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QUADRATIC MATRIX PROGRAMMING∗

AMIR BECK†

Abstract. We introduce and study a special class of nonconvex quadratic problems in which the
objective and constraint functions have the form f(X) = Tr(XT AX)+2Tr(BT X)+c,X ∈ RRn×r.
The latter formulation is termed quadratic matrix programming (QMP) of order r. We construct
a specially devised semidefinite relaxation (SDR) and dual for the QMP problem and show that
under some mild conditions strong duality holds for QMP problems with at most r constraints.
Using a result on the equivalence of two characterizations of the nonnegativity property of quadratic
functions of the above form, we are able to compare the constructed SDR and dual problems to other
known SDRs and dual formulations of the problem. An application to robust least squares problems
is discussed.
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1. Introduction. This work is concerned with nonconvex quadratic optimiza-
tion problems of the form

min Tr(XTA0X) + 2Tr(BT
0 X) + c0

s.t. Tr(XTAiX) + 2Tr(BT
i X) + ci ≤ αi, i ∈ I,(1)

Tr(XTAjX) + 2Tr(BT
j X) + cj = αj , j ∈ E ,

X ∈ R
n×r,

with Ai = AT
i ∈ R

n×n,Bi ∈ R
n×r, αi, ci ∈ R, i ∈ {0} ∪ I ∪ E . Problems of the above

type arise naturally in several applications such as robust least squares [9], and in
problems involving orthogonal constraints such as the orthogonal procrustes problem
[17] (see the discussion in section 2).

Problem (1) is called a quadratic matrix programming (QMP) problem of order
r. Correspondingly, the objective and constraint functions are called quadratic matrix
(QM) functions. It can be shown that every QM function is in particular a quadratic
function with nr variables; see the discussion in section 2.1. Thus, the family of
QMP problems is a special case of quadratically constrained quadratic programming
(QCQP) problems. However, it is worthwhile to study these problems independently
since, as we shall see, they enjoy stronger results than those currently known for the
general QCQP problem. For example, we will establish strong duality results for
QMP problems with at most r constraints (see section 3.2).

Strong duality is known to hold for only a few classes of nonconvex QCQP. The
simplest and best-known example is the trust region problem, which consists of min-
imizing an indefinite quadratic function over a ball and admits an exact semidefi-
nite relaxation (SDR); see [13, 8]. Extensions of this problem were considered in
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QUADRATIC MATRIX PROGRAMMING 1225

[12, 18, 5, 16]. In general these results cannot be extended to QCQP problems in-
volving two constraints [19, 20]. An exception is the case in which all the functions
involved (objective plus two constraints) are homogenous quadratic functions. In this
case, it was proven in [19] that under mild conditions the semidefinite relaxation is
tight. Another interesting tractable class of QCQP problems was considered in [1] in
the context of quadratic problems with orthogonal constraints.

In this paper strong duality/tightness of the SDR is shown to hold for the class
of QMP problems of order r with at most r constraints. In section 3 we construct an
SDR and dual formulations for the QMP problem originating from a homogenization
procedure specially devised to QMP problems. Using the SDR formulation combined
with known results on the existence of low-rank solutions of semidefinite programs
[3, 2, 14, 15], the strong duality result is shown to follow. Moreover, an algorithm for
extracting a solution to the QMP problem from its associated SDR is described. In
section 4 an alternative SDR and dual construction are discussed. These constructions
stem from the standard construction of SDR and dual for QCQP problems. Using
a result on the equivalence of two linear matrix inequality (LMI) representations of
the claim on nonnegativity of a QM function, we are able to prove that the two SDR
and dual formulations are equivalent. Finally, in section 5 we present an application
of our results in the field of robust optimization.

Notation. For simplicity, instead of inf/sup we use min/max; however, this does
not mean that we assume that the optimum is attained and/or finite. Vectors are
denoted by boldface lowercase letters, e.g., y, and matrices by boldface uppercase
letters, e.g., A. For two matrices A and B, A � B (A � B) means that A − B is
positive definite (semidefinite). Sn = {A ∈ R

n×n : A = AT } is the set of symmetric
n × n matrices, and Sn

+ = {A ∈ R
n×n : A � 0} is the set all real n × n symmetric

positive semidefinite matrices. 0n×m is the n×m matrix of zeros, and Ir is the r× r
identity matrix. For a matrix M , vec(M) denotes the vector obtained by stacking
the columns of M . For a square matrix U , [U ]r denotes the southeast r×r submatrix
of U ; i.e., if U = (uij)

n+r
i,j=1, then [U ]r = (uij)

n+r
i,j=n+1. For two matrices A and B,

A ⊗ B denotes the corresponding Kronecker product. Er
ij is the r × r matrix with

1 at the ijth component and 0 elsewhere, and δij is the Kronecker delta, i.e., δii = 1
and δij = 0 for i �= j. The value of the optimal objective function of an optimization
problem

(P) : min{f(x) : x ∈ C}

is denoted by val(P). The optimization problem (P) is called bounded below if the
minimum is finite, and termed solvable in the case where the minimum is finite and
attained (similar definitions for maximum problems). We follow the MATLAB con-
vention and use “;” for adjoining scalars, vectors, or matrices in a column. We also use
some standard abbreviations such as SDP (semidefinite programming), LMI (linear
matrix inequality), SDR (semidefinite relaxation), and QCQP (quadratically con-
strained quadratic programming), and some nonstandard abbreviations such as QM
(quadratic matrix) and QMP (quadratic matrix programming).

