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CONVERGENCE RATE ANALYSIS AND ERROR BOUNDS
FOR PROJECTION ALGORITHMS IN CONVEX

FEASIBILITY PROBLEMS

AMIR BECK and MARC TEBOULLE∗

School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel

(Received 31 October 2002; Revised 10 March 2003; In final form 28 April 2003)

We analyze the rate of convergence of three basic projections type algorithms for solving the convex feasibility problem
(CFP). Error bounds are known to be central in establishing the rate of convergence of iterative methods. We study the
interplay between Slater’s hypothesis on CFP and a specific local error bound (LEB). We show that without Slater’s
hypothesis on CFP, projections type algorithms can in fact behave quite badly, i.e., with a rate of convergence which
is not bounded. We derive a new and simple convex analytic proof showing that Slater’s hypothesis on CFP implies
LEB and hence linear convergence of projection algorithms is guaranteed. We then propose an alternative local error
bound derived from the gradient projection algorithm for convex minimization which is proven to be weaker than
LEB and used to derive further convergence rate results.

Keywords: Convex feasibility; Projection algorithms; Error bounds; Convergence rate; Convex minimization

1 INTRODUCTION

Given m closed convex sets C1, C2, . . . , Cm of �d such that C ≡ ∩m
i=1Ci �= ∅, the Convex

Feasibility Problem (CFP) consists of finding a point in the intersection C . The convex feasi-
bility problem arises in a wide variety of contexts and applications such as best approximation
theory, image reconstruction (both discrete and continuous models) and subgradient methods.
For a detailed survey on the CFP, see e.g., [3] and references therein. The algorithms dis-
cussed in this paper are projection algorithms. For any set S ⊆ �d , let PS denote the projection
operator. At each iteration, a basic projection algorithm generates a point which is a convex
combination of the projections of the previous point on the convex sets. We will consider three
kinds of projection algorithms:

Mean Projection Algorithm (MPA):
First step: Take an arbitrary x0 ∈ �d

General step: xn+1 = ∑m
i=1 αi PCi (xn).

Here α1, . . . , αm are positive constants such that
∑m

i=1 αi = 1.
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Cyclic Projection Algorithm (CPA):
First step: Take an arbitrary x0 ∈ �d

General step: xn+1 = PC(nmod m)+1(xn).

Maximum Distance Projection Algorithm (MDPA):
First step: Take an arbitrary x0 ∈ �d

General step: xn+1 = PCj (xn) where j = argmax1≤i≤m d(xn, Ci ).

Note that in MPA, there is no real reason to limit the discussion to algorithms which use the
same convex combination of the projections of xn to each of the m convex sets C1, C2, . . . , Cm .
Indeed, we can define the general step by:

xn+1 =
m∑

i=1

αn
i PCi (xn)

where
∑m

i=1 αn
i = 1 provided that αn

1 , αn
2 , . . . , αn

m > 0 are assumed bounded away from zero,
i.e., there exists numbers β1, . . . , βm > 0 such that αn

i ≥ βi ∀i = 1, . . . , m, n = 0, 1, 2, . . ..
The cyclic projection algorithm goes back to von Neumann [15] who considered the case

of two subspaces and the mean projection algorithm with equal weights (i.e. αi = 1/m) was
proposed by Cimmino [6] who considered the case where each Ci is a halfspace. In this paper
we investigate only these three schemes (MPA, MDPA, CPA). Many variant of these schemes
can be found in the literature, see for example Ref. [3] and references therein.

The first natural question concerning these methods is to establish their convergence. Proofs
of global convergence of projection methods can be found in the classical work of Ref. [7] and
in the book of Auslender [1]. These results will be briefly reviewed in the next section. The
second main question is to analyze the rate of convergence of these algorithms, and that will
be the main purpose of this paper.

Error bounds are known to play a central role in the rate of convergence analysis of iterative
algorithms. An error bound is a quantity, usually called a residual function, that becomes zero
whenever a point is a solution of CFP. For an excellent survey on the theory and applications
of error bounds, we refer the readers to the work of Pang [12] and the references therein. In
this paper we investigate the residual function

T (x) = max
1≤i≤m

d(x, Ci ).

Indeed, in this case one obviously has T (x) = 0 if and only if x ∈ C . In the context of CFP,
the residual T was first proposed by Gubin et al. [7] and leads to the following kinds of error
bounds: Global Error Bound (GEB) and Local Error Bound (LEB).

DEFINITION 1.1 (GEB) m closed convex sets C1, . . . , Cm are said to satisfy GEB if there
exists θ > 0 such that:

∀x ∈ �d d(x, C) ≤ θ max
i=1,...,m

{d(x, Ci)}.

