
Abstract. We consider the problem of finding a point in the intersection of an
affine set with a compact convex set, called a convex linear system (CLS). The
conditional gradient method is known to exhibit a sublinear rate of conver-
gence. Exploiting the special structure of (CLS), we prove that the conditional
gradient method applied to the equivalent minimization formulation of
(CLS), converges to a solution at a linear rate, under the sole assumption that
Slater’s condition holds for (CLS). The rate of convergence is measured
explicitly in terms of the problem’s data and a Slater point. Application to a
class of conic linear systems is discussed.

Key words: Conic linear systems, Slater’s condition, conditional gradient,
efficiency and rate of convergence analysis
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1 Introduction

Consider the convex feasibility problem

ðIÞ Mx ¼ g
x 2 S

�

where M : <n ! <m is a linear map with full row rank, g 2 <m is a given point
and S � <n is a closed and bounded convex set, and its associated equivalent
optimization formulation

ðOPÞ minfjjMx� gjj2 : x 2 Sg:
The conditional gradient method is a feasible direction method and is
applicable only when the feasible set S is compact. At each iteration of the
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algorithm, a feasible direction (with respect to the linear approximation of the
function) is chosen and then a line search is performed along that direction.
The conditional gradient algorithm has been studied by several researchers,
see for example, Bertsekas [2], Dunn [4], Levitin and Polyak [7] and references
therein. The convergence of CGM can be established under relatively mild
assumptions on the problem’s data and is in fact an extension of the Frank
and Wolfe algorithm [6] originally devised to minimize a quadratic function
over a polyhedron. The advantage of the CGM is its simplicity, in particular
when applied to problem of the form (OP), ( at each iteration, it requires only
simple matrix-vector multiplications), yet the efficiency of CGM is far less
attractive. Sublinear rate of convergence of the function values was estab-
lished by [7]. However, the improvement toward the derivation of a linear rate
of convergence of the function values has been established only under very
restrictive assumptions. Indeed, in [7] linear rate of convergence is proven
under the assumptions that the feasible set is strongly (uniformly) convex and
that krf ðxÞk is bounded below by a positive number, which are severe and
rarely met assumptions in most optimization models of interest. Other con-
ditions ensuring linear rate of convergence can be found in [4]. Some basic
and well known results on the CGM will be summarized in the next section.

Unfortunately, none of these general results are even applicable to the
simple problem of minimizing the convex quadratic function over the
compact convex set S described in (OP), which is the problem we intend to
study. At this juncture, we mention that due to their simplicity, there has
been a revived interest in studying gradient based methods for solving very
large scale optimization problems, see e.g., the recent work of Ben-Tal
et al. [1]. Indeed, more efficient algorithms (e.g. interior point methods)
require heavy computational cost at each iteration and, due to the size of a
given problem, often cannot even complete a single iteration. Thus, it is of
interest to further study the possibility of improving efficiency of simpler
gradient based algorithms when applied to specially structured problems.
As recalled above, while the CGM exhibits only sublinear rate of conver-
gence for a general problem, exploiting the special structure of problem
(OP) allows for deriving an analysis with an improved rate. In Section 3,
we prove that under the mild and standard Slater’s condition on the system
(I), the CGM converges to a solution of (I) at a linear rate. The rate of
convergence depends on the problem’s data, e.g., the matrix M , the vector
g and on the radius of the largest ball contained in the feasible set of (I).
In the course of our analysis, we also show that a recent algorithm studied
in [5] for problems of the form (I), with S being a conic linear system in
compact form, that is, with S :¼ C \ fx : uT x ¼ 1g where C is a closed
convex cone and u 2 <n is a fixed given point such that S is compact, is
nothing else but the CGM. We also compare our result with the one
proven in [5], and show that a somewhat sophisticated condition imposed
there on the problem’s data, is in fact equivalent to the simple Slater’s
condition for the system (I). Our notations are mostly standard. The
Euclidean space is denoted by <n with inner product h�; �i and the associ-
ated l2 norm jj � jj. For any matrix A, the norm of A is defined by
jjAjj ¼ maxfjjAxjj : jjxjj � 1g. For any set S � <n we denote by
riðSÞ; intðSÞ; clðSÞ respectively the relative interior, interior, and closure of
S and by @S ¼ clðSÞ n intðSÞ the boundary of S. For a cone K � <n the
polar cone is K� ¼ fx� : hx; x�i � 0 8x 2 Kg.
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2 The conditional gradient method and preliminary results

