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Abstract We consider the outer approximation problem of finding a minimum radius
ball enclosing a given intersection of at most n − 1 balls in R

n. We show that if the
aforementioned intersection has a nonempty interior, then the problem reduces to
minimizing a convex quadratic function over the unit simplex. This result is established
by using convexity and representation theorems for a class of quadratic mappings. As
a byproduct of our analysis, we show that a class of nonconvex quadratic problems
admits a tight semidefinite relaxation.

Keywords Outer approximation problems · Convexity of quadratic mappings ·
Nonconvex quadratic optimization · Semidefinite relaxation · Strong duality

1 Introduction

The problem of finding a best ellipsoidal approximation of a given closed convex set
S is a fundamental problem in control and optimization and has a wide variety of
applications, see [17,19] and references therein. Generally speaking, there are two
types of these problems: (i) outer approximation problems in which we look for the
minimum volume ellipsoid containing the set S and (ii) inner approximation problems
where we seek the maximum volume ellipsoid contained in the set S.

Several outer approximation problems are known to be tractable. Among them
are the minimum volume ellipsoid containing a polyhedron given as a convex hull of a
finite set of points, and the minimum volume ellipsoid containing a union of ellipsoids.
As for inner approximation problems, we recall the maximum volume ellipsoid con-
tained in an intersection of ellipsoids and the maximum volume ellipsoid contained
in a polyhedron given as a set of linear inequalities—both are known to be tractable.
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We note that although the inner approximation problem of finding the maximum
volume ellipsoid of an intersection of ellipsoids is known to be tractable [17], the
related outer approximation problem, i.e., that of finding a minimum volume ellipsoid
containing an intersection of ellipsoids, is considered difficult. Even the simpler prob-
lem of verifying that E0 ⊇ ⋂p

i=1 E i holds, given ellipsoids E0, E1, . . . , Ep is NP-hard
[17, Sect 3.7.2]. To better understand the intrinsic difficulty of this simpler problem,
note that E0 ⊇ ⋂p

i=1 E i if and only if the following implication

x ∈ E0 for every x ∈ R
n such that x ∈ E1, x ∈ E2, . . . , x ∈ Ep (1)

holds true. By describing the ellipsoids as level sets of strictly convex quadratic func-
tions:

E i = {x ∈ R
n : xTAix + 2bT

i x + ci ≤ 0} (Ai � 0), i = 0, 1, . . . , p,

we arrive at the conclusion that the problem of determining whether an ellipsoid
contains the intersection of p ellipsoids is equivalent to verifying whether a given
quadratic inequality follows from a set of p quadratic inequalities. In the case p = 1,
it is well known by the celebrated S-lemma [3,7], that implication (1) is equivalent
to solving a linear matrix inequality (LMI) and as such can be verified efficiently by
e.g., interior point methods [13]. However, even for p = 2 the S-lemma is generally
not valid. An exception (when p = 2) is the case where the corresponding quadratic
inequalities are homogenous (b0 = b1 = b2 = 0), see [16].

We are thus led to the conclusion that the general outer approximation problem
of an intersection of ellipsoids seems to be intractable. This prompts the question
whether we can find a class of specially structured ellipsoids for which the outer
approximation of an intersection of ellipsoids problem will turn out to be tractable.
The most natural choice of structured ellipsoids is of course balls. We note that the
ball-version of the outer approximation problem of a union of ellipsoids, i.e., the
problem of finding a minimum radius ball containing the union of a given set of balls,
was extensively studied, see e.g., [21,24] and references therein.

In this paper we consider the ball-version of the outer approximation problem of
an intersection of balls, that is, we consider the following problem:

Main problem (minimum radius ball enclosing an intersection of balls): Given a set
of balls B1, . . . , Bp, find a minimum radius ball B0 enclosing the intersection

⋂p
i=1 Bi.