DEFINITION 1.2 (LEB) m closed convex sets C1, . . . , Cm are said to satisfy LEB if for every
bounded set B there exists θB > 0 such that:

∀x ∈ B d(x, C) ≤ θB max
i=1,...,m

{d(x, Ci)}.
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Notice that in both definitions, while d(x, C) is usually impossible to estimate (otherwise the
original problem is trivial) the error bound T (x) is in many cases easily calculated. Thus, GEB
and LEB state that we can bound an unknown quantity by a computable quantity. The advantage
of GEB over LEB relies on the fact that, when the former is satisfied, the rate of convergence of
projection algorithms does not depend on the initial starting point of the algorithm, as opposed
to LEB. However, GEB is satisfied only in rare cases. One of the cases that satisfies GEB is
when all the Ci are polyhedral sets. This is the celebrated Hoffmann’s Lemma [8]. For the
non-polyhedral case, GEB is usually not satisfied and thus an important question that arises is
when does LEB holds? Gubin et al. [7] were apparently the first to prove that if there exists
a 1 ≤ j ≤ m such that Cj ∩ int(∩i �= j Ci ) �= ∅ then LEB is satisfied, and as a consequence the
linear rate of convergence was obtained for the sequences generated by CPA and MDPA. In a
recent paper, Bauschke et al. [4] refined and extended this result by proving that the standard
Slater’s condition for CFP implies LEB (LEB is called there ‘‘bounded linear regularity’’).
However, to achieve this goal, a rather involved and complicated analysis was needed in
Ref. [4].

The aim of this paper is to further analyze the rate of convergence of projections algorithms
for CFP and in particular to clarify the important roles play on one hand by Slater’s condition,
and on the other, by the local error bound (LEB). After a brief review on known convergence
results of projection algorithms and other preliminaries given in Section 2, our contributions
can be summarized as follows:

• We give a new and simple proof, which relies on elementary convex analysis arguments, to
show that Slater’s condition implies LEB (and thus implies linear rate of convergence), see
Section 3.

• In Section 4, we show that projection algorithms for CFP can be very slow if Slater’s
condition is not satisfied. Moreover, without Slater’s condition it is shown in fact that we
cannot bound the rate of convergence. More precisely, we exhibit an example where the
sequence {xn} generated by CPA satisfies d(xn, C) ≥ 1/n1/1000, which obviously implies a
very slow rate of convergence.

• Projection algorithms for convex feasibility problems with two sets are revisited through
the use of the gradient projection method applied to a convex minimization reformulation
of CFP, see Section 5. This allows us to derive another local error bound that is proven to
be weaker than LEB, and then used to derive further rate of convergence results.

2 CONVERGENCE OF PROJECTION ALGORITHMS FOR
THE CONVEX FEASIBILITY PROBLEM

In this section we briefly recall the basic properties and convergence results of projection algo-
rithms for solving CFP that will be needed in the rest of this paper. At this point, we would like
to recall two concepts of linear rate of convergence, see e.g., Ref. [11]. A sequence {xn} con-
verges with a R-linear rate to x∗ if there exists γ ∈ (0, 1), A > 0 such that ‖xn − x∗‖ ≤ Aγ n

for every n large enough. A sequence {xn} converges with a Q-linear rate to x∗ is there exists
γ ∈ (0, 1) such that ‖xn+1 − x∗‖ ≤ γ ‖xn − x∗‖ for every n large enough. Clearly, Q-linear
convergence implies R-linear convergence. In the rest of this paper, we use the terminology
‘‘linear convergence’’ to refer to ‘‘R-linear convergence’’.

Let {xn} be a sequence generated by any one of the algorithms CPA, MDPA or MPA. The
proof of convergence of these algorithms relies on the following three basic facts and relations
which can be found in Auslender [1, p. 78]. Note that these relations are independent from the
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type of algorithms used to generate the sequence {xn} and are based on well known properties
of the projection operator PS , see e.g., [1].

∀ j = 1, . . . , m d2(xn, Cj) ≤ d2(xn, C) − ‖PCj (xn) − PC(xn)‖2. (1)

m∑
j=1

αj d
2(xn, Cj) ≤ d2(xn, C) − d2(xn+1, C). (2)

‖xn+1 − y‖ ≤ ‖xn − y‖ ∀y ∈ C (3)

The later property is often referred as the Fejér monotonicity of the sequence with respect to
C . Assuming that the set C = ∩m

i=1Ci �= ∅ we then have the following convergence result.

THEOREM 2.1 (Global Convergence of Projection Algorithms) [1,7] Let {xn} be a sequence
generated by any one of the algorithms MPA, MDPA or CPA. Then there is a point c ∈ C
such that

xn → c.

Convergence of the algorithms is proved under the mild assumption that C �= ∅. In order to
derive their rate of convergence, and here, more precisely to prove linear convergence, the
required additional assumption is precisely LEB (see Definition 1.2) introduced by Gubin
et al. [7] who also proved the following results. For completeness, the proof is given in the
Appendix.

THEOREM 2.2 (LEB implies linear rate of convergence of MPA and MDPA) Assume that
LEB is satisfied. Then the distances of sequence generated by MPA (MDPA) from C converge
with a Q-linear rate to 0. More specifically,

d(xn+1, C) ≤ γBd(xn, C), (4)

with

γB =
√

1 − minj=1,...,m{αj}
θ2

B

,

(
γB =

√
1 − 1

θ2
B

)
(5)

where B = {x : ‖x − y‖ ≤ ‖x0 − y‖} and y is an arbitrary point in C.

Note that the above rate of convergence depends on the initial point x0 (γB is dependent on
x0). This dependency can be removed if we assume instead of LEB the stronger global error
bound GEB.

