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Generalized additive models belong to modern techniques from statistical learning, and are
applicable in many areas of prediction, e.g. in financial mathematics, computational biology,
medicine, chemistry and environmental protection. In these models, the expectation of response
is linked to the predictors via a link function. These models are fitted through local scoring
algorithm using a scatterplot smoother as building blocks proposed by Hastie and Tibshirani
(1987). In this article, we first give a short introduction and review. Then, we present a
mathematical modeling by splines based on a new clustering approach for the x, their density,
and the variation of output y. We contribute to regression with generalized additive models by
bounding (penalizing) second-order terms (curvature) of the splines, leading to a more robust
approximation. Previously, in [23], we proposed a refining modification and investigation of the
backfitting algorithm, applied to additive models. Then, because of drawbacks of the modified
backfitting algorithm, we solve this problem using continuous optimization techniques,
which will become an important complementary technology and alternative to the concept
of modified backfitting algorithm. In particular, we model and treat the constrained residual
sum of squares by the elegant framework of conic quadratic programming.
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1. Introduction

1.1. Learning and models

In the last decade, learning from data has become very important in every field of
science. Modern learning challenges can be found in the fields of computational biology
and medicine, and in the financial sector. Estimation and prediction problems
frequently arise in learning. For those problems, regression theory is used, mainly
based on the idea of least squares or maximum likelihood estimation, but also
classification theory is applied.

In statistical learning, we begin with deterministic models and then we turn
to the more general case of stochastic models where uncertainties, noise or
measurement errors are taken into account. For closer information we refer to the
book Hastie et al. [12].

In classical models, the approach to explain the recorded data y consists of one
unknown function only; the introduction of additive models [6] allowed an
‘‘approximation’’ with sum of functions. These functions have separated input
variables. Our contribution is the introduction of a new approach that figures out
clusters of input data points x (or entire data points (x, y)), and assigning in the additive
approximation for each cluster’s own function. Thus, each individual function additively
contributes to the understanding and learning from the measured data. These functions
are defined over domains such as intervals or higher dimensional intervals, and
depend on the cluster knots; mostly they are assumed to be splines. We introduce an
index useful for deciding the spline degrees by density and variation properties of the
corresponding data in x and y components, respectively [23]. In a further step of
refinement, aspects of stability and complexity of the problem are implied by keeping
the curvatures of the model functions under some chosen bounds. The corresponding
constrained least squares problem can be treated for example as a penalized
unconstrained minimization problem. In this article, for the generalized (penalized)
problem, we specify (modify) the backfitting algorithm which was investigated and
applied for additive models. Our new investigation of generalized additive models
is introduced in a probabilistic framework based on [12] and closer presented in the
deterministic case.

This article contributes to both the m-dimensional case of input data separated by the
model functions and, as our new alternative, to 1- (or higher) dimensional input data
partitioned into clusters. Dimensional generalizations of the second interpretation and a
combination of both interpretations are possible and indicated. Applicability for data
classification is noted. We point out advantages and disadvantages of the concept
of modified backfitting algorithm.

By all of this, we present and discuss the modified backfitting algorithm related to
penalized residual sum of squares. We overcome drawbacks in convergence, which are
due to the regular adaption of the penalty parameters by proposing an alternative
solution method which uses conic quadratic programming. This class of convex
optimization problems arises in different fields and it is well known that efficient
polynomial time algorithms (e.g. interior point methods) are available for solving these
problems. We treat our problem by theory and methods coming from this new
interpretation and as a complement and alternative to our modified backfitting
algorithm.
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1.2. A motivation of regression

One of the motivations of this research has been the approximation of financial data

points (y,x) coming, e.g. from the stock market, credit rating, economic factors or

company properties. For example, to estimate the probability of a default for a

particular credit during the next year, or of a default for a credit randomly chosen from a

particular rating class over the next year, we can use the input data of credit rating,

economic factors or company properties. The estimation of probability of a default has

considerable importance in risk management applications where default risk usually is

referred to as credit risk. Sometimes, financial markets may face several events of

insolvency and crises. These events have attracted considerable attention of both

academics and regulators. For this reason, Basel II (Committee on Banking

Supervision) propose a revision to the international capital accord that suggests a

more prominent role for internal credit risk assessments based on the determination of

the probability of default of a borrower or group of borrowers [2].
For the above reason, there are different approaches for estimating the probability of

a default. Regression models [14] (binary choice) are one of them, but these models must

estimate defaults as accurately as possible. Probability of a default of a particular credit

during the next year or a default of a credit randomly chosen from a particular rating

class over the next year can be estimated by the regression model which we explain

in the following. For example, assume that the dependent variable Y (observed data)

with Y¼ 1 (‘‘default’’) or Y¼ 0 (‘‘no default’’) satisfies [14]

Y ¼ FðX Þ þ ", ð1:1Þ

where X is a vector of independent variable(s) (input) such as credit rating, economic

factors, company properties, and the noise term " has the expected value 0. Taking the

expectation in equation (1.1), we obtain the default probability P as

P ¼ E½FðX Þ þ "� ¼ FðX Þ: ð1:2Þ

Hence, we can obtain an estimate for the default probability of a corporate bond via

regression models. Also, this estimation can be done via linear regression. If linear

regression is used based on the approach

Y ¼ �þ �TXþ ", ð1:3Þ

an estimate for the default probability of a corparate bond can be obtained via [14]:

P ¼ �þ �TX: ð1:4Þ

Here, � and � are unknown parameters that can be estimated via statistical learning

[12], especially linear regression methods or maximum likelihood estimation. In many

important cases, these just mean least squares estimation.
For introductory and closer information about these methods from the viewpoints of

statistical learning or the stheory of inverse problems, we refer to the books of Hastie

et al. [12] and Aster et al. [3], respectively. A new application in the modeling and

prediction of gene-environment networks can be found in [25].
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1.3. Additive models

1.3.1. Classical additive models. Regression models, especially linear ones, are very
important in many applied areas. However, the traditional linear models often fail in
real life, since many effects are generally nonlinear. To characterize these effects, flexible
statistical methods like nonparametric regression must be used [8]. However, if the
number of independent variables is large in the models, many forms of nonparametric
regression do not perform well. It is also difficult to interpret nonparametric regression
depending on smoothing spline estimates. To overcome these difficulties, Stone [22]
proposed additive models. These models estimate an additive approximation of the
multivariate regression function. Here, the estimation of the individual terms explains
how the dependent variable changes with the corresponding independent variables.
We refer to [10] for basic elements of the theory of additive models.

If we have data consisting of N realizations of random variable Y at m design values,
then the additive model takes the from

EðYijxi1, . . . , ximÞ ¼ �0 þ
Xm
j¼1

fjðxijÞ: ð1:5Þ

Here, the functions fj are mostly considered to be splines, i.e. piecewise polynomial,
since, e.g. polynomials themselves are too strong or early asymptotic to �1 and by this
they are not satisfying for data fitting. In our first approach to estimate the fj we use a
procedure of successive smoothing on single coordinates, called backfitting algorithm
(see Subsection 2.5). After a careful discussion of its pros and cons, we do the estimation
by conic quadratic programming (see Subsection 3.3). We denote estimates by f̂j. By all
the xij, we represent input data values; later on, in the backfitting algorithm, these
values also serve as the knots of the interpolating (or smoothing) splines which appear
there. The estimation of the fj is first done by an algorithm which performs a stepwise
smoothing with respect to suitably chosen spline classes and to the points xij and
difference values between an average yi and a sum of functions evaluated at the knots
xij, rather than with given a priori output knots. Materially regarded, the xij have a
twofold interpretation in our article, which we will carefully explain. Indeed, there is the
understanding of xij as the j-th component of the i-th input variable (classical separation
of variable approach), and we offer a new understanding as the i-th point of the j-th
cluster (Ij) of input data. This article holds true for both of these interpretations. Let us
by yij denote the output values corresponding to the inputs xij. Aggregating over these
values with respect to j, delivering yi :¼

Pm
j¼1 yij ði ¼ 1, 2, . . . ,NÞ, will then represent a

summed observation over the i-th elements of the j-th cluster, e.g. over the mondays,
tuesdays, etc. respectively.

