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ABSTRACT

Conditions for a matrix to be totally unimodular, due to
Camion, are applied to extend and simplify proofs of other char-
acterizations of total unimodularity.

A matrix is totally unimodular if every square submatrix
has determinant +1, -1, or 0. The concept of total unimodular-
ity has been investigated in relation to electrical networks as
well as to combinatorial mathematical programming problems.
These matrices have been studied extensively since the discovery
of Hoffman and Kruskal [13] who proved that an integral matrix
A is totally unimodular if and only if the extreme points of

X*(A,b) = {x : Ax < b, x > 0} are integral for all integer b.
A much simpler proof of this characterization was given by
Veinott and Dantzig [16]. For further contributions in charac-

terizing totally unimodular matrices the interested reader is
referred to [7,8,9,10,11,15].

One of the earliest results in this field is due to Camion
[4] who characterized totally unimodular matrices in terms of
Eulerian matrices, (see [1l]). The main purpose of our paper is
to indicate and expose the great potential of Camion's result,
which seems to have been ignored in several newer works, by
applying it to extend and refine theorems reported in a more re-
cent work of Chandrasekaran [5]. It is also demonstrated that
Camion's characterization provides a short and more elementary
proof for a recently derived sufficient condition for total uni-
modularity [6].

We start with our derivation of the sufficient condition.

In a recent paper, Commoner [6] provided a sufficient con-
dition for a matrix to be totally unimodular. This condition is
based upon a directed bipartite graph obtained from a {1,-1,0}
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- valued matrix by associating a node with every row and column,
and drawing an edge between a row node and a column node if the
entry in that row and column is nonzero. The sign of the entry
determines the orientation of the edge.

We first introduce several definitions and a few results
of [4,5,6]. Let A be a matrix with entries equal to 1, -1, or
0. A submatrix B of A is said to be Eulerian if e“B = 0 (mod
2) and Be = 0 (mod 2) where e is the summation vector (i.e.
all its entries equal to 1) of the appropriate dimension. The
following two characterizations are given in [4].

Theorem 1: A matrix A is totally unimodular if and only if
every square Eulerian submatrix is singular.

Theorem 2: A matrix A is totally unimodular if and only <if
for every (square) Eulerian submatrix B e’Be = 0 (mod 4).

Camion's proofs of the above theorems are based on the
following observation due to Gomory and reported in [4].

Theorem 3: If A is a 11,-1,0} - valued matrix which is not
totally unimodular, then A has a submatrix of determinant +2.

Simple proofs of Gomory's result (due to Tamir and Truemper)
as well as its application in implying other characterizations
will appear in a survey paper currently in preparation [14].

To present Commoner's result we introduce the necessary con-
cepts from graph theory. A 7net is a finite directed bipartite
graph G, such that any two nodes are connected by at most one arc.
An elementary circuit C of the given graph is a connected subraph
all of whose nodes have degree 2. (The degree of a node is the
number of arcs incident to the node.) A chord on an elementary
circuit C is an arc of G that connects two nodes of C but is not
an arc of the subgraph C. An elementary circuit with no chord
is called a minimal circuit. If I and J are the two parts (sets
of nodes) of G (i.e. no two members of I(J) are connected by an
arc), then define the incidence matrix A of the net G as follows.

For i ¢ T and j ¢ J define aij to be zero if i and j are not

connected, +1 if i and j are connected by an arc directed from i
to j (we use the notation <i,j>) and -1 if the direction is from
j to i (j,i>). The incidence matrix A is then defined by

A = (aij). Notice that the assumption of a net that two nodes

are connected by at most one arc ensures that the correspondence
between nets and {1,-1,0} - valued matrices is well-defined.
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Let A be the given incidence matrix of net G. Given an
elementary circuit C in the net G we define the sign of C as

follows. Let Il (Jl) be the set of nodes of C contained in

I(J). Since G is bipartite lIll = |J1| and each node i of I,

is connected to exactly two nodes of J k(i) and j(i). The

ll
sign of C, o(C), is then defined o(C) = 7 (-
1€Il
The elementary circuit is even (odd) if o(C) is +1 (-1).
We now introduce Commoner's sufficient condition for total
unimodularity.

3551 k)

Theorem 4: If each elementary circuit of a net is even then
the incidence matrix of the net is totally unimodular.

Applying a result due to Camion [4], we give a simple and
more elementary proof of Theorem 4. The proof will be based
on the following lemma.

Lemma: Let A be the incidence matrix corresponding to a net
all of whose elementary circuits are minimal. Suppose that A
18 not totally unimodular and let B be a minimal square sub-
matrix of A which is not totally uwnimodular (i.e. each proper
submatrix of B is totally unimodular). Then every column (row)
of B contains exactly two nonzero entries, and B is the inci-
dence matrix of an elementary circuilt.

