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STRONG DUALITY IN NONCONVEX QUADRATIC
OPTIMIZATION WITH TWO QUADRATIC CONSTRAINTS∗

AMIR BECK† AND YONINA C. ELDAR‡

Abstract. We consider the problem of minimizing an indefinite quadratic function subject to
two quadratic inequality constraints. When the problem is defined over the complex plane we show
that strong duality holds and obtain necessary and sufficient optimality conditions. We then develop
a connection between the image of the real and complex spaces under a quadratic mapping, which
together with the results in the complex case lead to a condition that ensures strong duality in the
real setting. Preliminary numerical simulations suggest that for random instances of the extended
trust region subproblem, the sufficient condition is satisfied with a high probability. Furthermore, we
show that the sufficient condition is always satisfied in two classes of nonconvex quadratic problems.
Finally, we discuss an application of our results to robust least squares problems.
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1. Introduction. In this paper we consider quadratic minimization problems
with two quadratic constraints both in the real and the complex domain:

(QPC) min
z∈Cn

{f0(z) : f1(z) ≥ 0, f2(z) ≥ 0},(1)

(QPR) min
x∈Rn

{f0(x) : f1(x) ≥ 0, f2(x) ≥ 0}.(2)

In the real case each function fj : R
n → R is defined by fj(x) = xTAjx + 2bTj x +

cj with Aj = AT
j ∈ R

n×n, bj ∈ R
n, and cj ∈ R. In the complex setting, fj :

C
n → R is given by fj(z) = z∗Ajz + 2�(b∗jz) + cj , where Aj = A∗

j are Hermitian
matrices, bj ∈ C

n, and cj ∈ R. The problem (QPR) appears as a subproblem in some
trust region algorithms for constrained optimization [6, 10, 26] where the original
problem is to minimize a general nonlinear function subject to equality constraints.
The subproblem, often referred to as the two trust region problem [1] or the extended
trust region problem [35], has the form

(TTRS) min
x∈Rn

{
xTBx + 2gTx : ‖x‖ ≤ Δ, ‖ATx + c‖ ≤ ξ

}
.(3)

More details on trust region algorithms can be found in [8, 23, 36, 37, 10]. A simpler
(nonconvex) quadratic problem than (TTRS) is the trust region subproblem, which
appears in trust region algorithms for unconstrained optimization:

(TR) min
x∈Rn

{xTBx + 2gTx : ‖x‖2 ≤ δ}.(4)
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STRONG DUALITY IN NONCONVEX QUADRATIC OPTIMIZATION 845

Problem (TR) has been studied extensively in the literature; see, e.g., [5, 12, 20, 21,
22, 30, 31] and references therein; it enjoys many useful and attractive properties. In
particular, it is known that (TR) admits no duality gap and that the semidefinite
relaxation (SDR) of (TR) is tight. Moreover, the solution of (TR) can be extracted
from the dual solution. A necessary and sufficient condition for x̄ to be optimal for
(TR) is that there exists ᾱ ≥ 0 such that [15, 30]

(B + ᾱI)x̄ + g = 0,(5)

‖x̄‖2 ≤ δ,(6)

ᾱ(‖x̄‖2 − δ) = 0,(7)

B + ᾱI � 0.(8)

Unfortunately, in general these results cannot be extended to the (TTRS) problem, or
to (QPR). Indeed, it is known that the SDR of (QPR) is not necessarily tight [35, 36].
An exception is when the functions f0, f1, f2 are homogeneous quadratic functions and
there exists a positive definite linear combination of the matrices Aj [35]. Another
interesting result obtained in [35], based on the dual cone representation approach
[33], is that if f1 is concave and f2 is linear, then, although the SDR is not necessarily
tight, (QPR) can be solved efficiently.

If the original nonlinear constrained problem has complex variables, then instead
of (QPR) one should consider the complex variant (QPC). Optimization problems with
complex variables appear naturally in many engineering applications. For example, if
the estimation problem is posed in the Fourier domain, then typically the parameters
to be estimated will be complex [24, 28]. In the context of digital communications,
many signal constellations are modelled as complex valued. Another area where
complex variables naturally arise is narrowband array processing [9].

Of course, every complex quadratic problem of dimension n can be written as
a real quadratic problem of dimension 2n by decomposing the complex vector z as
z = x + iy, where x = �(z) and y = 	(z) are real. Then fj(z) can be written as

fj(z) = wTQjw + 2dT
j w + cj , with

w =

(
x
y

)
∈ R

2n,Qj =

(
�(Aj) −	(Aj)
	(Aj) �(Aj)

)
,d =

(
�(bj)
	(bj)

)
.

However, the opposite claim is false: not every real quadratic problem of dimension
2n can be formulated as an n-dimensional complex quadratic problem. Evidently, the
family of complex quadratic problems is a special case of real quadratic problems.
Why then consider the complex setting separately? The answer to this question is
that, as we shall see, there are stronger results for complex problems than for their
real counterparts (cf. section 2).

In this paper we discuss both the complex and real settings. Our interest in the
complex case is two-fold: First, as noted above, in certain applications we naturally
deal with complex variables. Second, our derivations in the complex setting will serve
as a basis for the results in the real case. In section 2, we use an extended version
of the S-lemma [13] to show that under some mild conditions strong duality holds
for the complex valued problem (QPC) and that the SDR is tight. We then develop
optimality conditions similar to those known for the TR problem (4), and present a
method for calculating the optimal solution of (QPC) from the dual solution. Thus,
all the results known for (TR) can essentially be extended to (QPC). Section 3 treats
the real setting. After a discussion of the complex relaxation of (QPR), which is an

D
ow

nl
oa

de
d 

09
/0

2/
14

 to
 1

32
.6

8.
24

6.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



846 AMIR BECK AND YONINA C. ELDAR

alternative lifting procedure to the popular SDP relaxation, we present a sufficient
condition that ensures zero duality gap (and tightness of the SDR) for (QPR). Our
result is based on the connection between the image of the real and complex spaces
under a quadratic mapping. The advantage of our condition is that it is expressed
via the dual optimal solution and therefore can be validated in polynomial-time.
Furthermore, this condition can be used to establish strong duality in some general
classes of problems. As we show, an example where a problem of this form arises
naturally is in robust least squares design where the uncertainty set is described by
two norm constraints. In addition, preliminary numerical experiments suggest that
for random instances of the TTRS problem (3), our condition is often satisfied.