We will show that, as long as the intersection of the balls has a nonempty interior
and p ≤ n − 1 (where n is the dimension of the space), the problem can be solved
efficiently. In particular, we will prove (see Sect. 3) that the center and radius of an
optimal ball can be explicitly expressed via a p-vector λ ∈ R

p which is a solution to the
following problem of minimizing a convex quadratic function over the unit simplex:

min
{∥
∥
∑p

i=1λiai
∥
∥2 − ∑p

i=1λi(‖ai‖2 − r2
i ) :

∑p
i=1λi = 1, λi ≥ 0

}
,

where ai and ri are the center and radius of Bi respectively. This result relies on an
S-lemma-type result that establishes an LMI characterization of the claim that a ball
contains a given intersection of balls.

In order to establish these results we rely on three key results developed in Sect. 2:
(i) the image of a mapping comprised of a strictly quadratic function and n − 1 linear
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functions is closed and convex and (ii) the image a quadratic mapping has a semi-
definite representation if is closed and convex. Based on these results, we are able to
show that (iii) a class of nonconvex quadratic problems involving several quadratic
functions sharing a similar matrix term admits a tight semidefinite relaxation (SDR).
Result (iii) is the key ingredient in analyzing the main problem.

Notation. Vectors are denoted by boldface lowercase letters, e.g., y, and matrices
by boldface uppercase letters e.g., A. We follow the MATLAB convention and use “;”
for adjoining scalars, vectors or matrices in a column. For two matrices A and B,
A � B (A � B) means that A−B is positive definite (semidefinite). Sn = {A ∈ R

n×n :
A = AT} is the set of symmetric n × n matrices, Sn+ = {A ∈ R

n×n : A � 0} is the set all
n × n symmetric positive semidefinite matrices and Sn++ = {A ∈ R

n×n : A � 0} is the
set all n × n symmetric positive definite matrices. The n-dimensional unit simplex is
given by �n = {x ∈ R

n : x ≥ 0,
∑n

i=1 xi = 1}. R+ and R++ denote the nonnegative and
positive orthant respectively. Er

ij is the r × r matrix with one at the ij-th component
and zero elsewhere.

2 A class of nonconvex quadratic optimization problems admitting a tight
semidefinite relaxation

The primary objective of this section is to analyze a class of nonconvex quadratic opti-
mization problems involving several quadratic functions that share a similar matrix
term. Specifically, we consider the class of problems

(QP)

max f0(x)

s.t. li ≤ fi(x) ≤ ui, i = 1, 2, . . . , p,
x ∈ R

n,
(2)

where −∞ ≤ li ≤ ui ≤ ∞ and fi(x) = αixTQx+2bT
i x+ci with Q ∈ Sn++, bi ∈ R

n, ci ∈ R

and αi ∈ R, i = 0, 1, . . . , p. We assume that α0 = 1. The semidefinite relaxation of the
above problem [20] is given by

(QPSDR)

max Tr(M0U)

s.t. li ≤ Tr(MiU) ≤ ui, i = 1, 2, . . . , p,
U ∈ Sn+1+ , Un+1,n+1 = 1,

(3)

where Mi =
(

αiQ bi

bT
i ci

)

, i = 0, 1, . . . , p.

The main result of this section is that as long as p ≤ n − 1, the value of prob-
lem (QP) is equal to the value of its semidefinite relaxation (QPSDR). The analysis
is based on an investigation of the properties of the image of a class of quadratic
mappings. Specifically, we show in Sect. 2.1 that the image of a mapping comprised
of a strictly convex quadratic function and at most n − 1 linear functions is convex.
The upper bound, n − 1, on the number of linear functions is shown to be tight. In
Sect. 2.2 we establish a representation theorem for closed convex images of qua-
dratic mappings which, combined with the results of Sect. 2.1, leads to the main result
val(QP) = val(QPSDR).
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2.1 Convexity of the image of a class of quadratic mappings

Our approach for establishing the tight SDR result val(QP) = val(QPSDR) is to exploit
convexity properties associated with a corresponding class of quadratic mappings. This
approach goes back to the work of Fradkov and Yakubovich [7] that utilizes results
on the convexity of mappings comprised of two quadratic forms in the real domain
and three quadratic forms in the complex domain, in order to prove S-lemma-type
results.