2.1 Linear Convergence of CPA for Two Sets

For two sets, it is easy to prove using the previous results that the distances of the sequence
generated by CPA from C converge 0 with a Q-linear rate of convergence. However for the
general problem of m sets we cannot prove a result like (4) for the simple reason that it is not
true. Indeed, take for example the case where we have three closed convex sets C1, C2, C3 such
that C1 = C2 then obviously xn+1 = xn every three times thus Eq. (4) cannot hold for γB < 1.
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COROLLARY 2.1 (LEB implies linear rate of convergence of CPA for two sets) If LEB is
satisfied then the distances of the sequence generated by CPA from C converges with a Q-linear
rate to 0. More specifically,

d(xn+1, C) ≤ γBd(xn, C),

with

γB =
√

1 − 1

θ2
B

, B = {x : ‖x − y‖ ≤ ‖x0 − y‖}

where y is an arbitrary point in C.

Proof CPA for two sets is the same as MDPA for two sets and thus the result follows. �

Until now, we have seen that under the assumption that ∩m
i=1Ci �= ∅ there is a x∗ ∈ C such

that xn → x∗. Moreover, under the LEB assumption we have d(xn, C) → 0 with a linear rate
of convergence. As an easy consequence of these results we can prove that xn → x∗ with a
Q-linear rate of convergence.

THEOREM 2.3 Let {xn} be a sequence generated by MPA or by MDPA and assume LEB holds.
Then, there is a x∗ ∈ C such that

‖xn − x∗‖ ≤ Dγ n
B ,

where D = d(x0, C)/(1 − γB) > 0 and γB is defined by (5).

Proof First, let us consider MPA. We have already proved that there is a x∗ ∈ C such that
xn → x∗ and that d(xn+1, C) ≤ γBd(xn, C) for every n ≥ 0. Now,

‖xn+1 − xn‖ =
∥∥∥∥∥

m∑
i=1

αi PCi (xn) − xn

∥∥∥∥∥ =
∥∥∥∥∥

m∑
i=1

αi (PCi (xn) − xn)

∥∥∥∥∥
≤

m∑
i=1

αi‖PCi (xn) − xn‖ =
m∑

i=1

αi d(xn, Ci )

C⊆Ci≤
m∑

i=1

αi d(xn, C) = d(xn, C) ≤ tγ n
B

where t = d(x0, C). Thus, for every N > n:

‖xN − xn‖ ≤
N−1∑
j=n

‖xj+1 − xj‖ ≤
N−1∑
j=n

tγ j
B = tγ n

B

(
1 − γ N−n

B

1 − γB

)
.

Taking N → ∞ we have:

‖xn − x∗‖ ≤ t

1 − γB
γ n

B .

Substitute D = t/(1 − γB) and obtain the result. The proof for MDPA is essentially the same,
the only difference is that we do not use a constant convex combination like in the MPA case,
but instead we use a different convex combination at each iteration. �
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3 SLATER’S CONDITION IMPLIES LEB

We begin by recalling Slater’s condition for the convex feasibility problem (CFP).

Slater’s Condition: Let C1, . . . , Cm be m closed convex sets. Suppose that C1, . . . , Ck(k ≤ m)

are polyhedral sets. Then, C1, . . . , Cm are said to satisfy the Slater’s condition if:(
k⋂

i=1

Ci

)⋂(
m⋂

i=k+1

ri(Ci )

)
�= ∅

The aim of this section is to prove that Slater’s condition implies LEB. This result was recently
derived in Ref. [4] through a quite long and rather complex analysis which appears to be
unnecessary. Our objective is to give a new and simple proof which relies on elementary convex
analysis arguments and Hoffmann’s Lemma. For that purpose, we begin with the following
key result from Gubin et al. [7], which seems to have been overlooked in the literature. For
completeness we include a proof.

LEMMA 3.1 Let C1, C2 ⊆ �d be two closed convex sets such that C1 ∩ int(C2) �= ∅. Then
LEB is satisfied i.e. for every bounded set B there is a θB > 0 such that

∀x ∈ B d(x, C1

⋂
C2) ≤ θB max{d(x, C1), d(x, C2)}.

Proof Let x ∈ �d , denote η = 2 max{d(x, C1), d(x, C2)}. For every z ∈ C1 ∩ C2 we have:

d(x, C1

⋂
C2) ≤ ‖x − z‖

≤ ‖x − PC1(x)‖ + ‖PC1 (x) − z‖
= d(x, C1) + ‖PC1 (x) − z‖
≤ η

2
+ ‖PC1 (x) − z‖. (6)

d(·, C2) is Lipschitz with constant 1 and thus,

d(y, C2) ≤ ‖y − x‖ + d(x, C2) ∀x, y ∈ �d .

Set y = PC1 (x) and obtain:

d(PC1 (x), C2) ≤ ‖PC1 (x) − x‖ + d(x, C2)

= d(x, C1) + d(x, C2)

≤ η (7)

Let u ∈ C1 ∩ int(C2). u ∈ int(C2) and thus there is ε > 0 such that:

‖u − v‖ ≤ ε ⇒ v ∈ C2.