Throughout the paper, the following notation is used: For simplicity, instead
of inf/sup we use min/max; however, this does not mean that we assume that the
optimum is attained and/or finite. Vectors are denoted by boldface lowercase letters;
e.g., y, and matrices by boldface uppercase letters; e.g., A. For two matrices A
and B, A 
 B (A � B) means that A − B is positive definite (semidefinite).
Sn

+ = {A ∈ R
n×n : A � 0} is the set all real valued n × n symmetric positive

semidefinite matrices and H+
n = {A ∈ C

n×n : A � 0} is the set of all complex valued
n× n Hermitian positive semidefinite matrices. In is the identity matrix of order n.
The real and imaginary part of scalars, vectors, or matrices are denoted by �(·) and
	(·). The value of the optimal objective function of an optimization problem

(P) : min /max{f(x) : x ∈ C}

is denoted by val(P). We use some standard abbreviations such as SDP (semidefinite
programming), SDR (semidefinite relaxation), and LMI (linear matrix inequalities).

2. The complex case. We begin by treating the complex valued problem (QPC).
Using an extended version of the S-lemma we prove a strong duality result, and then
develop necessary and sufficient optimality conditions, similar to those known for the
TR problem (4) (conditions (5)–(8)). Finally, we discuss how to extract a solution for
(QPC), given a dual optimal point.

2.1. Strong duality for (QPC). The fact that strong duality in (nonconvex)
quadratic optimization problems is equivalent in some sense to the existence of a
corresponding S-lemma has already been exhibited by several authors [13, 25]. For
example, strong duality for quadratic problems with a single constraint can be shown
to follow from the nonhomogeneous S-lemma [13], which states that if there exists
x̄ ∈ R

n such that x̄TA2x̄ + 2bT2 x̄ + c2 > 0, then the following two conditions are
equivalent:

1. xTA1x+2bT1 x+ c1 ≥ 0 for every x ∈ R
n such that xTA2x+2bT2 x+ c2 ≥ 0.

2. There exists λ ≥ 0 such that(
A1 b1

bT1 c1

)
� λ

(
A2 b2

bT2 c2

)
.

Generalizations of the S-lemma in the real case are in general not true. For example,
the natural extension to the case of two quadratic inequalities that imply a third
quadratic inequality does not hold in general (see the example in [4]). However, the
following theorem of Fradkov and Yakubovich [13, Theorem 2.2] extends the S-lemma
to the complex case. This result will be the key ingredient in proving strong duality.

Theorem 2.1 (extended S-lemma [13]). Let

fj(z) = z∗Ajz + 2�(b∗jz) + cj , z ∈ C
n, j = 0, 1, 2,
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STRONG DUALITY IN NONCONVEX QUADRATIC OPTIMIZATION 847

where Aj are n × n Hermitian matrices, bj ∈ C
n, and cj ∈ R. Suppose that there

exists z̃ ∈ C
n such that f1(z̃) > 0, f2(z̃) > 0. Then the following two claims are

equivalent:
1. f0(z) ≥ 0 for every z ∈ C

n such that f1(z) ≥ 0 and f2(z) ≥ 0.
2. There exists α, β ≥ 0 such that(

A0 b0

b∗0 c0

)
� α

(
A1 b1

b∗1 c1

)
+ β

(
A2 b2

b∗2 c2

)
.

The Lagrangian dual of (QPC) can be shown to have the following form:1

(DC) max
α≥0,β≥0,λ

{
λ

∣∣∣∣
(

A0 b0

b∗0 c0 − λ

)
� α

(
A1 b1

b∗1 c1

)
+ β

(
A2 b2

b∗2 c2

)}
.(9)

Problem (DC) is sometimes called Shor’s relaxation [29]. Theorem 2.2 states that if
problem (QPC) is finite and strictly feasible, then val(QPC) = val(DC).

Theorem 2.2 (strong duality for complex valued quadratic problems). Suppose
that problem (QPC) is strictly feasible, i.e., there exists z̃ ∈ C

n such that f1(z̃) >
0, f2(z̃) > 0. If val(QPC) is finite, then the maximum of problem (DC) is attained
and val(QPC) = val(DC).

Proof. Since val(QPC) is finite then clearly

val(QPC) = max
λ

{λ : val(QPC) ≥ λ}.(10)

Now, the statement val(QPC) ≥ λ holds true if and only if the implication

f1(z) ≥ 0, f2(z) ≥ 0 ⇒ f0(z) ≥ λ

is valid. By Theorem 2.1 this is equivalent to

∃α, β ≥ 0

(
A0 b0

b∗0 c0 − λ

)
� α

(
A1 b1

b∗1 c1

)
+ β

(
A2 b2

b∗2 c2

)
.(11)

Therefore, by replacing the constraint in (10) with the LMI (11), we obtain that
val(QPC) = val(DC). The maximum of (DC) is attained at (λ̄, ᾱ, β̄), where λ̄ is the
(finite) value val(QPC) and ᾱ, β̄ are the corresponding nonnegative constants that
satisfy the LMI (11) for λ = λ̄.

One referee pointed us to a recent related paper [18] from June 2005, which was
posted to a web site after we submitted our paper. In [18], the strong duality result
of Theorem 2.2 is derived by using an interesting new rank-one decomposition, while
our proof is a direct consequence of the classical extended S-lemma of Fradkov and
Yakubovich.

It is interesting to note that the dual problem to (DC) is the so-called SDR of
(QPC):

(SDRC) min
Z

{Tr(ZM0) : Tr(ZM1) ≥ 0,Tr(ZM2) ≥ 0, Zn+1,n+1 = 1,Z ∈ H+
n+1},

(12)

where

M j =

(
Aj bj
b∗j cj

)
.