Polyak [16] showed that by using a convexity result on the image of three homoge-
nous quadratic forms one can show a strong duality result (which is equivalent under
some mild conditions to the property of admitting a tight SDR) for homogenous non-
convex quadratic problems involving two quadratic constraints1; this result was also
recovered in the work of Ye and Zhang [22]. Polyak [16] also provided an alternative
proof of the well known strong duality result for trust region subproblems [4,6,11,12]
which is based on the convexity property of mappings comprised of two nonhomoge-
nous quadratic functions. Beck and Eldar [2] showed that by comparing the real and
complex valued images of quadratic mappings, one can establish a sufficient condition
for strong duality of nonconvex quadratic problems with two quadratic constraints.
More interesting results concerning various convexity results of quadratic mappings
and their relation to optimization problems can be found in the comprehensive survey
of Polik and Terlaky [15] and in the paper of Hiriart-Urruty and Torki [8].

We begin by establishing the convexity of the image of mappings comprised of a
strictly convex quadratic function and a set of no more than n − 1 linear functions.

Theorem 2.1 Let f: R
n → R be given by f (x) = xTQx+2f Tx+c where Q ∈ Sn++, f ∈

R
n, c ∈ R and let a1, . . . , am ∈ R

n with m ≤ n − 1. Then the set S ⊆ R
m+1 given by

S = {(f (x); aT
1 x; aT

2 x; . . . ; aT
mx) : x ∈ R

n} (4)

is closed and convex.

Proof (convexity) To show the convexity of S, we consider two vectors

(γ1; b), (γ2; c) ∈ S, (5)

where γ1, γ2 ∈ R and b, c ∈ R
m. We will prove that (λγ1 + (1 −λ)γ2; λb + (1 −λ)c) ∈ S

for every λ ∈ [0, 1]. Indeed, let λ ∈ [0, 1], then by (4) and (5), there exist two vectors
x0, x1 ∈ R

n such that

Ax0 = b, Ax1 = c, f (x0) = γ1, f (x1) = γ2,

where A is the m × n matrix whose rows are aT
1 , . . . , aT

m. Define d = λx0 + (1 − λ)x1.
Then clearly

Ad = λb + (1 − λ)c

and, by the convexity of f :

f (d) = f (λx0 + (1 − λ)x1) ≤ λf (x0) + (1 − λ)f (x1) = λγ1 + (1 − λ)γ2. (6)

1 Under the assumption that there exists a positive definite linear combination of the corresponding
matrices.
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The general solution to the linear system

Ax = λb + (1 − λ)c, x ∈ R
n, (7)

is given by x = Bw + d, w ∈ R
k, where B ∈ R

n×k is a matrix whose columns form a
basis (of dimension k) for the null space of A. Since A is an m × n matrix it follows
that k ≥ n − m ≥ 1.

Now, consider the function g: R
k → R defined by

g(w) ≡ f (Bw + d).

Since B has full column rank, we conclude that BTQB, which is the hessian of the
quadratic function g, is positive definite. Therefore, g(‖w‖) → ∞ as ‖w‖ tends to ∞.
As a result, there must exist w̄ ∈ R

k for which

g(w̄) > λγ1 + (1 − λ)γ2. (8)

Moreover,

g(0) = f (d)
(6)≤ λγ1 + (1 − λ)γ2 (9)

Combining (8), (9) with the continuity of g, we conclude that there exists α ∈ [0, 1)

such that g(αw̄) = λγ1 + (1 − λ)γ2. By denoting x2 = αBw̄ + d we deduce that

(λγ1 + (1 − λ)γ2, λb + (1 − λ)c) = (f (x2), Ax2) ∈ S

and the convexity of S follows.
(closedness) Let {uk} ⊆ S be a converging sequence, i.e., uk → u∗ for some u∗ ∈ R

m+1.
By the definition of S, there exists a sequence {xk} ⊆ R

n for which

uk = (f (xk); aT
1 xk; . . . ; aT

mxk).

