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MEAN-SQUARED ERROR ESTIMATION FOR
LINEAR SYSTEMS WITH BLOCK CIRCULANT UNCERTAINTY∗

AMIR BECK† , YONINA C. ELDAR‡ , AND AHARON BEN-TAL§

Abstract. We consider the problem of estimating a vector x in the linear model Ax ≈ y, where
A is a block circulant (BC) matrix with N blocks and x is assumed to have a weighted norm bound.
In the case where both A and y are subjected to noise, we propose a minimax mean-squared error
(MSE) approach in which we seek the linear estimator that minimizes the worst-case MSE over a BC
structured uncertainty region. For an arbitrary choice of weighting, we show that the minimax MSE
estimator can be formulated as a solution to a semidefinite programming problem (SDP), which can
be solved efficiently. For a Euclidean norm bound on x, the SDP is reduced to a simple convex
program with N + 1 unknowns. Finally, we demonstrate through an image deblurring example the
potential of the minimax MSE approach in comparison with other conventional methods.
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optimization
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1. Introduction. Many problems in data fitting and estimation give rise to a
system of linear equations Ax ≈ y, where both the matrix A and the right-hand side
y are contaminated by noise. Given the observation y, we seek an estimator x̂ of x
that is close in some sense to x. This estimation problem arises in a large variety of
areas in science and engineering, e.g., communication, economics, signal processing,
seismology, and control.

Several approaches for dealing with uncertainties in the model matrix A and
right-hand side vector y are known in the literature. In the total least squares (TLS)
strategy [11, 15], one seeks the minimal norm perturbations ΔA,Δy of the nominal
model matrix A and observation vector y such that the linear system (A + ΔA)x =
y+Δy is consistent. An alternative strategy is the robust least squares (RLS) method
[10, 22, 6]. Here the underlying assumption is that the perturbation matrix ΔA and
the perturbation vector Δy belong to some bounded uncertainty set U . The solution
(or estimator) is chosen to minimize the worst-case data error (or “residual”) over the
uncertainty region:

(1.1) x̂RLS ∈ argmin
x

max
(ΔA,Δy)∈U

‖(A + ΔA)x − y − Δy‖2.

Both the RLS and TLS solutions optimize a criterion that is based on the data
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MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 713

error (‖Ax−y‖ or ‖(A+ΔA)x−y−Δy‖) and therefore might provide poor solutions
in terms of the estimation error ‖x− x̂‖. In view of this, the work [8] suggests seeking
an estimator x̂ that minimizes the mean-squared error (MSE):

MSE = E(‖x − x̂‖2),

and restricting attention to linear estimators of the form x̂ = Gy. The expectation
is with respect to the noise vector Δy, which is assumed to have a zero mean and a
positive definite covariance matrix C. For a linear estimator, the MSE is equal to the
sum of the variance V (x̂) and the squared norm of the bias B(x̂):

E(‖x − x̂‖2) = Tr(GCG∗)︸ ︷︷ ︸
V (x̂)

+x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x︸ ︷︷ ︸
‖B(x̂)‖2

.

Since the bias depends on the unknown vector x and the unknown perturbation
matrix ΔA, we cannot choose an estimator to directly minimize the MSE. The
approach advocated in [8, 7], in order to minimize the MSE, is to use additional
a priori information on the vector x, such as an upper bound on its weighted norm,
x∗Tx ≤ L2, where T is a positive definite matrix, and minimize the worst-case MSE.
This leads to the following optimization problem:

(1.2) min
G

max
x∗Tx≤L2,ΔA∈U

E(‖x − x̂‖2),

where U is an uncertainty set associated with the matrix A. The optimal solution
G of the latter problem is called the minimax MSE matrix, and the associated linear
estimator x̂ = Gy is termed the minimax MSE estimator. In the case when U is
given by a single norm bound, it was shown in [8] that the optimal G can be obtained
by solving a semidefinite programming (SDP) problem. In practice, if L is unknown,
then we can estimate it from the data, for example by using the LS estimator [3].

In this paper we study the minimax MSE estimator when the matrix A has a
block circulant (BC) structure:

(1.3) A =

⎛⎜⎜⎜⎝
A0 A1 · · · AN−1

AN−1 A0 · · · AN−2

...
...

...
A1 A2 · · · A0

⎞⎟⎟⎟⎠ ,

where Aj ∈ C
n×m, 0 ≤ j ≤ N − 1. We use the notation A = C(A0, . . . ,AN−1)

for brevity. The BC structure of A imposes the same structure on the perturbation
matrix, i.e., ΔA = C(ΔA0, . . . ,ΔAN−1) with ΔAj ∈ C

n×m. We also assume that
both the covariance matrix C and weighting matrix T are positive definite BC (which
includes the case C = σ2I and T = I). Thus, the optimization problem we consider
is
(1.4)

min
G

max
x∗Tx≤L2,ΔA∈UΔ

{Tr(GCG∗) + x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x} ,

where the set UΔ, which is the set of possible values of ΔA, is given by

(1.5) UΔ
�
= {Δ = C(Δ0, . . . ,ΔN−1) : ‖Δk‖ ≤ ρk, 0 ≤ k ≤ N − 1}.

Here ‖M‖ denotes the Frobenius norm of M.
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714 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

The BC model has previously been used in a variety of signal processing problems,
including image restoration [17], cyclic convolution filter banks [20], texture synthesis
and recognition [24], and detection techniques for CDMA systems [26]. Moreover, in
many practical scenarios A is a block Toeplitz matrix which can be approximated by
a BC matrix [12, 9]. We refer the reader to the example in section 5 that describes a
usage of this Toeplitz/circulant approximation in an image deblurring context. The
BC structure also includes the multiple observation model in which the matrix A is a
block diagonal matrix with the same diagonal matrix (corresponding to A1 = A2 =
· · · = AN−1 = 0 in (1.3)). The minimax MSE estimator for the multiple observation
model was studied in [2].