In this section we recall the basic steps and convergence results on the con-
ditional gradient method, see e.g. [2] for details and references, as well as
some other technical results that will be needed in the rest of this paper.

Consider the convex optimization problem:

ðP Þ min
x2S

f ðxÞ
Unless otherwise specified, throughout this section we assume that f is a

convex continuously differentiable function on the closed and bounded
convex set S � <n, with Lipschitz gradient rf on S, i.e.,

9L > 0 such that krf ðxÞ � rf ðyÞk � Lkx� yk 8x; y 2 S;

and we set f � :¼ minx2S f ðxÞ.
Conditional Gradient Method-CGM: Start with x0 2 S. Generate the sequence
fxkg; 8k ¼ 1; 2; . . . via the following steps:

1. Compute pk�1 ¼ argminfhp � xk�1;rf ðxk�1Þi : p 2 Sg:
2. Stopping Criteria: Let SðxÞ :¼ minp2Shp � x;rf ðxÞi. If Sðxk�1Þ ¼
hpk�1 � xk�1;rf ðxk�1Þi ¼ 0 STOP. Else, goto step 3.

3. Line search: Compute kk�1 ¼ argmin
k2½0;1�

f ðxk�1 þ kðpk�1 � xk�1ÞÞ.

Update xk ¼ xk�1 þ kk�1ðpk�1 � xk�1Þ.
4. Set k  k þ 1. Goto step 1.

It is easy to verify that

f ðxk�1Þ � f � � f ðxk�1Þ þ Sðxk�1Þ; ð1Þ
and thus one always has Sðxk�1Þ � 0 and Sðxk�1Þ ¼ 0 if and only if xk�1 is an
optimal solution of problem (P), justifying the stopping criteria given in step 2.

The bulk of computation in the CGM are in Step 1 and Step 3. The latter
requires to find a step size kk�1 by solving the following one dimensional
problem. Given x; p in S find k� solution of

min
k2½0;1�

f ðxþ kðp � xÞÞ:

This step can in fact be computed analytically by using an appropriate
quadratic approximation of the function f . Such approximation exists since
we assumed here that rf is Lipschitz continuous. Indeed, the quadratic
approximation follows by using the so-called descent lemma [2, Proposition
A.24] (see Appendix). Thus the only remaining computational step in CGM is
step 1 which in many applications might be very easy to solve. For example,
whenever S is a simplex, in which case the solution is immediate or whenever
the constraint set is a polyhedron, namely we have to solve a linear pro-
gramming problem. Thus, CGM is an attractive simple algorithm whenever
step 1 can be performed efficiently. The main known results on the condi-
tional gradient method without any more assumptions (except for the ones we
have already assumed) are summarized in the following proposition.1

1 Since many of these results have been scattered in several references in the literature (see e.g.,
[2, 3, 4, 7]), for convenience and the interested reader on general results for CGM, we have given
in an appendix compact proofs.
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Proposition 2.1 Let f 2 C1ð<nÞ be a convex function with Lipschitz continuous
gradient and Lipschitz constant L > 0. Let fxkg be a sequence generated by the
conditional gradient method. Then,

(i) xk 2 S, the sequence ff ðxkÞg is monotone decreasing and every limit point
of the sequence fxkg solves minx2S f ðxÞ.

(ii) limn!1 f ðxnÞ ¼ f � ¼ minx2S f ðxÞ:
(iii) There exists a positive constant c, which depends on L and the diameter

dS :¼ sup
x;y2S
jjx� yjj such that f ðxnÞ � f � � c

n.