Therefore, f (xk) → u∗
1 and in particular {f (xk)} is a bounded sequence. Thus, there

exist L ∈ R such that the sequence {xk} is contained in the nondegenerate ellipsoid
{x : f (x) ≤ L} and hence {xk} is bounded. Therefore, there exists a converging sub-
sequence xkl → x∗. Combining this with the continuity of f and the linear functions
aT

i x, we conclude that

u∗ = (f (x∗); aT
1 x∗; . . . ; aT

mx∗) ∈ S.

�

We will now show that the the upper bound, n − 1, on the number of linear func-
tions in the latter result is tight. Specifically, we will prove that the image of a mapping
comprised of a strictly convex quadratic function and n linearly independent functions
is always nonconvex.

Theorem 2.2 Let f: R
n → R be a strictly convex quadratic function and let a1, a2, . . . , an

be n linearly independent vectors in R
n. Then the image of f and the n linear functions

aT
i x:

T = {(f (x); aT
1 x; . . . ; aT

n x) : x ∈ R
n}

is not convex.
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Proof Let A = (aT
1 ; aT

2 ; . . . ; aT
n ) be the n × n matrix whose rows are the vectors aT

i .
Note that (γ ; b) ∈ T if and only if γ = f (A−1b). Therefore, for every y ∈ R

n one has:

(f (A−1y); y), (f (−A−1y); −y) ∈ T.

Suppose on the contrary that T is convex. Then the latter relation implies
(

f (A−1y) + f (−A−1y)

2
, 0

)

∈ T for every y ∈ T,

which is the same as

f (A−1y) + f (−A−1y)

2
= f (0).

The left hand side of the above equality tends to ∞ as ‖y‖ → ∞ leading to the desired
contradiction. �

2.2 Tightness of the semidefinite relaxation of problem (QP)

In this section we establish the tight SDR result for the class of problems (QP). Only
few classes of problems are known to have this property. The simplest and well known
example is the trust region problem, which consists of minimizing an indefinite qua-
dratic function over a ball, and admits an exact semidefinite relaxation (SDR), see
[6,12]. Extensions of this problem were considered in [4,11,16,18]. In general, these
results cannot be extended to quadratic problems involving two quadratic constraints
[22,23]. An exception is the case in which all the functions involved are homoge-
nous quadratic functions [16,22]. In the complex domain quadratic problems with two
quadratic constraints usually admit a tight SDR, see Beck and Eldar [2] and Huang
and Zhang [9]; thus, stronger results hold in the complex domain. Another class of
quadratic problems with a tight SDR property is the class of quadratic matrix pro-
gramming problems introduced by Beck [1]; in this latter class of problems, the SDR
is tight even in the presence of more than two constraints.

We begin by establishing a result (Lemma 2.2) that provides further evidence for
the close connection between convexity of quadratic mappings and results concerning
tightness of SDR. In particular, we will show that if the image of a general quadratic
mapping is closed and convex, then it can be represented as the image of Sn+ ∩ A
under a linear mapping, where A is an affine subspace. Such a representation is called
a semidefinite representation. This result combined with the the convexity result of
Theorem 2.1 will be the key ingredient in proving that val(QP) = val(QPSDR). The
proof of Lemma 2.2 relies on the following well known Lemma.

Lemma 2.1 ([3, p. 163]) Let A ∈ R
n×n be an Hermitian matrix and let b ∈ R

n and
c ∈ R. Then,

xTAx + 2bTx + c ≥ 0 for every x ∈ R
n

if and only if
(

A b
bT c

)

� 0.
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Lemma 2.2 Let fi : R
n → R, i = 1, . . . , m be quadratic functions given by fi(x) =

xTAix + 2bT
i x + ci, where Ai ∈ Sn, bi ∈ R

n and ci ∈ R. Suppose that the set

W = {(f1(x); f2(x); . . . ; fm(x)) : x ∈ R
n}

is closed and convex. Then W is equal to the set F defined by

F = {(Tr(M1U); Tr(M2U); . . . ; Tr(MmU)) : U ∈ Sn+1+ , Un+1,n+1 = 1},

where Mi =
(

Ai bi

bT
i ci

)

.

