall that M(fi) = ( aiQ bi

b∗
i ci

)
).
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We assume that problem (UQ) is feasible and that condition (11) is satisfied,
which, for problem (UQ), translates to

Either there exists k ∈ E for which ak �= 0 or there exists k ∈ I for which ak > 0.

(30)

Theorem 5.1 (Strong Duality of Uniformly Quadratic Problems) Assume that prob-
lem (UQ) is feasible and that condition (30) is satisfied. Furthermore, suppose that
m ≤ θ(F)p. Then, problem (UQ) is solvable and val(UQ) = val(DUQ).

Proof Making the change of variables

w = z∗Q1/2 (w ∈ F
1×p), (31)

problem (UQ) becomes

min g0(w),

s.t. gi(w) ≤ 0, i ∈ I,

gj (w) = 0, j ∈ E ,

w ∈ F
1×p, (32)

where gk : F
1×p → R are given by gk(w) = akTr(w∗w)+2�(Tr(d∗

k w))+ck, k ∈ I ∪
E and dk = b∗

kQ
−1/2 ∈ F

1×p . Since the linear change of variables (31) is a bijection,
problems (32) and (UQ) have the same optimal value. Note that problem (32) is a
QMP problem of order r = p (and n = 1) and therefore, since all the conditions of
Corollary 2.1 are satisfied, we conclude that strong duality holds for the transformed
problem (32) whose value is hence equal to

max −Tr(�),

s.t.

(
a0 + ∑

λiai d0 + ∑
λidi

d∗
0 + ∑

λid
∗
i

1
p
(c0 + ∑

λici) + �

)
� 0,

� ∈ Hp(F),

λi ∈ R+, i ∈ I,

λj ∈ R, j ∈ E ,

where all the summations are over i ∈ I ∪ E . The latter maximization problem is, of
course, equivalent to the maximization problem
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max −t,

s.t. Tr(�) ≤ t,(
a0 + ∑

λiai d0 + ∑
λidi

d∗
0 + ∑

λid
∗
i

1
d
(c0 + ∑

λici) + �

)
� 0,

� ∈ Hd(F),

λi ∈ R+, i ∈ I,

λj ∈ R, j ∈ E . (33)

Making the change of variables �̃ = � − t
p
Ip , problem (33) becomes

max −t,

s.t. Tr(�̃) ≤ 0, (34)(
a0 + ∑

λiai d0 + ∑
λidi

d∗
0 + ∑

λid
∗
i

1
p
(c0 + ∑

λici + t) + �̃

)
� 0, (35)

�̃ ∈ Hp(F),

λi ∈ R+, i ∈ I,

λj ∈ R, j ∈ E .

Using Lemma 4.2 (equivalence of (iii) and (iv)), we can rewrite the above prob-
lem by replacing constraints (34) and (35) with a different LMI not depending on a
matrix �̃:

max −t,

s.t.

(
(a0 + ∑m

i=1 λiai)Ip d∗
0 + ∑m

i=1 λid
∗
i

d0 + ∑m
i=1 λidi c0 + ∑m

i=1 λici + t

)
� 0,

λi ∈ R+, i ∈ I,

λj ∈ R, j ∈ E .

Multiplying the LMI in the above problem from the left and right by
(

Q1/2 0p×1

01×p 1

)
,

we arrive at the problem

max −t,

s.t.

(
(a0 + ∑m

i=1 λiai)Q b0 + ∑m
i=1 λibi

b∗
0 + ∑m

i=1 λib
∗
i t

)
� 0,

λi ∈ R+, i ∈ I,

λj ∈ R, j ∈ E ,

which is just the dual problem (DUQ). �
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5.2 Chebyshev Center of the Intersection of at Most θ(F)p Balls in F
p

As an application of Theorem 5.1, we consider the problem of finding the Chebyshev
center of the intersection of several balls. We recall that the Chebyshev center of a set

 is defined as the center of the minimum radius ball enclosing the 
 [24]. Finding
the Chebyshev center is generally a hard problem; exceptions for this “hardness”
statement are when 
 is (i) a finite set of points (ii) a union of balls or ellipsoids, see
[25] and references therein. The Chebyshev center of the intersection of several balls
is the vector ẑ which is the solution of the minmax problem

min
ẑ

max
z∈


‖z − ẑ‖2, (36)

where


 = {z ∈ F
p : ‖z − ai‖2 ≤ r2

i , i = 1, . . . ,m}. (37)

We assume that m ≤ θ(F)p and that 
 is nonempty. Problem (36) can be written as

min
ẑ

{
max
z∈


{‖z‖2 − 2�(z∗ẑ)} + ‖ẑ‖2
}
. (38)

Note that the inner maximization problem in (38) is a uniform quadratic problem
which satisfies the conditions of Theorem 5.1 and therefore can be replaced by the
dual minimization problem

min t,

s.t.