Note that convexity is not needed to derive the first statement of the prop-
osition. In that case of course, the statement on the sequence fxkg is that every
limit point is a stationary point, i.e., it satisfies the necessary local optimality
conditions for problem (P).

The sublinear rate of convergence for function values cannot be improved,
see e.g., Cannon and Cullum [3], unless, as we already mentioned in the
introduction, we make some further stronger assumptions on the feasible set
S, and this even if we assume that the objective function is convex quadratic
which is our problem of interest in this paper. Exploiting the special structure
of the objective, the next section develops the required analysis to achieve a
linear rate of convergence of CGM for such class of problems.

3 Linear rate of convergence analysis of CGM

We consider the problem of finding a point satisfying:

ðIÞ Mx ¼ g
x 2 S

�

where S is a closed convex and bounded set. To solve this problem we con-
sider the equivalent optimization problem:

ðOPÞ v� :¼ min
x2S

1

2
kMx� gk2:

Clearly, if (I) is feasible the optimal function value of (OP) is v� ¼ 0, otherwise
one has v� > 0.

We will apply the conditional gradient method CGM to (OP). The line
search applied to the case of a convex quadratic objective is simple as it has an
analytic expression (as it obviously does not require the use of a quadratic
approximation of the objective). Indeed, with f ðxÞ ¼ 1

2 kMx� gk2 one has
rf ðxÞ ¼ MT ðMx� gÞ and we immediately obtain the following identity: for
any x; p 2 <n and any k 2 <:

gðkÞ :¼ f ðxþ kðp � xÞÞ ¼ f ðxÞ þ khp � x;rf ðxÞi þ 1

2
k2kMðx� pÞk2: ð2Þ

In order to simplify the expressions we use the following notations:

vk�1 ¼ g�Mxk�1; ð3Þ
wk�1 ¼ g�Mpk�1: ð4Þ

Using the identity (2) at the points x ¼ xk�1; p ¼ pk�1 and denoting by gkðkÞ
the resulting function, the step size computation in the line search of Step 3 of
CGM, consists of finding k� ¼ argmin

k2½0;1�
gkðkÞ.
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This is a simple one dimensional convex quadratic minimization problem
over the interval ½0; 1�. A direct computation shows that one has g0kðkÞ ¼ 0 if
and only if:

k ¼ �hp
k�1 � xk�1;rf ðxk�1Þi
kMðpk�1 � xk�1Þk2

¼ hvk�1; vk�1 � wk�1i
kvk�1 � wk�1k2

: ð5Þ

Thus,

k� ¼ argmin
k2½0;1�

f ðxk�1 þ kðpk�1 � xk�1ÞÞ ð6Þ

¼
hvk�1;vk�1�wk�1i
kvk�1�wk�1k2

if hvk�1;vk�1�wk�1i
kvk�1�wk�1k2

< 1

1 if hvk�1;vk�1�wk�1i
kvk�1�wk�1k2

� 1

8><
>: ð7Þ

Now, the main computational step of the conditional gradient method given

in CGM-Step 1 is pk�1 ¼ argmin
p2S

fhp � xk�1;rf ðxk�1Þig. Substituting the

expression of the gradient of f : rf ðxÞ ¼ MT ðMx� gÞ, and using the defini-
tion of vk (cf. (3)), we obtain,

pk�1¼ argmin
p2S

hp� xk�1;MT ðMxk�1�gÞi¼ argmin
p2S

hvk�1;g�Mpi�kvk�1k2:

ð8Þ
To summarize, the basic steps of the conditional gradient method for the

quadratic problem (OP) has the following form:

The conditional gradient method applied to (OP): CGM-OP

Initialization step: Start with an arbitrary x0 2 S

General step: Solve: pk�1 ¼ argmin
p2S

hvk�1; g�Mpi k ¼ 1; 2; . . .