1This formulation can be found in [34].
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848 AMIR BECK AND YONINA C. ELDAR

By the conic duality theorem (see, e.g., [4]), it follows that if both problems (QPC) and
(DC) are strictly feasible, then they attain their solutions and val(QPC) = val(DC) =
val(SDRC). Finally, we note that strict feasibility of the dual problem (DC) is equiv-
alent to saying that there exist α̃ ≥ 0, β̃ ≥ 0 such that A0 
 α̃A1 + β̃A2. This
condition is automatically satisfied when at least one of the constraints or the objec-
tive function is strictly convex (see also [35, Proposition 2.1]), an assumption that is
true in many practical scenarios, for example in the TTRS problem (3).

2.2. Optimality conditions. Theorem 2.3 will be very useful in section 2.3,
where a method for extracting the optimal solution of (QPC) from the optimal dual
solution of (DC) will be described.

Theorem 2.3. Suppose that both problems (QPC) and (DC) are strictly feasible,
and let (ᾱ, β̄, λ̄) be an optimal solution of (DC). Then z̄ is an optimal solution of
(QPC) if and only if

(A0 − ᾱA1 − β̄A2)z̄ + b0 − ᾱb1 − β̄b2 = 0,(13)

f1(z̄), f2(z̄) ≥ 0,(14)

ᾱf1(z̄) = β̄f2(z̄) = 0.(15)

Proof. The proof follows from the strong duality result (Theorem 2.2) and from
saddle point optimality conditions (see, e.g., [2, Theorem 6.2.5]).

Note that a direct consequence of Theorem 2.3 is that the linear system (13) is
consistent.

We now develop necessary and sufficient optimality conditions for (QPC) assuming
strict feasibility, which are a natural generalization of the optimality conditions (5)–(8)
for the trust region subproblem. Notice that for the complex version of the (TTRS),
strict feasibility of (DC) is always satisfied since the norm constraint is strictly convex.

Theorem 2.4. Suppose that both problems (QPC) and (DC) are strictly feasible.
Then z̄ is an optimal solution of (QPC) if and only if there exist α, β ≥ 0 such that

(i) (A0 − αA1 − βA2)z̄ + b0 − αb1 − βb2 = 0;
(ii) f1(z̄), f2(z̄) ≥ 0;
(iii) αf1(z̄) = βf2(z̄) = 0;
(iv) A0 − αA1 − βA2 � 0.
Proof. The necessary part is trivial since z̄, ᾱ, and β̄ of Theorem 2.3 satisfy

conditions (i)–(iv). Suppose now that conditions (i)–(iv) are satisfied. Then by (ii), z̄
is feasible and therefore f0(z̄) ≥ val(QPC). To prove the reverse inequality (f0(z̄) ≤
val(QPC)), consider the unconstrained minimization problem:

min
z∈Cn

{f0(z) − ᾱf1(z) − β̄f2(z)}.(16)

We have

val((16)) ≤ min
z∈Cn

{f0(z) − ᾱf1(z) − β̄f2(z) : f1(z) ≥ 0, f2(z) ≥ 0}

≤ min
z∈Cn

{f0(z) : f1(z) ≥ 0, f2(z) ≥ 0} = val(QPC).(17)

Conditions (i) and (iv) imply that z̄ is an optimal solution of (16) so that

f0(z̄) − ᾱf1(z̄) − β̄f2(z̄) = val((16)) ≤ val(QPC),(18)

where the latter inequality follows from (17). By condition (iii) we have that f0(z̄) =
f0(z̄) − ᾱf1(z̄) − β̄f2(z̄). Combining this with (18) we conclude that f0(z̄) ≤
val(QPC).
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STRONG DUALITY IN NONCONVEX QUADRATIC OPTIMIZATION 849

2.3. Finding an explicit solution of (QPC). Theorem 2.3 can be used to
find an explicit solution to (QPC) from the solution of the dual (DC). Specifically,
in section 2.3.1 we show that given the optimal dual solution, (QPC) reduces to a
quadratic feasibility problem, whose solution is described in section 2.3.2.

2.3.1. Reduction to a quadratic feasibility problem. Suppose that both
(QPC) and (DC) are strictly feasible. From Theorem 2.3, z̄ is an optimal solution if
it satisfies (13), (14), and (15). If A0 − ᾱA1 − β̄A2 
 0, then the (unique) solution
to the primal problem (QPC) is given by

z̄ = −(A0 − ᾱA1 − β̄A2)
−1(b0 − ᾱb1 − β̄b2).

Next, suppose that A0 − ᾱA1 − β̄A2 is positive semidefinite but not positive definite.
In this case (13) can be written as z = Bw+a, where the columns of B form a basis
for the null space of A0 − ᾱA1 − β̄A2 and a = −(A0 − ᾱA1 − β̄A2)

†(b0 − ᾱb1 − β̄b2)
is a solution of (13). It follows that z̄ = Bw̄ + a is an optimal solution to (QPC) if
and only if conditions (14) and (15) of Theorem 2.3 are satisfied, i.e.,

g1(w̄) ≥ 0, g2(w̄) ≥ 0, ᾱg1(w̄) = 0, β̄g2(w̄) = 0, (gj(w) ≡ fj(Bw + a)).(19)

We are left with the problem of finding a vector which is a solution of a system of
two quadratic equalities or inequalities as described in Table 1. This problem will be
called the quadratic feasibility problem.

Table 1

Cases of the quadratic feasibility problem.

No. Case Feasibility problem
I ᾱ = 0, β̄ = 0 g1(w) ≥ 0 and g2(w) ≥ 0
II ᾱ > 0, β̄ = 0 g1(w) = 0 and g2(w) ≥ 0
III ᾱ = 0, β̄ > 0 g1(w) ≥ 0 and g2(w) = 0
IV ᾱ > 0, β̄ > 0 g1(w) = 0 and g2(w) = 0

Note that since (λ̄, ᾱ, β̄) is an optimal solution of the dual problem (DC), we must
have A0 − ᾱA1 − β̄A2 � 0. Thus, the first case is possible only when A0 � 0.