Proof: The minimality of B and Theorem 2 imply that B is an

Eulerian submatrix. Consider the bipartite subgraph Gl having
B as its incidence matrix, then the degree of each node of Gl
is even (0 mod 2). We also note that the minimality of B en-

sures that Gl is connected, since otherwise we would have the

contradiction 1 < Idet Bl = ]det Bl] ldet B,| < 1 where B, and

2| 1

B2 are proper submatrices of B. Thus the degree of each node

of Gl is even and at least two. Therefore (see [2,p.229]) there

exists an Eulerian tour on Gl' It is easily seen that the tour

can be decomposed into k > 1 elementary circuits. The assump-
tion that each elementary circuit is minimal implies that the
incidence matrix of each elementary circuit of the tour is a
submatrix of B. Hence B can be partitioned into k submatrices,
Bl' ey Bk' of the appropriate dimensions, where any two ma-

trices can overlap only on zero elements of B.
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Suppose now that there existed a column (row) of B with

more than 2 nonzero entries. This would imply that Gl con-

tains a node with degree greater than two. Therefore the
Eulerian tour would consist of more than one circuit and k > 2.
Observe first that e’Be = e’B_e + ... + e”’B. e, where e is

1 k
a summation vector of the appropriate dimension. Next note
that from Theorem 2 e Bie =0 (mod 4) i =1, ..., k, since
Bl' e Bk are proper submatrices of B. Thus e”“Be = 0 (mod 4)

which contradicts the minimality of B.

We can now prove Theorem 4.

Suppose that each elementary circuit of a net is even. It
is then easily verified that each elementary circuit is minimal
(see Commoner [6]). If the incidence matrix A isn't totally uni-
modular, there exists a minimal submatrix B which is not totally
unimodular. From the Lemma each column (row) of B contains ex-
actly two nonzero entries. Further B is the incidence matrix
of a minimal circuit. Hence by relabeling the nodes we assume
without loss of generality (since Idet BI is not changed by per-
muting the rows and columns of B) that

al 0. .. O bn
b 0
1
B=1}0 .
. 0
0 . . .0 bn—l an

where ai, bi are equal to +1 or -1. Therefore

Ta. (-b.)-1
i i

+
det B = ma, + (—l)n 1 ™. = ma. - w(-b.) = . Thus
i i i i

w(-bi)
]det Bl > 1 implies that ﬂai(—bi) = -1; a contradiction to the

evenness of the minimal circuit corresponding to B.

Several comments are in order. First note that the suffi-
cient conditions of Theorem 4 are not necessary (not even for
{0,1} matrices). This is demonstrated by the following totally
unimodular incidence matrix
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1 1 1
A=11 1 0]
0] 1 1

that corresponds to a net, containing an odd elementary circuit.

It is shown in [6] that evenness of minimal circuits is required

for total unimodularity. But the latter condition is not in gen-
eral sufficient as shown by the incidence matrix

pe ¥

1
1
1 1
1

_ -

In fact, when dealing with {0,1} matrices, evenness of minimal
circuits has been shown to be equivalent to the matrix being
balanced. Note that the latter property is weaker than total
unimodularity. In view of Hoffman and Kruskal [13] characteri-
zation of totally unimodular matrices, balanced matrices, first
introduced by Berge [3], are those m x n {0,1} matrices A that
satisfy the following.

For every {0,1} vector w in R" and for every {0,1} vector

m

b in R che linear program min{ Z y. : YA>Db, 0 <y <w}
i=1

provides an integral solution.

Finally we mention a comment of a referee that Theorem 4
had been communicated to him by Edmonds in 1961.

We next turn to a necessary and sufficient condition for
total unimodularity given by Commoner [6, (2.5),(A.9)]. To our
knowledge this characterization (given as Theorem 5), was first
proved by A. Ghouila-Houri [7]. (Also reported in [2,p.468]1).
For the sake of completeness we provide a simple proof which is
based on Theorem 1.

Theorem &6: An m x n matrix A = (aij) 18 totally unimodular 1f

and only 1f each set J C {1,2,...,n} can be divided into two
disjoint sets JJ and J2 such that

ljZJ ;- ng aijl <1 forall 1< <m
1 2
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Proof: An equivalent statement of the theorem is the following:
A is totally unimodular if and only if for each submatrix
B there exists a vector A (of the appropriate dimension) all of
whose components equal to +1 and all the components of BA are O,
+1, or -1.
The condition is sufficient: By Theorem 1 it is sufficient
to show that every square Eulerian submatrix of A is singular.
Let B = (bij), i € I, Jj € J be Eulerian. There exists two dis-

joint sets Jl and J2 such that

t, = z bij - Z bij is either 0, +1, or -1 for all i e I.
Jl J2
The singularity of B will follow if we show that ti = 0 for all

i € I. Suppose on the contrary that ti = +1 for some i ¢ I,
then

1l

J J J

Zbij=Jz bij—Jz by + 2 Xbij +1 + 2 Xbij,
1 2 2 2

i.e. Z bij is odd, contrary to the supposition that B is
J

Eulerian.
The necessity is proved in two steps.