The standard convention consists of assuming at xij that E(fj(xij))¼ 0, since otherwise
there will be a free constant in each of the functions [13]. Additive models have a
strong motivation as a useful data analytic tool. Each function is estimated by an
algorithm proposed by [9] and called backfitting (or Gauss–Seidel) algorithm. As the
estimator for �0, the arithmetic mean (average) of the output data is used:
�̂0 ¼ aveðyiji ¼ 1, . . . ,NÞ :¼ ð1=NÞ

PN
i¼1 yi. This procedure depends on the partial

residual against xij:

rij ¼ yi � �̂0 �
X
k6¼j

f̂k xikð Þ ð1:6Þ
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and consists of estimating each smooth function by holding all the other ones
fixed [11].

To prove its convergence, Buja and Hastie [6] used the normal equation
(see subsection 2.5.1) for an arbitrary solution ~f to reduce the problem to the solution
of a corresponding homogeneous system. That is, P̂~f ¼ Q̂y and it is necessary to find
f such that P̂ðf�~fÞ ¼ 0. For this reason, they used a linear fixed point equation of
the form T̂f ¼ f and they show that for y¼ 0, backfitting converges to some solution
of P̂f ¼ 0. If the normal equations are nonsingular, this implies convergence to f¼ 0 [6].
Both the algorithm of Jacobi and Gauss-Seidel are special cases of the asynchronous
algorithm which has been studied by [1]. This algorithm is defined by

x
pþ1
i ¼

x
p
i if i 62 JðpÞ

Fi x
s1ðpÞ
i , . . . , xs�ðpÞ�

� �
if i 2 JðpÞ, i ¼ 1, 2, . . . ,�, p ¼ 0, 1, . . . :

(

Here, all vectors x 2 R
n considered are split into the form x ¼ ðx1, . . . , x�Þ

T
2 R

n

where xi 2 R
ni , J ¼ fJðpÞgp2N is a subset of the indexes of the components updated at

the p-th iteration, S ¼ fðs1ðpÞ, . . . , s�ðpÞÞgp2N is a sequence of N
� and F ¼ ðF1, . . . ,F�Þ :

R
n
! R

n is considered as an operator. Convergence and complexity of this algorithm
are controlled by p� si(p). If we take siðpÞ ¼ p ðp 2 N, i 2 f1, 2, . . . ,�gÞ, J(p)¼
f1, 2, . . . ,�g ðp 2 NÞ, this algorithm describes the Jacobi algorithm. If we take
siðpÞ ¼ p ðp 2 N, i 2 f1, 2, . . . ,�gÞ, JðpÞ ¼ pþ 1ðmod�Þ ðp 2 NÞ, then, our general algo-
rithm describes Gauss–Seidel algorithm [1]. We thus conclude that the wide
framework of [1] offers a way to future refinements of our investigation.

1.3.2. Additive models revisited. We allow a different and new motivation [23]:
additionally to the approach given by a separation of the variables xj done by the
functions fj, we perform a clustering of the input data of the variable x by a partitioning
of the domain into higher dimensional interval Qj or, in the 1-dimensional case:
intervals Ij, and an estimation of fj with reference to the knots lying in Qj (or Ij),
respectively. The elements in the j-th cluster are called xij, they serve as interpolation
knots in the iterations of the modified backfitting algorithm which we are presenting,
referring to residual values rij. In any such case, a higher dimensional interval
(i.e. product of intervals in R) or interval is taking the place of a dimension or
coordinate axis. We mostly refer to one dimension; the higher dimensional case can
then be treated by a combination of separation and clustering. The sequence of those
clusters can represent any kind of subsequent periods or seasons, any successive time
intervals which have some comparable meaning or in some way corresponding to each
other. Herewith, the functions fi are considered more as allocated to sets Ij (or Qj)
rather than depending on some special, sometimes arbitrary, elements of those sets
(input data) or associated output values. This new interpretation and usage of additive
models (or the generalized ones which are introduced next) is a key step of this article.

2. Generalized additive models

To extend the additive model to a wide range of distribution families, Hastie and
Tibshirani [13] proposed generalized additive models (GAM) which are among the most
practically used modern statistical techniques. Many often-used statistical models
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belong to this general class, e.g. additive models for Gaussian data, nonparametric
logistic models for binary data, and nonparametric log-linear models for Poisson data.

2.1. Definition of a generalized additive model

Let us have m covariates X1,X2, . . . ,Xm, comprised by the m-tuple X¼ (X1, . . . ,Xm)
T,

and a response Y to the input X assumed to have exponential family density hY(y, �, $)
with the mean �¼E(YjX1, . . . ,Xm) linked to the predictors through a link function G.
Here, � is called the natural parameter and $ is the dispersion parameter. Then, in our
regression setting, a generalized additive model takes the form

�ðX Þ ¼ Gð�Þ ¼ �0 þ
Xm
j¼1

fjðXjÞ, ð2:1Þ

where the functions fj are unspecified (‘‘nonparametric’’) and �¼ (�0, f1, . . . , fm)
T is

the unknown parameter to be estimated. The incorporation �0 as some average
outcome allows us to assume E(fj(Xj))¼ 0 (j¼ 1, . . . ,m). Often, the unknown functions
fj are elements of a finite dimensional space of functions and these functions,
depending on the cluster knots, are mostly assumed to be splines approximating the
data. The spline orders (or degrees) are suitably chosen depending on the density and
variation properties of the corresponding data in the x and y components, respectively.
Then, our problem of specifying � becomes a finite-dimensional parameter estimation
problem.

2.2. Clustering of input data

2.2.1. Introduction. Clustering is the process of organizing objects into groups
I1, I2, . . . , Im or, higher dimensionally: Q1,Q2, . . . ,Qm, whose elements are similar in
some way. A cluster is therefore a collection of objects which are ‘‘similar’’ between
them and are ‘‘dissimilar’’ to the objects belonging to other clusters.

In this article, we understand clustering always as being accompanied by a
partitioning of the (input) space, including space coverage. In other words, it will
mean a classification in the absence of different labels or categories. The aim of
clustering is to determine the intrinsic grouping in a set of unlabeled data. Therefore, we
decide about clustering methods which depend on a criterion. This criterion must be
supplied by the user in such a way that the result of the clustering will suit his needs [18].
Clustering algorithms can be applied in many fields like marketing, biology, libraries,
book ordering, insurance, city-planning or earthquake studies. For further information
we refer to [4].