We summarize the above discussion in the following theorem.
Theorem 2.5. Suppose that both problems (QPC) and (DC) are strictly feasible

and let (ᾱ, β̄, λ̄) be an optimal solution of problem (DC). Then
1. if A0− ᾱA1− β̄A2 
 0, then the (unique) optimal solution of (QPC) is given

by

z̄ = −(A0 − ᾱA1 − β̄A2)
−1(b0 − ᾱb1 − β̄b2),

2. if A0 − ᾱA1 − β̄A2 � 0 but not positive definite, then the solutions of
(QPC) are z = Bw + a, where the columns of B ∈ C

n×d form a ba-
sis for N (A0 − ᾱA1 − β̄A2), a is a solution of (13), and w ∈ C

d (d =
dim

(
N (A0 − ᾱA1 − β̄A2)

)
) is any solution of (19).

2.3.2. Solving the quadratic feasibility problem. We now develop a method
for solving all cases of the quadratic feasibility problem described in Table 1, under
the condition that f1 is strictly concave, i.e., A1 ≺ 0 (so that the corresponding
constraint is strictly convex).2 The strict concavity of g1(w) = f1(Bw + a) follows

2Note that this assumption readily implies that problem (DC) is strictly feasible.
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850 AMIR BECK AND YONINA C. ELDAR

immediately. By applying an appropriate linear transformation on g1, we can assume
without loss of generality that g1(w) = γ − ‖w‖2 (γ ≥ 0). Our approach will be to
use solutions of at most two (TR) problems.

We split our analysis according to the different cases.
Case I+II. A solution to the feasibility problem in Case I (II) is any solution to

the problem max{g2(w) : ‖w‖2 ≤ γ} (max{g2(w) : ‖w‖2 = γ})
Case III. We first calculate w0,w1 given by

w0 ∈ argmin{g2(w) : ‖w‖2 ≤ γ}, w1 ∈ argmax{g2(w) : ‖w‖2 ≤ γ}.

A solution to the feasibility problem is then given by w̄ = w0 + η(w1 −w0), where η
is a solution to the scalar quadratic problem g2(w

0 + η(w1 −w0)) = 0 with η ∈ [0, 1].
Case IV. Let w0 and w1 be defined by

w0 ∈ argmin{g2(w) : ‖w‖2 = γ}, w1 ∈ argmax{g2(w) : ‖w‖2 = γ}.

The case in which w0 and w1 are linearly dependent can be analyzed in the same
way as Case III. If w0 and w1 are linearly independent we can define

u(η) = w0 + η(w1 −w0), w(η) =
√
γ

u(η)

‖u(η)‖ , η ∈ [0, 1].

A solution to the feasibility problem is given by w(η), where η is any root of the
scalar equation g2(w(η)) = 0, η ∈ [0, 1]. The latter equation can be written (after
some elementary algebraic manipulation) as the following quartic scalar equation:

(
γu(η)∗A2u(η) + c2‖u(η)‖2

)2
= 4γ‖u(η)‖2(�(b∗2u(η)))2.(20)

Notice that (20) has at most four solutions, which have explicit algebraic expressions.
An alternative procedure for finding an explicit solution of (QPC) is described in

[18]. The dominant computational effort in both methods is the solution of the SDP
(SDRC) or its dual (DC), which can be solved by a primal dual interior point method
that requires O(n3.5) operations per accuracy digit (see, e.g., [4, section 6.6.1]).

3. The real case. We now treat the problem (QPR) in which the data and
variables are assumed to be real valued. The dual problem to (QPR) is

(DR) max
α≥0,β≥0,λ

{
λ

∣∣∣∣
(

A0 b0

bT0 c0 − λ

)
� α

(
A1 b1

bT1 c1

)
+ β

(
A2 b2

bT2 c2

)}
.

(21)

Note that this is exactly the same as problem (DC) (problem (9)), where here we use
the fact that the data is real and therefore b∗j = bTj . The SDR in this case is given by

(SDRR) min
X

{Tr(XM0) : Tr(XM1) ≥ 0,Tr(XM2) ≥ 0, Xn+1,n+1 = 1,X ∈ Sn+1
+ }.

(22)

In contrast to the complex case, strong duality is generally not true for (QPR).
Nonetheless, in this section we use the results obtained for (QPC) in order to establish
several results on (QPR). In section 3.1 we show that if the constraints of (QPR) are
convex, then (QPC), considered as a relaxation of (QPR), can produce an approximate
solution. In section 3.2 we relate the image of the real and complex space under a
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STRONG DUALITY IN NONCONVEX QUADRATIC OPTIMIZATION 851

quadratic mapping, which will enable us to bridge between the real and complex
case. Using the latter result, a sufficient condition for zero duality gap is proved in
section 3.3. The condition is expressed via the optimal dual variables and thus can be
verified in polynomial time. Preliminary numerical results suggest that for the TTRS
problem (3) this condition is often satisfied. Moreover, we identify two general classes
of problems with zero duality gap, based on this condition. As we show in section 3.4,
these results can be applied to the robust least-squares problem in order to obtain a
polynomial time algorithm in the presence of uncertainty sets described by two norm
constraints.

3.1. The complex relaxation. As already mentioned, val(QPR) is not nec-
essarily equal to val(DR). However, the complex counterpart (QPC) does satisfy
val(QPC) = val(DR) and we can always find a complex valued solution to (QPC)
that attains the bound val(DR). Therefore, we can consider (QPC) as a tractable
relaxation (the complex relaxation) of the real valued problem (QPR). The following
example, whose data is taken from Yuan [36, p. 59], illustrates this fact.

Example. Consider the following real valued quadratic optimization problem:

min
x1,x2∈R

{−2x2
1 + 2x2

2 + 4x1 : x2
1 + x2

2 − 4 ≤ 0, x2
1 + x2

2 − 4x1 + 3 ≤ 0},(23)

which is a special case of (QPR) with

A0 =

(
−2 0
0 2

)
,A1 = A2 = −I, b0(2; 0), b1 = 0, b2 = (2; 0), c0 = 0, c1 = 4, c2 = −3.