Besides including several cases of practical interest, one of the attributes of the
BC structure is its analytical tractability. In fact the minimax MSE problem (1.4) is
intractable for most choices of uncertainty sets UΔ. However, in the BC model we are
able to exploit properties of BC matrices (in particular, the matrix discrete Fourier
transform (DFT)) that will enable us to develop a computationally tractable scheme
for computing the minimax MSE estimator.

The BC model has been investigated in the context of structured TLS problems
in [1], where it was shown that by using the matrix DFT, the problem can be decom-
posed into several unstructured TLS problems.

The paper is organized as follows. We begin by reviewing in section 2 some
properties of BC matrices and the matrix DFT. In section 3 we first show that under
the BC model, the optimal minimax MSE estimator x̂ = Gy is such that G is a
BC matrix. This allows us to formulate the minimax MSE estimator as a solution to
an SDP, which is a tractable (i.e., polynomial solvable) convex optimization problem
that can be solved, e.g., using interior point methods [21, 25, 4]. In section 4 we treat
the case where the weighting matrix T is the identity matrix I. When the matrix A
is known, we derive an explicit formula for the minimax MSE estimator. When A
is uncertain but the noise vector consists of independent and identically distributed
random variables (C = σ2I), we show that the task of computing the minimax MSE
estimator reduces to solving a simple convex program in N + 1 variables. Finally, we
demonstrate through an image deblurring example, in section 5, the potential of the
minimax MSE approach in comparison with other conventional strategies.

Notation. We denote vectors by boldface lowercase letters and matrices by bold-
face uppercase letters. The identity matrix of appropriate dimension is denoted by I,
(·)∗ and (·)T denote the Hermitian conjugate and the transpose of the corresponding

matrices, respectively, and (̂·) denotes an estimated vector. For two Hermitian ma-
trices A,B, the notation A � B means that A−B is a positive semidefinite matrix.
For a Hermitian matrix A, λmax(A) denotes the largest eigenvalue of A. We denote
by ‖v‖ the Euclidean norm of the vector v and by ‖A‖ =

√
Tr(A∗A) the Frobe-

nius norm of the matrix A. For a given matrix M, m = vec(M) denotes the vector
obtained by stacking the columns of M.

2. BC matrices and the DFT. The aim of this short section is to give a brief
review of results on BC matrices and the DFT defined on them that will be used later
in the paper. These results can also be found in [1, 2], and they are presented here
for completeness.

We begin by noting that the result of multiplication, addition, and conjugation
of BC matrices is also a BC matrix. Let A = C(A0,A1, . . . ,AN−1); then the DFT of
A is also a BC matrix of the same dimensions given by

F(A) = C(F0(A),F1(A), . . . ,FN−1(A)),
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MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 715

where Fj(A) are defined as

Fj(A)
�
=

N−1∑
k=0

ωkjAk, 0 ≤ j ≤ N − 1,

with ω = e−
2πi
N (here i =

√
−1). The matrices Fj(A) are called the discrete

Fourier components. The inverse DFT, denoted by F−1, is defined by F−1(A) =
(F−1

0 (A),F−1
1 (A), . . . ,F−1

N−1(A)), where

F−1
j (A) =

1

N

N−1∑
k=0

ω−kjAk, 0 ≤ j ≤ N − 1.

Note that F−1 is indeed an inverse of F in the sense that for every BC matrix A

F−1(F(A)) = A, F(F−1(A)) = A.

The following properties of Fj are generalizations of well-known properties of the
DFT.

Lemma 2.1. Suppose that A, B, and C are BC matrices. Then for every
0 ≤ j ≤ N − 1 the following hold:

1. (Fj(A))∗ = Fj(A
∗).

2. Fj(ImN ) = Im.
3. Fj(A + C) = Fj(A) + Fj(C).
4. Fj(AB) = Fj(A)Fj(B).
5. If A is square and invertible, then Fj(A

−1) = (Fj(A))−1.

Theorem 2.1 shows that the eigenvalues of a Hermitian BC matrix are exactly
the eigenvalues of its discrete Fourier components. Theorem 2.1 below is an extension
of a well-known result on circulant matrices to the case of Hermitian block circulant
matrices; for a proof, see, e.g., [2, Theorem A.1].

Theorem 2.1. Let A0,A1, . . . ,AN−1 ∈ C
k×k be matrices such that A =

C(A0,A1, . . . ,AN−1) is a Hermitian matrix. For each 0 ≤ j ≤ N − 1, let λj,0, λj,1,
. . . , λj,k−1 be the eigenvalues of Fj(A). Then the eigenvalues of A are the N · k
eigenvalues λj,i, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ N − 1.

3. Minimax MSE estimator for BC systems. We now use the properties of
BC matrices and the DFT discussed in the previous section in order to find a G which
is a solution to (1.4). Section 3.1 establishes the fact that G can always be chosen as
a BC matrix. In section 3.2 we use this structure of G to find an SDP formulation
of the estimation problem (1.4), where an SDP is the problem of minimizing a linear
objective subject to linear matrix inequality (LMI) constraints, i.e., constraints of the
form B(x) � 0, where the matrix B depends linearly on x. The advantage in this
formulation is that it readily lends itself to efficient computational methods. Indeed,
by exploiting the many well-known algorithms for solving SDPs, e.g., interior point
methods [21, 25, 23], the optimal estimator can be computed efficiently in polynomial
time. Furthermore, SDP-based algorithms are guaranteed to converge to the global
optimum.