Proof (W ⊆ F). Suppose that w = (w1; . . . ; wm) ∈ W. Then there exists x̃ ∈ R
n such

that w = (w1; . . . ; wm) = (f1(x̃); . . . ; fm(x̃)). Define

Ũ = (x̃; 1)(x̃T , 1) =
(

x̃x̃T x̃
x̃T 1

)

.

Clearly, Ũ ∈ Sn+1+ and Ũn+1,n+1 = 1. Moreover, wi = fi(x̃) = Tr(MiŨ) for every i and
thus w ∈ F.

(F ⊆ W) Let w ∈ F, that is, wi = Tr(MiŨ) for some Ũ ∈ Sn+1+ satisfying Ũn+1,n+1 =
1. To prove that w ∈ W, assume on the contrary that w /∈ W. Since {w} is a compact set
and W is a closed and convex set, then by the strict separation theorem [5, Proposition
2.4.3] we have that there exists a ∈ R

m, a �= 0 and γ ∈ R such that

aTv > γ for every v ∈ W, (10)

aTw < γ . (11)

By the definition of W, (10) can be written as
m∑

i=1

aifi(x) > γ for every x ∈ R
n,

which is the same as
m∑

i=1

ai(xTAix + 2bT
i x + ci) > γ for every x ∈ R

n. (12)

Invoking Lemma 2.1, we obtain that (12) is equivalent to the LMI
m∑

i=1

aiMi � γ En+1
n+1,n+1, (13)

(recall that En+1
n+1,n+1 is the (n + 1)× (n + 1) matrix whose (n + 1, n + 1)-th entry is one

and zero elsewhere). On the other hand,

γ > aTw =
m∑

i=1

aiwi =
m∑

i=1

aiTr(MiŨ),

which can be equivalently written as

Tr

((
m∑

i=1

aiMi − γ En+1
n+1,n+1

)

Ũ

)

< 0. (14)
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However, Ũ � 0 and by (13),
∑m

i=1 aiMi − γ En+1
n+1,n+1 is positive definite. Therefore,

since the trace of a product of two positive semidefinite matrices is nonnegative, we
conclude that Tr((

∑m
i=1 aiMi − γ En+1

n+1,n+1)Ũ) must be nonnegative, which is a contra-
diction to (14). �

Combining Theorem 2.1 and Lemma 2.2, we conclude that the image of a qua-
dratic mapping comprised of at most n strictly convex quadratic functions with a
similar matrix term is convex and has a semidefinite representation.

Theorem 2.3 Let fi : R
n → R, i = 0, . . . , p be p + 1 quadratic functions given by

fi(x) = αixTQx + 2bT
i x + ci where Q ∈ Sn++, bi ∈ R

n, ci ∈ R and αi ∈ R with α0 = 1.
Suppose that p ≤ n − 1. Then

(i) The set

V = {(f0(x); . . . ; fp(x)) : x ∈ R
n}

is closed and convex.
(ii) The set V is equal to

W = {(Tr(M0U); . . . ; Tr(MpU)) : U ∈ Sn+1+ , Un+1,n+1 = 1},

where Mi =
(

αiQ bi

bT
i ci

)

.

Proof (i). Note that2 V = L(S) + {(c0; c1; . . . ; cp)} where

S = {(xTQx + 2bT
0 x; (b1 − α1b0)

Tx; (b2 − α2b0)
Tx; . . . , (bp − αpb0)

Tx) : x ∈ R
n}

and the mapping L : R
p+1 → R

p+1 is the linear transformation given by

L(x0; x1; . . . ; xk−1) = (x0; α1x0 + 2x1; α2x0 + 2x2; . . . ; αpx0 + 2xp).

By Theorem 2.1 the set S is closed and convex. Since convexity and closedness prop-
erties are preserved under linear transformations and translations, the result follows.
(ii). Readily follows from the first part of the corollary and Theorem 2.2. �

Finally, based on the latter result we are able to show that val(QP) = val(QPSDR)
(see problems (2), (3)).