2.2.2. Clustering for generalized additive models. Financial markets have different
kinds of trading activities. These activities work with considerably long horizons,
ranging from days and weeks to months and years. For this reason, we may have any
kind of data. The three parts of figure 1 show some important cases of input data
distribution and clustering in the way of [23]: the equidistant case (cf. 1(a)) where all
points can be put into one cluster (or interval) I1, the equidistant case with regular breaks
(weekends, holidays, etc. cf. 1(b) where the regularly neighboring points and the
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free days could be put in separate cluster intervals Ij, and the general case (cf. 1(c))
where there are many interval Ij of different interval lengths and densities. Furthermore,
we can also include properties of the output data y into this clustering.

Now, we take into account the data variation (for a first impression cf. figure 2).
Without loss of generality, we may assume that the number Nj of input data points xij

in each cluster Ij is the same, say Nj�N (j¼ 1, 2, . . . ,m). Otherwise, there will be no
approximation needed at data points missing and the residuals of our approximation
will be 0 there. Furthermore, given the output data yij, we denote the aggregated value
over all the i-th output values of the clusters by

yi :¼
Xm
j¼1

yij ði ¼ 1, 2, . . . ,NÞ:

In figure 1(b), this data summation may refer to all the days i from Monday to
Friday. Herewith, the cluster can also have a chronological meaning. By definition, up
to the division by m, the values yi are averages of the output values yij.

2.3. Splines

Let x1j, x2j, . . . , xNj be N distinct knots of [a, b], where a� x1j5x2j5. . .5xNj� b.
The function fk(x) on the interval [a, b] (or in R) is a spline of some degree k relative
to the knots xij if

(1) fkj½xij, xiþ1j� 2 IPk (polynomial of degree � k; i¼ 1, . . . ,N� 1),
(2) fk 2 Ck�1½a, b�.

(a)

(b)

(c)

Figure 1. Three important cases of input data distribution and its clustering: (a) equidistance, (b) equidistance
with breaks, and (c) general case.
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To characterize a spline of degree k, fk, i :¼ fkj½xij, xiþ1j� can be represented by

fk, iðxÞ ¼
Xk
l¼0

gli x� xij
� �l

x 2 xij, xiþ1j
� �� �

:

There are (kþ 1)(N� 1) coefficients gli to be determined. Furthermore, it has to
hold f

ðlÞ
k, i�1, ðxijÞ ¼ f

ðlÞ
k, iðxijÞ ði ¼ 1, . . . ,N� 2; l ¼ 0, . . . , k� 1Þ. Then, there are k(N� 2)

conditions, and the remaining degrees of freedom are (kþ 1)(N� 1)� k(N� 2)¼
kþN� 1 [20].

It is necessary to select the order of the spline, the number of knots and their
placement. We shall subsequently follow the latter approach; there, we define a special
index for the selection of the spline degrees and, herewith, their orders. For basic
information about higher and 1-dimensional splines, we refer to [7].

2.4. Density, variation and index

In [23], we defined a special index for the selection of the spline degrees based on
variation and density for corresponding j-th interval Ij, herewith, of their orders
(see also figure 2). This index is defined as Indj :¼Dj �Vj or, more generally,
Indj :¼ dj(Dj) � vj(Vj), where dj, vj are some positive, strongly monotonically increasing
functions selected by the modeller, then, Dj, Vj are density and variation of the input
data xij in the j-th interval Ij, respectively. These are defined by Dj :¼ (numbers of point
xij in Ij)/(length of Ij) and Vj :¼

PN�1
i¼1 jyiþ1j � yijj. This definitions can be directly

generalized to the higher dimensional interval rather than intervals Ij, by referring to the
higher dimensional volumes. Since in our algorithm we do the spline interpolation with
respect to the residuals ri, j, we can, in each iteration separately, refer to the variation

Vj :¼
XN�1
i¼1

riþ1j � rij
�� ��:

We determine the degree of the splines fj with the help of the numbers Indj. If the
number Indj is big, we choose a high degree of the spline. In this case, the spline may
have a more complex structure and many coefficients have to be determined, i.e. we
may have many system equations or a high-dimensional vector of unknowns. The
solution can then become more difficult; furthermore, a high degree of the splines f1,
f2 , . . . , fm causes a high curvatures or oscillations, i.e. there is a high ‘‘energy’’ implied.

a b

Figure 2. Example of data (scatterplot); here, we refer to figure 1, case (c).
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This means a higher (co)variance or instability under data perturbations. As the

extremal case of high curvature we consider nonsmoothness, meaning an instantaneous

movement at a point which does not obey to any tangent.
The previous words introduced a model-free element into our explanations. Indeed,

the concrete determining of the spline degree can be done adaptively by the implementer

who writes the code. From a close mathematical perspective, we propose to introduce

discrete thresholds gv and to assign to all the intervals of indices Ind 2 ½��, ��þ1Þ the same

specific spline degrees. This determination and allocation has to base on the above

reflections and data (or residuals) given.
For the above reasons, we impose some control on the oscillation. To make the

oscillation smaller, the curvature of each spline must be bounded by the penalty

parameter. We introduce a penalty parameter into the criterion of minimizing RSS,

called penalized sum of squares PRSS now [12]:

PRSSð�0, f1, . . . , fmÞ :¼
XN
i¼1

yi � �0 �
Xm
j¼1

fj xij
� �( )2

þ
Xm
j¼1

’j

Z b

a

f 00j ðtjÞ
h i2

dtj: ð2:2Þ

While the first term measures ‘‘goodness of data fitting’’, the second term means

‘‘penalties’’ and is defined by the functions’ curvatures. Here, the interval [a, b] is the

union of all the intervals Ij. In the case of separation of variables, the interval bounds

may also depend on j, i.e. they are intervals [aj, bj]. We recall that one basic idea of the

additive models just consists a model with variables separated, and remind that our

research is also applicable to that interpretation.
In (2.2), ’j� 0 are tuning or smoothing parameters and represent a trade-off between

the first and the second term. Large values of ’j yield smoother curves, smaller values

result in more fluctuation. It can be shown that the minimizer of PRSS is an additive

spline model [11]. In [23], we constructed a new solution method for PRSS. For this

reason, there we introduced

Fð�0, fÞ :¼
XN
i¼1

yi � �0 �
Xm
j¼1

fj xij
� �( )2

and gjð f Þ :¼

Z
½f 00j �

2dtj �Mj

with Mj4 0 being some prescribed upper bounds for the corresponding integral

curvature term. Intending to keep the curvature integrals as small as possible, this

bound can be interpreted as an ‘‘(error) tolerance’’ and it can be selected by the

practitioner. Herewith, the combined standard form of our regression problem subject

to the constrained curvature condition looks as follows:

Minimize Fð�0, fÞ

subject to gjð f Þ � 0 ðj ¼ 1, 2, . . . ,mÞ:
ð2:3Þ

Now, PRSS can be represented with the following Lagrange function:

Lðð�0, fÞ,’Þ :¼
XN
i¼1

yi � �0 �
Xm
j¼1

fj xij
� �( )2

þ
Xm
j¼1

’j

Z
f 00j ðtjÞ
h i2

dtj �Mj

� 	
, ð2:4Þ

where ’ :¼ (’1, . . . ,’m)
T. Here, ’j are penalty parameters [5]. In the light of our

optimization problem, they can now be seen as Lagrange multipliers associated with the
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constraints gj� 0. For the Lagrangian dual problem we refer to [23]. Any solution or
iteratively approximate solution of this optimization problem serves to determine the
smoothing parameters ’j and, in particular, the functions fj will be found, likewise their
bounded curvatures

R
½f 00j ðtjÞ�

2dtj. In Section 3.3, we will construct another continuous
optimization problem which is an alternative to our backfitting algorithm concept that
implies penalization. Now, we go on with refining and discussing the backfitting
concept for the additive model.