3.1. The structure of G. Before proceeding, we introduce some notation. The
set of all permutations of {0, 1, . . . , N − 1} is denoted by SN . For every permutation
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716 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

σ ∈ SN and a positive integer l, we associate an lN × lN matrix Pσ,l comprised of
N ×N blocks of size l × l. The (k, j) block of Pσ,l is defined as

(Pσ,l)k,j = δj,σ(k)Il,

where

δk,j =

{
0, k �= j,
1, k = j

is the Kronecker delta. For example, if N = 3 and σ(0) = 1, σ(1) = 0, and σ(2) = 2,
then

Pσ,3 =

⎛⎝ 0 I3 0
I3 0 0
0 0 I3

⎞⎠ ,

where I3 is the identity matrix of size 3 × 3. We will be interested particularly in a
special class of permutations,

A = {σ0, σ1, . . . , σN−1} ,

where σk(j) = (j + k) mod N . For example, if N = 3, then

Pσ0,3 =

⎛⎝ I3 0 0
0 I3 0
0 0 I3

⎞⎠ , Pσ2,3 =

⎛⎝ 0 0 I3

I3 0 0
0 I3 0

⎞⎠ .

Permutation matrices Pσ,l satisfy some interesting properties that will be useful later
on in the proof of Theorem 3.1.

Property A. For every σ ∈ SN and positive integer l, Pσ,lP
∗
σ,l = P∗

σ,lPσ,l = I.
Property B. For every BC matrix A = C(A0,A1, . . . ,AN−1), where Ak ∈ C

m,n,
and every permutation σ in the class A, we have that Pσ,mAP∗

σ,n = A or, equivalently,
Pσ,mA = APσ,n.

The main result of this section is presented in Theorem 3.1, where we show
that the solution of (1.4) is a BC matrix, i.e., G = C(G0,G1, . . . ,GN−1) for some
G0, . . . ,GN−1 ∈ C

m×n.
Theorem 3.1. Let x denote the unknown vector in the model y = (A+ΔA)x+

Δy, where A is a BC matrix, ΔA is an unknown perturbation matrix satisfying
ΔA ∈ UΔ with UΔ given by (1.5), and Δy is zero-mean random vector with a positive
definite BC covariance matrix C. Let T be a positive definite BC matrix. Then the
problem

min
G

max
x∗Tx≤L2,ΔA∈UΔ

E(‖x̂ − x‖2)

has a unique solution G, which is a BC matrix.
Proof. We first rewrite problem (1.2) as

(3.1) min
G∈Cm×n

Γ(G),

where

Γ(G) = max
x∗Tx≤L2,ΔA∈UΔ

E(‖x̂ − x‖2).
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MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 717

The function Γ can be decomposed as follows (see (1.4)):

Γ(G) = θ1(G) + θ2(G),

where

θ1(G) = Tr(GCG∗),

θ2(G) = max
x∗Tx≤L2,ΔA∈UΔ

ϕ(G,x,ΔA),

and ϕ(G,x,ΔA)
�
= x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x. It is easy to see that

the positive definiteness of C implies strict convexity of θ1. Moreover, since ϕ is a
convex function with respect to G, it follows that θ2, being a maximum of convex
functions, is also a convex function. Thus, Γ = θ1 + θ2 is a strictly convex function,
and hence it has a unique optimal solution.

Using Properties A and B, we have

θ1(G) = Tr(GCG∗)
A
= Tr(P∗

σ,mPσ,mGCG∗)

= Tr(Pσ,mGCG∗P∗
σ,m)

B
= Tr(Pσ,mGP∗

σ,nCPσ,nG
∗P∗

σ,m)

= Tr((Pσ,mGP∗
σ,n)C(Pσ,mGP∗

σ,n)∗)

= θ1(Pσ,mGP∗
σ,n)

and

θ2(G) = max
x∗Tx≤L2,ΔA∈UΔ

{x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x}

= max
x∗P∗

σ,mTPσ,mx≤L2,ΔA∈UΔ

{x∗P∗
σ,m(I − G(A + ΔA))∗(I − G(A + ΔA))Pσ,mx}

B
= max

x∗Tx≤L2,ΔA∈UΔ

{x∗P∗
σ,m(I − G(A + ΔA))∗(I − G(A + ΔA))Pσ,mx}

A
= max

x∗Tx≤L2,ΔA∈UΔ

{x∗P∗
σ,m(I − G(A + ΔA))∗Pσ,mP∗

σ,m(I − G(A + ΔA))Pσ,mx}

A
= max

x∗Tx≤L2,ΔA∈UΔ

{x∗(I − Pσ,mG(A + ΔA)P∗
σ,m)∗(I − Pσ,mG(A + ΔA)P∗

σ,m)x}

B
= max

x∗Tx≤L2,ΔA∈UΔ

{x∗(I − (Pσ,mGP∗
σ,n)(A + ΔA))∗(I − (Pσ,mGP∗

σ,n)(A + ΔA))x}

= θ2(Pσ,mGP∗
σ,n).

Therefore, Γ(G) = Γ(Pσ,mGP∗
σ,n). We conclude that if G is an optimal solution of

(3.1), then so is Pσ,mGP∗
σ,n for all σ ∈ A. Hence, by the convexity of Γ it follows that

the convex combination 1
N

∑
σ∈A Pσ,mGP∗

σ,n is also an optimal solution. However,

it can be easily verified that 1
N

∑
σ∈A Pσ,mGP∗

σ,n = C(G0,G1, . . . ,GN−1) for some
matrices G0,G1, . . . ,GN−1 ∈ C

m×n. Specifically, if

G =

⎛⎜⎜⎜⎝
G00 G01 · · · G0,N−1

G10 G11 · · · G1,N−1

...
...

...
GN−1,0 GN−1,1 · · · GN−1,N−1

⎞⎟⎟⎟⎠ ,

then Gk = 1
N

∑N−1
i=0 Gi,i+k, 0 ≤ k ≤ N − 1.
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718 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

3.2. SDP formulation of the estimation problem. We now use Theorem 3.1
to develop an SDP formulation of (1.4). We first consider the inner maximization
problem

(3.2) max
x∗Tx≤L2

x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x.