Corollary 2.1 The value of the nonconvex quadratic optimization problem (QP) with
p ≤ n − 1 is equal to the value of its semidefinite relaxation (QPSDR)

Proof Problem (QP) can be written as following problem in the decision variables
ti, i = 0, . . . , p:

max t0
s.t. li ≤ ti ≤ ui, i = 1, 2, . . . , p,

(t0; t1; . . . , tp) ∈ C,
(15)

where C = {(f0(x); . . . ; fp(x)) : x ∈ R
n}. By Theorem 2.3 (ii), C is also equal to

C = {(Tr(M0U), . . . , Tr(MpU)) : U ∈ Sn+1++ , Un+1,n+1 = 1},
which immediately transforms problem (15) into problem (QPSDR). �

2 The sum of two sets A, B ⊆ R
k is given by A + B = {a + b : a ∈ A, b ∈ B}.
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We note that higher order relaxations have been recently proposed for nonconvex
quadratic problems and for the more general class of polynomial optimization prob-
lems. In fact, the semidefinite relaxation considered in corollary 2.1 is the first and
simplest relaxation in a hierarchy of relaxations, see e.g.,3 the works of Lasserre [10]
and Parrilo [14].

We end this section by noting that the celebrated MAXCUT problem can be for-
mulated as a problem of the form (QP) with p = n. Indeed, recall that the MAXCUT
problem can be cast as the bivalent problem [3, p. 173]

max xTAx
s.t. x2

i = 1, i = 1, . . . , n,
(16)

where A is a positive semidefinite matrix. We can also assume without loss of gener-
ality that A is positive definite since a term of the form β‖x‖2 with β > 0 can be added
to the objective function without changing the optimal set of the problem.

Now, consider the relaxed problem of maximizing xTAx over a box:

max xTAx
s.t. −1 ≤ xi ≤ 1, i = 1, . . . , n.

(17)

Problems (16) and (17) have the same optimal value; this is due to the fact that prob-
lem (17) consists of maximizing a convex function over a convex set and consequently
its solution belongs to the set of extreme points of the box {x ∈ R

n : −1 ≤ xi ≤ 1}
which is just the feasible set of (16). Now, problem (16) is in fact problem (QP) with

Q = A, b0 = 0, c0 = 0, αi = ci = 0, ui = 1, li = −1, bi = ei, i = 1, . . . , n,

where ei is the vector with 1 at the i-th place and zero elsewhere. Although problem
(17) is of the form (QP), the tight SDR result of Corollary 2.1 can not be employed
here since the assumption p ≤ n − 1 fails (p is equal to n). This is not surprising since
the MAXCUT is considered to be a hard combinatorial problem and as such is not
likely to be equivalent to a convex optimization problem.

3 Finding a minimum radius ball enclosing a given intersection of balls

The main problem (see the introduction) of finding a minimum radius ball B(y, r)
enclosing a given intersection of balls can be cast as the minimization problem in the
variables y, r:

min r
s.t.

⋂p
i=1 B(ai, ri) ⊆ B(y, r),

y ∈ R
n, r ∈ R.

Making the change of variables γ = r2, the latter problem becomes

min
√

γ

s.t.
⋂p

i=1 B(ai, ri) ⊆ B(y,
√

γ ),
y ∈ R

n, γ ∈ R,

3 I am indebted to an anonymous reviewer for bringing references [10,14] to my attention.



122 J Glob Optim (2007) 39:113–126

which has the same optimal set as

min γ

s.t.
⋂p

i=1 B(ai, ri) ⊆ B(y,
√

γ ),
y ∈ R

n, γ ∈ R.
(18)

We begin by proving that if (i) p ≤ n−1 and (ii) the intersection
⋂p

i=1 B(ai, ri) has a
nonempty interior, then the statement

⋂p
i=1 B(ai, ri) ⊆ B(y,

√
γ ) can be reformulated

as an LMI.