2. Quadratic matrix problems.

2.1. Quadratic matrix functions: Definition and basic properties. We
begin by recalling that a quadratic function g : R

n → R is a function of the form

(2) g(x) = xTAx + 2bTx + c,
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1226 AMIR BECK

where A ∈ Sn, b ∈ R
n, and c ∈ R. We will also use the term “quadratic vector

function” instead of “quadratic function” to distinguish it from the term “quadratic
matrix function” defined below.

A quadratic matrix (QM) function of order r is a function f : R
n×r → R of the

form

(3) f(X) = Tr(XTAX) + 2Tr(BTX) + c, X ∈ R
n×r,

where A ∈ Sn, B ∈ R
n×r, and c ∈ R. If B = 0n×r, c = 0, then f is called

a homogenous QM function or a QM form. We note that every quadratic vector
function is a QM function of order one. The opposite statement is also true: every
QM function is in particular a quadratic vector function. Indeed, the function f from
(3) can be written as follows:

(4) f(X) = fV (vec(X)),

where fV : R
nr → R is defined by

(5) fV (z) = zT (Ir ⊗ A)z + 2vec(B)Tz + c.

The function fV is called the vectorized function of f . From the above relation we
can immediately deduce that f is (strictly) convex if and only if A � 0 (A � 0).1

2.2. QM problems. Our main objective is to study quadratic matrix program-
ming (QMP) problems in which the goal is to minimize a QM objective function
subject to equality and inequality QM constraints:

(QMP) min f0(X)

s.t. fi(X) ≤ αi, i ∈ I,(6)

fj(X) = αj , j ∈ E ,
X ∈ R

n×r,

where fi : R
n×r → R, i ∈ I ∪ E ∪ {0}, are QM functions of order r given by

fi(X) = Tr(XTAiX) + 2Tr(BT
i X) + ci, X ∈ R

n×r,

with Ai ∈ Sn,Bi ∈ R
n×r, and ci ∈ R, i ∈ {0} ∪ I ∪ E . The index sets {0}, I, E are

pairwise disjoint sets of nonnegative integers.
In the case where all the functions fi, i ∈ I ∪ E ∪ {0}, are homogeneous QM

functions of order r, the QMP problem (6) is called a homogenous QMP problem (of
order r). By using the correspondence (4), we can represent the QMP problem as the
QCQP problem:

min fV
0 (z)

s.t. fV
i (z) ≤ αi, i ∈ I,(7)

fV
j (z) = αj , j ∈ E ,

z ∈ R
nr,

which will be called the vectorized QMP problem.

1Indeed, Ir ⊗ A and A have the same eigenvalues (but with different multiplicities) [10].
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QUADRATIC MATRIX PROGRAMMING 1227

The QMP problem appears in several fields of applications. Here we present two
examples in which the QMP problem naturally arises.

Example 1. In the orthogonal procrustes problem [17] we seek to find a square
matrix X which solves the following optimization problem:

min ‖AX − B‖2
F

s.t. XTX = Ir,

X ∈ R
r×r,

where A ∈ R
n×r,B ∈ R

n×r. The orthogonal procrustes problem can be rewritten as
a QMP problem with r2 equality constraints:

min Tr(XTATAX) − 2Tr(BTAX) + ‖B‖2
F

s.t. Tr(XT (Er
ij + Er

ij)X) = 2δij , 1 ≤ i, j ≤ r,

X ∈ R
r×r.

We note that although the orthogonal procrustes problem can be solved efficiently
[17], it is not clear whether the unbalanced orthogonal procrustes problem—in which
X is not square—is tractable [7].

Example 2. The robust least squares (RLS) problem was introduced and studied
in [9, 6].2 Consider a linear system Ax ≈ b, where A ∈ R

r×n, b ∈ R
r, and x ∈ R

n.
Assume that the matrix A is not fixed but rather given by a family of matrices3

A+ΔT , where A is a known nominal value and Δ ∈ R
n×r is an unknown perturbation

matrix known to reside in a compact uncertainty set U . The RLS approach to this
problem is to seek a vector x ∈ R

n that minimizes the worst case data error with
respect to all possible values of Δ ∈ U :

(8) min
x

max
Δ∈U

‖b − (A + ΔT )x‖2.