The solution to the dual problem is given by ᾱ = 1, β̄ = 1, and λ̄ = −1. It is easy to see
that the optimal solution to (QPR) is given by x1 = 2, x2 = 0 and its corresponding
optimal solution is 0. The duality gap is thus 1. By the strong duality result of
Theorem 2.2, we can find a complex valued solution to the complex counterpart

min
z1,z2∈C

{−2|z1|2 + 2|z2|2 + 4�(z1) : |z1|2 + |z2|2 − 4 ≤ 0, |z1|2 + |z2|2 − 4�(z1) + 3 ≤ 0}.
(24)

with value equal to that of the dual problem (that is, equal to −1). Using the
techniques described in section 2.3 we obtain that the solution of problem (24) is
z1 = 7/4 +

√
15/16i, z2 = 0 with function value −1.

The following theorem states that if the constraints of (QPC) are convex (as in
the two trust region problem), then we can extract an approximate real solution that
is feasible from the optimal complex solution z̄ by taking x̄ = �(z̄).

Theorem 3.1. Suppose that both (QPR) and (DR) are strictly feasible. Let
A1,A2 ∈ R

n×n be negative definite matrices, A0 = AT
0 ∈ R

n×n, bj ∈ R
n, and

cj ∈ R. Let z̄ be an optimal complex valued solution of (QPC) and let x̄ = �(z̄).
Then x̄ is a feasible solution of (QPR) and

f0(x̄) − val(QPR) ≤ −	(z̄)TA0	(z̄).

Proof. To show that x̄ is a feasible solution of (QPR) note that for z ∈ C
n, j = 1, 2

one has

0 ≤ fj(z) = z∗Ajz + 2�(b∗jz) + cj

= �(z)TAj�(z) + 	(z)TAj	(z) + 2bTj �(z) + cj

≤ �(z)TAj�(z) + 2bTj �(z) + cj = fj(�(z)),
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852 AMIR BECK AND YONINA C. ELDAR

where the last inequality follows from Aj ≺ 0. Thus, since z̄ is feasible, so is �(z̄).
Finally,

f0(�(z̄))−val(QPR) ≤ f0(�(z̄))−val(QPC) = f0(�(z̄))−f0(z̄) = −	(z̄)TA0	(z̄).

In our example the approximate solution is (7/4, 0) and its function value is equal
to 0.875.

The extension from real to complex variables can be considered as lifting. A very
popular lifting procedure is the SDR in which a nonconvex quadratic optimization
problem defined over R

n is lifted to the corresponding SDR, which is defined over the
space of n× n positive semidefinite matrices Sn

+. This approach has been studied in
various contexts such as approximation of combinatorial optimization problems (see
[4] and references therein), polynomial inequalities [19], and more. The lifting pro-
cedure we suggest is relevant only in the context of quadratic optimization problems
with two quadratic constraints. Our method is based on extending the real number
field R into the complex number field C. The value of the convex relaxation val(QPC)
is equal to the value of the SDR val(SDRR). The main difference between the two
strategies is in the “projection” stage onto R

n. In our strategy, the projection is
simple and natural: we take the real part of the vector. If the constraints are convex,
then we have obtained a feasible point. In contrast, the choice of projection of the
SDR solution, which is an n × n matrix, is not obvious. There are well established
methods for specific instances (such as Max-Cut problems), but it is not clear how
to extract a “good” approximate and feasible solution for general convex quadratic
constraints. Another advantage to our method is that the procedure for finding a so-
lution to (QPC) defined in section 2.3 can be manipulated so that it will output a real
valued optimal solution in the case where strong duality indeed holds. In contrast,
projection of the SDR solution may no longer be optimal, even in the case of strong
duality.

3.2. The image of the complex and real space under a quadratic map-
ping. One of the key ingredients in proving the sufficient condition in section 3.3 is a
result (Theorem 3.3) on the image of the spaces C

n and R
n under a quadratic map-

ping, composed from two nonhomogeneous quadratic functions. Results on the image
of quadratic mappings play an important role in nonconvex quadratic optimization
(see, e.g., [17, 25, 27] and references therein). We begin with the following theorem
due to Polyak [25, Theorem 2.2], which is very relevant to our analysis.

Theorem 3.2 (see [25]). Let A1,A2 ∈ R
n×n, (n ≥ 2) be symmetric matrices for

which the following condition is satisfied:

∃α, β ∈ R such that αA1 + βA2 
 0.(25)

Let b1, b2 ∈ R
n and c1, c2 ∈ R, and define fj(x) = xTAjx+ 2bTj x+ cj. Then the set

W = {(f1(x), f2(x)) : x ∈ R
n}

is closed and convex.
The following theorem states that the images of C

n and R
n under the quadratic

mapping defined in Theorem 3.2 are the same.
Theorem 3.3. Consider the setup of Theorem 3.2, and let fj(z) = z∗Ajz +

2�(b∗jz) + cj. Then the sets

F = {(f1(z), f2(z)) : z ∈ C
n}, W = {(f1(x), f2(x)) : x ∈ R

n}
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STRONG DUALITY IN NONCONVEX QUADRATIC OPTIMIZATION 853

are equal. The proof of Theorem 3.3 relies on the following lemma.
Lemma 3.4. Let A be a real n× n symmetric matrix, b ∈ R

n, c ∈ R, and β ≥ 0.
Then

min
x∈Rn

{xTAx + 2bTx + c : ‖x‖2 = β} = min
z∈Cn

{z∗Az + 2�(b∗z) + c : ‖z‖2 = β}.
(26)

Proof. First note that (26) is obvious for β = 0. Suppose that β > 0. The value
of the first problem in (26) is equal to

max
μ

{μ : xTAx + 2bTx + c ≥ μ for every x ∈ R
n such that ‖x‖2 = β}.(27)

Similarly, the value of the second problem is equal to

max
μ

{μ : z∗Az + 2�(b∗z) + c ≥ μ for every z ∈ C
n such that ‖z‖2 = β}.(28)

By Theorem A.2 (note that condition (45) is satisfied for f1(x) ≡ ‖x‖2 − β with
β > 0), the value of both problems is equal to the value of

maxμ,λ μ

s.t.