(
(−1 + ∑m

i=1 λi)Ip ẑ − ∑m
i=1 λiai

ẑ∗ − ∑m
i=1 λia

∗
i t

)
� 0,

λi ∈ R+, i = 1, . . . ,m.

We thus conclude that the Chebyshev center problem (38) can be recast as the convex
minimization problem

min
t,λi ,ẑ

t + ‖ẑ‖2,

s.t.

(
(−1 + ∑m

i=1 λi)Ip ẑ − ∑m
i=1 λiai

ẑ∗ − ∑m
i=1 λia

∗
i t

)
� 0,

λi ∈ R+, i = 1, . . . ,m,

which transforms to the SDP

min
t,s,λi ,ẑ

t + s,

s.t.

(
(−1 + ∑m

i=1 λi)Ip ẑ − ∑m
i=1 λiai

ẑ∗ − ∑m
i=1 λia

∗
i t

)
� 0,

(
Ip ẑ

ẑ∗ s

)
� 0,

λi ∈ R+, i = 1, . . . ,m. (39)
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We summarize the above derivation in the following theorem.

Theorem 5.2 Consider problem (36) of finding the Chebyshev center of the set 


given by (37). Assume that 
 is nonempty and m ≤ θ(F)p. Then, the value of problem
(36) is equal to the value of problem (39). Moreover, if (t, s, λi, ẑ) is an optimal
solution of (39), then ẑ is an optimal solution of the minmax problem (36).

Remark 5.1 It can be shown, by following the analysis in [17], that if 
 has a non-
empty interior, then the Chebyshev center is given by

ẑ =
m∑

i=1

λiai,

where (λ1, . . . , λm) is an optimal solution of the following convex quadratic mini-
mization problem over the unit simplex:

min

{∥∥∥∥∥
m∑

i=1

λiai

∥∥∥∥∥
2

−
m∑

i=1

λi(‖ai‖2 − r2
i ) :

m∑
i=1

λi = 1, λi ≥ 0

}
.

The corresponding radius of the minimum ball enclosing 
 is given by

√√√√
∥∥∥∥∥

m∑
i=1

λiai

∥∥∥∥∥
2

−
m∑

i=1

λi(‖ai‖2 − r2
i ).

Some examples of Chebyshev centers of intersection of balls are given in Fig. 1.
The Chebyshev centers were found by using Theorem 5.2.

Appendix A: Low-Rank Solution of Real and Complex SDP Problems

The underlying assumption that guarantees the validity of the process is that problem
(10) is solvable and that |I1| + |E1| ≤ ϕ(r + 1;F) − 1.

Algorithm RED
Input: Z0—an optimal solution to problem (10).
Output: An optimal solution Ẑ to problem (10) satisfying rank(Ẑ) ≤ r .

1. If rank(Z0) ≤ r , then go to step 3. Else, go to step 2.
2. While rank(Z0) > r , repeat steps (a)–(e):

(a) Set d ← rank(Z0).
(b) Compute a decomposition of Z0: Z0 = UU∗, where U ∈ F

n×d .
(c) Find a nontrivial solution T0 for the set of homogenous linear equations in the

d × d Hermitian variables matrix T (T = T ∗),

Tr(U∗CiUT ) = 0, i ∈ I1 ∪ E1.
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(d) If T0 � 0, then set W ← −T0. Else set W ← T0.
(e) Set Z0 ← U(I + βW)U∗, where β = −1/λmin(W).

3. Set Ẑ ← Z0 and Stop.

The linear system of step (c) has a nonzero solution, since the relations |I1| +
|E1| ≤ ϕ(r + 1;F) − 1, d > r imply that the homogenous system has more variables
than equations.