As a result of Theorem 3.1, we can assume that G is a BC matrix. Since I, T, and
A + ΔA are also BC matrices, it follows that H ≡ T−1/2(I − G(A + ΔA))∗(I −
G(A + ΔA))T−1/2 is a BC matrix. By the properties listed in Lemma 2.1, we can
deduce that for every 0 ≤ j ≤ N − 1

Fj(H) = Fj(T)−1/2Fj((I − G(A + ΔA))∗(I − G(A + ΔA)))Fj(T)−1/2

= Sj (I − Ej(Fj(A) + Fj(ΔA)))
∗
(I − Ej(Fj(A) + Fj(ΔA)))Sj ,(3.3)

where Sj = Fj(T)−1/2 and Ej = Fj(G). Therefore, by Theorem 2.1, we have

max
x∗Tx≤L2,ΔA∈UΔ

x∗(I − G(A + ΔA))∗(I − G(A + ΔA))x

= NL2 max
ΔA∈UΔ

max
0≤j≤N−1

αj(ΔA),(3.4)

where αj(ΔA) is given by

(3.5) λmax (Sj(I − Ej(Fj(A) + Fj(ΔA)))∗(I − Ej(Fj(A) + Fj(ΔA)))Sj) .

We can therefore express (3.4) as the solution to the problem

(3.6) min
τ

NL2τ

subject to

(3.7) Sj(I − Ej(Fj(A) + Fj(ΔA)))∗(I − Ej(Fj(A) + Fj(ΔA)))Sj 
 τI

for every ΔA ∈ UΔ. Invoking Schur’s lemma [4], we can rewrite the constraint (3.7)
as (

τI Sj(I − Ej(Fj(A) + Fj(ΔA)))∗

(I − Ej(Fj(A) + Fj(ΔA)))Sj I

)
� 0,

which can be further written as

(3.8) Rj � P∗
jFj(ΔA)Qj + Q∗

jFj(ΔA)∗Pj ∀ΔA ∈ UΔ,

where

Rj =

(
τI Sj(I − EjFj(A))∗

(I − EjFj(A))Sj I

)
,

Pj =
(

0 E∗
j

)
, Qj =

(
Sj 0

)
.

We now exploit the following lemma, the proof of which is very similar to the proof
of Lemma 2 in [8] and thus is omitted here.

Lemma 3.1. Given matrices P,Q,R with R = R∗ and the set UΔ in (1.5), the
statement

R � P∗Fj(X)Q + Q∗Fj(X)∗P for every X ∈ UΔ and 0 ≤ j ≤ N − 1
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MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 719

holds if and only if there exists a λ ≥ 0 such that(
R − λQ∗Q −ρP∗

−ρP λI

)
� 0,

where ρ =
∑N−1

j=0 ρj.
From Lemma 3.1, it follows that (3.8) is satisfied if and only if there exists λj ≥ 0,

0 ≤ j ≤ N − 1, such that

(3.9)

⎛⎝ τI − λjFj(T)−1 Sj(I − EjFj(A))∗ 0
(I − EjFj(A))Sj I −ρEj

0 −ρE∗
j λjI

⎞⎠ � 0

with ρ =
∑N−1

j=0 ρj . Summarizing the above derivations, we see that problem (1.4)
reduces to

min
τ,λj ,G

{
Tr(GCG∗) + NL2τ

}
subject to (3.9).

Since C and G are both BC matrices, the product GCG∗ is also a BC ma-
trix. Let GCG∗ = C(S0,S2, . . . ,SN−1) for some S0,S2, . . . ,SN−1 ∈ C

m×m. Then
Tr(GCG∗) = N Tr(S0). However,

(3.10) NS0 = NF−1
0 (F(GCG∗)) =

N−1∑
j=0

Fj(GCG∗) =

N−1∑
j=0

EjFj(C)E∗
j .

We thus arrive at the following formulation of problem (1.4):

(3.11) min
τ,λj ,Ej

{
NL2τ +

N−1∑
j=0

Tr(EjFj(C)E∗
j )

}

subject to

(3.12)

⎛⎝ τI − λjFj(T)−1 Sj(I − EjFj(A))∗ 0
(I − EjFj(A))Sj I −ρEj

0 −ρE∗
j λjI

⎞⎠ � 0, 0 ≤ j ≤ N − 1,

which is equivalent to

(3.13) min
τ,tj ,Ej ,λj

{
N−1∑
j=0

tj + NL2τ

}

subject to the LMI (3.12) and

(3.14) Tr(EjFj(C)E∗
j ) ≤ tj , 0 ≤ j ≤ N − 1,

which can clearly be expressed as an LMI (see (3.15)). Thus, our problem reduces
finally to an SDP.

We summarize our results in Theorem 3.2, where we present the SDP formulation
for the circulant model.
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720 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

Theorem 3.2 (SDP formulation). Consider the setting of Theorem 3.1. Then
the unique solution to (1.4) is the BC matrix G = C(G0, . . . ,GN−1), where

Gj =
1

N

N−1∑
k=0

ω−kjEk, 0 ≤ j ≤ N − 1.

Here ω = e−
2πi
N and Ej, 0 ≤ j ≤ N − 1, are the solution to the SDP

min
τ,λj ,tj ,Ej

{
NL2τ +

N−1∑
j=0

tj

}

subject to (
tj e∗j
ej I

)
� 0, 0 ≤ j ≤ N − 1,(3.15) ⎛⎝ τI − λjFj(T)−1 Sj(I − EjFj(A))∗ 0

(I − EjFj(A))Sj I −ρEj

0 −ρE∗
j λjI

⎞⎠ � 0,

where ej = vec(EjFj(C)1/2), Sj = Fj(T)−1/2, and ρ =
∑N−1

j=0 ρj.