Theorem 3.1 Let a1, . . . , ap ∈ R
n and r1, . . . , rp ∈ R++. Suppose that the intersection

of the balls B(ai, ri), i = 1, . . . , p has a nonempty interior, i.e.,

int

( p⋂

i=1

B(ai, ri)

)

�= ∅ (19)

and that p ≤ n − 1. Then the following two statements are equivalent:

(i)
⋂p

i=1 B(ai, ri) ⊆ B(y,
√

γ ).
(ii) There exist λ1, λ2, . . . , λp ∈ R+ such that the following LMI is satisfied:

N0 −
p∑

i=1

λiN i � 0, (20)

where

N0 =
(

I −y
−yT ‖y‖2 − γ

)

, N i =
(

I −ai

−aT
i ‖ai‖2 − r2

i

)

, i = 1, . . . , p. (21)

Proof We begin by recalling that, as mentioned in the introduction, statement (i) is
equivalent to the validity of the following implication:

‖x − y‖2 ≤ γ for every x ∈ R
n such that ‖x − a1‖2 ≤ r2

1, . . . , ‖x − ap‖2 ≤ r2
p. (22)

Therefore, in the rest of the proof, we will consider the implication (22) instead of
statement (i).
(ii) ⇒ (22). Suppose that statement (ii) is satisfied, i.e., there exist λi ∈ R+, i =
1, 2, . . . , p such that the LMI (20) is satisfied. Multiplying the LMI from the left by
(xT , 1) and from the right by (x; 1) we obtain

(xT , 1)N0(x; 1) ≤
p∑

i=1

λi(xT , 1)N i(x; 1),

which can be rewritten as

‖x − y‖2 − γ ≤
p∑

i=1

λi(‖x − ai‖2 − r2
i ).

The last inequality and the nonnegativity of λi imply that (22) holds true.
(22) ⇒ (ii). Suppose that the implication (22) holds true. Then the value of the opti-
mization problem in the decision variables x

max ‖x − y‖2 − γ

s.t. ‖x − ai‖2 ≤ r2
i , i = 1, 2, . . . , p,

x ∈ R
n

(23)
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is nonpositive. Now, since p ≤ n − 1, then by Corollary 2.1, the value of problem (23)
is equal to the value of the SDP problem

max Tr(N0U)

s.t. Tr(N iU) ≤ 0, i = 1, 2, . . . , p,
U ∈ Sn+1+ , Un+1,n+1 = 1,

(24)

where N i is given in (21). Condition (19) implies that there exists x̃ ∈ R
n such that

‖x̃ − ai‖2 − r2
i < 0, i = 1, . . . , p.

Therefore, the matrix Ũ =
(

x̃x̃T x̃
x̃T 1

)

satisfies

Tr(N iŨ) < 0, Ũ � 0, Ũn+1,n+1 = 1.

By making small perturbations to the matrix Ũ, we can assume without loss of gen-
erality that Ũ � 0. Hence, problem (24) is strictly feasible and as a result by the conic
duality theorem [20,3], the dual problem

min µ

s.t. N0 − ∑p
i=1 λiN i − µEn+1

n+1,n+1 � 0,
λi ≥ 0, i = 1, . . . , p,
µ ∈ R

(25)

is solvable and has the same optimal value as (24). Thus, there exists a nonpositive µ̃

and nonnegative λ̃i, i = 1, . . . , p such that

N0 −
p∑

i=1

λ̃iN i − µ̃En+1
n+1,n+1 � 0,

which, by the nonpositivity of µ̃, implies that N0 − ∑p
i=1 λ̃iN i � 0. �

Based on Theorem 3.1, and the reformulation (18) of the main problem, we will
now prove our main result.

Theorem 3.2 (quadratic programming formulation of the main problem) Let a1, . . . ,
ap ∈ R

n and r1, . . . , rp ∈ R++. Suppose that the intersection of the balls B(ai, ri), i =
1, . . . , p has a nonempty interior and that p ≤ n − 1. Then the center and radius of a
minimum radius ball enclosing the intersection

⋂p
i=1 B(ai, ri) are given by

y = ∑p
i=1λiai, (26)

r =
√∥

∥
∑p

i=1λiai
∥
∥2 − ∑p

i=1λi(‖ai‖2 − r2
i ) (27)

respectively, where λ ∈ �p is an optimal solution of the convex quadratic minimization
problem

min
∥
∥
∑p

i=1 λiai
∥
∥2 − ∑p

i=1 λi(‖ai‖2 − r2
i ),

s.t. λ ∈ �p.
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Proof By Theorem 3.1, problem (18) can be rewritten as the following SDP problem

γ ∗ = min γ

s.t.