Fig. 1 The Chebyshev center of
the intersection of p balls in R

p

(p = 2,3). In the upper figure,
the filled area is the intersection
of two circles and the
Chebyshev center of this area is
denoted by “*”; the dotted circle
is the corresponding minimum
enclosing ball. In the lower
figure, the filled-face ball is the
minimum enclosing ball of the
three faceless balls
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Appendix B: Proof of Theorem 3.3

We begin by stating a result of Au-Yeung and Poon [16, Theorem 2]. This result is as
a generalization of Brickman’s theorem [26] on the numerical range of two quadratic
forms.

Theorem B.1 Let A1, . . . ,Ak ∈ Hn(F) and let r be a positive integer for which n ≥
r + 2 and k ≤ ϕ(r + 1;F) − 1. Then, the set

{(Tr(Z∗A1Z), . . . ,Tr(Z∗AkZ)) : ‖Z‖2
F = 1,Z ∈ F

n×r}
is convex.

In [19], Polyak showed how to use Brickman’s theorem in order to derive a con-
vexity result on a mapping comprised of three homogenous quadratic forms. We use
a similar line of analysis (with the necessary modifications) in order to prove our re-
sult on the convexity of no more than ϕ(r + 1;F) homogenous QM functions over
the real or complex domain.

Proof of Theorem 3.3 Denote by f : F
n×r → R

m the vector function

f (Z) = (f1(Z); . . . ;fk(Z)),

where fi(Z) = Tr(Z∗AiZ). Our goal is to show that {f (Z) : Z ∈ F
n×r} ⊆ R

m, which
is the image of F

n×r under f , is closed and convex. Let T : R
k → R

k be any invert-
ible linear transformation of the form

T (x1; . . . ;xk) =
(

∗; . . . ; ∗;
k∑

i=1

μixi

)
.

Since closedness and convexity properties are invariant under linear transformations
over R

k , we conclude that it is enough to prove the desired properties (closedness and
convexity) on the set G = {g(z) | z ∈ F

n×r} with g = Tf . Note that

gk(Z) =
k∑

i=1

μifi(Z) > 0, for every Z �= 0.

By applying an appropriate linear transformation on F
n×r , we conclude that we can

assume, without loss of generality, that gk(Z) = ‖Z‖2
F . By Theorem B.1, we have

that the set

H = {(g1(Z); . . . ;gk−1(Z)) : ‖Z‖2
F = 1} ⊆ R

k−1

is convex. Moreover, G can be represented as

G = {λQ | λ ≥ 0}, (40)

where Q = {(h;1) : h ∈ H }, i.e., G is the conic hull of the convex set Q and as such
is convex, see [27, p. 14]. All that is left is to show that G, given by (40), is closed.
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Note that H , being an image of the unit sphere by a continuous function, is a
compact set. This implies that Q is also compact. To show the closedness of G,
consider a sequence of points {λkq

k} from G, such that λk ≥ 0 and qk ∈ Q. We will
prove that, if

λkq
k → a, (41)

then a ∈ G. Indeed, the compactness of Q implies that {qk} must have a subsequence
{qkl } that converges to a point q̂ ∈ Q and in particular q̂m = 1. We can thus write, for
large enough l,

λkl
= λkl

q
kl
m

q
kl
m

→ am ≡ λ̂,

which implies λkl qkl → λ̂q̂ . Combining this with (41) we have a = λ̂q̂ ∈ G.
Finally, we will show that F = W . The inclusion F ⊆ W is clear so only the

converse inclusion W ⊆ F will be proven. Let w = (Tr(A1U); . . . ;Tr(AkU)) ∈ W

with U ∈ Hn+(F). The positive semidefinite matrix U has a decomposition U =
1
n

∑n
i=1 ziz

∗
i with zi ∈ F

n. Then,

U = 1

n

n∑
i=1

ZiZ
∗
i ,

with Zi = (zi,0n×(r−1)) ∈ F
n×r . Therefore, w = 1

n

∑n
i=1 wi , where

wi = (Tr(Z∗
i A1Zi); . . . ;Tr(Z∗

i AkZi)) ∈ F,

and we conclude that w, being a convex combination of points from F , also belongs
to F . �
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