4. Minimax MSE estimator for T = I. In this section we discuss a special
case of the minimax MSE estimator problem where T = I. When A is certain, we
find an explicit expression for the optimal minimax MSE estimator. In the case of
uncertain A, we show that the SDP problem of Theorem 3.2 can be reduced to a
simple convex optimization problem in N + 1 unknowns.

4.1. Minimax MSE estimator for T = I with known A. In the case of
known A, we return to the problem of a single system y = Ax + Δy with x∗Tx ≤
L2. This problem was discussed in [8], where it was shown that the minimax MSE
estimator for the case T = I is given by x̂ = Gy with

(4.1) G = α(A∗C−1A)−1A∗C−1,

where α = L2

L2+B and

(4.2) B = Tr
(
(A∗C−1A)−1

)
.

The estimator of (4.1) is a shrunken estimator proposed by Mayer and Willke [19],
which is simply a scaled version of the LS estimator with an optimal choice of shrinkage
factor.

Note that the dominant computation in (4.1) and (4.2) is the inversion of the
mN × mN matrix A∗C−1A, which requires O(m3N3) operations. This number is
prohibitively large even for medium size problems. On the other hand, the calculation
stemming from Theorem 4.1, which exploits the BC structure, requires the inversion
of N DFT components, each an m ×m matrix resulting in a total of only O(m3N)
operations. For example, if N = 100, then our computation is 10000 cheaper than
the direct computation.

Theorem 4.1. Let x denote the vector of unknown parameters in the model
y = Ax+Δy, where A is a known BC matrix and Δy is a zero-mean random vector
with a positive definite BC covariance matrix C. Then the solution to the problem
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MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 721

minG max‖x‖2≤L2 E(‖x̂−x‖2) is given by the BC matrix G = C(G0,G1, . . . ,GN−1),
where

Gj =
1

N

N−1∑
k=0

ω−kjEk, 0 ≤ j ≤ N − 1.

Here

Ej =
L2

L2 + B

(
Fj(A)∗Fj(C)−1Fj(A)

)−1
Fj(A)∗Fj(C)−1, 0 ≤ j ≤ N − 1,

and B =
∑N−1

j=0 Tr
(
(Fj(A)∗Fj(C)−1Fj(A))−1

)
.

Proof. First, we note that B of (4.2) is equal to
∑mN

i=1
1
λi

, where λ1, λ2, . . . , λmN

are the eigenvalues of A∗C−1A. From Theorem 2.1, it follows that

B =

N−1∑
j=0

Tr
(
(Fj(A)∗Fj(C)−1Fj(A))−1

)
.

By Theorem 3.1, G is a BC matrix and thus is equal to C(G0,G1, . . . ,GN−1) for
some G0,G1, . . . ,GN−1 ∈ C

m×n. Using the properties listed in Lemma 2.1, we can
calculate the jth DFT component of G (denoted by Ej):

Ej = Fj

(
L2

L2 + B
(A∗C−1A)−1A∗C−1

)
=

L2

L2 + B
(Fj(A)∗Fj(C)−1Fj(A))−1Fj(A)∗Fj(C)−1.

Applying the inverse DFT, we obtain the desired expression for Gj , and the result
follows.

As can be expected intuitively, when L → ∞, the minimax MSE estimator x̂ =
Gy of Theorem 4.1 reduces to the LS estimator. Indeed, when the norm of x can
be made arbitrarily large, the MSE will also be arbitrarily large unless the bias is
equal to zero. Therefore, in this limit, the worst-case estimation error is minimized
by choosing an estimator with zero bias that minimizes the variance, which leads to
the LS solution.

4.2. Minimax estimator for T = I, C = σ2I, and unknown model
matrix. We now show that in the case where T = I and C = σ2I, the minimax MSE
estimator reduces to a simple convex optimization problem in N + 1 unknowns.

Theorem 4.2. Consider the setting of Theorem 3.1 with C = σ2I. For ev-
ery 0 ≤ j ≤ N − 1, let Fj(A) = UjΣjV

∗
j be the singular value decomposition

of Fj(A) (the jth DFT component of A), where Σj is an n × m diagonal matrix
with diagonal elements σj,k > 0, 1 ≤ k ≤ m, and Uj and Vj are unitary matri-
ces. Then the unique solution to minG max‖x‖2≤L2,ΔA∈UΔ

E(‖x̂ − x‖2) is given by

G = C(G0,G1, . . . ,GN−1), where Gj = F−1
j (E), E = C(E0, . . . ,EN−1), with

Ej = VjZjV
∗
j (Fj(A)∗Fj(A))−1/2Fj(A)∗, 0 ≤ j ≤ N − 1,

where Zj is an m×m diagonal matrix with diagonal elements zj,k = fj,k(τ, λj), with

fj,k(τ, λj) =

σj,kλj −
√
λj(τ − λj)

(
σ2
j,kλj − ρ2(1 + λj − τ)

)
(τ − λj)ρ2 + σ2

j,kλj
,
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722 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

where ρ =
∑N−1

j=0 ρj and λ0, . . . , λN−1 and τ are the solution to the convex optimiza-
tion problem

min
τ,λj

{
σ2

N−1∑
j=0

m∑
k=1

f2
j,k(τ, λj) + NL2τ

}

subject to

λjσ
2
j,k ≥ ρ2(1 + λj − τ), 1 ≤ k ≤ m, 0 ≤ j ≤ N − 1,

λj ≥ 0, 0 ≤ j ≤ N − 1,

τ ≥ λj , 0 ≤ j ≤ N − 1.