(
A b

bT c− μ

)
� λ

(
I 0
0 −β

)
,

and therefore these values are the same.
We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. By Theorem 3.2 both W and F are convex. Obviously
W ⊆ F . To prove the opposite, we first assume without loss of generality that
f1(x) = ‖x‖2. The latter assumption is possible since (25) is satisfied. Suppose that
(a, b) ∈ F , i.e., a = ‖z‖2, b = f2(z) for some z ∈ C

n, and let

bmin = min{f2(z) : ‖z‖2 = a} and bmax = max{f2(z) : ‖z‖2 = a}.

By Lemma 3.4, there must be two real vectors x0,x1 ∈ R
n such that ‖x0‖2 = ‖x1‖2 =

a and f2(x
0) = bmin ≤ b ≤ bmax = f2(x

1). Therefore, (a, bmin), (a, bmax) ∈ W . Since
W is convex we conclude that (a, b), being a convex combination of (a, bmin) and
(a, bmax), also belongs to W .

3.3. A sufficient condition for zero duality gap of (QPR).

3.3.1. The condition. We now use the results on the complex valued problem
(QPC) in order to find a sufficient condition for zero duality gap and tightness of the
SDR of the real valued problem (QPR). Our derivation is based on the fact that if
an optimal solution of (QPC) is real valued, then (QPR) admits no gap with its dual
problem (DR).

Theorem 3.5. Suppose that both problems (QPR) and (DR) are strictly feasible
and that

∃α̂, β̂ ∈ R such that α̂A1 + β̂A2 
 0.(29)

Let (λ̄, ᾱ, β̄) be an optimal solution of the dual problem (DR). If

d = dim
(
N (A0 − ᾱA1 − β̄A2)

)
�= 1,(30)
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854 AMIR BECK AND YONINA C. ELDAR

then val(QPR) = val(DR) = val(SDRR) and there exists a real valued solution to
(QPC).

Proof. Since both (SDRR) and (DR) are strictly feasible, val(DR) = val(SDRR).
Now, suppose that d = 0. Then by (13), a solution to (QPC) is given by the real
valued vector

x̄ = −(A0 − ᾱA1 − β̄A2)
−1(b0 − ᾱb1 − β̄b2).

Since (QPC) has a real valued solution it follows that val(QPR) = val(QPC) = val(DR),
where the last equality follows from Theorem 2.2.

Next, suppose that d ≥ 2. By Theorem 2.5, any optimal solution z̄ of (QPC) has
the form z̄ = Bw̄ + a, where w̄ ∈ C

d is a solution of

g1(w) ≥ 0, g2(w) ≥ 0, ᾱg1(w) = 0, β̄g2(w) = 0, (gj(w) ≡ fj(Bw + a)).(31)

Both the matrix B and the vector a are chosen to be real valued; such a choice is
possible since the columns of B form a basis for the null space of the real valued
matrix A1 − ᾱA1 − β̄A2 and a is an arbitrary solution of a real valued linear system.
Now, obviously (g1(w̄), g2(w̄)) ∈ S1, where S1 = {(g1(w), g2(w)) : w ∈ C

d}. Since B
has full column rank, if (29) is satisfied, then

α̂BTA1B + β̂BTA2B 
 0.(32)

The LMI (32) together with the fact that d ≥ 2 imply that the conditions of Theorem
3.3 are satisfied and thus S1 = S2, where S2 = {(g1(x), g2(x)) : x ∈ R

d}. Therefore,
there exists x̄ ∈ R

d such that gj(w̄) = gj(x̄) and as a result, (31) has a real valued
solution. To conclude, z̄ = Bx̄ + a ∈ R

n is a real valued vector which is an optimal
solution to (QPC).

A more restrictive sufficient condition than (30) is

dim(N (A0 − ᾱA1 − β̄A2)) = 0.

This condition, as opposed to condition (30), can be directly derived from comple-
mentarity conditions of (SDRR) and its dual (DR).

We note that although a direct verification of the sufficient condition (30) re-
quires the solution of the dual problem (DR), we will show that it is possible to use
this condition in order to prove strong duality is always satisfied for certain classes of
structured nonconvex quadratic problems (see section 3.3.3).

3.3.2. Numerical experiments. To demonstrate the fact that for the TTRS
problem (3), the sufficient condition of Theorem 3.5 often holds for random problems,
we considered different values of m and n (the number of constraints and the number
of variables in the original nonlinear problem) and randomly generated 1000 instances
of B, g,A, and c. We chose Δ = 0.1 and ξ = ‖AT (−αAc) + c‖, with

α = min

{
Δ

‖Ac‖ ,
cT (ATA)c

cT (ATA)2c

}
,

as suggested in the trust region algorithm of [6]. The SDP problems were solved by
SeDuMi [32]. The results are given in Table 2.

In the table, distribution is the distribution from which the coefficients of B, g,A,
and c are generated. There are two possibilities: uniform distribution (U [0, 1]) or
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STRONG DUALITY IN NONCONVEX QUADRATIC OPTIMIZATION 855

Table 2

Results for TTRS.

n m distribution Nsuf mean sd
10 1 Normal 997 5.50 2.34
10 1 Uniform 1000 1.61 0.62
10 10 Normal 1000 5.04 2.31
10 10 Uniform 1000 1.60 0.61
100 1 Normal 1000 13.15 2.65
100 1 Uniform 1000 3.75 0.64
100 100 Normal 1000 12.54 2.31
100 100 Uniform 1000 3.71 0.65

standard normal distribution (N(0, 1)). Nsuf is the number of problems satisfying
the sufficient condition (30) out of 1000. mean and sd are the mean and standard
deviation of the minimal eigenvalue of the matrix A0 − ᾱA1 − β̄A2. Numerically,
the dimension of the null space in condition (30) was determined by the number of
eigenvalues of the matrix A0 − ᾱA1 − β̄A2 whose absolute value was less than 10−8.
It is interesting to note that almost all the instances satisfied condition (30) except
for 3 cases when n = 10,m = 1 with data generated from the normal distribution.
Of course, these experiments reflect the situation in random problems and the results
might be different (for better or for worse) if the data is generated differently.