2.5. Modified backfitting algorithm for additive model

2.5.1. Additive model revisited. For the additive model given in Subsection 1.3, we
modified the backfitting algorithm used before for fitting additive model (cf. Subsection
1.3) [23]. For this reason, we used the following theoretical setting in terms of
conditional expectation [6], where for j¼ 1, 2, . . . ,m:

fjðXjÞ ¼ Pj Y� �0 �
X
k6¼j

fk Xkð Þ

 !
:¼ E Y� �0 �

X
k6¼j

fkðXkÞjXj

 !
: ð2:5Þ

To find fj(Xj) in additive model, we added the term �
Pm

k¼1 ’k
R
½f 00j ðtkÞ�

2dtk to equation
(2.5) and used the fact of

Pm
k6¼j ’k

R
½f̂ 00k ðtkÞ�

2dtk ¼ cj, then, we updated (2.5) as

fj Xj

� �
þ ’j

Z
f 00j tj
� �h i2

dtj  E Y� �0 �
X
k6¼j

fk Xkð Þ þ ’k

Z
f 00k tkð Þ
� �2

dtk

� 	����Xj

 !
, ð2:6Þ

where on both sides the integration is over the interval [a, b] and defines constants.
Here, the functions f̂j are unknown and will be determined in the course of iteration.

If we denote ZkðXkÞ :¼ fkðXkÞ þ ’k
R
½f 00k ðtkÞ�

2dtk (the same for j), we get the update
formula

Zj Xj

� �
 E Y� �0 �

X
k6¼j

Zk Xkð Þ
��Xj

 !
: ð2:7Þ

We use theoretical setting of the conditional expectation for random variables (Y,X)
(for the formula without intercept �0, we refer to [6]).

I P1 � � P1

P2 I � � P2

� � � � �

� � � � �

Pm Pm � � I

0
BBBBBB@

1
CCCCCCA

Z1 X1ð Þ

Z2 X2ð Þ

�

�

Zm Xmð Þ

0
BBBBBB@

1
CCCCCCA ¼

P1 Y� �0eð Þ

P2 Y� �0eð Þ

�

�

Pm Y� �0eð Þ

0
BBBBBB@

1
CCCCCCA, ð2:8Þ

where e is the N-vector or entries 1; or, in short, PZ ¼ QðY� �0Þ. Here, P and Q
represent the matrix and vector of the included operators, respectively. If we want to
apply the normal equations to any given discrete experimental data, we must change the
variables (Y,X) in (2.8) by their realizations (yi, xi), xi¼ (xi1, . . . , xim)

T, and the
conditional expectations Pj¼E(�|Xj) by smoothers Sj on xj. Then, we shortly get

P̂z ¼ Q̂ y� �̂0

� �
¼: Q̂y1, ð2:9Þ
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where y� �̂0 ¼: y1 and Sj ¼ ðhjlðxiÞÞi¼1,...,N
l¼1,...,N

and are smoothing matrices of type N�N,

zj are N-vectors representing the spline function f̂j þ ’j
R
½f̂ 00j ðtjÞ�

2dtj in a canonical form
(1.12); i.e.

PN
l¼1 �jlhjlðXÞ (with the number of unknowns equal to the number of

conditions). In this notation, without loss of generality, we already changed from lower
spline degrees dj to a maximal one d, and to the order N.

Furthermore, (2.9) is an (Nm�Nm)-system of normal equations. The solutions to
(2.9) satisfy zj 2 <ðSjÞ, where <ðSjÞ is the range of the linear mapping Sj, since we
update by zj  Sjðy� �̂0e�

P
k6¼j zkÞ: In case we want to emphasize �̂0 among the

unknowns, i.e. ð�̂T0 , z
T
1 , . . . , zTmÞ

T, then we can write a new equation which can be
represented equivalently to (2.9) [23].

There is a variety of efficient methods for solving the system (2.9), which depend on
both the number and type of smoother used [19].

In the following, we shall focus on additive models but will point out the essence of
what the generalized additive models will request in a remark.

2.5.2. Modified backfitting algorithm. Gauss–Seidel method, applied to blocks
consisting of vectorial component z1, z2, . . . , zm, exploits the special structure of (2.9).
It coincides with the backfitting algorithm. If in the algorithm we write
ẑj ¼ f̂j þ ’j

R
½f̂ 00j ðtjÞ�

2dtj (in fact, the functions f̂j are unknown), then the l-th iteration
in the backfitting or Gauss–Seidel includes the additional penalized curvature term.
When we do not forget the step-wise update of the penalty parameter ’j and not
mention it explicitly, then the framework of the procedure looks as follows:

(1) initialize �̂0 ¼ ð1=NÞ
PN

i¼1 yi, f̂j � 0) ẑj � 0 8j
(2) cycle j¼ 1, 2, . . . ,m, 1, 2, . . . ,m, . . ..

ẑj Sj yi � �̂0 �
X
k6¼j

ẑk xikð Þ

( )N

i¼1

2
4

3
5:

This iteration is done until the individual functions do not change: here, in each
iterate, ẑj is with the spline referring to the knots xij found by the values
yi � �̂0 ��k 6¼jẑkðxikÞði ¼ 1, 2, . . . ,NÞ, i.e. by the other ẑk and, finally, by the functions
f̂k and the penalty (smoothing) parameter ’k. Actually, since by definition it holds that
ẑj ¼ f̂j þ ’j

R
f̂ 00j ðtjÞ

2dtj, throughout the algorithm we must have a book keeping about
both f̂j and the curvature effect ’j

R
½f̂ 00j ðtjÞ�

2dtj controlled by the penalty parameter ’j
which we can update from step to step [23]. This book keeping is guaranteed since f̂j and
the curvature

R
½ f̂ 00j ðtjÞ�

2dtj can be determined via ẑj and, herewith,

f̂j :¼ ẑj � ’j

Z
f̂ 00j tj
� �h i2

dtj:

2.5.3. Discussion about modified backfitting algorithm. Provided we regard our
optimization problem on (2.2) (cf. also (2.5)) as fixed with respect to ’j, then we can
carry over the convergence theory about additive models (see Section 1.3) to the present
modified backfitting for additive model, replacing the functions f̂j by ẑj. However, at
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least approximately, we have to guarantee feasibility also, i.e.
R
½f̂ 00j ðtjÞ�

2dtj �Mj

j¼ 1, . . .,m. If
R
½f̂ 00j ðtjÞ�

2dtj �Mj, then we preserve the value of ’j for l lþ 1;
otherwise, we increase ’j. But this update changes the values of ẑj and, herewith, the
convergence behavior of the algorithm. Moreover, the modified backfitting algorithm
bases on both terms in the objective function to be approximated by 0; too large an
increase of ’j can shift too far away from 0 the corresponding penalized curvature value
in the second term.

The iteration stops if the functions fj become stationary, i.e. not changing very much
and if we request it, if

PN
i¼1fyi � �0 �

Pm
j¼1 fjðxijÞg

2 becomes sufficiently small, i.e. lying
under some error threshold ", and, in particular,

R
½f̂ 00j ðtjÞ�

2dtj �Mj (j¼ 1, 2, . . . ,m).