Proof. From Theorem 3.2, the optimal estimator G is equal to C(G0, . . . ,GN−1),

where Gj = 1
N

∑N−1
k=0 ω−kjEk and (Ej)

N−1
j=0 is the solution to

(4.3) min
τ,Ej ,λj

{
σ2

N−1∑
j=0

Tr(Fj(E)Fj(E)∗) + NL2τ

}
,

subject to

(4.4) Mj
�
=

⎛⎝ (τ − λj)I (I − EjFj(A))∗ 0
(I − EjFj(A)) I −ρEj

0 −ρE∗
j λjI

⎞⎠ � 0.

The proof of the theorem is comprised of three parts. First, we show that the optimal
solution (Ej)

N−1
j=0 to (4.3) and (4.4) is of the form

(4.5) Ej = VjZjV
∗
j (Fj(A)∗Fj(A))

−1/2
Fj(A)∗, 0 ≤ j ≤ N − 1,

for some m×m matrices Z0,Z1, . . . ,ZN−1. We then show that Z0,Z1, . . . ,ZN−1 can
be chosen as diagonal matrices. Finally, we find the diagonal elements of Z0,Z1, . . . ,
ZN−1.

We begin by showing that the optimal (Ej)
N−1
j=0 has the form (4.5). The constraint

(4.4) is equivalent to QjMjQ
∗
j � 0 for any invertible Qj . Choosing

Qj =

⎛⎝ V∗
j 0 0

0 V∗
j 0

0 0 U∗
j

⎞⎠ , 0 ≤ j ≤ N − 1,

(4.4) becomes

(4.6)

⎛⎝ (τ − λj)I V∗
j (I − EjFj(A))∗Vj 0

V∗
j (I − EjFj(A))Vj I −ρV∗

jEjUj

0 −ρU∗
jE

∗
jV λjI

⎞⎠ � 0.

Making the change of variables

(4.7) Bj
�
= V∗

jEjUj ,

so that

(4.8) Ej = VjBjU
∗
j ,
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MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 723

the problem of (4.3) and (4.6) can be expressed as

(4.9) min
τ,λj ,Bj

{
σ2

N−1∑
j=0

Tr(B∗
jBj) + NL2τ

}

subject to

(4.10)

⎛⎝ (τ − λj)I (I − BjΣj)
∗ 0

(I − BjΣj) I −ρBj

0 −ρB∗
j λj

⎞⎠ � 0.

Let Bj = (Zj Wj), where Zj is the m×m matrix consisting of the first m columns

of Bj , and let Σ̃j denote the m×m matrix with diagonal elements σj,k, 1 ≤ k ≤ m,
for every 0 ≤ j ≤ N − 1. Then we can express the constraint (4.10) as

(4.11) L(Bj)
�
=

⎛⎜⎜⎝
(τ − λj)I (I − ZjΣ̃j)

∗ 0 0

(I − ZjΣ̃j) I −ρZj −ρWj

0 −ρZ∗
j λjI 0

0 −ρW∗
j 0 λjI

⎞⎟⎟⎠ � 0.

Clearly, if (4.11) is satisfied, then

(4.12) K(Zj)
�
=

⎛⎝ (τ − λj)I (I − ZjΣ̃j)
∗ 0

(I − ZjΣ̃j) I −ρZj

0 −ρZ∗
j λj

⎞⎠ � 0.

Now let Bj = (Zj Wj) be any matrix satisfying (4.11), and define B̃j = (Zj 0). Then

L(B̃j) =

(
K(Zj) 0

0 λj

)
� 0,

since K(Zj) � 0. In addition,

Tr(B̃∗
j B̃j) = Tr(Z∗

jZj) ≤ Tr(Z∗
jZj) + Tr(W∗

jWj) = Tr(B∗
jBj).

Therefore, the optimal value of Bj satisfies Wj = 0 for every 0 ≤ j ≤ N − 1, so that
the problem of (4.9) and (4.10) reduces to

(4.13) min
τ,Zj ,λj

{
σ2

N−1∑
j=0

Tr(Z∗
jZj) + NL2τ

}
,

subject to (4.12). Once we find the optimal (Zj)
N−1
j=0 , the optimal (Ej)

N−1
j=0 can be

found from (4.8) as

Ej = VjZj(I 0)U∗
j = VjZjV

∗
j (Fj(A)∗Fj(A))−1/2Fj(A)∗,

thus completing the first part of the proof.
We now show that the optimal values of (Zj)

N−1
j=0 can be chosen as diagonal

matrices. To this end, we first note that if (Zj)
N−1
j=0 satisfies (4.12), then for every
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724 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

0 ≤ j ≤ N − 1

J̃

⎛⎝ (τ − λj)I (I − ZjΣ̃j)
∗ 0

(I − ZjΣ̃j) I −ρZj

0 −ρZ∗
j λj

⎞⎠ J̃

=

⎛⎝ (τ − λj)I (I − JZjJΣ̃j)
∗ 0

(I − JZjJΣ̃j) I −ρJZjJ
0 −ρJZ∗

jJ λj

⎞⎠ � 0,(4.14)

where J is any diagonal matrix with diagonal elements ±1, J̃ = diag(J,J,J), and
we have used the fact that diagonal matrices commute and that J∗J = J2 = I. It
follows from (4.14) that K(Z̃j) � 0 for any J, where Z̃j = JZjJ. In addition, we

have that Tr(Z̃∗
j Z̃j) = Tr(Z∗

jZj). Therefore, if (Zj)
N−1
j=0 is an optimal solution, then

so is (JZjJ)N−1
j=0 . Since our problem is convex, the set of optimal solutions is also

convex [18], which implies that (Z′
j)

N−1
j=0 = ((1/2m)

∑
J JZjJ)N−1

j=0 is also a solution,
where the summation is over all 2m diagonal matrices J with diagonal elements ±1.
It is easy to see that Z′

j is a diagonal matrix. Therefore, we have shown that there
exists an optimal diagonal solution Zj for every 0 ≤ j ≤ N − 1.