Let v = u + µ(PC1(x) − PC2 (PC1 (x))). Then

‖v − u‖ = µ‖PC1(x) − PC2 (PC1(x))‖ = µd(PC1(x), C2)
(7)≤ µη.
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So pick µ = ε/η and therefore ‖v − u‖ ≤ ε ⇒ v ∈ C2. Now, construct a specific z in
C1 ∩ C2:

z = 1

µ + 1
v︸︷︷︸

∈C2

+ µ

µ + 1
PC2(PC1 (x))︸ ︷︷ ︸

∈C2

C2 is convex�⇒ z ∈ C2.

Using the definition of v we also have:

z = 1

µ + 1
v + µ

µ + 1
PC2 (PC1(x))

= 1

µ + 1
(u + µ(PC1(x) − PC2 (PC1 (x)))) + µ

µ + 1
PC2 (PC1(x))

= 1

µ + 1
u︸︷︷︸

∈C1

+ µ

µ + 1
PC1 (x)︸ ︷︷ ︸

∈C1

Thus z ∈ C1 (and as a conclusion z ∈ C1 ∩ C2). So now

‖z − PC1 (x)‖ =

∥∥∥∥∥∥∥∥
z︷ ︸︸ ︷

1

µ + 1
u + µ

µ + 1
PC1 (x)−PC1 (x)

∥∥∥∥∥∥∥∥
= 1

µ + 1
‖u − PC1(x)‖ ≤ 1

µ
‖u − PC1 (x)‖

= 1

µ
‖PC1 (u) − PC1 (x)‖ ≤ 1

µ
‖u − x‖ = η

ε
‖u − x‖.

Using (6) we have:

d(x, C1

⋂
C2) ≤ η

2
+ η

ε
‖u − x‖ ∀x ∈ �d , u ∈ C1

⋂
C2.

Assuming x ∈ B we have from the boundedness of B that there is M > 0 such that ‖x‖ ≤ M
and thus:

d(x, C1

⋂
C2) ≤ η

2
+ η

ε
‖u − x‖

≤ η

2
+ η

ε
(‖u‖ + ‖x‖)

≤ η

2
+ η

ε

M+‖u‖︷︸︸︷
M ′

= 2

(
1

2
+ M ′

ε

)
max{d(x, C1), d(x, C2)}

= θB max{d(x, C1), d(x, C2)}.

where θB = 1 + 2M ′/ε > 0. �
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COROLLARY 3.1 Let D1, . . . , Dm ⊆ �d be m closed convex sets. If ∩m
i=1int(Di ) �= ∅ then

LEB is satisfied i.e. for every bounded set B there is θB > 0 such that:

∀x ∈ B d

(
x,

m⋂
i=1

Di

)
≤ θB max

i=1,...,m
{d(x, Di)}.

Proof Define:

C1 =

(x, x, . . . , x)︸ ︷︷ ︸

m times

: x ∈ �d




C2 = D1 × D2 × · · · × Dm

Now,

C1

⋂
int(C2) =

{
(x, x, . . . , x): x ∈

m⋂
i=1

int(Di )

}
.

By the assumption that
⋂m

i=1 int(Di ) �= ∅ we have that C1 ∩ int(C2) �= ∅. Thus, by
Lemma 3.1 there is θB > 0 such that:

∀y ∈ Bm
⋂

(�d)m d(y, C1

⋂
C2) ≤ θB max{d(y, C1), d(y, C2)}, (8)

where Bm = B × · · · × B︸ ︷︷ ︸
m times

. Let y = (x, x, . . . , x) then:

d(y, C1

⋂
C2) = √

m · d

(
x,

m⋂
i=1

Di

)
,

d(y, C1) = 0,

d(y, C2) =
√√√√ m∑

j=1

d2(x, Dj) ≤ √
m max

j=1,...,m
{d(x, Dj)}.

Substituting these equations in (8) we obtain:

∀x ∈ B d

(
x,

m⋂
i=1

Di

)
≤ θB max

i=1,...,m
{d(x, Di)}.

�

The next simple convex analysis fact will allow us to relax the interior condition to a relative
interior condition.

LEMMA 3.2 Let C be a closed convex set in �d . Then there exists a closed convex sets C̃ such
that C ⊆ C̃ and the following is satisfied:

aff(C)
⋂

int(C̃) = ri(C),

aff(C)
⋂

C̃ = C.
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Proof Take C̃ to be:

C̃ = C + M,

where M is the orthogonal complement to the linear subspace parallel to aff(C). First, we prove
that aff(C) ∩ C̃ = C . It is obvious that C ⊆ aff(C), C ⊆ C̃ and thus C ⊆ aff(C) ⊂ C̃ . Now,
we will prove the second direction: aff(C) ∩ C̃ ⊆ C . Let x ∈ aff(C) ∩ C̃ . x ∈ C̃ so there axe
y, z such that:

x = y + z y ∈ C, z ∈ M.

Thus,

x − y = z ∈ M.

Since x, y ∈ aff(C) it follows that x − y ∈ M⊥ which yields that z = 0. As a conclusion
x = y ∈ C which proves that aff(C) ∩ C̃ = C . Now,

ri(C) = ri(aff(C)
⋂

C̃) = ri(aff(C))
⋂

ri(C̃) = aff(C)
⋂

ri(C̃).

All that is left to be proved is that aff(C̃) = �d and indeed:

aff(C̃) = aff(C + M) = aff(C) + M = �d

�

We are now in position to prove the main result of this section, i.e., that Slater’s condition
implies LEB.