and compute: kk�1 ¼
hvk�1;vk�1�wk�1i
kvk�1�wk�1k2

if hvk�1;vk�1�wk�1i
kvk�1�wk�1k2

< 1

1 if hvk�1;vk�1�wk�1i
kvk�1�wk�1k2

� 1

8<
: :

Update: xk ¼ xk�1 þ kk�1ðpk�1 � xk�1Þ
The stopping function Sð�Þ defined in step 2 of CGM can be expressed as

follows:

Sðxk�1Þ ¼hpk�1 � xk�1;rf ðxk�1Þi
¼hg�Mxk�1;Mxk�1 � gþ g�Mpk�1i ¼ hvk�1;wk�1i � jjvk�1jj2:

The algorithm CGM-OP will produce an optimal solution at iteration k
whenever hvk�1;wk�1i ¼ jjvk�1jj2. If in addition vk�1 6¼ 0, i.e., hvk�1;wk�1i > 0,
then CGM-OP will stop with an infeasible solution of (OP) (which means that
the original problem (I) is infeasible).

Applying CGM-OP to the special case when S ¼ fx 2 C : uT x ¼ 1g, where
C is closed convex cone and u 2 <n is a given fixed point such that S is
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bounded, the above development shows that we have precisely recovered the
algorithm GVNA proposed in [5, p.461–462].

As a byproduct of this equivalence between CGM and GVNA we can thus
derive as an immediate consequence of Proposition 2.1

Corollary 3.1 Suppose that system (I) is feasible and let fxkg be the sequence
generated by CGM-OP, and let vk ¼ g�Mxk. Then, fkvkk2g converges to 0
with at least a sublinear rate, i.e., 9g > 0 : kvkk � gffiffi

k
p .

Note that in the quadratic case, we don’t need to use the quadratic
approximation in the line search and thus we can write g explicitly in terms of
the data ðM ; g; uÞ for the special case S ¼ C \ fx : uT x ¼ 1g, thus recovering
the results of [5] in the feasible case.

We are now going to prove our main result concerning the efficiency of
CGM-OP. Our approach is inspired from a proposition derived in [5,
Proposition 6] for establishing linear convergence of GVNA. However, here
we introduce a new idea that leads to a simple quantity for measuring the
convergence rate, and which allows us to establish linear convergence under
the sole and mild Slater’s assumption on problem (I).

We denote the distance from a point b 2 <n to the boundary @S of a
closed convex set of <n by

dðb; @SÞ :¼ inffjjz� bjj : z 2 @Sg:
One thus has

dðb; @SÞ ¼ minfjjz� bjj : z 2 Sg if b 62 S
maxfr : Bðb; rÞ � Sg if b 2 S;

�

where Bðb; rÞ is the ball centered at b with radius r.
We will make the following assumption throughout the rest of the paper:

Assumption. The row vectors of the matrix M are linearly independent.

This implies that the Gram matrix MMT is positive definite and thus has
an inverse. Note that this assumption is without loss of generality. It simply
means that there are no redundant equations in the system Mx ¼ g.

Proposition 3.1 Let fxkg be the sequence generated by CGM-OP, let pk be the
direction computed in the general step at iteration k þ 1 and let vk ¼ g�Mxk.
Suppose that the Slater condition for the convex linear system (I) is satisfied,
i.e.,

9 x̂ 2 intðSÞ such that Mx̂ ¼ g:

Then,

hvk; g�Mpki þ RSðx̂;MÞkvkk � 0; ð9Þ
where

RSðx̂;MÞ ¼
dðx̂; @SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðMMT Þ�1k

q :
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Proof. First, note that one has:

vk ¼ g�Mxk ¼ Mx̂�Mxk ¼ Mðx̂� xkÞ :¼ Md:

Thus, the system Md ¼ vk has at least one solution. Among all possible
solutions, we pick the one with minimum norm, that is we are interested in
finding d�, which solves the following optimization problem:

d� ¼ min
Md¼vk

kdk2:

It is easy to see that the optimum of this minimization problem is attained
at d� ¼ MT ðMMT Þ�1vk and kd�k2 ¼ vT

k ðMMT Þ�1vk. As a consequence,

kd�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT

k ðMMT Þ�1vk

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðMMT Þ�1k � kvkk2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðMMT Þ�1k

q
� kvkk: ð10Þ

Define s :¼ dðx̂; @SÞ. Since we assumed x̂ 2 intðSÞ one has s > 0. From the
definition of s it follows that: x ¼ x̂þ s d�

kd�k 2 S; and hence,

Mx ¼M x̂þ s
d�

kd�k

� �
¼ Mx̂þ s

Md�

kd�k

¼ gþ s
vk

kd�k :

Thus, one has g�Mx ¼ �s vk
kd�k and therefore using (10) it follows that,

hvk; g�Mpki �
ð8Þ
hvk; g�Mxi ¼ � skvkk2

kd�k � �
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðMMT Þ�1k
q kvkk

proving the desired result. h

Remark 3.1 (a) Proposition 3.1 can be easily extended to bounded sets of the
form S ¼ T \ fx : Ax ¼ bg where T is a closed convex set. Under the Slater
condition (i.e., there exists x̂ 2 intðT Þ such that Mx̂ ¼ g and Ax̂ ¼ b) (9) is
satisfied, but here RSðx̂;MÞ is defined by RSðx̂;MÞ ¼ dðx̂;@SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kð ~M ~MT Þ�1k
p with

~M ¼ M
A

� �
, and the rows of ~M are linearly independent.

(b) The above analysis assumed that S is full dimensional. If this
assumption fails, (e.g., like in problems given in Remark 3.1), it can be shown
that the result holds by weakening the Slater condition of Proposition 3.1 to
the more general one,

9 x̂ 2 riðSÞ such that Mx̂ ¼ g:
where S ¼ T \ fx : Ax ¼ bg and T is full dimensional. In this case, the formula
for RS is as in Remark 3.1(a), but with replacing @S by rbdðSÞ, the relative
boundary of S.

Proposition 3.1 can now be used to prove the following linear convergence
rate for the conditional gradient method.
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Proposition 3.2 Suppose that the Slater condition is satisfied at the point x̂ for
the system (I) and let qS be the radius of a ball containing the compact set S.
Then, the conditional gradient method has a linear rate of convergence:

kvkk � ð1� q2Þ
1
2kvk�1k 8k ¼ 1; 2; . . . :

where q ¼ RSðx̂;MÞ
kgkþqSkMk : Equivalently, this means that

jjvkjj � jjv0jje�
kq
2 ; 8k ¼ 1; . . .

Proof. First recall that from the CGM-OP one has
wk�1 ¼ g�Mpk�1; vk�1 ¼ g�Mxk�1 and xk ¼ xk�1 þ k�ðpk�1 � xk�1Þ where
k� ¼ min hvk�1;vk�1�wk�1i

kvk�1�wk�1k2
; 1

n o
. A short computation shows that,

kvkk2¼kg�Mxkk2¼ðk�Þ2kvk�1�wk�1k2þ2k�hvk�1;wk�1� vk�1iþkvk�1k2

ð11Þ
By (9) we have that hvk�1;wk�1i � 0. Therefore,

hvk�1;vk�1�wk�1i ¼kvk�1k2�hvk�1;wk�1i

�
hvk�1;wk�1i�0

kvk�1k2�hvk�1;wk�1iþðkwk�1k2�hvk�1;wk�1iÞ
¼kvk�1�wk�1k2;

and hence hvk�1;vk�1�wk�1i
kvk�1�wk�1k2

� 1 which implies that k� ¼ hvk�1;vk�1�wk�1i
kvk�1�wk�1k2

. Substituting

this value of k� in (11) yields:

kvkk2 ¼
kvk�1k2kwk�1k2 � hvk�1;wk�1i2

kvk�1 � wk�1k2
: ð12Þ

Now, since S is a bounded set, it is contained in some ball Bð0; qSÞ and thus
one has kwk�1k ¼ kg�Mpk�1k � kgk þ kMkqS . Moreover, note that
kvk�1 � wk�1k2 ¼ kvk�1k2 � 2hvk�1;wk�1i þ kwk�1k2 � kwk�1k2. Therefore we
obtain from (12) (we set here R :¼ RSðx̂;MÞ):

kvkk2 ¼ kvk�1k2kwk�1k2 � hvk�1;wk�1i2

kvk�1 � wk�1k2

�
ð9Þ kvk�1k2ðkwk�1k2 � R2Þ

kvk�1 � wk�1k2

�
kvk�1�wk�1k2�kwk�1k2 kvk�1k2ðkwk�1k2 � R2Þ

kwk�1k2

¼ 1� R2

kwk�1k2

 !
kvk�1k2

� 1� R
kgk þ qSkMk

� �2
 !

kvk�1k2;
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proving the first statement of the Proposition. From the last inequality it
follows that kvk�1k2 � kvkk2 � R

jjgjjþqS jjM jj
kvk�1k2. Invoking Lemma A.1(ii)

given in the appendix, to the nonnegative sequence ak :¼ jjvkjj the equivalent
part of the proposition is obtained. h

We can apply the above result to find an approximate solution of (I) with
fixed accuracy. Given e > 0, an e-solution of (I), namely a point x 2 S such
that jjMx� gjj � e, is obtained in no more than

k ¼ 2
kgk þ qSkMk

RSðx̂;MÞ
ln
kg�Mx0k

�

� �� �

iterations of CGM.
It is interesting to compare the linear rate of convergence result derived in

Proposition 3.1 with the one derived in [5]. The linear convergence rate de-
rived in that paper, was obtained in terms of another quantity rðM ; gÞ defined
by:

rðM ; gÞ ¼ inffkg� hk : h 2 @Hg; ð13Þ
where, H ¼ fMx : x 2 Sg ¼ MðSÞ:

To derive linear convergence for a feasible problem (I), [5] need to impose
the condition:

rðM ; gÞ > 0: ð14Þ
Computing such a quantity does not appear to be an easy task even if we are
given a feasible solution of (I) . However2, it is easy to prove that for any
feasible point x̂ of (I) one has rðM ; gÞ � RSðx̂;MÞ. In comparison with
Proposition 3.1, rðM ; gÞ is needed not only to measure the rate, but also as a
criteria (cf. (14)) to guarantee linear convergence. Interestingly enough, it
turns out that the condition (14) imposed in the analysis of [5] is in fact just
Slater’s condition in disguise.

Proposition 3.3 Suppose that the convex feasibility problem (I) is feasible.
Then rðM ; gÞ > 0 if and only if there exists �x 2 intðSÞ such that M�x ¼ g.

Proof. Under the given feasibility assumption, problem (I) has a solution and
thus we have that g 2 H . Now, rðM ; gÞ > 0 is equivalent to g 62 @H and thus
g 2 intH . Using relative interior calculus ([9, Proposition 6.6, p.48]) and the
fact that the relative interior and the interior are the same in this case one has
intðHÞ ¼ intMðSÞ ¼ Mð intðSÞÞ. Therefore, g 2 intH translates to: there
exists �x 2 intðSÞ such that g ¼ M�x. h

A Appendix

The following well known properties of nonnegative sequences, (for proofs
see e.g., Polyak [8]), are used to derive the rate of convergence given in
Corollary 3.1 and Propositions 2.1 and 3.2.

2 We thank a referee for pointing out to us this fact.
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Lemma A.1 Let fakgm
k¼0 be a nonnegative sequence of real numbers.