Now, by making some simple algebraic manipulation, we can rewrite the objective
function in (8) as

‖b− (A +ΔT )x‖2 = Tr(ΔTxxTΔ) + 2Tr((b−Ax)xTΔ) + Tr((b−Ax)(b−Ax)T ),

so that the inner maximization problem in (8) takes the following form:

(9) max{Tr(ΔTQΔ) + 2Tr(FTΔ) + c : Δ ∈ U},

where Q,F, and c depend on x and are given by

(10) Q = xxT ∈ Sn, F = x(b − Ax)T ∈ R
n×r, c = ‖b − Ax‖2 ∈ R.

In [9] the uncertainty set Δ was chosen to be a simple Frobenius norm constraint,
i.e.,

U = {Δ ∈ R
n×r : Tr(ΔTΔ) ≤ ρ}.

2Here we study the unstructured case.
3The perturbation matrix appears in a transpose form so that the derived QM function will

have the form (3). Furthermore, for the sake of simplicity we do not consider uncertainties in the
RHS vector b, although such uncertainties can be incorporated into our analysis in a straightforward
manner.
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1228 AMIR BECK

The inner maximization problem (9) with the above choice of U is a QMP problem
of order r with a single inequality constraint.

The fact that the uncertainty set U was given in [9] by a single quadratic constraint
was a crucial element in establishing the tractability of the RLS problem. In fact,
it is well known that in the structured case, the inner maximization problem of the
RLS problem becomes NP-hard when the uncertainty set is given by an intersection of
ellipsoids. Nonetheless, in section 5, using the results developed in sections 3 and 4, we
will show that more complicated choices of U can be considered. In particular, we will
prove in section 5 that the RLS problem remains tractable in the case where U is given
by a set of at most r QM inequality constraints. The latter form of the uncertainty set
can model, for example, the situation where each column of the perturbation matrix
ΔT has a separate norm constraint.

3. Semidefinite relaxations of the QMP problem and strong duality
results. We begin by constructing an SDR for the QMP problem. A natural approach
for constructing such an SDR is to consider the SDR of the vectorized problem (7)
(recall that problem (7) is a (QCQP)). However, this approach, which is discussed
in detail in section 4, does not seem to offer useful theoretical insights into questions
such as strong duality/tightness of SDR. For that reason we construct a new scheme,
specifically devised to obtain an SDR for QMP problems (see section 3.1). Using the
derived SDR, we will show in section 3.2 that, under some mild conditions, strong
duality holds for QMP problems of order r with at most r constraints.

3.1. An SDR of the QMP problem. Recall that the homogenized version a
quadratic vector function g given by (2) is the quadratic form gH : R

n+1 → R defined
by

gH(x; t) = xTAx + 2bTxt + ct2.(11)

The matrix associated with the quadratic form gH is denoted by

(12) M(g) =

(
A b

bT c

)
.

We consider the following generalization of the above homogenization procedure to
QM functions of order r: let f be the QM function given by (3); the homogenized QM
function is denoted by fH : R

(n+r)×r → R and given by

(13) fH(Y; Z) ≡ Tr(YTAY)+2Tr(ZTBTY)+
c

r
Tr(ZTZ), Y ∈ R

n×r,Z ∈ R
r×r,

which is a homogenous QM function of order r corresponding to the matrix

(14) M(f) ≡
(

A B

BT c
rIr

)
.

In the case r = 1, definitions (13) and (14) coincide with the definitions of the ho-
mogenization of a quadratic function (11) and its associated matrix (12), respectively.
The operator M will be used throughout the paper.

The homogenous function fH satisfies the following easily verifiable properties,
which will become useful in what follows:

fH(Y; Ir) = f(Y) for every Y ∈ R
n×r,(15)

fH(Y; Z) = f(YZT ) for every Y ∈ R
n×r,Z ∈ R

r×r such that ZTZ = Ir.(16)
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QUADRATIC MATRIX PROGRAMMING 1229

Using the above homogenization procedure for QM functions, we are able to
construct (see Lemma 3.1 below) a homogeneous QMP problem of order r, equivalent
to the (nonhomogeneous) QMP problem (6).

Lemma 3.1. Consider the following homogenized version of the QMP problem
(6):

min fH
0 (Y; Z)

s.t. fH
i (Y; Z) ≤ αi, i ∈ I,(17)

fH
j (Y; Z) = αj , j ∈ E ,
ψij(Y; Z) = 2δij , 1 ≤ i ≤ j ≤ r,

Y ∈ R
n×r,Z ∈ R

r×r,

where ψij(Y; Z) = Tr(ZT (Er
ij + Er

ji)Z) and δij is the Kronecker delta.
1. Suppose that the QMP problem (6) is solvable, and let X∗ be an optimal

solution of (QMP). Then problem (17) is solvable, (X∗; Ir) is an optimal
solution of (17), and val(QMP) = val(17).

2. Suppose that problem (17) is solvable, and let (Y∗; Z∗) be an optimal solution
of (17). Then problem (QMP) is solvable, X∗ = Y∗(Z∗)T is an optimal
solution of (QMP), and val(QMP) = val(17).