(1) Let B be such that Be = 20, where e is the summation vector
and o is an integral vector. Using the total unimodularity
of B, there exists an integral vector O < X < e such that
BA = a, [13,15]. Clearly the vector A = e - 2) has all its
components equal to +1 and BA = O.

(2) Let B be a (pxr) submatrix of A. Define a p x p matrix B

as follows. The ith column of 5 is ei, the ith unit wvector,
if (Be)i = 1 (mod 2) and the zero vector otherwise. [B,B]

is totally unimodular (since B is) and Be + Be = 0 (mod 2).
Hence, from (1) there exists a (Al,kz), all of whose compo-

nents equal to +1 and BA. + ﬁkz = 0. The proof is now com-

1
plete since all the components of BA2 are equal to 0, +1,
or -1.
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In the next section we apply Theorems 1 and 2 to extend
and refine the following characterization of totally unimodular
matrices due to Chandrasekaran [5].

Theorem 6: A matrix A is totally unimodular if and only if for

every nonsingular submatrix B = (bij) isd =1, «v., n the g.c.d.
XD, ., ADoey oue A.b .78 1 for any r. = 0, *1, but
Of§J1J§JZJ’ ’Jzana for any A

not all zero.

The next result proves that it is sufficient to consider
the case where Aj = 1, for all j, in the above theorem.

Theorem 7: Suppose that for every nonsingular submatrix B:z(bij)
of A the g.c.d. of ; b]j’ ; bgj’ cves T8 1. Then A is totally

unimodular.

Proof: Assume that A isn't totally unimodular. Then by Theorem
1 there exists an Eulerian submatrix B and det B # 0. We observe
that Be = 0 (mod 2) and det B # O imply that the g.c.d. of

Z blj' Z sz, ..., 1is at least 2 -a contradiction to the theorem
J J
assumption.

While Theorem 7 strengthens the sufficiency condition of
the characterization of Theorem 6, the next result, dealing with
unimodular matrices, refines the necessary condition of that
theorem. (Note that a square matrix is unimodular if its deter-
minant is equal to *1.)

Theorem 8: Let B be a square integer matrix. Then B 18 uni-
modular if and only 1if for each integer vector \ the g.c.d. of
the elements of B\ is equal to the g.c.d. of the elements of A.

Proof: Sufficiency: We first show that det B # 0. Supposing
that det B = 0 and observing that B is an integer matrix defined
on the field of rational numbers we conclude that there exists

a nonzero rational vector u such that By = 0. Thus there exists
a nonzero integer vector X and BA = 0. This clearly contradicts
the assumption on the equality of the two greatest common divi-
sors. Hence, det B # O.
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Suppose now that the order of B is n and let i
i=1, ..., n, be the ith column of the matrix adj(B). Then
Bci = (det B)ei, where ei is the ith unit vector in Rn. Thus
the g.c.d. of the elements of c, is ldet B]. The latter implies

that det (adj(B)) is an integer multiple of (det B)n. Hence,
B (adj(B)) = (det B)I yields

(det B)" = det (B(adj (B))) = (det B) (det B)  t

where t is integer. Hence |det Bl = 1.

Necessity: Let k > 1 be the g.c.d. of the components of
A, i.e. A =ko where o is an integral vector. If B is a matrix
whose order is equal to the order of the vector )\, then B) =kBg.
Ba is integral and thus the g.c.d. of the components of B), g,
is at least k. Assuming that B is unimodular and using

B_1 = adj (B)/det B we obtain that B_l is an integral matrix.
g is the g.c.d. of the elements of B), i.e. B)A = g+B where B is

an integral vector. We then have X = g B 1 R which in turn
implies that k > g. Thus k = g.

Finally, while observing that Theorem 8 is a theorem about
unimodular matrices, we point out that Theorem 6 as well as
Theorem 7 are results about totally unimodular matrices. They
cannot be extended along the lines of Theorem 8. This is demon-
strated by the following example due to Chandrasekaran [5].

-

1 0 1 o
1 1 -1 0
B =
0 1 1 -1
LO 1 0 1]
det B = 5, but there exist no Aj = 0, *1, not all zero, such

that the g.c.d. of the elements of B\ is not equal to 1.
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