( (∑p
i=1 λi − 1

)
I y − ∑p

i=1 λiai
(
y − ∑p

i=1 λiai
)T

γ − ‖y‖2 + ∑p
i=1 λi(‖ai‖2 − r2

i )

)

� 0,

y ∈ R
n, γ ∈ R, λ ∈ R

p
+.

(28)

Here we denoted the optimal squared radius by γ ∗ which is positive by its defi-
nition. Note that any feasible solution (y, λ, γ ) of problem (28) satisfies in particular∑p

i=1 λi ≥ 1. We will now show that in fact every optimal solution satisfies
∑p

i=1 λi = 1.
Suppose on the contrary that there exists an optimal solution (ỹ, λ̃, γ̃ ) of problem (28)
satisfying

∑p
i=1 λ̃i > 1. In that case, we can by invoke Schur’s complement and con-

clude that problem (28) reduces to

γ ∗ = min γ

s.t.
∑p

i=1 λi > 1,

γ ≥ ‖y‖2 − ∑p
i=1 λi(‖ai‖2 − r2

i ) + ‖y−∑p
i=1 λiai‖2

∑p
i=1 λi−1

,

y ∈ R
n, λ ∈ R

p
+, γ ∈ R,

which can be equivalently written as

γ ∗ = min ‖y‖2 − ∑p
i=1 λi(‖ai‖2 − r2

i ) + ‖y−∑p
i=1 λiai‖2

∑p
i=1 λi−1

s.t.
∑p

i=1 λi > 1,
y ∈ R

n, γ ∈ R.

(29)

Fixing λ and minimizing the latter problem with respect to y we obtain that y =
1∑p

i=1 λi

∑p
i=1 λiai at any optimal solution. Plugging this expression back into the objec-

tive function of problem (29), we obtain that λ̃ is an optimal solution of

γ ∗ = min ϕ(λ) ≡ 1∑p
i=1 λi

‖ ∑p
i=1 λiai‖2 − ∑p

i=1 λi(‖ai‖2 − r2
i )

s.t.
∑p

i=1 λi > 1,
λ ∈ R

p
+.

(30)

Note that the objective function ϕ(λ) is homogenous of order 1, i.e., satisfying
ϕ(αλ) = αϕ(λ) for every α ∈ R+, λ ∈ R

p. Denote λ̂ = αλ̃, where α is some real
number in the interval (1/

∑p
i=1 λi, 1). Then λ̂ is a feasible solution of (30) and satisfies

ϕ(λ̂) = ϕ(αλ̃) = αϕ(λ̃) < r∗ contradicting the optimality of λ̃. We have thus proven
that

∑p
i=1 λi = 1 at any optimal solution so that (28) can be written as

γ ∗ = min γ

s.t.

(
0 y − ∑p

i=1 λiai
(
y − ∑p

i=1 λiai
)T

γ − ‖y‖2 + ∑p
i=1 λi(‖ai‖2 − r2

i )

)

� 0,

y ∈ R
n, γ ∈ R, λ ∈ �p.

(31)

The LMI constraint in the above problem reduces to

y = ∑p
i=1λiai, (32)

γ ≥ ‖y‖2 −
p∑

i=1

λi(‖ai‖2 − r2
i ), (33)
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Fig. 1 Three balls in the plane

which implies that problem (31) can be converted into

γ ∗ = min
∥
∥
∑p

i=1 λiai
∥
∥2 − ∑p

i=1 λi(‖ai‖2 − r2
i ),

s.t. λ ∈ �p.

The optimal center y is given by (32). �

It is interesting to note that the ball B(y, r) with y and r given by (26) and (27) con-
tains the intersection

⋂p
i=1 B(ai, ri) even when p ≥ n. However, only when p ≤ n − 1

this ball is guaranteed to be the smallest one possible. In Fig. 1 two examples of inter-
sections of three balls (dashed lines) are given. In both examples it is clear that the
enclosing ball (solid line)—computed by Theorem 3.2—is not the smallest.
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