Denote the diagonal elements of Zj by zj,k, 1 ≤ k ≤ m, and let diag(α1, . . . , αm)
denote the m×m diagonal matrix with diagonal elements αj . By permuting the rows
and the columns of the matrix K(Zj), it can be seen that the constraint K(Zj) � 0
can be written as

(4.15)

⎛⎝ τ − λj 1 − σj,kzj,k 0
1 − σj,kzj,k 1 −ρzj,k

0 −ρzj,k λj

⎞⎠ , 1 ≤ k ≤ m.

Thus, the problem of (4.13) and (4.12) becomes

(4.16) min
τ,zj,k,λj

{
σ2

N−1∑
j=0

m∑
i=1

z2
j,k + NL2τ

}

subject to

(4.17)

⎛⎝ τ − λj 1 − σj,kzj,k 0
1 − σj,kzj,k 1 −ρzj,k

0 −ρzj,k λj

⎞⎠ � 0

for every 1 ≤ k ≤ m, 0 ≤ j ≤ N −1. We now show that the problem of (4.16) subject
to (4.17) can be further simplified. First, we note that to satisfy (4.17) we must have
that

τ ≥ max
0≤j≤N−1

λj .

Suppose first that τ > max0≤j≤N−1 λj . In this case, by Schur’s lemma, (4.17) is
equivalent to(

1 −ρzj,k
−ρzj,k λj

)
− 1

τ − λj

(
1 − σj,kzj,k

0

)(
1 − σj,kzj,k 0

)
=

(
1 − (1−σj,kzj,k)2

τ−λ −ρzj,k
−ρzj,k λj

)
� 0.(4.18)
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MSE ESTIMATION FOR SYSTEMS WITH BC UNCERTAINTY 725

Now a 2 × 2 matrix is positive semidefinite if and only if the diagonal elements and
the determinant are nonnegative. Therefore, (4.18) is equivalent to the conditions

λj ≥ 0,(4.19)

τ − λj ≥ (1 − σj,kzj,k)
2,(4.20)

λj

(
1 − (1 − σj,kzj,k)

2

τ − λj

)
− ρ2z2

j,k ≥ 0.(4.21)

Clearly, (4.21) and (4.19) together imply (4.20). Furthermore, we can express (4.21)
as

(4.22) z2
j,k

(
(λj − τ)ρ2 − σ2

j,kλj

)
+ 2zj,kσj,kλj + λj(τ − λj − 1) ≥ 0.

Since the coefficient multiplying z2
j,k in (4.22) is negative, it follows that there exists

a zj,k satisfying (4.22) if and only if the discriminant is nonnegative, i.e, if and only if

σ2
j,iλj +

(
(τ − λj)ρ

2 + σ2
j,iλj

)
(τ − λj − 1) ≥ 0.

Using the fact that τ − λj > 0 for every 0 ≤ j ≤ N − 1, the latter inequality is
equivalent to

(4.23) λjσ
2
j,k ≥ ρ2(1 + λj − τ).

If (4.23) is satisfied, then the set of zj,k’s satisfying (4.22) are

z−j,k ≤ zj,k ≤ z+
j,k,

where z−j,k ≤ z+
j,k are the roots of the quadratic function in (4.22). Since we would

like to choose zj,k to minimize (4.16), it follows that the optimal zj,k is

zj,k = fj,k(τ, λj)

=

σj,kλj −
√
λj(τ − λj)

(
σ2
j,kλj − ρ2(1 + λj − τ)

)
(τ − λj)ρ2 + σ2

j,kλj
.(4.24)

Thus, if τ > max0≤j≤N−1 λj , then the optimal value of zj,k is given by (4.24), where,
in addition, conditions (4.23) and (4.19) must be satisfied.

Next, suppose that τ = λj for some j. In this case, to ensure that (4.17) is
satisfied, we must have that

zj,i =
1

σj,k
,(4.25)

λj ≥
ρ2

σ2
j,k

.(4.26)

We can immediately verify that (4.25) and (4.26) are special cases of (4.24) and (4.23)
with τ = λj . We therefore conclude that the optimal value of zj,k is given by (4.24)
subject to (4.23) and (4.19). Substituting the optimal value of zj,k into (4.16), our
problem becomes

(4.27) min
τ,λj

{
σ2

N−1∑
j=0

m∑
k=1

f2
j,k(τ, λj) + NL2τ

}

D
ow

nl
oa

de
d 

09
/0

2/
14

 to
 1

32
.6

8.
24

6.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



726 AMIR BECK, YONINA C. ELDAR, AND AHARON BEN-TAL

subject to

λjσ
2
j,k ≥ ρ2(1 + λj − τ), 1 ≤ k ≤ m, 0 ≤ j ≤ N − 1,

λj ≥ 0, 0 ≤ j ≤ N − 1,

τ ≥ λj , 0 ≤ j ≤ N − 1.(4.28)

Since the problem of (4.16) subject to (4.17) is convex, and the reduced problem
(4.27) subject to (4.28) is obtained by minimizing over some of the variables in (4.16),
the reduced problem is also convex, completing the proof of the theorem.

Remark 4.1. The line of analysis employed in Theorem 4.2 can also be carried
out when T = (A∗A)α for some real number α. The resulting optimization problem
is very similar to the one derived in Theorem 4.2. In some applications such as the
image deblurring examples described in [8], choosing a negative α provides better
results than the Euclidean weighting (i.e., α = 0).

5. An image deblurring example. To illustrate the effectiveness of the mini-
max MSE approach, we consider an image deblurring example from the “Regulariza-
tion Tools” [14].