3.3.3. Two classes of problems with zero duality gap. We will now present
two classes of nonconvex quadratic problems for which the sufficient condition of
Theorem 3.5 is always satisfied.

First class. Consider the problem of minimizing an indefinite quadratic function
subject to a norm constraint and a linear inequality constraint:

min
x∈Rn

{xTQx + 2bTx : ‖x‖2 ≤ δ,aTx ≤ ξ}.(33)

This problem was treated in [33, 35], where it was shown that the SDR is not always
tight, although a polynomial-time algorithm for solving this problem was presented.
We will find a condition on the data (Q,a, b) that will be sufficient for zero duality
gap.

Theorem 3.6. Suppose that problem (33) is strictly feasible and n ≥ 2. If the
dimension of N (Q − λmin(Q)In) is at least 2, then strong duality holds for problem
(33).

Proof. Let (λ̄, ᾱ, β̄) be an optimal solution of the dual problem to (33). From the
feasibility of the dual problem it follows that Q+ᾱIn � 0. Now, either ᾱ > −λmin(Q)
and in that case Q + ᾱIn is nonsingular and thus the dimension of N (Q + ᾱIn) is
0 or ᾱ = −λmin(Q) and in this case N (Q + ᾱIn) is of dimension at least 2 by the
assumptions. The result follows now from Theorem 3.5.

Second class. Consider problem (QPR) with matrices Ai of the following form:

Ai = Ir ⊗ Qi, i = 0, 1, 2,(34)

where Qi = QT
i ∈ R

m×m, r > 1, and n = rm. Here ⊗ denotes the Kronecker product.
In section 3.4 we will show that this class of problems naturally arises in unstructured
robust least squares problems. The following theorem, which is a direct consequence
of the sufficient condition (30), states that under some mild conditions (such as strict
feasibility), strong duality holds.
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856 AMIR BECK AND YONINA C. ELDAR

Theorem 3.7. Suppose that both problems (QPR) and (DR) are strictly feasible

and that Ai is given by (34). Moreover, suppose that there exist α̂ and β̂ such that

α̂Q1 + β̂Q2 
 0.(35)

Then strong duality holds for (QPR).
Proof. The validity of condition (35) readily implies that (29) holds true. More-

over, by the premise of the theorem, both problems (QPR) and (DR) are strictly
feasible. We are thus left with the task of proving that condition (30) is satisfied. In-
deed, let (λ̄, ᾱ, β̄) be an optimal solution of the dual problem (DR). Then the matrix
A0 − ᾱA1 − β̄A2 is equal to Ir ⊗ (Q0 − ᾱQ1 − β̄Q2). Using properties of eigenval-
ues of Kronecker products [14], we conclude that the multiplicities of the eigenvalues
of the latter matrix must be multiplicities of r, i.e., r, 2r, . . . . The dimension of
N (A0 − ᾱA1 − β̄A2) is the multiplicity of the eigenvalue 0, which by the fact that
r > 1, cannot be equal to 1. Hence, by Theorem 3.5, strong duality holds.

3.4. Application to unstructured robust least squares. The robust least
squares (RLS) problem was introduced and studied in [16, 7]. Consider a linear sys-
tem Ax ≈ b where A ∈ R

r×n, b ∈ R
r, and x ∈ R

n. Assume that the matrix and
right-hand side vector (A, b) are not fixed but rather given by a family of matrices3

(A, b)+ΔT , where (A, b) is a known nominal value and Δ ∈ R
(n+1)×r is an unknown

perturbation matrix known to reside in a compact uncertainty set U . The RLS ap-
proach to this problem is to seek a vector x ∈ R

n that minimizes the worst case data
error with respect to all possible values of Δ ∈ U :

min
x

max
Δ∈U

∥∥∥∥Ax− b + ΔT

(
x
−1

)∥∥∥∥
2

.(36)

In [16] the uncertainty set U in the unstructured case was chosen to contain all matrices
Δ satisfying a simple Frobenius norm constraint, i.e.,

Tr(ΔTΔ) ≤ ρ.(37)

The RLS problem is considered difficult in the case when the uncertainty set U is
given by an intersection of ellipsoids; see the related problem4 of finding a robust
counterpart of a conic quadratic problem [3]. Nonetheless, we will now show that a
byproduct of our results is that as long as r > 1, the RLS problem with uncertainty
set given by an intersection of two ellipsoids is tractable. Specifically, we consider an
uncertainty set U given by two norm constraints:

U = {Δ ∈ R
(n+1)×r : Tr(ΔTBiΔ) ≤ ρi, i = 1, 2},(38)

where Bi = BT
i ∈ R

(n+1)×(n+1) and ρi > 0. We also assume that

∃γ1 ≥ 0, γ2 ≥ 0 such that γ1B1 + γ2B2 
 0.(39)

The above condition will ensure strict feasibility of the dual problem to the inner
maximization problem of (36).