Proof. First note that the system of equalities

Tr(ZT (Er
ij + Er

ji)Z) = 2δij , 1 ≤ i ≤ j ≤ r,

can be written as

Tr((Er
ij + Er

ji)ZZT ) = 2δij , 1 ≤ i ≤ j ≤ r,

which, by using the symmetry of the matrix ZZT , is equivalent to

ZTZ = ZZT = Ir.

1. Let X∗ be an optimal solution of (QMP). For every (Y; Z), (Y ∈ R
n×r,Z ∈

R
r×r) in the feasible set of (17) (and in particular ZTZ = Ir) we have

fH
0 (Y,Z)

(16)
= f0(YZT ) ≥ f0(X

∗)
(15)
= fH

0 (X∗; Ir).

Therefore, (X∗; Ir) is an optimal solution of (17) and val(QMP) = val(17).
2. Let (Y∗; Z∗), (Y ∈ R

n×r,Z ∈ R
r×r) be an optimal solution of (17), and set

X∗ = Y∗(Z∗)T . Then for every X ∈ R
n×r which is in the feasible set of (QMP) we

have

f0(X)
(15)
= fH

0 (X; I) ≥ fH
0 (Y∗; Z∗)

(16)
= f0(Y

∗(Z∗)T ) = f0(X
∗),

and thus X∗ is an optimal solution of (QMP) and val(QMP) = val(17).
Corollary 3.2. The QMP problem (6) is solvable if and only if problem (17) is

solvable, and in that case val(QMP) = val(17).
We will now exploit the homogenized QMP problem (17) in order to formulate

a semidefinite relaxation. By denoting W = (Y; Z) ∈ R
(n+r)×r, we conclude that
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1230 AMIR BECK

problem (17) can be written as

min Tr(M(f0)WW T )

s.t. Tr(M(fi)WW T ) ≤ αi, i ∈ I,

Tr(M(fj)WW T ) = αj , j ∈ E ,
Tr(N ijWW T ) = 2δij , 1 ≤ i ≤ j ≤ r,

W ∈ R
(n+r)×r,

where the operator M is defined in (14) and

N ij =

(
0n×n 0n×r

0r×n Er
ij + Er

ji

)
, 1 ≤ i ≤ j ≤ r.

Making the change of variables U = WW T ∈ Sn+r
+ , we conclude that problem (17)

can be equivalently written as

min Tr(M(f0)U)

s.t. Tr(M(fi)U) ≤ αi, i ∈ I,

Tr(M(fj)U) = αj , j ∈ E ,
Tr(N ijU) = 2δij , 1 ≤ i ≤ j ≤ r,

U ∈ Sn+r
+ , rank(U) ≤ r.

Omitting the “hard” constraint rank(U) ≤ r, we finally arrive at the following SDR
of the QMP problem (6):

(SDRM) min Tr(M(f0)U)

s.t. Tr(M(fi)U) ≤ αi, i ∈ I,(18)

Tr(M(fj)U) = αj , j ∈ E ,
Tr(N ijU) = 2δij , 1 ≤ i ≤ j ≤ r,

U ∈ Sn+r
+ .

The dual problem to the SDR problem (SDRM) is given by

(DM) max
λi,Φ

−
∑

i∈I∪E
λiαi − Tr(Φ)

s.t. M(f0) +
∑

i∈I∪E
λiM(fi) +

(
0n×n 0n×r

0r×n Φ

)
� 0,(19)

Φ ∈ Sr,

λi ≥ 0, i ∈ I.

The symmetric matrix Φ = (φij)
r
i,j=1 contains the Lagrange multipliers associated

with the equality constraints Tr(N ijU) = 2δij . Specifically, for every 1 ≤ i ≤ r,
1
2φii is the multiplier corresponding to the constraint Tr(N iiU) = 2, and φij(=
φji) is the multiplier associated with Tr(N ijU) = 0 for 1 ≤ i < j ≤ r. By the
conic duality theorem [4] it follows that if (DM) is strictly feasible and bounded
above, then (SDRM) is solvable and val(SDRM) = val(DM). For that reason we seek
to find a simple condition under which (DM) is strictly feasible. The following lemma
establishes such a condition.

D
ow

nl
oa

de
d 

09
/0

2/
14

 to
 1

32
.6

8.
24

6.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



QUADRATIC MATRIX PROGRAMMING 1231

Lemma 3.3. Suppose that the following condition is satisfied:

(20) ∃γi ∈ R, i ∈ I ∪ E, for which γi ≥ 0, i ∈ I, such that A0 +
∑

i∈I∪E
γiAi � 0.