(i) Sublinear rate: If fakg is such that ak�1 � ak � ca2
k�1 for some c > 0 and for

any k ¼ 1; . . . ;m, then

am �
a0

1þ mca0
< ðcmÞ�1:

(ii)Linear Rate: If fakg is such that ak�1 � ak � ckak�1 for some
ck � 0; 8 k ¼ 1; . . . ;m, then

am � a0e
�
Pm

k¼1 ck :

In the remaining of the appendix we outline compact proofs of the well
known results summarized in Proposition 2.1, when minimizing a convex
continuously differentiable function with Lipschitz gradient over a compact
convex set S. In what follows xk 2 S is the sequence produced by CGM as
outlined in Section 2, and SðxÞ ¼ minp2Shp � x;rf ðxÞi:

Lemma A.2 Let f : <n ! < be a continuously differentiable function with
Lipschitz gradient and Lipschitz constant L > 0 over the compact set S. Let
fxkg be the sequence generated by CGM. Then,

f ðxk�1Þ � f ðxkÞ � 1

2

S2ðxk�1Þ
kxk�1 � pk�1k2

�min
1

L
;
kxk�1 � pk�1k
krf ðxk�1Þk

� �
:

Proof. The proof follows by applying the descent Lemma [2, Proposition
A.24] which gives 8k 2 ½0; 1�;

f ðxk�1Þ � f ðxk�1 þ kðpk�1 � xk�1ÞÞ � khxk�1 � pk�1;

	rf ðxk�1Þi � L
2

k2kxk�1 � pk�1k2: ð15Þ

The later inequality is in particular true for

k� ¼ argmax
0�k�1

ka� 1

2
bk2

� �
¼ 1 if 1 � a

b
a
b 1 > a

b

�
;

where, a ¼ hxk�1 � pk�1;rf ðxk�1Þi ; b ¼ Lkxk�1 � pk�1k2:
Thus, the step size in Step 3 of CGM can be taken as k� ¼

min 1; hx
k�1�pk�1;rf ðxk�1Þi

Lkxk�1�pk�1k2

n o
: If k� ¼ 1, then in this case,

1 � hx
k�1 � pk�1;rf ðxk�1Þi

Lkxk�1 � pk�1k2
: ð16Þ

and therefore one obtains:
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f ðxk�1Þ � f ðxkÞ � hxk�1 � pk�1;rf ðxk�1Þi � L
2
kxk�1 � pk�1k2

�
ð16Þ 1

2
hxk�1 � pk�1;rf ðxk�1Þi

�
aT b�ða

T bÞ2
kak�kbk 1

2

hxk�1 � pk�1;rf ðxk�1Þi2

kxk�1 � pk�1k � krf ðxk�1Þk

¼ 1

2

S2ðxk�1Þ
kxk�1 � pk�1k � krf ðxk�1Þk : ð17Þ

In a similar way, in the other case k� ¼ hx
k�1�pk�1;rf ðxk�1Þi

Lkxk�1�pk�1k2 , and we obtain,

f ðxk�1Þ � f ðxkÞ � hx
k�1 � pk�1;rf ðxk�1Þi2

Lkxk�1 � pk�1k2
� L

2

hxk�1 � pk�1;rf ðxk�1Þi2

L2kxk�1 � pk�1k2

¼ 1

2

hxk�1 � pk�1;rf ðxk�1Þi2

Lkxk�1 � pk�1k2
¼ 1

2

S2ðxk�1Þ
Lkxk�1 � pk�1k2

: ð18Þ

h

Lemma A.3 For any f : <n ! < which is continuously differentiable with
Lipschitz gradient and Lipschitz constant L over S � <n closed, bounded and
convex one has:

(i) sup
x2S
krf ðxÞk � c2 for some constant c2.