2.5.4. A remark on fitting generalized additive models. The algorithm described so far
fits just additive models and it provides an estimation of the functions f̂j. In
contrast, any algorithm for generalized additive models is a little more complicated.
These models are extensions of generalized linear models [25], obtained by
replacing form �ðX Þ ¼ Gð�Þ ¼ �0 þ�m

j¼1Xj�j with the additive form
�ðX Þ ¼ Gð�Þ ¼ �0 þ�m

j¼1fjðXjÞ. For computing the maximum likelihood estimates
in a generalized linear model, one can use the iteratively reweighted least-squares
procedure [13]. For a generalized linear model, the maximum likelihood estimate of
� is defined by the score equationsXN

i¼1

xij
@�i

@�i

� 	
C�1i ðyi � �iÞ ¼ 0 ðj ¼ 0, 1, . . . ,mÞ,

where Ci is the variance matrix for Yi, ð@�i=@�iÞxij ¼ ð@�i=@�jÞ ði ¼ 1, . . . ,N;
j ¼ 0, . . . ,mÞ and we assume that in above equation xi0¼ 1. The Fisher scoring procedure
is the standard method for solving these equations. It involves a Newton–Raphson
algorithm. An equivalent procedure convenient for generalized additive models is called
dependent variable regression and it is a form of the iteratively reweighted least-squares
procedure. Actually, the algorithm which is used to estimate generalized additive models
consisting of a combination of backfitting and local scoring algorithms, therefore,
estimating generalized additive models that consist of two loops. Inside each step of the
local scoring algorithm (outer loop), there is a weighted backfitting algorithm (inner
loop) which estimates the functions fj until convergence is achieved. Then, based on the
estimates from this weighted backfitting algorithm, a new set of weights is calculated and
the next iteration of the scoring algorithm starts. If we have a vector of coefficient, �0,
vector for linear predictor �0 ¼ ð�01, . . . , �0NÞ

Tand �0 ¼ ð�0
1, . . . ,�0

NÞ
T, the framework

of the local scoring algorithm procedure looks as follows [13]:

I. Initialization:

�0 ¼ G
XN
i¼1

yi=n

 !
; f 0

j ¼ 0 ðj ¼ 1, . . . , kÞ, ðk ¼ 0Þ

II. Iterate: m mþ 1

Form the adjusted dependent variable:

si ¼ �
0
i þ yi � �

0
i

� � @�i
@�i

� 	
0

with �0i ¼ �
0
0 þ

Xm
j¼1

f 0
j xij
� �

and �0
i ¼ G�1 �0i

� �
:
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Form the weights:

w�1i ¼
@�i
@�i

� 	2

0

C0
i

� �
:

Fit an additive model to Si, to obtain estimated functions f 1
j , the additive predictor �

1
i ,

and the expectation �1
i .

Then, compute the convergence criterion with respect to two neighboring iterations

� �1, �0
� �

¼

Pm
j¼1 f 1j � f 0

j




 



2Pm

j¼1 f 0
j




 



2

:

III. Repeat step 2 replacing �0 by �1 until �(�1, �0) is below some small threshold.

Here, kfk2:¼k(f(xij), . . . , f(xNj))
T
k2 is the length of the vector evaluations of f at the N

sample points.
Further refining improvements and refinements of the generalized additive model and

the corresponding modified backfitting algorithm are possible (cf [23]). However,
because of our discussion around the need of an adaptive choice of the penalty
parameters while having to guarantee convergence, there is a need for more developed
and elegant methods of continuous optimization theory. These have to become an
important complementary technology and alternative to the concept of backfitting
algorithm. In particular, conic quadratic programming will be introduced and studied in
our next section.

3. On conic programming and its application in statistical learning

with spline regression

3.1. Introduction: convex and conic programming

Convex programming deals with problems consisting of minimizing a convex function
over a convex set. Such problems arise frequently in many different application fields
and have many important properties, like strong duality theory and the fact that any
local minimum is a global minimum. These programs are not only computationally
tractable, but they also have theoretically efficient solution methods. Convex
programming consists of several important specially structured classes of problems
such as semidefinite programming, second-order cone programming, and geometric
programming. Let us give some information about convex programming by benefiting
from [15,16].

Geometrically, a convex program has the form:

min
x

cTx, where x 2 X;

where, c 2 R
n and X 	 R

n is a convex set. Linear programming (LP), in which the
objective and all constraint functions fi(i¼ 0,1, . . . ,m) are linear, is the simplest case of a
convex program:

min
u2Rn

f0ðuÞ, where fiðuÞ � 0 ði ¼ 1, 2, . . . ,mÞ: ð3:1Þ
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Such a problem can be written in the canonical form

min
x

cTx, where Ax� b 2 K :¼ R
n
þ: ð3:2Þ

If, however, the objective or constraints are nonlinear, then we must take into account
the nonlinearity in the corresponding function fi in (3.1). It is easily seen [15] that a

convex program (3.1) can be represented in the conic form similar to (3.2):

min
x

cTx, where Ax� b 2 K, ð3:3Þ

here, K 	 R
N is a cone (closed, pointed, convex and with a nonempty interior), and

R
n
! R

N, defined by x 7!Ax, is a linear embedding.
Generally, convex programs depend on three generic cones K (in the second case

referring to the Euclidean or ‘2 norm):

nonnegative orthant : R
n
þ ¼ x 2 R

n
jx � 0f g,

direct products of Lorentz cone : Ln ¼ ðx, tÞ 2 R
n
�Rjkxk2 � t

� �
,

semidefinite cone : Sn
þ ¼ X 2 Sn : X
 0

� �
;

they will get introduced in more detail below. The optimization problems based on
these three cones can be solved by primal-dual interior point methods. These methods

are very effective methods for linear, conic quadratic and semidefinite programming – all

are examples of conic problems.
In the following sections, we shall pay attention to the class of conic quadratic

problems. Then, motivated by our problems from statistical learning, which we apply in
financial mathematics and computational biology, we introduce and investigate a very

important modern class of conic quadratic programming problems.
We are about to consider the conic quadratic program. For the cone underlying these

problems, it can be described explicitly as the dual cone. Because in many cases,
‘‘duality’’ is very important for understanding of original models and converting it into

equivalent forms better suited for numerical processing, etc.

3.2. Conic quadratic programming

The n-dimensional ice-cream (:¼second-order, or Lorentz) cone Ln is defined by:

Ln ¼ x ¼ x1, x2, . . . , xnð Þ
T
2 R

n
jxn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ � � � þ x2n�1

q� �
ðn � 2Þ:

A conic quadratic problem is a conic problem,

min
x

cTx, where Ax� b 2 K, ð3:4Þ

for which the cone K is a direct product of several ‘‘ice-cream cones’’:

K ¼ Ln1 � Ln2 � � � � � Lnk

¼ y½1�T, . . . , y½k�T
� �T���y½i� 2 Lni ði ¼ 1, 2, . . . , kÞ
n o

:
ð3:5Þ
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From (3.5) we can see that a conic quadratic program is an optimization problem with a

linear objective function and finitely many ‘‘ice-cream constraints’’

Aix� bi 2 Lni ði ¼ 1, 2, . . . , kÞ,

where

½A, b� ¼ A1, b1½ �
T, . . . , Ak, bk½ �

T
� �T

is the partition of the data matrix [A, b] corresponding to the partition of y

in (3.5). Thus, our conic quadratic program can be written as

min
x

cTx, where Aix� bi 2 Lni ði ¼ 1, 2, . . . , kÞ ð3:6Þ

Sometimes, the relation Aix� bi 2 Lni is also written in the form of a vector inequality,

namely, Axi � b
 Lni0 or Axi
 Lni b. This means a partial ordering. More generally, this

kind of notation and partial order can be used in any finite-dimensional Euclidean

space E, where a good vector inequality ‘‘
 ’’ is completely identified by the set K of

‘‘
 ’’-nonnegative vectors: K ¼ fa 2 Eja
 0g, where a
 b, a� b
 0 ð, a� b 2 KÞ.