Then problem (DM) is strictly feasible.
Proof. Let γi ∈ R, i ∈ I ∪ E , be numbers satisfying (20), and let ε > 0 be a small

enough number for which A0 +
∑

i∈I∪E(γi + ε)Ai � 0. Define γ̃i ≡ γi + ε. Evidently,
γ̃i > 0 for i ∈ I. Now, for every symmetric r × r matrix Φ we have

M(f0)+
∑

i∈I∪E
γ̃iM(fi) +

(
0n×n 0n×r

0r×n Φ

)
(21)

=

(
A0 +

∑
γ̃iAi B0 +

∑
γ̃iBi

(B0 +
∑

γ̃iBi)
T 1

r (c0 +
∑

γ̃ici) Ir + Φ

)
,

where all the summations are over i ∈ I ∪ E . Since A0 +
∑

γ̃iAi � 0, then by the
Schur complement, the matrix on the RHS of (21) is positive definite if and only if

Φ �
(
B0 +

∑
γ̃iBi

)T (
A0 +

∑
γ̃iAi

)−1 (
B0 +

∑
γ̃iBi

)
− 1

r

(
c0 +

∑
γ̃ici

)
Ir.

Let Φ̃ ∈ Sr be an arbitrary matrix satisfying the latter LMI. Thus, for λi = γ̃i, i ∈
I ∪ E , and Φ = Φ̃ we have that all the inequalities in (19) (regular and generalized)
are strictly satisfied.

Remark 3.1. Conditions similar to (20) are very common in the analysis of QCQP
problems; see, e.g., [5, 18, 12, 19, 16]. This condition is automatically satisfied when
at least one of the constraints or the objective function is strictly convex (see also [19,
Proposition 2.1]).

3.2. Tightness of the SDR of the QMP problem. In this section we will
show that, under some mild conditions, QMP problems of order r with at most r
constraints have a tight SDR, and that strong duality holds. To show this, we need to
verify that problem (SDRM) possesses a solution with rank smaller than or equal to r.
This prompts us to consider questions concerning the existence of low-rank solutions
to SDP problems—a subject extensively studied by Pataki [14, 15] and Barvinok
[2, 3]; see also [11] for related results concerning the convexity of the image of several
homogenous QMs.

Let us consider a general-form SDP problem:

min Tr(C0U)

s.t. Tr(CiU) ≤ αi, i ∈ I1,(22)

Tr(CjU) = αj , j ∈ E1,

U ∈ Sn
+,

where I1 and E1 are disjoint index sets, Ci ∈ Sn, i ∈ {0} ∪ I1 ∪ E1, and αi ∈ R, i ∈
I1 ∪E1. Pataki showed [15] that if the number of constraints is smaller than an upper
bound which is a certain quadratic function of r, then there exists a solution with rank
no larger than r (see Theorem 3.4 below). The proof of this result is constructive and
is based on a simple rank reduction procedure4 for finding extreme points of convex

4The SDP considered in [15] consists only of inequality constraints. However, the same analysis
establishes the validity of Theorem 3.4.
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1232 AMIR BECK

sets of the form Sn
+∩A, where A is an affine space. For the sake of completeness, and

since the rank reduction procedure is a subroutine of the algorithm for solving the
QMP problem, we recall both the claim (Theorem 3.4 below) and the rank reduction
procedure (see Algorithm RED in the appendix).

Theorem 3.4 (see [15]). Suppose that problem (22) is solvable and that |I1| +
|E1| ≤ ( r+2

2 ), where r is a positive integer. Then problem (22) has a solution X∗ for
which rank(X∗) ≤ r.

Proof. Let X∗
0 be an optimal solution of problem (22). Apply Algorithm RED

(see the appendix) with input X∗
0 and obtain an optimal solution X∗ with rank(X∗)

≤ r.
Equipped with the latter result, we are now able to show that QMP problems of

order r with at most r constraints possess a tight SDR under some mild conditions.
Theorem 3.5 (tight SDR for the QMP problem). If problem (SDRM) is solvable

and |I| + |E| ≤ r, then problem (QMP) is solvable and val(SDRM) = val(QMP).
Proof. It is sufficient to show that problem (SDRM) has a solution with rank

smaller than or equal to r. The number of constraints in (SDRM) is equal to |I|+|E|+
( r+1

2 ), where the last term stands for the number of pairs (i, j) for which 1 ≤ i ≤ j ≤ r.
Thus, using |I| + |E| ≤ r, we conclude that the number of constraints in (SDRM) is
bounded above by

r +

(
r + 1

2

)
=

(
r + 2

2

)
− 1.

Invoking Theorem 3.4, the result follows.
As a conclusion from the conic duality theorem [4] we can now deduce the fol-

lowing corollary that guarantees tightness of the SDR and strong duality under the
conditions that the QMP problem (6) is feasible and that condition (20) is valid.

Corollary 3.6 (strong duality for QMP problems). Consider the QMP prob-
lem (6) with |I| + |E| ≤ r, its semidefinite relaxation (SDRM) (problem (18)) and
its dual (DM) (problem (19)). Suppose that condition (20) holds true and that the
QMP problem is feasible. Then problems (QMP) and (SDRM) are solvable and
val(QMP)= val(SDRM)= val(DM).

Proof. By Lemma 3.3, the validity of condition (20) implies that the dual prob-
lem (DM) is strictly feasible. Moreover, since the primal SDP problem (SDRM) is
feasible, it follows that the dual problem (DM) is bounded above. Thus, by the
conic duality theorem [4], we conclude that problem (SDRM) is solvable and that
val(SDRM) = val(DM). Since problem (SDRM) is solvable we conclude, by Theorem
3.5, that val(QMP) = val(SDRM).