We consider the square system

Atruextrue = ytrue,

where xtrue ∈ R
1024 is obtained by stacking the columns of the 32×32 image and Atrue

is a 1024 × 1024 matrix that represents an atmospheric turbulence blur originating
from [13] and implemented in the function blur(n,3,0.5) from the “Regularization
Tools” [14] (3 is the half bandwidth and 0.5 is the standard deviation associated
with the corresponding point spread function). The image corresponding to xtrue

is shown at the top of Figure 1. The matrix Atrue is a block Toeplitz matrix with
half bandwidth 3. We note that, in fact, any matrix representing a two-dimensional
convolution has a block Toeplitz structure [16].

The observed matrix A was generated by the function blur(n,3,0.7), and so essen-
tially the uncertainty in the model matrix is due to lack of knowledge of the standard
deviation. The observed vector was generated by adding white noise y = ytrue + σe,
where each component of e ∈ R

1024 was generated from a standard normal distribu-
tion.

In our experiment the standard deviation σ was chosen to be 0.1, which results
with the noisy image shown in Figure 1 (Observation). We considered several estima-
tion methods:

• Least Squares. The LS estimator is given by x̂LS = (A∗A)−1A∗y. As can be
seen in Figure 1, the resulting image is of a poor quality.

• Structured TLS. The structured TLS (STLS) solution x̂STLS to the problem
is the x-part of the solution to the optimization problem

min
ΔA,Δy,x

{‖ΔA‖2 + ‖Δy‖2 : (A + ΔA)x = y + Δy, ΔA is BC}.

The STLS problem with BC structure can be solved by decomposing the
problem into several unstructured TLS problems (for details see [1]). As can
be seen from Figure 1, the STLS method generates an even worse image than
x̂LS. This poor performance of the STLS solution stems from the fact that the
unstructured TLS solution is a deregularization [15] of the LS solution and
as such is rather unstable. The STLS solution for BC systems is constructed
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Fig. 1. Comparison between different estimators.

from several solutions of unstructured TLS problems and is therefore unstable
as well.

• Robust LS. We also considered the RLS method defined in (1.1), where the
uncertainty set U is given by a simple norm constraint U = {(ΔA,Δy) :
‖(ΔA,Δy)‖ ≤ ρR} and ρR is chosen as 1.1 · ‖(A − Atrue, y − ytrue)‖. The
resulting figure is quite blurred. The reason for not using a complicated set
such as UΔ (given in (1.5)) to describe the uncertainty in A is that problem
(1.1) appears to be intractable in this case, since the uncertainty set involves
several norm constraints. Another alternative would be to use the structured
RLS problem [10] and to relax the multiple norm constraints in UΔ into a
single norm constraint. However, the generated SDP needed to be solved in
our example here is too large to handle with standard software.
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• Uminimax. Unstructured minimax is the minimax estimator for the unstruc-
tured case (see [8]). This estimator minimizes the worst-case MSE across all
values of x satisfying x∗Tx ≤ L2 and perturbation matrices ΔA satisfying
‖ΔA‖ ≤ ρB . Note, however, that it ignores the special structure of ΔA.
We have chosen the parameters L, ρB to be 10 percent larger than their true
values (for example, L was chosen to be 1.1 ·x∗

trueTxtrue). T was chosen to be
(A∗A)−1. This choice of T reflects the fact that components corresponding
to small singular values of A∗A should receive a smaller weight than com-
ponents corresponding to large singular values. The resulting image for this
method is of good quality.

• Minimax. Finally, we compared the above-mentioned methods with the min-
imax MSE estimator for BC systems developed in this paper. In implement-
ing the Minimax estimator, we have used a BC approximation of the block
Toeplitz matrix A as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 A1 A2 0 0 . . . 0 0 0
A−1 A0 A1 A2 0 . . . 0 0 0
A−2 A−1 A0 A1 A2 . . . 0 0 0
0 A−2 A−1 A0 A1 . . . 0 0 0
0 0 A−2 A−1 A0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . A0 A1 A2

0 0 0 0 0 . . . A−1 A0 A1

0 0 0 0 0 . . . A−2 A−1 A0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⇓⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 A1 A2 0 0 . . . 0 A−2 A−1

A−1 A0 A1 A2 0 . . . 0 0 A−2

A−2 A−1 A0 A1 A2 . . . 0 0 0
0 A−2 A−1 A0 A1 . . . 0 0 0
0 0 A−2 A−1 A0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . A0 A1 A2

A2 0 0 0 0 . . . A−1 A0 A1

A1 A2 0 0 0 . . . A−2 A−1 A0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The approximation is made by adding three block matrices to the northeast
and southwest corners of A. As in the Uminimax estimator, all parameters
are chosen to be 10 percent larger than their true value. It can be seen that
Minimax gives even a better result than Uminimax.

We note that the Minimax estimate was not calculated by solving the SDP for-
mulation of Theorem 3.2, since its size was too big for standard software such as
SeDuMi [23]. Instead we applied a gradient projection algorithm with armijo-type line
search [5] on the convex optimization formulation of Theorem 4.2. In this algorithm
the dominant computational effort is the calculation of the orthogonal projection onto
the polyhedral feasible set, which amounts to solving a quadratic minimization prob-
lem in 1025 variables. Since the linear system describing the feasible set is extremely
sparse, the CPU time required to calculate a single projection (using SeDuMi) was a
small fraction of a second. The resulting image was obtained after 10 iterations in an
overall CPU time of 0.8 seconds (on a Pentium 4, 1.8 Ghz). The stopping criterion
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was chosen to be |fk−fk−1| < ε, where ε = 10−3 and fj denotes the objective function
value at the jth iteration. We noticed that the quality of the image does not improve
if we choose a smaller value of ε.

As can be seen from this example, the structured minimax MSE estimator gives
better results than the LS, STLS, RLS, and Uminimax estimators.
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