But the set K cannot be arbitrary. It must be a pointed convex cone. We note that every

pointed convex cone K in E induces a partial ordering on E, given by ‘‘�K’’, where

a �K b, a� b �K 0, a� b 2 K [15].

Partitioning the data matrix [Ai, bi] by

Ai, bi½ � ¼
Di di

pTi qi

� �
,

with Di being of the type (ni� 1)� (dim x), the problem can be written as

min
x

cTx, where Dix� dik k2� pTi x� qi ði ¼ 1, 2, . . . , kÞ: ð3:7Þ

Here, k�k2 is the Euclidean norm. This is a most explicit form of the conic problem

and the one which we will use. In this form, Di are matrices of the same row dimension

as x. Furthermore, the lengths of the column vectors di are the column dimensions of

the matrices Di, and pi are column vectors of the same dimension as x; finally, qi are

reals. It can immediately be seen that (3.5) is indeed a cone, in fact a self-dual one:

K*¼K [15].
Consequently, the problem dual to (3.4) is

max
�

bT�, where AT� ¼ c, � 2 K: ð3:8Þ

If we write � as � :¼ ð�T1 , �
T
2 , . . . , �Tk Þ

T with mi-dimensional blocks �i, then the dual

problem can be stated as follows:

max
�1,..., �n

Xk
i¼1

bTi �i, where
Xk
i¼1

AT
i �i ¼ c and �i 2 Lni ði ¼ 1, 2, . . . , kÞ: ð3:9Þ
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If it is taken �i ¼ ð	
T
i , �iÞ

T with a scalar component �i, and using the meaning of
‘‘�Ln 0’’, it can be shown that following form is the problem dual to (3.7):

max
ð�iÞ, ð�iÞ

Xk
i¼1

	Ti di þ �iqi
� �

, where
Xk
i¼1

DT
i 	i þ �ipi

� �
¼ c, 	ik k2� �i ði ¼ 1, 2, . . . , kÞ:

ð3:10Þ

The design variables in (3.10) are column vectors ki, having the same dimensions as
the vectors di, and reals �i (i¼ 1, 2, . . . , k). The programs (3.7) and (3.10) are standard
forms of a conic quadratic problem and of its dual.

Sometimes, optimization problems arising in applications are not in their standard
forms; it is very important to always identify the original formulation by a standard
optimization problem [15,17]. Generally, optimization problems are given in the form

min
x

fðxÞ, where x 2 X: ð3:11Þ

Here, f is a ‘‘loss function’’ and the set X consists of admissible design vectors and is
typically given by

X ¼
\n
i¼1

Xi, ð3:12Þ

where every Xi is the set of vectors admissible for a particular design restriction which is,
in many cases, represented by

Xi ¼ x 2 R
n
j gjðxÞ � 0

� �
, ð3:13Þ

where gj(x) is j-th constraint function. Here, the objective f in (3.11) is always assumed to
be linear, otherwise the original objective function can be moved to the list of
constraints, and the equivalent problem is written in the following form:

min
t,x

t, where ðt, xÞ 2 X̂,

with X̂ :¼ ðx, tÞjx 2 X, t � fðxÞ
� �

:

This representation is helpful, e.g. when f(x) is given in terms of the (nonsquared)
Euclidean norm. In case where f(x) is a sum of squares, i.e. a squared Euclidean norm,
then we prefer to write t2� f(x), t� 0, which is in accordance with the definition of the
Lorentz cone. In the following, we will use any of both conventions about indeed
equivalent reformulations just as being helpful.

Thus, we may assume that the original problem looks in this way:

min
x

cTx, where x 2 X :¼
\n
i¼1

Xi:

In order to determine that X has a standard form, one needs a kind of dictionary
which contains different forms of the same structure. Such a dictionary is built for the
conic quadratic programs. Thus, it can be understood when a given set X can be
represented by conic quadratic inequalities kDx� dk2 � pTx� q. Shortly, it is CQr
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(Conic quadratic representable), if there exists a system of finitely many vector
inequalities of the form

Aj

x

u

� 	
� bj �L

mj 0, ð3:14Þ

in the variables x 2 R
n and additional variables u such that X is the projection of the

solution set of (3.14) onto the x-space. This means: x 2 X if and only if one can extend x
to a solution (x; u) of the system

x 2 X, 9u : Aj
x
u

� 	
� bj �L

mj 0 ðj ¼ 1, 2, . . . ,NÞ:

Every such system (3.14) is called a conic quadratic representation or, in short, a CQR, of
the set X.

3.3. Application of conic quadratic programming to regression theory with splines

Let us show how optimization over cones can be applied for a problem class from data
mining and statistical learning which is motivated by real-world applications in, e.g. the
financial sector or computational biology. In section 2, we formulated the optimization
problem as follows,

min Fð�0, fÞ,

where gjð f Þ � 0 ðj ¼ 1, 2, . . . ,mÞ:
ð3:15Þ

Here, we have the objective function Fð�0, fÞ :¼
PN

i¼1fyi � �0�
Pm

j¼1 fjðxijÞg
2

of least-squares and the constraint functions (in simplified notation)
gjð f Þ :¼

R
½f 00j ðtjÞ�

2dtj �Mj. We can equivalently write our optimization problem in the
following form:

min
t,�0, f

t,

where
XN
i¼1

yi � �0 �
Xm
j¼1

fjðxijÞ

( )2

� t2, t � 0,

Z
f 00j ðtjÞ
h i2

dtj �Mj ðj ¼ 1, 2, . . . ,mÞ:

ð3:16Þ

Here, equivalence refers to the positions of the optimal solutions in the sense of the pair
of variables (�0, f). As mentioned previously, the functions fj are elements in a
corresponding spline spaces, i.e., linear combinations of the parametrical form:

fjðxÞ ¼
Xdj
l¼1

�jlh
j
lðxÞ, ð3:17Þ

where hjl : R! R is the l-th transformation (base spline) of x (l¼ 1,2, . . . , dj) ð�
j
l Þ is the

(l, j)-th entry of the family � ¼ ð�jlÞl¼1,..., dj;j¼1,...,m and for the sake of simplicity,
by introducing additional terms with coefficients 0, we may assume that hjl � hl, dj � d
(j¼ 1, 2, . . . ,m) such that the family becomes a matrix. We recall that our splines will
refer to the corresponding knots xij in the sense of input data where the approximation
(regression) bases on, whereas in the course of backfitting algorithm a real interpolation
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is stepwise performed there with respect to residual values. From now on, when

representing the function dependence of the objective function, we may write � instead
of f. Instead of

R
½f 00j ðtjÞ�

2dtj we will use an approximative discreted form, e.g. by

evaluating the base splines f 00j ð�Þ at the knots xij. To be more precise: either, we integrate

between the end points a5 b, uniformly for all j; in this case, we would add some

further knots xij 2 ½a, b� in addition to our cluster points xij which are located in the

interior of Ij :¼ [aj, bj]. Or we cut off f 00j ð�Þ outside of Ij, but add the points aj and bj to our

cluster points xij from Ij. Now, we get the following approximative evaluation:

Z
f 00j tj
� �h i2

dtj ffi
XN�1
i¼1

f 00j xij
� �h i2

xiþ1j � xij
� �

¼ f 00j x1j
� �

!1, . . . , xN�1j
� �

!N�1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼VT
j
ð�0, �Þ

f 00j x1j
� �

!1, . . . , xN�1j
� �

!N�1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼Vjð�0, �Þ

T

,

where !i :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1j � xij
p

ði ¼ 1, 2, . . . ,N� 1Þ: Let us abbreviate:

Vð�Þ :¼ VT
1 ð�Þ, . . . ,VT

Nð�Þ
� �T

and Wð�0, �Þ

:¼ y1 � �0 �
Xm
j¼1

fj x1j
� �

, . . . , yN � �0 �
Xm
j¼1

fj xNj

� � !T

:

Then, our optimization problem becomes

min
t,�0,�

t,

where kWð�0, �Þk
2
2 � t2,

kVjð�0, �Þk
2
2 �Mj ðj ¼ 1, 2, . . . ,mÞ,

0 � t,

ð3:18Þ

where kWk22 :¼WTW and kVk22 :¼ VTV denote Euclidean norm squared. In fact, for

the ease of exposition, we use a notation with ‘‘squares’’ in order to suppress the

occurrence of square roots firstly.
Let us now explicitly insert the parametrical form (3.17) of the functions fj into this

optimization problem. Then, our optimization problem looks as follows:

min
t,�0, f

t,

where
XN
i¼1

yi � �0 �
Xm
j¼1

Xdj
l¼1

�jlh
j
l xij
� �( )2

� t2,

XN�1
i¼1

Xdj
l¼1

�jl!ih
j00

l ðxijÞ

( )2

�Mj ðj ¼ 1, 2, . . . ,mÞ,

0 � t:

ð3:19Þ
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For all i¼ 1, 2, . . . ,N� 1 we can write

Xm
j¼1

Xd
l¼1

�jlhl xij
� �
¼ �11h1 xi1ð Þ þ � � � þ �

1
dhd xi1ð Þ þ � � � þ �

m
1 h1 ximð Þ þ � � � þ �md hd ximð Þ

¼ h1 xi1ð Þ, . . . , hd xi1ð Þð Þ �11, . . . , �1d
� �T

þ � � � þ h1 ximð Þ, . . . , hd ximð Þð Þ

� �m1 , . . . , �md
� �T

;

or

Xm
j¼1

Xd
l¼1

�jlhl xij
� �
¼ H1

i �
1 þ � � � þHm

i �
m ¼ H1

i , . . . ,Hm
i

� �
�1

T

, . . . , �mT
� �T

¼ Hi�,

where �j :¼ ð�j1, . . . , �jdÞ
T, � ¼ ð�1T, . . . , �mTÞ

T, indices Hj
i :¼ ðh1ðxijÞ, . . . , hdðxijÞÞ ð j ¼

1, 2, . . . ,mÞ and Hi :¼ ðH1
i , . . . ,Hm

i Þ ði ¼ 1, 2, . . . ,NÞ. Furthermore, we getZ
f 00j ðtjÞ
h i2

dtj ffi
XN�1
i¼1

f 00j ðxijÞ
h i2

xiþ1j � xij
� �

ffi
XN�1
i¼1

Xd
l¼1

�jl!ih
00
l xij
� �" #2

¼
XN�1
i¼1

H j00

i !i�
j

h i2
,

where we use the notation H j00

i :¼ ðh j00

1 ðxijÞ, . . . , h j00

d ðxijÞÞ ði ¼ 1, 2, . . . ,N� 1; j ¼

1, 2, . . . ,mÞ.
If we assume that �0 is fixed via the estimation �̂0 :¼ aveðyiji ¼ 1, 2, . . . ,NÞ by the

arithmetic mean of the values yi, then our optimization problem takes the following

brief form:

min
t,�

t,

where kWð�Þk22 � t2,

Vjð�Þ


 

2

2
�Mj ðj ¼ 1, 2, . . . ,mÞ,

0 � t:

ð3:20Þ

Altogether, we obtain:

kWð�Þk22 ¼
XN
i¼1

yi � �̂0 �
Xm
j¼1

Xdj
l¼1

�jlh
j
l xij
� �( )2

¼
XN
i¼1

yi � �̂0 �Hi�
n o2

;

Vjð�Þ


 

2

2
¼
XN�1
i¼1

H j00

i !i�
j

h i2 ð3:21Þ

Then, 

Wð�Þ

2
2
¼


H� � u



2
2
;

Vjð�Þ



2
2
¼


Hj�

j � 0


2
2
,

ð3:22Þ
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where ui ¼ yi � �̂0 ði ¼ 1, 2, . . . ,NÞ, u ¼ ðu1, . . . , uNÞ
T and H ¼ ðHT

1 , . . . ,HT
NÞ

T with

Hj ¼ H j00T
1 !1, . . . ,H j00T

N�1!N�1

� �T
:

Then, the parametric form (3.19) looks as follows:

min
t,�

t,

where kH� � uk2 � t,

Hj�
j � 0











2

�
ffiffiffiffiffiffi
Mj

p
ðj ¼ 1, 2, . . . ,mÞ,

ð3:23Þ

where H is an N�md matrix while Hj is an ðN� 1Þ � d matrix.
This optimization problem is a conic quadratic problem of the form (3.7) with

c ¼ 1 0Tmd

� �T
, x ¼ t �T

� �T
, D1 ¼ ðH, 0Þ, d1 ¼ u, p1 ¼ ð0, . . . , 0, 1ÞT, q1 ¼ 0

and, furthermore,

Di ¼ 0, . . . , 0,Hi�1 ,0, . . . , 0,0

� 	
, di ¼ 0, pi ¼ 0T and qi ¼�

ffiffiffiffiffiffiffiffiffiffiffi
Mi�1

p
for i¼ 2,3, . . . ,mþ 1:

If we assume that �0 is variable in (3.21), then,

Wð�0, �Þ


 

2

2
¼
XN
i¼1

yi � 1�0 �Hi�
� �2

¼
XN
i¼1

yi � ð1,HiÞ
�0

�

 !( )2

¼
XN
i¼1

yi � Ri

� �2

¼ y� R



 

2

2
,

ð3:24Þ

where Ri ¼ ð1,Hi, 0Þ ði ¼ 1, 2, . . . ,NÞ, 
 ¼ ð�0, �
T, tÞT and R ¼ ðRT

1 , . . . ,RT
NÞ

T:
Because of the above equation, the optimization problem (3.18) has the

following form:

min
t,�0,�

t,

where R
 � y


 

 � t,

Hj�
j � 0



 

 � ffiffiffiffiffiffi
Mj

p
ðj ¼ 1, 2, . . . ,mÞ,

ð3:25Þ

where y ¼ ðy1, . . . , yNÞ
T. Here, Ri and 
 are 1� (mdþ 2) and (mdþ 2)� 1 vectors,

respectively, and R and Hj are N� (mdþ 2) and (N� 1)� d matrices. This is of conic

quadratic form again.
Let us consider (3.21) and �0 be a variable in problem (3.21), then,

Wð�0, �Þ


 

2

2
¼
XN
i¼1

yi � �0 �Hi�
� �2

¼ y� �0eN �H�


 