Remark 3.2. In the special case r = 1, Corollary 3.6 recovers the well-known
strong duality/tightness of SDR results for QCQPs with a single quadratic constraint
(see, e.g., [12, 5, 18, 16]).

It is interesting to note that we can also describe an algorithm for extracting the
solution of a QMP problem (satisfying the condition in Corollary 3.6) from its SDR,
which is based on the rank reduction algorithm of [15], as follows.

Algorithm SOL-QMP.

Step 1. Solve the SDP problem (SDRM) and obtain an optimal solution U∗ ∈ Sn+r
+ .

Step 2. Invoke Algorithm RED (see the appendix) with input U∗, and produce an
optimal solution U∗

1 ∈ Sn+r
+ for which rank(U∗

1) ≤ r.

Step 3. Calculate a decomposition: U∗
1 = WW T , where W ∈ R

(n+r)×r.
Step 4. Let W = (Y; Z), where Y ∈ R

n×r and Z ∈ R
r×r. Return an optimal

solution X∗ = YZT to the QMP problem.
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4. The vectorized semidefinite relaxation and dual of the QMP prob-
lem. In the previous section we considered a semidefinite relaxation that was based on
a homogenization procedure specifically designed for QM functions. In this section we
examine an alternative (and natural) approach in which we begin by transforming the
problem into a “standard” QCQP and then use the usual relaxation technique. This
approach produces the vectorized SDR and vectorized dual problems. We will prove
that the two constructions are equivalent in some sense. In establishing this result we
rely on the tight SDR result of section 3 and a result on two LMI representations of
the property of nonnegativity of a QM function over R

n×r.
Our alternative SDR is constructed by following two steps.
Step 1. Transform the QMP problem (6) into the vectorized QMP problem (7).
Step 2. Formulate the corresponding SDR of the homogenized problem (7):

(SDRV ) min Tr(M(fV
0 )Z)

s.t. Tr(M(fV
i ))Z) ≤ αi, i ∈ I,(23)

Tr(M(fV
j )Z) = αj , j ∈ E ,

Znr+1,nr+1 = 1,

Z ∈ Snr+1
+

(recall that, since fV
i is a QM function of order one, M (fV

i ) ≡
( Ir⊗Ai

vec(Bi)
T

vec(Bi)
ci

)
.

Problem (SDRV) is an SDP problem, and its dual is given by

(DV) max−
∑

i∈I∪E
λiαi − t

s.t. M(fV
0 ) +

∑
i∈I∪E

λiM(fV
i ) + t

(
0nr,nr 0nr,1

01,nr 1

)
� 0,(24)

λi ≥ 0, i ∈ I.

It can be shown that problem (DV) is in fact a Lagrangian dual of the QMP problem
(6), and therefore the SDR (SDRV) can be interpreted as a bidual (i.e., dual of
the dual) of the primal QMP problem. Problems (SDRV) and (DV) are called the
vectorized semidefinite relaxation and dual of the QMP problem (respectively).

The pair of problems (SDRM)/(SDRV) and (DM)/(DV) seem quite different both
with respect to the number of variables and the sizes of the related matrices. However,
we will show in what follows (cf. Theorem 4.3) that these pairs of problems are
equivalent in some sense.

Lemma 4.2 below presents two different LMI characterizations of the nonnegativ-
ity of a QM function over the entire space. This lemma is a key ingredient in proving
the equivalence between the different dual/SDR problems. The proof of Lemma 4.2
relies on the following well-known result.

Lemma 4.1 (see [4, p. 163]). A quadratic inequality with a (symmetric) n × n
matrix A,

xTAx + 2bTx + c ≥ 0,

is valid for all x ∈ R
n if and only if

(
A b

bT c

)
� 0.
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1234 AMIR BECK

Lemma 4.2. Let f be a QM function given in (3). Then the following three
statements are equivalent:

(i) f(X) ≥ 0 for every X ∈ R
n×r.

(ii) There exists Φ ∈ Sr for which Tr(Φ) ≤ 0 such that(
A B

BT c
rIr + Φ

)
� 0.

(iii) (
Ir ⊗ A vec(B)

vec(B)T c

)
� 0.

Proof. (i⇔iii) By (4), the first statement is equivalent to the statement

fV (z) ≥ 0 for every z ∈ R
nr,

which, by Lemma 4.1, is the same as the third statement.
(i⇔ii) We begin by showing the following identity between subsets of R:

(25) F = W,

where (recall that [U ]r denotes the southeast r × r submatrix of U)

F = {f(X) : X ∈ R
n×r},

W = {Tr(M(f)U) : U ∈ Sn+r
+ , [U ]r = Ir}.

The inclusion F ⊆ W is clear. We will show that the reverse inclusion (W ⊆ F ) holds
true. Let α ∈ W , and consider the QMP problem

min 0

s.t. f(X) = α,(26)

X ∈ R
n×r.