THEOREM 3.1 (Slater Implies LEB) Let C1, . . . , Ck be polyhedral sets and let D1, . . . , Dm

be closed convex sets. If Slater’s condition is satisfied i.e.,(
k⋂

i=1

Ci

)⋂
 m⋂

j=1

ri(Dj)


 �= ∅, (9)

then LEB is satisfied, i.e. for every bounded set B there is θB > 0 such that,

∀x ∈ B d


x,

(
k⋂

i=1

Ci

)⋂
 m⋂

j=1

Dj




 ≤ θB max

i=1,...,k, j=1,...,m
{d(x, Ci), d(x, Dj )}.

Proof Let D̃1, . . . , D̃m be defined as in Lemma 3.2 i.e.

ri(Dj) = aff(Dj)
⋂

int(D̃j )

Dj = aff(Dj)
⋂

D̃j .

Then (9) is equivalent to:

(
k⋂

i=1

Ci

)⋂
 m⋂

j=1

aff(Dj )




︸ ︷︷ ︸
E

⋂
int




m⋂
j=1

D̃j

︸ ︷︷ ︸
F


 �= ∅.
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Since E ∩ int(F) �= ∅ we have from Lemma 3.1 that there is θB > 0 such that:

∀x ∈ B d(x, E
⋂

F) ≤ θB max{d(x, E), d(x, F)}

By Corollary 3.1 there is γB > 0 such that:

∀x ∈ B d(x, F) ≤ γB max
j=1,...,m

{d(x, D̃j)}.

Noticing that the set E is a nonempty polyhedral set (since it contains E ∩ int(F)), we can
apply Hoffman’s Lemma [8], namely, there is a δB > 0 such that:

∀x ∈ B d(x, E) = d


x,

(
k⋂

i=1

Ci

)⋂
 m⋂

j=1

aff(Dj)






≤ δB max
i=1,...,k, j=1,...,m

{d(x, Ci), d(x, aff(Dj))}.

Therefore,

∀x ∈ B d(x, E
⋂

F) ≤ θB max{γB, δB}
× max

i=1,...,k, j=1,...,m
{d(x, D̃j), d(x, Ci), d(x, aff(Dj))}

≤ θB max{γB, δB} max
i=1,...,k, j=1,...,m

{d(x, Ci), d(x, Dj)}.

The last inequality is true because Di ⊆ aff(Di ), Di ⊆ D̃i and thus,

d(x, D̃i ), d(x, aff(Di )) ≤ d(x, Di).

�

4 THE RATE OF CONVERGENCE OF PROJECTION ALGORITHMS
CAN BE VERY SLOW

We concentrate only on the CPA for CFP. Similar results can be established for the other
projection algorithms. We have already proven in Section 2 that the sequence {xn} generated
by CPA converges to a point x∗ ∈ C1 ∩ C2, with C1, C2 as defined there. We will now see that
is Slater’s condition is not valid then for every even p we can find an example of closed convex
sets C1, C2 such that:

1

(an + b)1/(2p−2)
≤ ‖xn − x∗‖ ≤ 1

(cn + d)1/(2p−2)
,

where a, b, c, d are some positive numbers. That is, the rate of convergence can be very slow.
The two closed convex sets that we will consider are:

C1 = {(s, 0): s ∈ �},
C2 = {(s, t): s p − t ≤ 0}.
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Notice that C1 ∩ C2 = {(0, 0)} and thus Slater’s condition is not satisfied.Also, since we will
prove that the sequence generated by CPA does not have a linear rate of convergence we
necessarily obtain that LEB is not satisfied for C1, C2 (otherwise, by our previous results
we would have linear convergence). The sequence generated by CPA is:

(s0, t0) = (1, 0), (10)

(sn+1, 0) = PC1(PC2 (sn, 0)). (11)

The following lemma states that the sequence {sn} satisfies an implicit recursive relation.

LEMMA 4.1 Let p be an even integer. The sequence {sn} generated by CPA satisfies the
following relation.

s0 = 1

sn = sn+1 + ps2p−1
n+1 (12)

Proof Denote PC2 (sn, 0) = (sn+1, tn+1). Then, (sn+1, tn+1) is the solution of the following
optimization problem:

minimize (s − sn)
2 + t2

s.t. s p − t ≤ 0

By the KKT condition we have that:{ 2tn+1 − λ = 0

2(sn+1 − sn) + pλs p−1
n+1 = 0

Also, (sn+1, tn+1) ∈ bd(C2) and thus tn+1 = s p
n+1. To conclude, we have:

2(sn+1 − sn) = −pλs p−1
n+1 = −2 ptn+1s p−1

n+1 = −2 ps2p−1
n+1 .

�

The next lemma bounds the value of sn+1 with respect to the value of sn . These bounds will
play a crucial role in establishing the convergence rate of the sequence.

LEMMA 4.2 There exists 0 < γ < 1 such that for every n:

γ sn < sn+1 < sn .

Proof sn+1 < sn by the definition of the sequence. Also,

sn+1 = sn − ps2p−1
n+1

sn+1<sn
> sn − ps2p−1

n .