2

2
,
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where eN is the N-dimensional vector of all ones and y ¼ ðy1, y2, . . . , yNÞ
T. Because of

the above equation, the optimization problem (3.18) will have the following form:

min
t,�0,�

t,

where H� þ �0eN � y


 



2
� t,

Hj�
j � 0N�1











2

�
ffiffiffiffiffiffi
Mj

p
ðj ¼ 1, 2, . . . ,mÞ:

ð3:26Þ

In order to write the optimality condition for this problem, we will first reformulate

(3.26) as follows:

min
t,�0,�

t,

such that v ¼
0N eN H

1 0 0Tmd

� 	 t

�0
�

0
@

1
Aþ �y

0

� 	
,

zj ¼
0N�1 0N�1 Dj

0 0 0Tmd

� 	 t

�0
�

0
@

1
Aþ 0N�1ffiffiffiffiffiffi

Mj

p� 	
ðj ¼ 1, 2, . . . ,mÞ,

v 2 LNþ1, zj 2 LN ðj ¼ 1, 2, . . . ,mÞ:

ð3:27Þ

The dual problem to the latter problem according to (3.9) is given by

max yT, 0
� �

x0 þ
Xm
j¼1

0T
N�1

, �
ffiffiffiffiffiffi
Mj

p� �
xj

such that

0TN 1

eTN 0

HT 0md

0
B@

1
CAx0 þXm

j¼1

0TN�1 0

0TN�1 0

DT
j 0md

0
B@

1
CAxj ¼ 1

0mdþ1

� 	
;

x0 2 LNþ1, xj 2 LN ðj ¼ 1, 2, . . . ,mÞ:

ð3:28Þ

Moreover, ðt,�0, �, v, z1, . . . , zm, x0, x1, . . . , xmÞ is a primal-dual optimal solution if

and only if

v ¼
0N 1N H

1 0 0Tmd

� 	 t

�0

�

0
@

1
Aþ �y

0

� 	
,

zj ¼
0N�1 0N�1 Dj

0 0 0Tmd

� 	 t

�0
�

0
@

1
Aþ 0N�1ffiffiffiffiffiffi

Mj

p� 	
ðj ¼ 1, 2, . . . ,mÞ,

0TN 1

1TN 0

HT 0md

0
@

1
Ax0 þXm

j¼1

0TN�1 0

0TN�1 0

DT
j 0md

0
B@

1
CAxj ¼ 1

0mdþ1

� 	
,

xT0 v ¼ 0, xTj zj ¼ 0 ðj ¼ 1, 2, . . . ,mÞ,

x0 2 LNþ1, xj 2 LN ðj ¼ 1, 2, . . . ,mÞ,

v 2 LNþ1, zj 2 LN ðj ¼ 1, 2, . . . ,mÞ:

ð3:29Þ
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3.3.1. Solution methods for conic quadratic programming. For solving convex
optimization problems like semidefinite programming, geometric programming and,

in particular, conic quadratic problems, classical polynomial time algorithms can be

applied. But these algorithms have some disadvantage since they use local information

on the objective function and the constraints. For this reason, to solve ‘‘well-

structured’’ convex problems like conic quadratic problems, there are interior point

algorithms [17,21] which were firstly introduced by Karmarkar (1984). These algorithms

have the advantage of employing the structure of the problem, of allowing better

complexity bounds and exhibiting a much better practical performance. Since in this

present article we represented our spline regression problem as a conic quadratic

problem, we became enabled for future research to exploit its special structure in this

analytical and numerical way.

3.3.2. Complexity of conic quadratic programming. If we consider the following conic
quadratic optimization program,

min
x

cTx, where Dix� dik k2� pTi x� qi ði ¼ 1, 2, . . . , kÞ, kxk2 � t,

where the matrices Di are of the type ni� n, pi, x 2 R
n and di 2 R

ni . Let us represent the

data of (3.7) in the way of [15] by defining

Dataðð3:7ÞÞ :¼ k; n; n1, . . . , nk; c;D1, d1, p1, q1; . . . ,Dk, dk, pk, qk; t½ � and

Sizeðð3:7ÞÞ :¼ dim Dataðð3:7ÞÞ ¼ kþ
Xk
i¼1

ni

 !
ðnþ 1Þ þ kþ nþ 3:

The arithmetic complexity of "-solution is given by

Complðð3:7Þ; "Þ :¼ Oð1Þðkþ 1Þ1=2n n2 þ kþ
Xk
i¼1

n2i

 !
Digits ðð3:7Þ; "Þ;

where

Digitsðð3:7Þ, "Þ :¼ ln
ðSizeðð3:7ÞÞ þ kDataðð3:7ÞÞk1"

2Þ

"

� 	
is defined as the number of accuracy digits in an "-solution to (3.7), referring to the sum

(or ‘1) norm.
We can specify the complexity related to our problem. However, again we must

consider whether �0 is a variable or not. If we assume that �0 is fixed, in this case we

consider (3.23), then

Dataðð3:23ÞÞ ¼ mþ 1;mdþ 1;N; c;D1, d1, p1, q1; . . . ,Dmþ1, dmþ1, pmþ1, qmþ1½ �,

Sizeðð3:23ÞÞ ¼ dimðDataðð3:23ÞÞÞ ¼ 5þNð2mdþ 1Þ �m

and

Complð3:23, "Þ ¼ Oð1Þðmþ 2Þ1=2ðmdþ 1Þððmdþ 1Þ2 þ ðmþ 1Þ þN2Þ Digits ð3:23, "Þ,
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where

Digitsðð3:23Þ, "Þ :¼ ln
ðSizeðð3:23ÞÞ þ kDataðð3:23ÞÞk1"Þ

"

� 	
:

If we assume that �0 is a variable, we consider (3.24), then

Dataðð3:25ÞÞ ¼ mþ 1;mdþ 2;N; c;D1, d1, p1, q1; . . . ,Dmþ1, dmþ1, pmþ1, qmþ1½ �,

Sizeðð3:25ÞÞ ¼ dimðDataðð3:25ÞÞÞ ¼ 6þNð2mdþ 3Þ �m and

Complðð3:25Þ, "Þ ¼ Oð1Þðmþ 2Þ1=2ðmdþ 2Þððmdþ 2Þ2 þ ðmþ 1Þ þN2ÞDigitsðð3:25Þ, "Þ:

4. Concluding remarks

This article gives a contribution to the discrete approximation, or regression, of data in
the one and in the multivariate cases. Additive and generalized additive models have been
investigated, input data grouped by clustering, its density measured, data variation
quantified, spline classes selected by indices, and their curvatures bounded with the help
of penalization. The backfitting algorithm which is applicable for data classification has
become modified accordingly and investigated. However, there are difficulties to use the
modified backfitting algorithm, such as possible divergence. For this reason, we
introduced developed methods of continuous optimization given by conic quadratic
programming for which polynomial time interior point methods are applicable. By this
investigation we hope to serve for future applications in finance, biology, medicine and
many other areas of economy, science, technology, to welfare and development.
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environment networks, Institute of Applied Mathematics, METU, 2006 (submitted to the special issue of
Optimization in honour of the 60th birthday of Prof. Dr. H.Th. Jongen).

[25] Wood, S.N., 2006, Generalized Additive Models, An Introduction with R (New York: Chapman and
Hall/CRC, Taylor and Francis Group).

698 P. Taylan et al.