3The perturbation matrix appears in a transpose form for the sake of simplicity of notation.
4Note that finding a tractable formulation to the RLS problem is the key ingredient in deriving

a robust counterpart of a conic quadratic constraint of the form ‖Ax + b‖ ≤ cT x + d.
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STRONG DUALITY IN NONCONVEX QUADRATIC OPTIMIZATION 857

The form of the uncertainty set (38) is more general than the standard single-
constraint form (37) and it can thus be used to describe more complicated scenarios
of uncertainties. Using some simple algebraic manipulations the objective function in
(36) can be written as

‖Ax− b+ΔT x̃‖2 = Tr(ΔT x̃x̃TΔ) + 2Tr((Ax− b)x̃TΔ) + Tr((Ax− b)(Ax− b)T ),

where we denoted

x̃ =

(
x
−1

)
.(40)

Relying on the identities

Tr(ATBA) = vec(A)T (Ir ⊗B) vec(A), Tr(ATC) = vec(A)T vec(C)(41)

for every A,C ∈ R
p×rB ∈ R

p×p, where for a matrix M , vec(M) denotes the vector
obtained by stacking the columns of M , the inner maximization problem in (36) takes
the following form:

max{vec(Δ)TQ vec(Δ) + 2fT vec(Δ) + c : Δ ∈ U},(42)

where Q = Ir ⊗ x̃x̃T ,f = vec(x̃(Ax−b)T ), and c = ‖Ax−b‖2. By the first identity
of (41) it follows that U can be written as

U = {Δ ∈ R
(n+1)×r : vec(Δ)T (Ir ⊗Bi) vec(Δ) ≤ ρi, i = 1, 2}.

Therefore, all the matrices in the inner maximization problem (42) are of the form
Ir ⊗ G. Noting that all the other conditions of Theorem 3.7 are satisfied (strict
feasibility of the primal and dual problems and (35)), we conclude that strong duality
holds for (42) and its value is thus equal to the value of the dual problem given by

min
α≥0,β≥0,λ

{
−λ

∣∣∣∣
(
−Q + Ir ⊗ (αB1 + βB2) −f

−fT −c− λ− αρ1 − βρ2

)
� 0

}
.

Now, using the following identities (see [14]):

Q = Ir ⊗ x̃x̃T = (Ir ⊗ x̃)(Ir ⊗ x̃)T ,

f = vec(x̃(Ax− b)T ) = (Ir ⊗ x̃)(Ax− b)

the dual problem is transformed to

min
α≥0,β≥0,λ{

−λ

∣∣∣∣
(
−(Ir ⊗ x̃)(Ir ⊗ x̃T ) + Ir ⊗ (αB1 + βB2) −(Ir ⊗ x̃)(Ax− b)

−(Ax− b)T (Ir ⊗ x̃)T −‖Ax− b‖2 − λ− αρ1 − βρ2

)
� 0

}
,

which, by Schur complement, can be written as

min
α≥0,β≥0,λ

⎧⎨
⎩−λ

∣∣∣∣∣∣
⎛
⎝ Ir (Ir ⊗ x̃)T Ax− b

Ir ⊗ x̃ Ir ⊗ (αB1 + βB2) 0
(Ax− b)T 0 −λ− αρ1 − βρ2

⎞
⎠ � 0

⎫⎬
⎭ .
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Finally, we arrive at the following SDP formulation of the RLS problem (36):

min
α≥0,β≥0,λ,x

⎧⎨
⎩−λ

∣∣∣∣∣∣
⎛
⎝ Ir (Ir ⊗ x̃)T Ax− b

Ir ⊗ x̃ Ir ⊗ (αB1 + βB2) 0
(Ax− b)T 0 −λ− αρ1 − βρ2

⎞
⎠ � 0

⎫⎬
⎭ .

(43)

We summarize the discussion in this section in the following theorem.
Theorem 3.8. Consider the RLS problem (36), where the uncertainty set U is

given by (38), r > 1, and B1,B2 satisfy condition (39). Let (α, β, λ,x) be a solution
to the SDP problem (43), where x̃ is given in (40). Then x is the optimal solution of
the RLS problem (36).

Appendix. Extended Finsler’s theorem.
Theorem A.1 (Finsler’s theorem [11, 21]). Let F be one of the fields R or C and

let A,B ∈ R
n×n be symmetric matrices. Suppose that there exist x1,x2 ∈ F

n such
that x∗

1Ax1 > 0 and x∗
2Ax2 < 0. Then

z∗Bz ≥ 0 for every z ∈ F
n such that z∗Az = 0

if and only if there exists α ∈ R such that B − αA � 0.
We note that the complex case can be reduced to the real case by using

z∗Az = (xTyT )

(
A 0
0 A

)(
x
y

)

for all z = z + iy,x,y ∈ R
n, where A ∈ R

n×n is symmetric.
While Finsler’s theorem deals with homogeneous quadratic forms, the extended

version considers nonhomogeneous quadratic functions.
Theorem A.2 (extended Finsler’s theorem). Let F be one of the fields R or C

and let A1,A2 ∈ R
n×n be symmetric matrices such that

A2 � ηA1 for some η ∈ R.(44)

Let fj : F
n → R, fj(x) = x∗Ajx + 2�(bTj x) + cj, where bj ∈ R

n and cj is a real
scalar.5 Suppose that

∃x1,x2 ∈ F
n such that f1(x1) > 0, f1(x2) < 0.(45)

Then the following two statements are equivalent:
(i) f2(x) ≥ 0 for every x ∈ F

n such that f1(x) = 0.
(ii) There exists λ ∈ R such that(

A2 b2

bT2 c2

)
� λ

(
A1 b1

bT1 c1

)
.

Proof. (ii) ⇒ (i) is a trivial implication. Now, suppose that (i) is satisfied. Making
the change of variables x = (1/t)y (y ∈ F

n, t �= 0) and multiplying f1 and f2 by |t|2,
(i) becomes

g2 (y, t) ≥ 0 for every y ∈ F
n, t �= 0 such that g1 (y, t) = 0,(46)

5In the case F = R, fj can be written as fj(x) = xT Ajx + 2bT
j x + cj .
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where gj(y, t) = y∗Ajy+2�(bTj yt)+cj |t|2. Notice that if t would not be restricted to
be nonzero, then by Theorem A.1, statement (ii) is true (g1 and g2 are homogeneous
quadratic functions). Thus, all is left to prove is that (46) is true for t = 0. However,
by replacing t �= 0 with t = 0, (46) reduces to

y∗A2y ≥ 0 for every y ∈ F
n such that y∗A1y = 0,

which, by Theorem A.1, is equivalent to condition (44).
The condition in Theorem A.2 holds true, for instance, if A2 is positive definite

or if A1 is definite. The case in which A1 is definite was already proven for the real
case in [33, Corollary 6].
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