On the other hand, by the convergence of the sequence generated by CPA we have that sn → 0
and thus there exists a natural N such that for every n > N we have xn < 1/2. Thus, for every
n > N ,

sn+1 = sn − ps2p−1
n+1 > sn − p

(
1

2

)2p−2

sn = sn

(
1 − p

(
1

2

)2p−2
)

.
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Define γ to be smaller than max{1 − p(1/2)2p−2, s1/s0, s2/s1, . . . , sN+1/sN } and the lemma
is proved. �

We are now ready to prove the main result of this section: ‘‘CPA can converge as slow as one
wishes’’.

THEOREM 4.1 Let {sn} be the sequence generated by CPA as described by (10), (11). Then
there exists positive numbers a, b, c, d such that:

1

(an + b)1/(2p−2)
≤ sn ≤ 1

(cn + d)1/(2p−2)
.

Proof Notice that:

1

s2p−2
n+1

− 1

s2p−2
n

= s2p−2
n − s2p−2

n+1

s2p−2
n+1 s2p−2

n

=
(sn − sn+1)

(∑2p−3
k=0 sk

n s2p−3−k
n+1

)
s2p−2

n+1 s2p−2
n

(12)=
ps2p−1

n+1

(∑2p−3
k=0 sk

n s2p−3−k
n+1

)
s2p−2

n+1 s2p−2
n

=
psn+1

(∑2p−3
k=0 sk

n s2p−3−k
n+1

)
s2p−2

n

Invoking Lemma 4.2, we can thus bound the expression 1/s2p−2
n+1 − 1/s2p−2

n from above:

1

s2p−2
n+1

− 1

s2p−2
n

=
psn+1

(∑2p−3
k=0 sk

n s2p−3−k
n+1

)
s2p−2

n

sn+1<sn
< p(2 p − 2),

and from below:

1

s2p−2
n+1

− 1

s2p−2
n

=
psn+1

(∑2p−3
k=0 sk

n s2p−3−k
n+1

)
s2p−2

n

sn+1>γ sn
> p(2 p − 2)γ 2p−2,

Summing this inequalities we obtain:

1

s2p−2
n

− 1 =
n−1∑
k=0

(
1

s2p−2
k+1

− 1

s2p−2
k

)
< p(2 p − 2)n,

1

s2p−2
n

− 1 =
n−1∑
k=0

(
1

s2p−2
k+1

− 1

s2p−2
k

)
> γ 2p−2 p(2 p − 2)n.

Therefore,

1

(p(2 p − 2)n + 1)1/(2p−2)
< sn <

1

(γ 2p−2 p(2 p − 2)n + 1)1/(2p−2)
,
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and the theorem is proved with a := p(2 p − 2), b := 1, c := γ 2p−2 p(2 p − 2), and
d = 1. �

5 TWO POINT PROJECTION ALGORITHMS

5.1 Definition of TPA

In this section we consider convex feasibility problems with two sets. Note that such a model of
the CFP includes conic feasibility problems, i.e., find x ∈ {x : Ax = b} ∩ K where A is a linear
map, K is a closed convex cone, and which arise in several applications, see e.g. Ref. [14]. We
begin by recalling the gradient projection algorithm (see e.g., Refs. [5,9]) to solve the following
optimization problem:

(OP) min
x∈S

f (x).

Here we assume that S is a closed convex set and f is a convex differentiable function with
Lipschitz gradient with Lipschitz constant L, i.e.,:

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖ ∀x, y ∈ S.

We assume that the optimal set of (OP), denoted by X∗, is nonempty and denote the optimal
value of (OP) by f ∗. The Gradient Projection Algorithm (in short, GPA) is defined as follows:

Gradient Projection Algorithm (GPA):
First step: Take an arbitrary x0 ∈ �d

General step: xn+1 = PS(xn − α∇ f (xn)).

Here α > 0 is the step size. One of the main results about the gradient projection algorithm
is the sublinear rate of convergence of the function values, see Ref. [9] for a proof, and the
Appendix.

THEOREM 5.1 Let {xn} be the sequence generated by GPA with constant step size 0 < α <

2/L. Then for every n ≥ 1 the following is satisfied:

f (xn) − f ∗ ≤ c

n
,

for some constant c > 0. Furthermore, the sequence {xn} converges to an optimal solution
of (OP).

There is a simple connection between the projection algorithms previously defined (CPA,
MPA) and the gradient projection algorithm. Consider the convex feasibility problem with two
closed convex sets C1, C2. Then, the feasibility problem is equivalent to the solution of the
following optimization problem:

(P) min

{
1

2
‖x − y‖2: x ∈ C1, y ∈ C2

}
.

The optimal set of (P) is (C1 ∩ C2) × (C1 ∩ C2) and the optimal value f ∗ = 0 (under the
assumption that C1 ∩ C2 �= ∅). The gradient projection algorithm applied to (P) uses two
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points in each iteration (one for each set). Thus the algorithm will be called TPA (Two Points
projection Algorithm) and takes the following form:

Two Points Projection Algorithm (TPA):
Initial step: Take an arbitrary x0 ∈ C1, y0 ∈ C2

General step: xn+1 = PC1 ((1 − α)xn + αyn), yn+1 = PC2 ((1 − α)yn + αxn)

Here α > 0 is the step size and thus by Theorem 5.1 the convergence is guaranteed when
0 < α < 2/L where L is the Lipschitz constant of the gradient of the objective function. It is
easy to see that here L = 2 and thus the algorithm will converge for every 0 < α < 1.