Note that this is exactly the QMP problem (6) with r = 1, I = ∅, E = {1},
α1 = α, f0 ≡ 0, and f1 = f . The corresponding SDR of the QMP problem (26) is
given by

min 0

s.t. Tr(M(f)U) = α,(27)

U ∈ Sn+r
+ , [U ]r = Ir.

Since α ∈ W it follows that problem (27) is solvable (recall that the objective function
is identically zero, and hence “solvability” is the same as “feasibility”). Invoking
Theorem 3.5, we conclude that problem (26) is also feasible. Hence, α ∈ F . The
identity F = W implies that statement (i) is the same as

(28) min{Tr(M(f)U) : U ∈ Sn+r
+ , [U ]r = Ir} ≥ 0.

The latter SDP problem is strictly feasible (U = In+r � 0 is feasible) and bounded
below (by zero) and thus, by the conic duality theorem, we conclude that the dual
problem, given in this case by

max
Φ∈Sr

{
−Tr(Φ) :

(
A B

BT c
rIr + Φ

)
� 0

}
,
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QUADRATIC MATRIX PROGRAMMING 1235

is solvable and has value equal to the value of the primal problem. Therefore, state-
ment (28) is equivalent to the existence of a symmetric r × r matrix Φ for which(

A B

BT c
rIr + Φ

)
� 0

and Tr(Φ) ≤ 0.
We are now ready to prove the main result of this section, namely, that the values

of the two dual problems (DM) and (DV) and the two SDR problems (SDRM) and
(SDRV) are all equal to each other under some mild conditions.

Theorem 4.3. Consider the SDRs (SDRM) and (SDRV) (problems (18) and
(23)) and the dual problems (DM) and (DV) (problems (19) and (24)) of the QMP
problem (6). Suppose that condition (20) is satisfied and that (QMP) is feasible. Then
(SDRM) and (SDRV) are solvable and

val(DM) = val(DV) = val(SDRM) = val(SDRV).

Furthermore, if {λi}i∈I∪E and Φ is an optimal solution of (DM), then an optimal
solution to (DV) is given by {λi}i∈I∪E , t, where t = Tr(Φ).

Proof. Since condition (20) is assumed to hold true then, by Lemma 3.3, the
dual problem (DM) is strictly feasible, and an argument similar to the one used in
the proof of Lemma 3.3 shows that (DV) is also strictly feasible. Thus, by the conic
duality Theorem [4], both problems (SDRM) and (SDRV) are solvable, and we have
the equality val(DM) = val(SDRM) as well as val(DV) = val(SDRV). We are left with
the task of proving that val(DM) = val(DV). Consider the LMI constraint in problem
(DV), which can explicitly be written as follows:

(29)

⎛
⎝ Ir ⊗ (A0 +

∑
λiAi) vec

(
B0 +

∑
λiBi

)

vec
(
B0 +

∑
λiBi

)T

c0 +
∑

λici + t

⎞
⎠ � 0,

where the summations are over i ∈ I ∪ E . By the equivalence of the second and third
part of Lemma 4.2 we have that the above LMI holds true if and only if there exists
Z ∈ Sr such that(

A0 +
∑

λiAi B0 +
∑

λiBi

(B0 +
∑

λiBi)
T 1

r (c0 +
∑

λici + t)Ir + Z

)
� 0,

and Tr(Z) ≤ 0. Making the change of variables Φ = Z + t
rIr, we deduce that the

LMI (29) is equivalent to the existence of a matrix Φ ∈ Sr such that

(30)

(
A0 +

∑
λiAi B0 +

∑
λiBi

(B0 +
∑

λiBi)
T 1

r (c0 +
∑

λici)Ir + Φ

)
� 0,

and

(31) Tr(Φ) ≤ t.

Replacing the LMI in problem (24) with the LMIs (30) and (31), problem (DV)
is transformed into

max
λi,Φ,t

−
∑

i∈I∪E
λiαi − t

s.t.

(
A0 +

∑
λiAi B0 +

∑
λiBi

(B0 +
∑

λiBi)
T 1

r (c0 +
∑

λici)Ir + Φ

)
� 0,

λi ≥ 0, i ∈ I,
Tr(Φ) ≤ t.
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1236 AMIR BECK

It is clear that any optimal solution of the last problem satisfies t = Tr(Φ), and thus
the problem is the same as

max
λi,Φ

−
∑

i∈I∪E
λiαi − Tr(Φ)

s.t.

(
A0 +

∑
λiAi B0 +

∑
λiBi

(B0 +
∑

λiBi)
T 1

r (c0 +
∑

λici)Ir + Φ

)
� 0,

λi ≥ 0, i ∈ I,

which is identical to problem (DM).
Combining the latter result with the strong duality result, Corollary 3.6, the

following corollary immediately follows.
Corollary 4.4. Consider the QMP problem (6) with |I|+ |E| ≤ r, its vectorized

semidefinite relaxation (SDRV) (problem (23)), and its vectorized dual (DV) (problem
(24)). Suppose that condition (20) holds true and that the QMP problem is feasible.
Then problems (QMP) and (SDRV) are solvable and val(QMP) = val(SDRV) = val(DV).