(ii) 8x 2 S kpðxÞ � xk � c1 for some c1 > 0 where pðxÞ :¼
argmin

p2S
hp � x;rf ðxÞi:

Proof. (i) Since the gradient of f is Lipschitz, we obtain for any
x; y 2 S : jjrf ðxÞk ¼ krf ðxÞ � rf ðyÞþ rf ðyÞk � Lkx� yk þ krf ðyÞk �
LdS þ krf ðyÞk; where, dS ¼ sup

x;y2S
kx� yk and (i) is proved with

c2 :¼ LdS þ krf ðyÞk.
(ii) Since S is compact and for all x 2 S we have that pðxÞ 2 S. Thus for

c1 ¼ dS we have that kpðxÞ � xk � c1 8x 2 S. h

Applying the results of the previous lemma to lemma A.2 we obtain:

Proposition A.1 Let f : <n ! < be a continuously differentiable function with
Lipschitz gradient and Lipschitz constant L > 0 over the compact set S. Let fxkg
be the sequence generated by CGM. Define, C :¼ min 1

2c1c2
; 1
2Lc2

1

n o
> 0: Then,

f ðxk�1Þ � f ðxkÞ � CS2ðxk�1Þ; 8k ¼ 1; . . . ð19Þ
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Proof. By lemma A.2 we have that:

f ðxk�1Þ � f ðxkÞ � 1

2

S2ðxk�1Þ
kxk�1 � pk�1k2

�min
1

L
;
kxk�1 � pk�1k
krf ðxk�1Þk

� �

�
lemma A:3 1

2c1c2
;

1

2Lc21

� �
S2ðxk�1Þ:

h

Before proving Proposition 2.1, the next result shows that every limit point of
CGM is a stationary point of minx2S f ðxÞ . No convexity assumption is
needed.

Proposition A.2 Let f : <n ! < be a continuously differentiable function with
Lipschitz gradient and Lipschitz constant L > 0 over the compact set S. Let
fxkg be the sequence generated by CGM. Then,

(i) xk 2 S and ff ðxkÞg is a monotone decreasing sequence, and SðxkÞ ! 0 as
k !1.

(ii) Every limit point x� of fxkg is a stationary point, i.e., it satisfies the nec-
essary conditions for local minimum: hrf ðx�Þ; x� x�i � 0 8x 2 S.

Proof. (i) The first part of the statement follows immediately from (19), while
the second part is a consequence of

Xn

k¼1
S2ðxk�1Þ �

ð19Þ
C�1ðf ðx0Þ � f ðxnÞÞ � C�1ðf ðx0Þ � f �Þ <1;

where f � is the global minimum of f over S. This implies that SðxkÞ ! 0 as

k !1. To show (ii), suppose first that there is a k such that Sðxk�1Þ ¼ 0.
Then hrf ðxk�1Þ; p � xk�1i � 0 8p 2 S thus xk�1 is a stationary point by
definition and the proposition is proved. Otherwise, one has
f ðxkÞ < f ðxk�1Þ 8k ¼ 1; . . .. Let x� be a limit point of fxkg. Then there exists a
subsequence fxnkg that converges to x� and we have:

hpnk ;rf ðxnk Þi � hp;rf ðxnk Þi 8p 2 S
hxnk � pnk ;rf ðxnk Þi ! 0

�

fpnkg � S and thus it is a bounded sequence and consequently has a limit
point �p. Also, rf is continuous and we have:

h �p;rf ðx�Þi � hp;rf ðx�Þi 8p 2 S
hx� � �p;rf ðx�Þi ¼ 0

�

Therefore hx�;rf ðx�Þi � hp;rf ðx�Þi 8p 2 S; which proves that x� is a sta-
tionary point. h

Proof of Proposition 2.1 For convex functions the optimal points are exactly
the stationary points and thus (i) has already been proved. By (1) we have
that:

Sðxk�1Þ � f � � f ðxk�1Þ � 0 8k ¼ 1; 2; . . . ; ð20Þ
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and since Sðxk�1Þ ! 0 we obtain that limn!1 f ðxnÞ ¼ f � which proves (ii). It
remains to prove the sublinear rate in function values (iii). From (19) we have

ðf ðxk�1Þ � f �Þ � ðf ðxkÞ � f �Þ � CS2ðxk�1Þ;
but from (20) we have S2ðxk�1Þ � ðf ðxk�1Þ � f �Þ2. Defining
ak ¼ f ðxk�1Þ � f �; c :¼ C, the result follows from Lemma A.1(i). h
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