Remark 5.1 It is interesting to note that:

1. In the case α = 1/2, TPA reduces to MPA with equal weights (xn+1 = [PC1(xn) +
PC2 (xn)]/2). The convergence of TPA is then guaranteed by Theorem 2.1 and also from
the known results about the gradient projection algorithm given in Theorem 5.1.

2. In the case α = 1, convergence of TPA is not anymore guaranteed by Theorem 5.1 which
requires α ∈ (0, 1). But when α = 1 TPA reduces to CPA so convergence is guaranteed by
Theorem 2.1.

5.2 The Rate of Convergence of TPA

As just noticed, TPA reduces to MPA with equal weights when α = 1/2. Thus, as already indi-
cated in Section 4, this algorithm can convergevery slowly. However, in this case, and as shown
below, we can still bound the rate of convergence of the residual: max{d(xn, C2), d(yn, C1)}
(Recall that by the definition of TPA xn ∈ C1, yn ∈ C2).

THEOREM 5.2 Let C1, C2 be two closed convex sets with nonempty intersection and let
0 < α < 1. Then the sequence {(xn, yn)}∞n=0 generated by TPA converge to a point in (C1 ∩
C2) × (C1 ∩ C2) and the following is satisfied: there exists a constant A > 0 such that:

max{d(xn, C2), d(yn, C1)} ≤ A√
n
.

Proof Denote f (x, y) = (1/2)‖x − y‖2. Then by Theorem 5.1 we have that there exists
c > 0 such that:

‖xn − yn‖2 ≤ c

n
,

or equivalently,

‖xn − yn‖ ≤
√

c√
n
.

Since xn ∈ C1, yn ∈ C2 this implies the following two inequalities:

d(xn, C2) ≤ ‖xn − yn‖ ≤
√

c√
n
,

d(yn, C1) ≤ ‖xn − yn‖ ≤
√

c√
n
.

Define A = √
c and the theorem is proved. �
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5.3 A Relation Between Error Bounds

Error bounds can also be defined for optimization problems such as (OP). A classical residual
function is given by R(x) = ‖x − PS(x − α∇ f (x))‖. Obviously, R(x) ≥ 0 for any x ∈ �d

and R(x) = 0 if and only if x ∈ X∗, see e.g., Ref. [12]. We consider now the following Gradient
Error Bound (for short GREB), which is essentially a modification of an error bound suggested
by Luo [10], and was recently studied in Ref. [2].

DEFINITION 5.1 (GREB) (OP) is said to satisfy GREB with parameter 0 < α < 2/L if for
every closed bounded set B there exists σB > 0 such that:

∀x ∈ B
⋂

S d(x, X∗) ≤ σB‖x − PS(x − α∇ f (x))‖,

where X∗ is the optimal set.

The connection between error bound assumptions and linear rate of convergence has already
been studied for some cases in the literature, see for example Luo [10] and references therein,
who proves that a condition similar to GREB implies asymptotic linear rate of convergence of
the function values of the sequence generated by the gradient projection method for solving
OP even in the case where f is nonconvex. When f is also assumed convex GREB implies
nonasymptotic linear rate of convergence of the sequence generated by GPA, (see Ref. [2]).
Writing GREB for the optimization problem (P) induced by the feasibility problem we obtain:
For every bounded set B , there exists σB > 0 such that:

d((x, y), (C1

⋂
C2) × (C1

⋂
C2)) ≤ σB‖(x − PC1((1 − α)x + αy),

y − PC2 ((1 − α)y + αx))‖.

Using the equivalence of norms in finite dimensional spaces we than obtain the following new
error bound for the feasibility problem, that will be called TPEB (Two Points Error Bound).

DEFINITION 5.2 (TPEB) Two sets C1, C2 are said to satisfy TPEB with parameter 0 < α ≤ 1
if for every bounded set B there exists σB > 0 such that:

max{d(x, C1

⋂
C2), d(y, C1

⋂
C2)} ≤ σB max{‖x − PC1 ((1 − α)x + αy)‖,

‖y − PC2 ((1 − α)y + αx)‖},
for every x ∈ B ∩ C1, y ∈ B ∩ C2.

Using the results just mentioned above for the GPA algorithm, we can thus conclude that TPEB
implies linear convergence of the sequences generated by TPA. We record this in the following
theorem.

THEOREM 5.3 (Linear Rate of Convergence of the sequence) Let C1, C2 be two close convex
sets with nonempty intersection. Suppose that TPEB is satisfied. Let {(xn, yn)} be a sequence
generated by TPA with constant 0 < α < 1. Then there is a 0 < η < 1 such that,

d(xn+1, C1

⋂
C2) ≤ ηd(xn, C1

⋂
C2),

d(yn+1, C1

⋂
C2) ≤ ηd(yn, C1

⋂
C2)
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Both conditions: LEB, TPEB imply linear convergence of the sequence generated by their
associated algorithms (MPA, TPA respectively). As already noted, TPA with α = 1/2 is in fact
MPA with equal weights. Thus, both LEB and TPEB imply the linear convergence of MPA
with equal weights. The question that naturally arises is: what is the weaker condition? The
next theorem answers this question and it turns out that LEB implies TPEB.