5. An application to robust least squares. We continue the example from
section 2.2. Suppose that the uncertainty set U associated with the matrix A is given
by multiple norm constraints:

(32) U = {Δ ∈ R
n×r : ‖LiΔ‖2 ≤ ρi, i = 1, . . . ,m},

where Li ∈ R
ki×n for some positive integers k1, . . . , km and ρi > 0, i = 1, . . . ,m. The

above form of the uncertainty set is more general then the standard single-constraint
form, and it can thus be used to describe more complicated scenarios of uncertainties.
For example, by setting ki = n,m = n, and Li = En

ii, we model the situation in which
the uncertainty associated with each column of the matrix A has a separate norm
constraint.

Assume that there exist nonnegative numbers γ1, . . . , γm such that

m∑
i=1

γiL
T
i Li � 0.

If m ≤ r, then the conditions of Corollary 4.4 are satisfied, and as a consequence the
inner maximization problem (9) is equal to the value of the dual problem given by

min
t,λi

m∑
i=1

λiρi + t

s.t.

(
Ir ⊗ (−Q +

∑m
i=1 λiL

T
i Li) − vec(F)

− vec(F)T −c + t

)
� 0,

λi ≥ 0, i = 1, 2, . . . ,m.

Here we considered the equivalent vectorized dual because it is not clear how to derive
an SDP formulation from the nonvectorized dual. Now, using the identities (see [10])

Ir ⊗ Q
(10)
= Ir ⊗ xxT = (Ir ⊗ x)(Ir ⊗ x)T ,

vec(F)
(10)
= vec(x(Ax − b)T ) = (Ir ⊗ x)(Ax − b),
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QUADRATIC MATRIX PROGRAMMING 1237

the dual problem is transformed into

min
t,λi

m∑
i=1

λiρi + t

s.t.

(
−(Ir ⊗ x)(Ir ⊗ x)T +

∑m
i=1 λi(Ir ⊗ (LT

i Li)) −(Ir ⊗ x)(Ax − b)
−(Ax − b)T (Ir ⊗ x)T −‖Ax − b‖2 + t

)
� 0,

λi ≥ 0, i = 1, 2, . . . ,m,

which, by the Schur complement can be written as

min
t,λi

m∑
i=1

λiρi + t

s.t.

⎛
⎝ Ir (Ir ⊗ x)T Ax − b

Ir ⊗ x
∑m

i=1 λi(Ir ⊗ (LT
i Li)) 0

(Ax − b)T 0 t

⎞
⎠ � 0,

λi ≥ 0, i = 1, 2, . . . ,m.

Finally, we arrive at the following SDP formulation of the RLS problem (8):

min
t,λi,x

m∑
i=1

λiρi + t

s.t.

⎛
⎝ Ir (Ir ⊗ x)T Ax − b

Ir ⊗ x
∑m

i=1 λi(Ir ⊗ (LT
i Li)) 0

(Ax − b)T 0 t

⎞
⎠ � 0,

λi ≥ 0, i = 1, 2, . . . ,m.

Appendix. A rank reduction algorithm for solvable semidefinite prob-
lems. We review here the rank reduction algorithm of [15] for solving SDP problems
of the form (22).5 The underlying assumption that guarantees the validity of the
process is that problem (22) is solvable and that |I1| + |E1| ≤ ( r+2

2 ) − 1.
Algorithm RED.

Input: X0, an optimal solution to problem (22).
Output: An optimal solution X∗ to problem (22) satisfying rank(X∗) ≤ r.

1. If rank(X0) ≤ r, then go to step 3. Else go to step 2.
2. While rank(X0) > r, repeat steps (a)–(e):

(a) Set d ← rank(X0).
(b) Compute a decomposition of X0: X0 = UUT , where U ∈ R

n×d.
(c) Find a nontrivial solution6 Z0 for the set of homogenous linear equations

in the d× d symmetric variables matrix Z (Z = ZT ):

Tr(UTCiUZ) = 0, i ∈ I1 ∪ E1.

(d) If Z0 � 0, then set W ← −Z0. Else set W ← Z0.
(e) Set X0 ← U(I + βW )UT , where β = −1/λmin(W ).

3. Set X∗ ← X0 and STOP.

5Note that in [15], the SDP problem contains only inequality constraints. However, it is imme-
diately seen that exactly the same rank reduction algorithm also works here.

6Using the relations |I1| + |E1| ≤ ( r+2
2

) − 1, d > r, it is easy to see that the homogenous system
has more variables than equations and, as a result, has a nonzero solution.
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1238 AMIR BECK

Note that the algorithm does not make use of the matrix C0 corresponding to
the objective function in (22). Indeed, it can be shown that since the input to the
algorithm is an optimal solution of the SDP problem (22), then the value Tr(C0X0)
remains constant throughout the process.
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