THEOREM 5.4 (LEB ⇒ TPEB) Let C1, C2 be two closed convex sets with nonempty intersec-
tion that satisfy LEB. Then, for every 0 < α < 1, TPEB holds.

Proof Let B be a bounded set. Then, by LEB we have:

∀x ∈ B d(x, C1

⋂
C2) ≤ θB max{d(x, C1), d(x, C2)}.

Thus, for every x ∈ C1 ∩ B , y ∈ C2 ∩ B:

d(x, C1

⋂
C2) ≤ θB max{d(x, C1), d(x, C2)} = θBd(x, C2)

≤ θBd(x, PC2((1 − α)x + αy)).

By taking y instead of x we obtain the inequality:

d(y, C1

⋂
C2) ≤ θBd(y, PC1((1 − α)y + αx)).

Combining these two inequalities we obtain TPEB. �
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APPENDIX: PROOF OF THEOREM 2.2 AND THEOREM 5.1

Proof of Theorem 2.2 First, we prove that xn ∈ B for every n ≥ 0. By (3) we have that for
all y ∈ C:

‖xn − y‖ ≤ ‖xn−1 − y‖ ≤ · · · ≤ ‖x0 − y‖,
and thus xn ∈ B . By LEB there is a θB > 0 such that

d(xn, C) ≤ θB max
i=1,...,m

{d(xn, Ci )} ∀n ≥ 0.

Now, for all n ≥ 0:

d2(xn, C) ≤ θ2
B max

i=1,...,m
{d2(xn, Ci )}

≤ θ2
B

minj=1,...,m{αj}
m∑

i=1

αi d
2(xn, Ci )

(2)≤ θ2
B

minj=1,...,m{αj} (d
2(xn, C) − d2(xn+1, C)).

Define A = θ2
B/(minj=1,...,m{αj}) and we obtain that:

d2(xn+1, C) ≤
(

1 − 1

A

)
d2(xn, C)

proving the desired result. �

Proof of Theorem 5.1 Let x∗ be an arbitrary point in X∗. By the gradient inequality for convex
functions we obtain

0 ≥ f (x∗) − f (xn) ≥ 〈∇ f (xn), x∗ − xn〉. (13)

From the basic properties of the projection operator we have that:

〈xn − α∇ f (xn) − xn+1, x∗ − xn+1〉 ≤ 0,

which is equivalent to the following inequality:

〈xn − xn+1, x∗ − xn+1〉 ≤ α〈∇ f (xn), x∗ − xn+1〉. (14)

Moreover,

‖∇ f (xn)‖2 = ‖∇ f (xn) − ∇ f (x0) + ∇ f (x0)‖2

(a+b)2≤2a2+2b2

≤ 2‖∇ f (xn) − ∇ f (x0)‖2 + 2‖∇ f (x0)‖2

≤ 2L2‖xn − x0‖2 + 2‖∇ f (x0)‖2

= 2L2‖xn − x∗ + x∗ − x0‖2 + 2‖∇ f (x0)‖2

(a+b)2≤2a2+2b2

≤ 4L2‖xn − x∗‖2 + 4L2‖x0 − x∗‖2 + 2‖∇ f (x0)‖2

≤ 8L2‖x∗ − x0‖2 + 2‖∇ f (x0)‖2 (15)
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As a result,

( f (xn) − f ∗)2 (13)≤ 〈∇ f (xn), x∗ − xn〉2

= (〈∇ f (xn), x∗ − xn+1〉 + 〈∇ f (xn), xn+1 − xn〉)2

(a+b)2≤2(a2+b2)≤ 2〈∇ f (xn), x∗ − xn+1〉2 + 2〈∇ f (xn), xn+1 − xn〉2

(14)≤ 2

(
1

α2
〈xn − xn+1, x∗ − xn+1〉2 + 〈∇ f (xn), xn+1 − xn〉2

)

≤ 2

(
1

α2
‖xn − xn+1‖2‖x∗ − xn+1‖2 + ‖∇ f (xn)‖2‖xn+1 − xn‖2

)

≤ 2

(
1

α2
‖xn − xn+1‖2‖x∗ − x0‖2 + ‖∇ f (xn)‖2‖xn+1 − xn‖2

)

= 2‖xn − xn+1‖2

(
1

α2
‖x∗ − x0‖2 + ‖∇ f (xn)‖2

)

≤ 1

1/α − L/2

(
1

α2
‖x∗ − x0‖2 + ‖∇ f (xn)‖2

)
( f (xn) − f (xn+1))

(15)≤ 2

1/α − L/2

(
1

α2
‖x∗ − x0‖2 + 8L2‖x∗ − x0‖2 + 2‖∇ f (x0)‖2

)
× ( f (xn) − f (xn+1))

= 2

1/α − L/2

((
1

α2
+ 8L2

)
‖x∗ − x0‖2 + 2‖∇ f (x0)‖2

)
× ( f (xn) − f (xn+1))

= A(( f (xn) − f ∗) − ( f (xn+1) − f ∗)),

where A = 2/(1/α − L/2)((1/α2 + 8L2)‖x∗ − x0‖2 + 2‖∇ f (x0)‖2). The result then
follows. �


